451
|
Abstract
Cumulative evidence suggests that apoptosis plays a pivotal role in neuronal death after cerebral ischemia in various experimental animal models. The time-dependent molecular and biochemical sequelae that lead to apoptotic cell death after the interruption of cerebral blood flow have been established. Many neuroprotective agents that target cell death pathways have been failures, and alternative strategies need to be considered. One such strategy is to target the neuronal survival signaling pathway, which involves the phosphatidylinositol 3-kinase (PI3-K)/Akt (protein kinase B) pathway. It has been demonstrated that PI3-K/Akt and downstream phosphorylated Bad and proline-rich Akt substrate survival signaling cascades are upregulated in surviving neurons in the ischemic brain that overexpresses copper-zinc superoxide dismutase activity. These studies provide an impetus for novel therapeutic targets in neuroprotective strategies in stroke.
Collapse
Affiliation(s)
- Pak H Chan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif 94305-5487, USA.
| |
Collapse
|
452
|
Hossmann KA. Genetically modified animals in molecular stroke research. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 89:37-45. [PMID: 15335099 DOI: 10.1007/978-3-7091-0603-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- K A Hossmann
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany.
| |
Collapse
|
453
|
Putt KS, Hergenrother PJ. An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD(+): application to the high-throughput screening of small molecules as potential inhibitors. Anal Biochem 2004; 326:78-86. [PMID: 14769338 DOI: 10.1016/j.ab.2003.11.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Indexed: 11/20/2022]
Abstract
The enzyme poly(adenosine 5'-diphosphate (ADP)-ribose) polymerase (PARP-1) catalyzes the formation of (ADP)-ribose polymers on a variety of protein acceptors in a NAD+ -dependent manner. While PARP-1 is activated by DNA damage and plays a critical role in cellular survival mechanisms, its overactivation leads to a depletion of NAD+/ATP energy stores and ultimately to necrotic cell death. Due to this dual role of PARP in the cell, small-molecule inhibitors of the PARP family of enzymes have been widely investigated for use as potentiators of anticancer therapies and as inhibitors of neurodegeneration and ischemic injuries. Unfortunately, standard assays for PARP inhibition are not optimal for the high-throughput screening of compound collections or combinatorial libraries. Described herein is a highly sensitive, inexpensive, and operationally simple assay for the rapid assessment of PARP activity that relies on the conversion of NAD+ into a highly fluorescent compound. We demonstrate that this assay can readily detect PARP inhibitors in a high-throughput screen using 384-well plates. In addition, the assay can be used to determine IC50 values for PARP inhibitors that have a range of inhibitory properties. As existing PARP assays utilize specialized reagents such as radiolabeled/biotinylated NAD+ or antibodies to poly(ADP-ribose), the chemical quantitation method described herein offers a highly sensitive and convenient alternative for rapidly screening compound collections for PARP inhibition.
Collapse
Affiliation(s)
- Karson S Putt
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
454
|
Tasatargil A, Dalaklioglu S, Sadan G. Poly(ADP-Ribose) Polymerase Inhibition Prevents Homocysteine-Induced Endothelial Dysfunction in the Isolated Rat Aorta. Pharmacology 2004; 72:99-105. [PMID: 15331915 DOI: 10.1159/000079138] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 02/23/2004] [Indexed: 11/19/2022]
Abstract
Recent studies have clearly shown that there is a relationship between hyperhomocysteinemia and endothelial dysfunction. However, the effect of poly(ADP-ribose) polymerase (PARP) inhibition on homocysteine (Hcy)-induced endothelial damage has not been investigated. In this study, we investigated whether the loss of endothelial function in rat aortic rings preincubated with Hcy is dependent upon the PARP pathway within the vasculature. Preincubation of rat aortic rings with Hcy (1 mmol/l; 180 min) significantly inhibited endothelium-dependent relaxation in this tissue. This inhibitory effect was significantly reduced in the presence of both superoxide dismutase (100 U ml(-1)) and catalase (100 U ml(-1)) together with Hcy. Similarly, preincubation for 180 min with either N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride (PJ34; 3 micromol/l) or 3-aminobenzamide (3 mmol/l), structurally different PARP inhibitors, also significantly prevented the development of endothelial dysfunction induced by Hcy. Further incubation of aortic rings with these PARP inhibitors for 60 min after exposure to Hcy for 180 min, at least in part, improved the endothelium-dependent relaxation responses. Thus, our results suggest that intraendothelial PARP activation may be associated with endothelial dysfunction in hyperhomocysteinemic conditions and that inhibition of this pathway may present a novel pharmacological approach to prevent Hcy-induced endothelial damage. Suprisingly, inhibition of the PARP pathway not only prevents the endothelial dysfunction mediated by Hcy, but is also able to rapidly improve it.
Collapse
Affiliation(s)
- Arda Tasatargil
- Department of Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | | | | |
Collapse
|
455
|
Iwashita A, Mihara K, Yamazaki S, Matsuura S, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S. A new poly(ADP-ribose) polymerase inhibitor, FR261529 [2-(4-chlorophenyl)-5-quinoxalinecarboxamide], ameliorates methamphetamine-induced dopaminergic neurotoxicity in mice. J Pharmacol Exp Ther 2004; 310:1114-24. [PMID: 15113847 DOI: 10.1124/jpet.104.068932] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) administration in mice, results in a chronic dopamine (DA) depletion associated with nerve terminal damage, with DA oxidation and generation of reactive oxygen species (ROS) primarily mediating this neurotoxicity. The oxidative stress induced by METH putatively activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), with excessive PARP activation eventually leading to cell death. In this study, we show that prevention of PARP activation by treatment with FR261529 [2-(4-chlorophenyl)-5-quinoxalinecarboxamide], the compound that was recently identified as a novel PARP inhibitor (IC50 for PARP-1 = 33 nM, IC50 for PARP-2 = 7 nM), protects against both ROS-induced cells injury in vitro and METH-induced dopaminergic neuronal damage in an in vivo Parkinson's disease (PD) model. In PC12 cells, exposure of hydrogen peroxide or METH markedly induced PARP activation, and treatment with FR261529 (1 microM) significantly reduced PARP activation and attenuated cell death. In the mouse METH model, METH (15 mg/kg x 2 i.p., 2 h apart) intoxication accelerated DA metabolism and oxidation in the striatum, with subsequent cell damage in nigrostriatal dopaminergic neurons after 4 days. Oral administration of FR261529 (10 or 32 mg/kg) attenuated the damage of dopaminergic neurons via marked reduction of PARP activity and not via changes in dopamine metabolism or body temperature. These findings indicate that the neuroprotective effects of a novel PARP inhibitor, FR261529, were accompanied by inhibition of METH-induced PARP activation, suggesting that METH induces nigrostriatal dopaminergic neurodegeneration involving PARP activation and also orally active and brain-penetrable PARP inhibitor FR261529 could be a novel attractive therapeutic candidate for neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Akinori Iwashita
- Department of Neuroscience, Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Pellicciari R, Camaioni E, Costantino G, Marinozzi M, Macchiarulo A, Moroni F, Natalini B. Towards new neuroprotective agents: design and synthesis of 4H-thieno[2,3-c] isoquinolin-5-one derivatives as potent PARP-1 inhibitors. ACTA ACUST UNITED AC 2004; 58:851-8. [PMID: 13679179 DOI: 10.1016/s0014-827x(03)00143-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme able to catalyze the transfer of ADP-ribose from NAD to acceptor proteins, is involved in the progression of neuronal damage after brain insult. Potent and selective PARP-1 inhibitors have neuroprotective properties in experimental models of brain ischemia. As a follow up of our previous structure-activity relationship study and in search for novel potent PARP-1 inhibitors, a series of 4H-thieno[2,3-c]-isoquinolin-5-one derivatives was designed and synthesized. Tested for their ability to inhibit PARP-1, these novel derivatives showed high inhibitory potency. The unsubstituted derivative TIQ was selected for further characterization and found to be endowed with strong neuroprotective properties in models of cerebral ischemia.
Collapse
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Via del Liceo 1, I-06123 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
457
|
Dumitriu IE, Voll RE, Kolowos W, Gaipl US, Heyder P, Kalden JR, Herrmann M. UV irradiation inhibits ABC transporters via generation of ADP-ribose by concerted action of poly(ADP-ribose) polymerase-1 and glycohydrolase. Cell Death Differ 2004; 11:314-20. [PMID: 14685157 DOI: 10.1038/sj.cdd.4401348] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are involved in the transport of multiple substrates across cellular membranes, including metabolites, proteins, and drugs. Employing a functional fluorochrome export assay, we found that UVB irradiation strongly inhibits the activity of ABC transporters. Specific inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) restored the function of ABC transporters in UVB-irradiated cells, and PARP-1-deficient cells did not undergo UVB-induced membrane transport inhibition. These data suggest that PARP-1 activation is necessary for ABC transporter functional downregulation. The hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG) was also required, since specific PARG inhibitors, which limit the production of ADP-ribose molecules, restored the function of ABC transporters. Furthermore, ADP-ribose molecules potently inhibited the activity of the ABC transporter P-glycoprotein. Hence, poly(ADP-ribose) metabolism appears to play a novel role in the regulation of ABC transporters.
Collapse
Affiliation(s)
- I E Dumitriu
- Department of Internal Medicine III, Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|
458
|
Fonfria E, Marshall ICB, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 2004; 143:186-92. [PMID: 15302683 PMCID: PMC1575275 DOI: 10.1038/sj.bjp.0705914] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) and cell death. We investigated the role of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) on hydrogen peroxide (H(2)O(2))-mediated TRPM2 activation using a tetracycline-inducible TRPM2-expressing cell line. 2. In whole-cell patch-clamp recordings, intracellular adenine 5'-diphosphoribose (ADP-ribose) triggered an inward current in tetracycline-induced TRPM2-human embryonic kidney (HEK293) cells, but not in uninduced cells. Similarly, H(2)O(2) stimulated an increase in [Ca(2+)](i) (pEC(50) 4.54+/-0.02) in Fluo-4-loaded TRPM2-expressing HEK293 cells, but not in uninduced cells. Induction of TRPM2 expression caused an increase in susceptibility to plasma membrane damage and mitochondrial dysfunction in response to H(2)O(2). These data demonstrate functional expression of TRPM2 following tetracycline induction in TRPM2-HEK293 cells. 3. PARP inhibitors SB750139-B (patent number DE10039610-A1 (Lubisch et al., 2001)), PJ34 (N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide) and DPQ (3, 4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone) inhibited H(2)O(2)-mediated increases in [Ca(2+)](i) (pIC(50) vs 100 microm H(2)O(2): 7.64+/-0.38; 6.68+/-0.28; 4.78+/-0.05, respectively), increases in mitochondrial dysfunction (pIC(50) vs 300 microm H(2)O(2): 7.32+/-0.23; 6.69+/-0.22; 5.44+/-0.09, respectively) and decreases in plasma membrane integrity (pIC(50) vs 300 microm H(2)O(2): 7.45+/-0.27; 6.35+/-0.18; 5.29+/-0.12, respectively). The order of potency of the PARP inhibitors in these assays (SB750139>PJ34>DPQ) was the same as for inhibition of isolated PARP enzyme. 4. SB750139-B, PJ34 and DPQ had no effect on inward currents elicited by intracellular ADP-ribose in tetracycline-induced TRPM2-HEK293 cells, suggesting that PARP inhibitors are not interacting directly with the channel. 5. SB750139-B, PJ34 and DPQ inhibited increases in [Ca(2+)](i) in a rat insulinoma cell line (CRI-G1 cells) endogenously expressing TRPM2 (pIC(50) vs 100 microm H(2)O(2): 7.64+/-0.38; 6.68+/-0.28; 4.78+/-0.05, respectively). 6. These data suggest that oxidative stress causes TRPM2 channel opening in both recombinant and endogenously expressing cell systems via activation of PARP enzymes.
Collapse
Affiliation(s)
- Elena Fonfria
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
- Author for correspondence:
| | - Ian C B Marshall
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Christopher D Benham
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Izzy Boyfield
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Jason D Brown
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Kerstin Hill
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Jane P Hughes
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Stephen D Skaper
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | - Shaun McNulty
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| |
Collapse
|
459
|
Nakajima H, Nagaso H, Kakui N, Ishikawa M, Hiranuma T, Hoshiko S. Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB-dependent gene expression in primary cultured mouse glial cells. J Biol Chem 2004; 279:42774-86. [PMID: 15302869 DOI: 10.1074/jbc.m407923200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of ADP-ribose polymers catalyzed by poly-(ADP-ribose) polymerase-1 (PARP-1) has been implicated in transcriptional regulation. Recent studies with PARP-1 null mice and PARP-1 inhibitors have also demonstrated that PARP-1 has an essential role in nuclear factor-kappaB (NF-kappaB)-dependent gene expression induced by various inflammatory stimuli. In this study, we used primary cultured mouse glial cells to investigate the role of poly(ADP-ribosyl)ation by PARP-1 in NF-kappaB-dependent gene expression. PARP-1 inhibitors and the antisense RNA for PARP-1 mRNA suppressed lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-alpha and inducible nitric-oxide synthase, suggesting that PARP-1 activity has a critical role in synthesis. Western blotting with anti-poly(ADP-ribose) antibody revealed that PARP-1 itself was mainly poly(ADP-ribosyl)ated in glial cells, i.e. automodified PARP-1 (AM-PARP). The amounts of AM-PARP were not affected by LPS treatment, but were decreased by PARP-1 inhibitors. Electrophoretic mobility shift assay revealed that PARP-1 inhibitors and the antisense RNA for PARP-1 mRNA reduced the LPS-induced DNA binding of NF-kappaB. Non-modified PARP-1 also reduced the DNA binding of NF-kappaB via its physical association with NF-kappaB, whereas AM-PARP had no effect. On the other hand, enhancement of the automodification of PARP-1 by the addition of NAD+, its substrate, promoted the DNA binding of NF-kappaB. Furthermore, in in vitro transcription assay, the addition of AM-PARP or NAD+ to nuclear extracts promoted NF-kappaB p50-dependent transcription. These results indicate that automodification of PARP-1 positively up-regulates formation of the NF-kappaB.DNA complex and enhances transcriptional activation. Therefore, AM-PARP may be critical for the NF-kappaB-dependent gene expression of some inflammatory mediators in glial cells.
Collapse
Affiliation(s)
- Hidemitsu Nakajima
- Pharmaceutical Research Center, Meiji Seika Kaisha Limited, 760 Moro-oka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | | | | | | | | | | |
Collapse
|
460
|
Zhang C, Yang J, Jennings LK. Attenuation of neointima formation through the inhibition of DNA repair enzyme PARP-1 in balloon-injured rat carotid artery. Am J Physiol Heart Circ Physiol 2004; 287:H659-66. [PMID: 15044192 DOI: 10.1152/ajpheart.00162.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Increased oxidative stress is a major characteristic of restenosis after angioplasty. The oxidative stress is mainly created by oxidants such as reactive oxygen species (ROS), which are assumed to play an important role in neointima formation after angioplasty. DNA is a sensitive target for oxidants; however, oxidative DNA damage remains a poorly examined field in the pathogenesis of restenosis. In the present study, we demonstrated that the expression of the oxidative DNA damage marker 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) was quickly increased in rat carotid arteries after balloon injury. It reached its peak at 14 days after injury and still kept high expression at 28 days after injury. The immunostaining of 8-oxo-dG was present predominantly in the neointima. In response to oxidative DNA damage, the DNA repair enzyme poly(ADP-ribose) polymerase-1 (PARP-1) was significantly increased after balloon injury. The time course change and location of PARP-1 is similar to that of 8-oxo-dG. Daily injections of the PARP-1 inhibitor PJ34 (5 mg.kg(-1).day(-1) ip) attenuated neointima formation by approximately 40% at 7, 14, and 28 days after balloon injury. Treatment with PJ34 inhibited leukocyte infiltration and improved both anatomic (reendothelialization) and functional (endothelial function) recovery of endothelial cells after balloon injury. In conclusion, levels of oxidative DNA damage and the DNA repair enzyme PARP-1 are increased in vessels after balloon injury. Inhibition of PARP-1 attenuates neointima formation through inhibition of leukocyte infiltration and improvement of endothelial cell recovery after balloon injury. Targeting of the DNA repair enzyme might be a therapeutic strategy for restenosis.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
461
|
Suh SW, Garnier P, Aoyama K, Chen Y, Swanson RA. Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis 2004; 16:538-45. [PMID: 15262265 DOI: 10.1016/j.nbd.2004.04.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/20/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022] Open
Abstract
Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
462
|
Iwashita A, Tojo N, Matsuura S, Yamazaki S, Kamijo K, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S. A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia. J Pharmacol Exp Ther 2004; 310:425-36. [PMID: 15075382 DOI: 10.1124/jpet.104.066944] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activation of poly(ADP-ribose) polymerase-1 (PARP-1) after exposure to nitric oxide or oxygen-free radicals can lead to cell injury via severe, irreversible depletion of NAD. Genetic deletion or pharmacological inhibition of PARP-1 attenuates brain injury after focal ischemia and neurotoxicity in several neurodegenerative models in animals. FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone) is a novel PARP-1 inhibitor that has recently been identified through structure-based drug design. In an enzyme kinetic analysis, FR247304 exhibits potent and competitive inhibition of PARP-1 activity, with a K(i) value of 35 nM. Here, we show that prevention of PARP activation by FR247304 treatment protects against both reactive oxygen species-induced PC12 cell injury in vitro and ischemic brain injury in vivo. In cell death model, treatment with FR247304 (10(-8)-10(-5) M) significantly reduced NAD depletion by PARP-1 inhibition and attenuated cell death after hydrogen peroxide (100 microM) exposure. After 90 min of middle cerebral artery occlusion in rats, poly(ADP-ribosy)lation and NAD depletion were markedly increased in the cortex and striatum from 1 h after reperfusion. The increased poly(ADP-ribose) immunoreactivity and NAD depletion were attenuated by FR247304 (32 mg/kg i.p.) treatment, and FR247304 significantly decreased ischemic brain damage measured at 24 h after reperfusion. Whereas other PARP inhibitors such as 3-aminobenzamide and PJ34 [N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylactamide] showed similar neuroprotective actions, they were less potent in in vitro assays and less efficacious in an in vivo model compared with FR247304. These results indicate that the novel PARP-1 inhibitor FR247304 exerts its neuroprotective efficacy in in vitro and in vivo experimental models of cerebral ischemia via potent PARP-1 inhibition and also suggest that FR247304 or its derivatives could be attractive therapeutic candidates for stroke and neurodegenerative disease.
Collapse
Affiliation(s)
- Akinori Iwashita
- Department of Neuroscience, Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
463
|
Xiao CY, Chen M, Zsengellér Z, Szabó C. Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor. J Pharmacol Exp Ther 2004; 310:498-504. [PMID: 15054118 DOI: 10.1124/jpet.104.066803] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 by oxidant-mediated DNA damage is an important pathway of cell dysfunction and tissue injury during myocardial infarction. Because diabetes mellitus can substantially alter cellular signal transduction pathways, we have now investigated whether the PARP pathway also contributes to myocardial ischemia/reperfusion (MI/R) injury in diabetes mellitus in rodents. Myocardial ischemia/reperfusion in control and streptozotocin-diabetic rats was induced by transient ligation of the left anterior descending coronary artery. PARP activation was inhibited by the isoindolinone derivative PARP inhibitor INO-1001. In diabetic rats, a more pronounced degree of myocardial contractile dysfunction developed, which also was associated with a larger infarct size, and significant mortality compared with nondiabetic rats. Inhibition of PARP provided a similar degree of myocardial protective effect in diabetic and nondiabetic animals and reduced infarct size and improved myocardial contractility. In diabetic rats, PARP inhibition reduced mortality during the reperfusion phase. There was marked activation of PARP in the ischemic/reperfused myocardium, which was blocked by INO-1001. In addition, there was a significant degree of mitochondrial-to-nuclear translocation of the cell death effector apoptosis-inducing factor (AIF) in myocardial infarction, which was blocked by pharmacological inhibition of PARP. The role of PARP in regulating AIF translocation in myocytes also was confirmed in an isolated perfused heart preparation. Overall, the current results demonstrate the importance of the PARP pathway in diabetic rats subjected to myocardial infarction and demonstrate the role of PARP in regulating AIF translocation in MI/R.
Collapse
Affiliation(s)
- Chun-Yang Xiao
- Inotek Pharmaceuticals Corporation, Suite 419E, 100 Cummings Center, Beverly, MA 01915, USA.
| | | | | | | |
Collapse
|
464
|
Kabra DG, Thiyagarajan M, Kaul CL, Sharma SS. Neuroprotective effect of 4-amino-1,8-napthalimide, a poly(ADP ribose) polymerase inhibitor in middle cerebral artery occlusion-induced focal cerebral ischemia in rat. Brain Res Bull 2004; 62:425-33. [PMID: 15168908 DOI: 10.1016/j.brainresbull.2003.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 11/14/2003] [Accepted: 11/17/2003] [Indexed: 11/26/2022]
Abstract
In the present study, neuroprotective effect of 4-amino-1,8-napthalimide (4-ANI), a poly(ADP-ribose) polymerase (PARP) inhibitor was investigated in middle cerebral artery occlusion (MCAo)-induced focal ischemia. Sprague-Dawley rats were subjected to 2 h of middle cerebral artery occlusion followed by 22 h of reperfusion. After 22 h of reperfusion rats were evaluated for cerebral infarction, neurological deficits, brain NAD levels, and in situ terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL). Focal ischemia produced significant infarct volume (201 +/- 14 mm3), neurological scores (2 +/- 0.5) and 28 +/- 4.5% brain NAD depletion. Ischemia was associated with increased in TUNEL positive cells in brain sections indicating DNA fragmentation. 4-ANI treatment (1 and 3 mg/kg, i.p.) significantly decreased infarct volume to 35 +/- 7% and 70 +/- 6%, respectively. Neurological functions were also significantly improved at these doses. 4-ANI (3 mg/kg) completely reversed brain NAD depletion and significantly reduced the increase in the number of TUNEL positive cells. Nevertheless, 4-ANI treatment did not alter cerebral blood flow and blood pressure. Our study suggests 4-ANI is a potent neuroprotective agent in focal cerebral ischemia and its neuroprotective effects may be attributed to reduction of NAD depletion and DNA fragmentation.
Collapse
Affiliation(s)
- Dhiraj G Kabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar Mohali, Punjab 160 062, India
| | | | | | | |
Collapse
|
465
|
Aito H, Aalto KT, Raivio KO. Adenine nucleotide metabolism and cell fate after oxidant exposure of rat cortical neurons: effects of inhibition of poly(ADP-ribose) polymerase. Brain Res 2004; 1013:117-24. [PMID: 15196974 DOI: 10.1016/j.brainres.2004.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2004] [Indexed: 12/01/2022]
Abstract
We exposed cultured neurons prelabeled with 14C-adenine to H2O2 with or without the poly(ADP-ribose) polymerase (PARP) inhibitor 3,4-Dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ) to quantify its effects on acute ATP depletion, later ATP synthesis, cellular and nuclear morphology, extent of DNA fragmentation, and PARP cleavage. According to the extent of the acute ATP depletion, the exposures were classified as 'mild' (50 microM H2O2), 'moderate' (100-250 microM H2O2), or 'severe' (500 microM-1 mM H2O2) insults. Mild exposure had no significant effects on the parameters studied. In the 'moderately' exposed neurons, ATP depletion to 59+/-6% of control was associated with a decrease in the cell counts, apoptotic morphology, and cleavage of PARP. In this group, DPQ prevented the acute ATP (to 95+/-15% of control), preserved cell morphology, and improved cell survival. In the 'severe' group, ATP depletion to 18+/-4% was associated with necrosis and intact PARP. DPQ elevated ATP levels (to 44+/-12% of control) and post-insult ATP synthesis, improved cell counts, and altered cell morphology towards apoptosis rather than necrosis. Post-insult application of DPQ was less effective. Our results show that the extent of oxidant-induced ATP depletion and cell fate can be modified by PARP inhibition, to some extent also after the insult.
Collapse
Affiliation(s)
- Henrikka Aito
- Research Laboratory, Hospital for Children and Adolescents, University of Helsinki, Biomedicum Helsinki, V Floor, Room B524b, P.O. Box 700, FIN-00029 HUS, Helsinki, Finland.
| | | | | |
Collapse
|
466
|
Shen CC, Huang HM, Ou HC, Chen HL, Chen WC, Jeng KC. Protective effect of nicotinamide on neuronal cells under oxygen and glucose deprivation and hypoxia/reoxygenation. J Biomed Sci 2004; 11:472-81. [PMID: 15153782 DOI: 10.1007/bf02256096] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 02/03/2004] [Indexed: 01/13/2023] Open
Abstract
Nicotinamide (vitamin B(3)) reduces the infarct volume following focal cerebral ischemia in rats; however, its mechanism of action has not been reported. After cerebral ischemia and/or reperfusion, reactive oxygen species (ROS) and reactive nitrogen species may be generated by inflammatory cells through several cellular pathways, which can lead to intracellular calcium influx and cell damage. Therefore, we investigated the mechanisms of action of nicotinamide in neuroprotection under conditions of hypoxia/reoxygenation. Results showed that nicotinamide significantly protected rat primary cortical cells from hypoxia by reducing lactate dehydrogenase release with 1 h of oxygen-glucose deprivation (OGD) stress. ROS production and calcium influx in neuronal cells during OGD were dose-dependently diminished by up to 10 mM nicotinamide (p < 0.01). This effect was further examined with OGD/reoxygenation (H/R). Cells were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) or antibodies against anti-microtubule-associated protein-2 and cleaved caspase-3. Apoptotic cells were studied using Western blotting of cytochrome c and cleaved caspase-3. Results showed that vitamin B(3) reduced cell injury, caspase-3 cleavage and nuclear condensation (DAPI staining) in neuronal cells under H/R. In addition, nicotinamide diminished c-fos and zif268 immediate-early gene expressions following OGD. Taken together, these results indicate that the neuroprotective effect of nicotinamide might occur through these mechanisms in this in vitro ischemia/reperfusion model.
Collapse
Affiliation(s)
- Chiung-Chyi Shen
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
467
|
Clark IA, Alleva LM, Mills AC, Cowden WB. Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 2004; 17:509-39, table of contents. [PMID: 15258091 PMCID: PMC452556 DOI: 10.1128/cmr.17.3.509-539.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is now wide acceptance of the concept that the similarity between many acute infectious diseases, be they viral, bacterial, or parasitic in origin, is caused by the overproduction of inflammatory cytokines initiated when the organism interacts with the innate immune system. This is also true of certain noninfectious states, such as the tissue injury syndromes. This review discusses the historical origins of these ideas, which began with tumor necrosis factor (TNF) and spread from their origins in malaria research to other fields. As well the more established proinflammatory mediators, such as TNF, interleukin-1, and lymphotoxin, the roles of nitric oxide and carbon monoxide, which are chiefly inhibitory, are discussed. The established and potential roles of two more recently recognized contributors, overactivity of the enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the escape of high-mobility-group box 1 (HMGB1) protein from its normal location into the circulation, are also put in context. The pathogenesis of the disease caused by falciparum malaria is then considered in the light of what has been learned about the roles of these mediators in these other diseases, as well as in malaria itself.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
468
|
Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 2004; 25:259-64. [PMID: 15120492 DOI: 10.1016/j.tips.2004.03.005] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different cell-death mechanisms control many physiological and pathological processes in humans. Mitochondria play important roles in cell death through the release of pro-apoptotic factors such as cytochrome c and apoptosis-inducing factor (AIF), which activate caspase-dependent and caspase-independent cell death, respectively. Poly(ADP-ribose) polymerase 1 (PARP-1) is emerging as an important activator of caspase-independent cell death. PARP-1 generates the majority of long, branched poly(ADP-ribose) (PAR) polymers following DNA damage. Overactivation of PARP-1 initiates a nuclear signal that propagates to mitochondria and triggers the release of AIF. AIF then shuttles from mitochondria to the nucleus and induces peripheral chromatin condensation, large-scale fragmentation of DNA and, ultimately, cytotoxicity. Identification of the pro-death and pro-survival signals in the PARP-1-mediated cell-death program might provide novel therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Suk Jin Hong
- Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 731, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
469
|
Szabó C. Pathophysiological aspects of cellular pyridine nucleotide metabolism: focus on the vascular endothelium. Review. ACTA ACUST UNITED AC 2004; 90:175-93. [PMID: 14594189 DOI: 10.1556/aphysiol.90.2003.3.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent years, pyridine nucleotides NAD(H) and NADP(H) have been established as an important molecules in physiological and pathophysiological signaling and cell injury pathways. Protein modification is catalyzed by ADP-ribosyl transferases that attach the ADP-ribose moiety of NAD+ to specific aminoacid residues of the acceptor proteins, with significant changes in the function of these acceptors. Mono(ADP-ribosyl)ation reactions have been implicated to play a role both in physiological responses and in cellular responses to bacterial toxins. Cyclic ADP-ribose formation also utilizes NAD+ and primarily serves as physiological, signal transduction mechanisms regulating intracellular calcium homeostasis. In pathophysiological conditions associated with oxidative stress (such as various forms of inflammation and reperfusion injury), activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) occurs, with subsequent, substantial fall in cellular NAD+ and ATP levels, which can determine the viability and function of the affected cells. In addition, NADPH oxidases can significantly affect the balance and fate of NAD+ and NADP in oxidatively stressed cells and can facilitate the generation of various positive feedback cycles of injury. Under severe oxidant conditions, direct oxidative damage to NAD+ has also been reported. The current review focuses on PARP and on NADPH oxidases, as pathophysiologically relevant factors in creating disturbances in the cellular pyridine nucleotide balance. A separate section describes how these mechanisms apply to the pathogenesis of endothelial cell injury in selected cardiovascular pathophysiological conditions.
Collapse
Affiliation(s)
- Cs Szabó
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
470
|
Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004; 18:1272-82. [PMID: 15145826 PMCID: PMC420353 DOI: 10.1101/gad.1199904] [Citation(s) in RCA: 477] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 04/09/2004] [Indexed: 11/24/2022]
Abstract
Necrosis has been considered a passive form of cell death in which the cell dies as a result of a bioenergetic catastrophe imposed by external conditions. However, in response to alkylating DNA damage, cells undergo necrosis as a self-determined cell fate. This form of death does not require the central apoptotic mediators p53, Bax/Bak, or caspases and actively induces an inflammatory response. Necrosis in response to DNA damage requires activation of the DNA repair protein poly(ADP-ribose) polymerase (PARP), but PARP activation is not sufficient to determine cell fate. Cell death is determined by the effect of PARP-mediated beta-nicotinamide adenine dinucleotide (NAD) consumption on cellular metabolism. Cells using aerobic glycolysis to support their bioenergetics undergo rapid ATP depletion and death in response to PARP activation. In contrast, cells catabolizing nonglucose substrates to maintain oxidative phosphorylation are resistant to ATP depletion and death in response to PARP activation. Because most cancer cells maintain their ATP production through aerobic glycolysis, these data may explain the molecular basis by which DNA-damaging agents can selectively induce tumor cell death independent of p53 or Bcl-2 family proteins.
Collapse
Affiliation(s)
- Wei-Xing Zong
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
471
|
Kankofer M, Guz L, Wierciński J. Poly(ADP-ribose) glycohydrolase in bovine retained and not retained placenta. Reprod Domest Anim 2004; 39:39-42. [PMID: 15129919 DOI: 10.1046/j.1439-0531.2003.00473.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the enzyme which degrades poly(ADP-ribose) polymers synthesized by poly(ADP-ribose) polymerase (PARP). Both enzymes are activated in response to different stimuli like oxidative stress and are involved in DNA repair processes. The retention of bovine foetal membranes (RFM) is supposed to be connected with oxidative stress conditions. The aim of the study was to detect the presence of PARG protein in bovine placenta in order to find the relationship between the process of releasing, retaining placenta and DNA repair. Placentomes, collected alter spontaneous delivery or caesarian section were divided into maternal as well as foetal part of placenta, homogenized and subjected to electrophoresis. Animals were divided into six groups as follows: A--caesarian section before term with RFM; B--caesarian section before term without RFM; C--spontaneous delivery at term with RFM; D--spontaneous delivery at term without RFM; E--caesarian section at term with RFM; F--caesarian section at term without RFM. PARG protein was detected in nitrocellulose membranes using commercially available bovine anti-PARG antibody and Western blotting technique. Single bands referred to bovine PARG standard were observed in all examined tissues as well as in human placenta used as the control of procedure. In addition, the intensity of staining was stronger in retained than properly released term placenta and in foetal than in maternal part of the placenta. These results may suggest the differences in enzyme protein content and careful conclusions can be drawn that the activities of PARG may be altered between compared groups of animals. It may confirm the presence of oxidative stress conditions and their consequences on metabolic pathways, the content of biologically active substances and processes of proper releasing placenta. Further experiments on PARG activity in bovine foetal membranes with respect to proper and improper placental release are necessary.
Collapse
Affiliation(s)
- M Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, Agricultural University, Lublin, Poland.
| | | | | |
Collapse
|
472
|
Beneke S, Diefenbach J, Bürkle A. Poly(ADP-ribosyl)ation inhibitors: Promising drug candidates for a wide variety of pathophysiologic conditions. Int J Cancer 2004; 111:813-8. [PMID: 15300792 DOI: 10.1002/ijc.20342] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Poly(ADP-ribose) polymerases are involved in many aspects of regulation of cellular functions. Using NAD+ as a substrate, they catalyse the covalent transfer of ADP-ribose units onto several acceptor proteins to form a branched ADP-ribose polymer. The best characterised and first discovered member of this multiprotein family is PARP-1. Its catalytic activity is markedly stimulated upon binding to DNA strand interruptions, and the resulting polymer is thought to function in chromatin relaxation as well as in signalling the presence of damage to DNA repair complexes and in regulating enzyme activities. Moderate activation of PARP-1 facilitates the efficient repair of DNA damage arising from monofunctional alkylating agents, reactive oxygen species or ionising radiation, but severe genotoxic stress leads to rapid energy consumption and subsequently to necrotic cell death. The latter aspect of PARP-1 activity has been implicated in the pathogenesis of various clinical conditions such as shock, ischaemia-reperfusion and diabetes. Inhibition of ADP-ribose polymer formation has been shown to be effective, on the one hand, in the treatment of cancer in combination with alkylating agents by suppressing DNA repair and thus driving tumour cells into apoptosis, and on the other hand it appears to be a promising drug target for the treatment of pathologic conditions involving oxidative stress. In view of the existence of several members of the PARP family in mammalian cells, one has to be aware of possible side effects but also of a wide spectrum of potential clinical applications, which calls for the development of more specific inhibitors.
Collapse
Affiliation(s)
- Sascha Beneke
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
473
|
Meli E, Pangallo M, Picca R, Baronti R, Moroni F, Pellegrini-Giampietro DE. Differential role of poly(ADP-ribose) polymerase-1in apoptotic and necrotic neuronal death induced by mild or intense NMDA exposure in vitro. Mol Cell Neurosci 2004; 25:172-80. [PMID: 14962750 DOI: 10.1016/j.mcn.2003.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 09/09/2003] [Accepted: 09/29/2003] [Indexed: 10/26/2022] Open
Abstract
Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) plays a key role in the mechanisms responsible for neuronal death. In the present study, we examined the effects of the PARP-1 inhibitor 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone (DPQ) in two models of N-methyl-d-aspartate (NMDA)-induced neurotoxicity. The exposure of mixed cultured cortical cells to 300 microM NMDA for 10 min induced a caspase-dependent type of apoptotic neuronal death. Conversely, exposure to 2 mM NMDA for 10 min led to the appearance of morphological features of necrosis, with no increase in caspase-3 activity and depletion in adenosine triphosphate (ATP) levels. DPQ (10 microM) reduced the NMDA-induced PARP activation, restored ATP to near control levels and significantly attenuated neuronal injury only in the severe NMDA exposure model. Similar results were obtained when pure neuronal cortical cultures were used. PARP-1 activation thus appears to play a preferential role in necrotic than in caspase-dependent apoptotic neuronal death.
Collapse
Affiliation(s)
- Elena Meli
- Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, 50139 Florence, Italy
| | | | | | | | | | | |
Collapse
|
474
|
Abstract
The major challenge in treating cancer is that many tumor cells carry mutations in key apoptotic genes such as p53, Bcl family proteins or those affecting caspase signaling. Such defects render treatment with traditional chemotherapeutic agents ineffective. Many studies have demonstrated the importance of caspase-independent cell death pathways in injury, degenerative diseases and tumor tissue. It is now recognized that in addition to their critical role in the production of cellular energy, mitochondria are also the source of key proapoptotic molecules involved in caspase activation. More recently, it has been discovered that in response to apoptotic stimuli, mitochondria can also release caspase-independent cell death effectors such as AIF and Endonuclease G. In this review, we examine the role of Bcl family proteins and poly(ADP-ribose) polymerase-1 signaling in the regulation of these apoptotic pathways and address the ongoing controversies in this field. Continued study of the mechanisms of apoptosis including caspase-independent death processes are likely to reveal novel therapeutic targets for the treatment of diverse human pathologies including cancer, neurodegenerative diseases and acute injuries such as stroke or myocardial infarction.
Collapse
Affiliation(s)
- Sean P Cregan
- Department of Cellular and Molecular Medicine, Ottawa Health Research Institute, University of Ottawa, 451 Smyth Rd., Ottawa, Canada K1H 8M5
| | | | | |
Collapse
|
475
|
Di Paola R, Genovese T, Caputi AP, Threadgill M, Thiemermann C, Cuzzocrea S. Beneficial effects of 5-aminoisoquinolinone, a novel, potent, water-soluble, inhibitor of poly (ADP-ribose) polymerase, in a rat model of splanchnic artery occlusion and reperfusion. Eur J Pharmacol 2004; 492:203-10. [PMID: 15178366 DOI: 10.1016/j.ejphar.2004.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 03/04/2004] [Accepted: 03/17/2004] [Indexed: 11/24/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the tissue injury associated with ischemia-reperfusion and inflammation. Splanchnic artery occlusion and reperfusion causes an enhanced formation of reactive oxygen species which contribute to the pathophysiology of shock. The aim of the present study was to investigate the effects of 5-aminoisoquinolinone (5-AIQ), a potent water-soluble inhibitor of poly(ADP-ribose) polymerase (PARP), in the pathogenesis of splanchnic artery occlusion shock. Splanchnic artery occlusion shock was induced in rats by clamping both the superior mesenteric artery and the celiac artery for 45 min, followed thereafter by release of the clamp (reperfusion). At 60 min after reperfusion, all animals were sacrificed for histological examination and biochemical studies. Treatment of rats with 5-AIQ (3 mg/kg i.v.), attenuated the fall of mean arterial blood pressure caused by splanchnic artery occlusion shock. 5-AIQ also attenuated the ileum injury as well as the increase in the tissue levels of myeloperoxidase and malondialdehyde caused by splanchnic artery occlusion shock in the ileum. The immunohistochemical examination also demonstrated a marked increase in the immunoreactivity to PAR, nitrotyrosine, and intercellular adhesion molecule (ICAM-1) in the necrotic ileum from splanchnic artery occlusion-shocked rats. 5-AIQ treatment significantly reduced the increase of positive staining for PAR, nitrotyrosine and ICAM-I. In conclusion, these results show that 5-AIQ, a new water-soluble potent inhibitor of poly(ADP-ribose) polymerase, exerts multiple protective effects in splanchnic artery occlusion/reperfusion shock.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, via C. Valeria, Torre Biologica, Policlinico Universitario, 98123 Messina, Italy
| | | | | | | | | | | |
Collapse
|
476
|
Bouchentouf M, Benabdallah BF, Tremblay JP. MYOBLAST SURVIVAL ENHANCEMENT AND TRANSPLANTATION SUCCESS IMPROVEMENT BY HEAT-SHOCK TREATMENT IN MDX MICE. Transplantation 2004; 77:1349-56. [PMID: 15167589 DOI: 10.1097/01.tp.0000121503.01535.f5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy is a disease caused by the incapacity to synthesize dystrophin, which is implicated in the maintenance of the sarcolemma integrity. Myoblast transplantation is a potential treatment of this disease. However, most of the transplanted cells die very rapidly after their injection. Heat-shock proteins (HSPs) are over-expressed when cells undergo various types of stresses. Our goal was thus to investigate whether the expression of HSPs (HSP70 in particular) could protect myoblasts from death after intramuscular injection. METHODS HSP70 expression was induced by warming the cells at 42 degrees C for 60 minutes. HSP70 over-expression was quantified by Western blot analysis. The in vitro effect of HSPs on cell survival was evaluated by fluorescence-activated cell sorter analysis using the Hoescht/propidium iodide-labeling technique, and their in vivo effects were investigated by transplanting TnI-LacZ myoblasts labeled with [methyl-14C] thymidine. RESULTS Western blots indicated a sevenfold over-expression of the HSP70 after the heat-shock treatment. In vitro, the heat-shock treatment protected 18% of the cells from staurosporine- (1 microM) induced apoptosis. HSPs also protected 10% of the cells from death induced by either tumor necrosis factor-alpha (30 ng/mL) or glucose oxydase (0.1 U/mL). In vivo, the treatment improved the cell survival by twofold 5 days after the graft and increased by fourfold the long-term graft success. CONCLUSIONS The heat-shock treatment is a practical approach for improving the success of myoblast transplantation; in fact, using this kind of treatment, there is no need to genetically modify the cells before their transplantation.
Collapse
Affiliation(s)
- Manaf Bouchentouf
- Human Genetics, CHUQ-CHUL, Laval University, Ste-Foy, Quebec, Canada
| | | | | |
Collapse
|
477
|
Alano CC, Ying W, Swanson RA. Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 2004; 279:18895-902. [PMID: 14960594 DOI: 10.1074/jbc.m313329200] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) by DNA damage is a major cause of caspase-independent cell death in ischemia and inflammation. Here we show that NAD(+) depletion and mitochondrial permeability transition (MPT) are sequential and necessary steps in PARP-1-mediated cell death. Cultured mouse astrocytes were treated with the cytotoxic concentrations of N-methyl-N'-nitro-N-nitrosoguanidine or 3-morpholinosydnonimine to induce DNA damage and PARP-1 activation. The resulting cell death was preceded by NAD(+) depletion, mitochondrial membrane depolarization, and MPT. Sub-micromolar concentrations of cyclosporin A blocked MPT and cell death, suggesting that MPT is a necessary step linking PARP-1 activation to cell death. In astrocytes, extracellular NAD(+) can raise intracellular NAD(+) concentrations. To determine whether NAD(+) depletion is necessary for PARP-1-induced MPT, NAD(+) was restored to near-normal levels after PARP-1 activation. Restoration of NAD(+) enabled the recovery of mitochondrial membrane potential and blocked both MPT and cell death. Furthermore, both cyclosporin A and NAD(+) blocked translocation of the apoptosis-inducing factor from mitochondria to nuclei, a step previously shown necessary for PARP-1-induced cell death. These results suggest that NAD(+) depletion and MPT are necessary intermediary steps linking PARP-1 activation to AIF translocation and cell death.
Collapse
Affiliation(s)
- Conrad C Alano
- Department of Neurology, University of California, San Francisco and the Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
478
|
Plesnila N, Zhu C, Culmsee C, Gröger M, Moskowitz MA, Blomgren K. Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 2004; 24:458-66. [PMID: 15087715 DOI: 10.1097/00004647-200404000-00011] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Signaling cascades associated with apoptosis contribute to cell death after focal cerebral ischemia. Cytochrome c release from mitochondria and the subsequent activation of caspases 9 and 3 are critical steps. Recently, a novel mitochondrial protein, apoptosis-inducing factor (AIF), has been implicated in caspase-independent programmed cell death following its translocation to the nucleus. We, therefore, addressed the question whether AIF also plays a role in cell death after focal cerebral ischemia. We detected AIF relocation from mitochondria to nucleus in primary cultured rat neurons 4 and 8 hours after 4 hours of oxygen/glucose deprivation. In ischemic mouse brain, AIF was detected within the nucleus 1 hour after reperfusion after 45 minutes occlusion of the middle cerebral artery. AIF translocation preceded cell death, occurred before or at the time when cytochrome c was released from mitochondria, and was evident within cells showing apoptosis-related DNA fragmentation. From these findings, we infer that AIF may be involved in neuronal cell death after focal cerebral ischemia and that caspase-independent signaling pathways downstream of mitochondria may play a role in apoptotic-like cell death after experimental stroke.
Collapse
Affiliation(s)
- Nikolaus Plesnila
- Laboratory of Experimental Neurosurgery, Institute for Surgical Research, University of Munich, Germany.
| | | | | | | | | | | |
Collapse
|
479
|
Abstract
Neuronal and glial cell death and traumatic axonal injury contribute to the overall pathology of traumatic brain injury (TBI) in both humans and animals. In both head-injured humans and following experimental brain injury, dying neural cells exhibit either an apoptotic or a necrotic morphology. Apoptotic and necrotic neurons have been identified within contusions in the acute post-traumatic period, and in regions remote from the site of impact in the days and weeks after trauma, while degenerating oligodendrocytes and astrocytes have been observed within injured white matter tracts. We review and compare the regional and temporal patterns of apoptotic and necrotic cell death following TBI and the possible mechanisms underlying trauma-induced cell death. While excitatory amino acids, increases in intracellular calcium and free radicals can all cause cells to undergo apoptosis, in vitro studies have determined that neural cells can undergo apoptosis via many other pathways. It is generally accepted that a shift in the balance between pro- and anti-apoptotic protein factors towards the expression of proteins that promote death may be one mechanism underlying apoptotic cell death. The effect of TBI on cellular expression of survival promoting-proteins such as Bcl-2, Bcl-xL, and extracellular signal-regulated kinases, and death-inducing proteins such as Bax, c-Jun N-terminal kinase, tumor-suppressor gene, p53, and the calpain and caspase families of proteases are reviewed. In light of pharmacologic strategies that have been devised to reduce the extent of apoptotic cell death in animal models of TBI, our review also considers whether apoptosis may serve a protective role in the injured brain. Together, these observations suggest that cell death mechanisms may be representative of a continuum between apoptotic and necrotic pathways.
Collapse
Affiliation(s)
- Ramesh Raghupathi
- Drexel University College of Medicine, 2900 Queen Ln, Philadelphia, PA, USA.
| |
Collapse
|
480
|
Ha HC. Defective transcription factor activation for proinflammatory gene expression in poly(ADP-ribose) polymerase 1-deficient glia. Proc Natl Acad Sci U S A 2004; 101:5087-92. [PMID: 15041747 PMCID: PMC387378 DOI: 10.1073/pnas.0306895101] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) activity is detected in both neuronal and nonneuronal cells in the CNS, and excessive PARP-1 activity is known to be detrimental to tissue because of the cellular energy loss. Accordingly, PARP-1-deficient (PARP-1(-/-)) mice have been shown to be resistant to cerebral ischemia and several forms of inflammation. Recently, PARP-1 in glial cells has been shown to mediate the expression of proinflammatory genes in response to inflammatory stimuli by, in part, enhancing cognate DNA-binding capacities of transcription factors such as NF-kappaB and activator protein 1. Here, we demonstrate an additional mechanism whereby a significant reduction of proinflammatory gene expression such as IL-1beta, tumor necrosis factor alpha, and inducible nitricoxide synthase in PARP-1(-/-) glial cells is linked to defective inflammatory stimuli-induced p38MAPK-mediated phosphorylation of ATF-2 and cAMP-response element-binding protein and phosphorylation of NF-kappaB p65. Importantly, an inflammatory stimuli-induced p38MAPK activation is impaired in PARP-1(-/-) glial cells in a signaling pathway- and cell/tissue type-specific manner. These findings indicate that PARP-1 is an essential host factor among factors that actively mediate excessive production of proinflammatory molecules in glial cells, which may in turn contribute to the initiation of neuronal injuries.
Collapse
Affiliation(s)
- Hyo Chol Ha
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
481
|
Yu SW, Wang H, Dawson TM, Dawson VL. Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis 2004; 14:303-17. [PMID: 14678748 DOI: 10.1016/j.nbd.2003.08.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is the guardian of the genome acting as a sentinel for genomic damage. However, PARP-1 is also mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. The biochemistry underlying PARP-1-mediated cell death has remained elusive, although NAD(+) consumption and energy failure have been thought to be one of the possible molecular mechanisms. Recent observations link PARP-1 activation with translocation of apoptosis-inducing factor (AIF) to the nucleus and indicate that AIF is an essential downstream effector of PARP-1-mediated cell death. PARP-1 activation signals AIF release from the mitochondria, resulting in a novel, caspase-independent pathway of programmed cell death. These recent findings suggest that AIF maybe a target for development of future therapeutic treatment for many neurological disorders involving excitotoxicity.
Collapse
Affiliation(s)
- Seong-Woon Yu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
482
|
Cosi C, Guerin K, Marien M, Koek W, Rollet K. The PARP inhibitor benzamide protects against kainate and NMDA but not AMPA lesioning of the mouse striatum in vivo. Brain Res 2004; 996:1-8. [PMID: 14670625 DOI: 10.1016/j.brainres.2003.09.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Overactivation of poly(ADP-ribose) polymerase (PARP) in response to genotoxic insults can cause cell death by energy deprivation. We previously reported that neurotoxic amounts of kainic acid (KA) injected into the rat striatum produce time-dependent changes in striatal PARP activity in vivo. Here, we have investigated the time-course of KA-induced toxicity and the effects of the PARP inhibitor benzamide on KA, AMPA and NMDA neurotoxicities in vivo, by measuring changes in the volume of the lesion and in NAD+ and ATP levels induced by the intra-striatal injection of these excitotoxins in C57Bl/6N mice. The KA-induced lesion volume was dependent on the amount of toxin injected and the survival time. The lesion was well developed at 48 h and was almost undetectable after one week. KA produced an extensive astrogliosis at one week. Benzamide partially prevented both KA- and NMDA- but not AMPA-induced lesions when measured at 48 h after the treatment. The effects of benzamide appeared to be in part related to changes in energy metabolism, since KA produced decreases in striatal levels of NAD+ and ATP that were partially prevented by benzamide at 48 h and which returned to control levels at one week. NMDA did not affect NAD+ and induced little alteration in ATP levels. Benzamide had no effect on AMPA-induced decreases in either NAD+ or ATP levels at 48 h. These results (1) indicate that PARP overactivation and energy depletion could be responsible in part for the cellular demise during the development of the lesion induced by KA; (2) confirm that PARP is involved in NMDA but not AMPA toxicities; (3) suggest the existence of differences between KA and AMPA-mediated toxicities; and (4) provide further evidence supporting PARP as a novel target for new drug treatments against neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Cosi
- Divisions de Neurobiologie I et II, Centre de Recherche Pierre Fabre, 17 avenue Jean Moulin, 81106, Castres, France.
| | | | | | | | | |
Collapse
|
483
|
Hong SJ, Li H, Becker KG, Dawson VL, Dawson TM. Identification and analysis of plasticity-induced late-response genes. Proc Natl Acad Sci U S A 2004; 101:2145-50. [PMID: 14766980 PMCID: PMC357066 DOI: 10.1073/pnas.0305170101] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The excitatory neurotransmitter, glutamate, activates N-methyl-d-aspartate (NMDA) receptors to induce long-lasting synaptic changes through alterations in gene expression. It is believed that these long-lasting changes contribute to learning and memory, drug tolerance, and ischemic preconditioning. To identify NMDA-induced late-response genes, we used a powerful gene-identification method, differential analysis of primary cDNA library expression (DAzLE), and cDNA microarray from primary cortical neurons. We report here that a variety of genes, which we have named plasticity-induced genes (PLINGs), are up-regulated with differential expression patterns after NMDA receptor activation, indicating that there is a broad and dynamic range of long-lasting neuronal responses that occur through NMDA receptor activation. Our results provide a molecular dissection of the activity-dependent long-lasting neuronal responses induced by NMDA receptor activation.
Collapse
Affiliation(s)
- Suk Jin Hong
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
484
|
Chatterjee PK, Chatterjee BE, Pedersen H, Sivarajah A, McDonald MC, Mota-Filipe H, Brown PAJ, Stewart KN, Cuzzocrea S, Threadgill MD, Thiemermann C. 5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion. Kidney Int 2004; 65:499-509. [PMID: 14717920 DOI: 10.1111/j.1523-1755.2004.00415.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the development of ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the effects of a water-soluble and potent PARP inhibitor, 5-aminoisoquinolinone (5-AIQ), on the renal injury and dysfunction caused by oxidative stress of the rat kidney in vitro and in vivo. METHODS Primary cultures of rat renal proximal tubular cells, subjected to oxidative stress caused by hydrogen peroxide (H2O2), were incubated with increasing concentrations of 5-AIQ (0.01 to 1 mmol/L) after which PARP activation, cellular injury, and cell death were measured. In in vivo experiments, anesthetized male Wistar rats were subjected to renal bilateral ischemia (45 minutes) followed by reperfusion (6 hours) in the absence or presence of 5-AIQ (0.3 mg/kg) after which renal dysfunction, injury and PARP activation were assessed. RESULTS Incubation of proximal tubular cells with H2O2 caused a substantial increase in PARP activity, cellular injury, and cell death, which were all significantly reduced in a concentration-dependent by 5-AIQ [inhibitory concentration 50 (IC50) approximately 0.03 mmol/L]. In vivo, renal I/R resulted in renal dysfunction, injury, and PARP activation, primarily in the proximal tubules of the kidney. Administration of 5-AIQ significantly reduced the biochemical and histologic signs of renal dysfunction and injury and markedly reduced PARP activation caused by I/R. CONCLUSION This study demonstrates that 5-AIQ is a potent, water soluble inhibitor of PARP activity, which can significantly reduce (1) cellular injury and death caused to primary cultures of rat proximal tubular cells by oxidative stress in vitro, and (2) renal injury and dysfunction caused by I/R of the kidney of the rat in vivo.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Experimental Medicine, Nephrology & Critical Care, The William Harvey Research Institute, Queen Mary-University of London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Czapski GA, Cakala M, Kopczuk D, Strosznajder JB. Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radical level and macromolecules oxidation in cell free system of rat brain cortex. Neurosci Lett 2004; 356:45-8. [PMID: 14746898 DOI: 10.1016/j.neulet.2003.11.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair, replication and cell cycle. However, its overactivation leads to nicotinamide adenine dinucleotide and ATP depletion and cell death. The inhibitors of PARP-1 were successfully used in the basic studies and in animal models of different diseases. For this reason, it is important to discriminate between specific and non-specific antioxidant properties of PARP-1 inhibitors. The aim of this study was to investigate the effect of PARP-1 inhibitors on the free radical level and oxidation of macromolecules and to compare their properties with the efficacy of antioxidants. Oxidative stress was induced in the brain cortex homogenate by FeCl(2) or CuSO(4) at 25 microM during 15 min incubation at 37 degrees C. PARP-1 inhibitors 3-aminobenzamide (3-AB), 1,5-dihydroxyisoquinoline (DHIQ) and 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ), and the antioxidants alpha-tocopherol, resveratrol and Tempol were used at 0-5 mM. Free radical contents were estimated by spin-trapping using HPLC. Lipid and protein oxidation were determined by measuring thiobarbituric acid reactive substances and carbonyl groups or using fluorescent probe TyrFluo, respectively. Our data indicate that 3-AB and DHIQ are potent hydroxyl radical scavengers and inhibitors of protein oxidation. DHIQ additionally decreases lipid peroxidation. DPQ has no antioxidant properties and seems to be a specific PARP-1 inhibitor, however, it is a water insoluble compound. Among the investigated antioxidants, the most potent was resveratrol and then alpha-tocopherol and Tempol. These results indicate that 3-A beta, benzamide and DHIQ are potent hydroxyl radical scavengers and antioxidants. These data ought to be taken into consideration when properties of these compounds as PARP inhibitors are evaluated.
Collapse
Affiliation(s)
- Grzegorz A Czapski
- Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, PL-02106 Warsaw, Poland.
| | | | | | | |
Collapse
|
486
|
Zukin RS, Jover T, Yokota H, Calderone A, Simionescu M, Lau CG. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50049-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
487
|
|
488
|
Segura Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res 2004; 6:615-30. [PMID: 15639792 DOI: 10.1007/bf03033456] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotoxins, in the general sense, represent novel chemical structures which when administered in vivo or in vitro, are capable of producing neuronal damage or neurodegeneration--with some degree of specificity relating to neuronal phenotype or populations of neurons with specific characteristics (i.e., receptor type, ion channel type, astrocyte-dependence, etc.). The broader term 'neurotoxin' includes this categorization but extends the term to include intra- or extracellular mediators involved in the neurodegenerative event, including necrotic and apoptotic factors. Moreover, as it is recognized that astrocytes are essential supportive satellite cells for neurons, and because damage to these cells ultimately affects neuronal function, the term 'neurotoxin' might reasonably be extended to include those chemical species which also adversely affect astrocytes. This review is intended to highlight developments that have occurred in the field of 'neurotoxins' during the past 5 years, including MPTP/MPP+, 6-hydroxydopamine (6-OHDA), methamphetamine; salsolinol; leukoaminochrome-o-semiquinone; rotenone; iron; paraquat; HPP+; veratridine; soman; glutamate; kainate; 3-nitropropionic acid; peroxynitrite anion; and metals (copper, manganese, lead, mercury). Neurotoxins represent tools to help elucidate intra- and extra-cellular processes involved in neuronal necrosis and apoptosis, so that drugs can be developed towards targets that interrupt the processes leading towards neuronal death.
Collapse
Affiliation(s)
- Juan Segura Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Casilla 70000, Santiago, Chile.
| | | |
Collapse
|
489
|
Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004; 1:17-25. [PMID: 15717004 PMCID: PMC534909 DOI: 10.1602/neurorx.1.1.17] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cumulative evidence suggests that apoptosis plays a pivotal role in cell death in vitro after hypoxia. Apoptotic cell death pathways have also been implicated in ischemic cerebral injury in in vivo ischemia models. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides a substrate for numerous enzymatic oxidation reactions. Oxygen radicals damage cellular lipids, proteins and nucleic acids, and initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Taku Sugawara
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Sung YJ, Ambron RT. PolyADP-ribose polymerase-1 (PARP-1) and the evolution of learning and memory. Bioessays 2004; 26:1268-71. [PMID: 15551264 DOI: 10.1002/bies.20164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PARP-1 is a multifunctional enzyme that can modulate gene expression. Cohen-Armon et al.(1) found that a homologue of PARP-1 is activated in the Aplysia nervous system as the animal responds to an aversive stimulus, which leads to sensitization, and during a more complex form of learning that involves feeding behavior. Significantly, inhibiting PARP-1 activation blocked the learning. Several key pathways in Aplysia neurons are activated both during learning and after injury, suggesting that mechanisms of learning evolved from primitive responses to injury. Since PARP-1 is evolutionarily conserved as a responder to various forms of stress, the finding that PARP-1 is activated during learning supports this idea.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
491
|
Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H, Miwa M. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci U S A 2003; 101:82-6. [PMID: 14676324 PMCID: PMC314142 DOI: 10.1073/pnas.2237114100] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Poly(ADP-ribosyl)ation has been suggested to be involved in regulation of DNA repair, transcription, centrosome duplication, and chromosome stability. However, the regulation of degradation of poly(ADP-ribose) and its significance are not well understood. Here we report a loss-of-function mutant Drosophila with regard to poly(ADP-ribose) glycohydrolase, a major hydrolyzing enzyme of poly(ADP-ribose). The mutant lacks the conserved catalytic domain of poly(ADP-ribose) glycohydrolase, and exhibits lethality in the larval stages at the normal development temperature of 25 degrees C. However, one-fourth of the mutants progress to the adult stage at 29 degrees C but showed progressive neurodegeneration with reduced locomotor activity and a short lifespan. In association with this, extensive accumulation of poly(ADP-ribose) could be detected in the central nervous system. These results suggest that poly(ADP-ribose) metabolism is required for maintenance of the normal function of neuronal cells. The phenotypes observed in the parg mutant might be useful to understand neurodegenerative conditions such as the Alzheimer's and Parkinson's diseases that are caused by abnormal accumulation of substances in nervous tissue.
Collapse
Affiliation(s)
- Shuji Hanai
- Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
492
|
Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 2003. [PMID: 14627653 DOI: 10.1523/jneurosci.23-33-10681.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe hypoglycemia causes neuronal death and cognitive impairment. Evidence suggests that hypoglycemic neuronal death involves excitotoxicity and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) normally functions in DNA repair, but promotes cell death when extensively activated by DNA damage. Cortical neuron cultures were subjected to glucose deprivation to assess the role of PARP-1 in hypoglycemic neuronal death. PARP-1-/- neurons and wild-type, PARP-1+/+ neurons treated with the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone both showed increased resistance to glucose deprivation. A rat model of insulin-induced hypoglycemia was used to assess the therapeutic potential of PARP inhibitors after hypoglycemia. Rats subjected to severe hypoglycemia (30 min EEG isoelectricity) accumulated both nitrotyrosine and the PARP-1 product, poly(ADP-ribose), in vulnerable neurons. Treatment with PARP inhibitors immediately after hypoglycemia blocked production of poly(ADP-ribose) and reduced neuronal death by >80% in most brain regions examined. Increased neuronal survival was also achieved when PARP inhibitors were administered up to 2 hr after blood glucose correction. Behavioral and histological assessments performed 6 weeks after hypoglycemia confirmed a sustained salutary effect of PARP inhibition. These results suggest that PARP-1 activation is a major factor mediating hypoglycemic neuronal death and that PARP-1 inhibitors can rescue neurons that would otherwise die after severe hypoglycemia.
Collapse
|
493
|
Sheline CT, Wang H, Cai AL, Dawson VL, Choi DW. Involvement of poly ADP ribosyl polymerase-1 in acute but not chronic zinc toxicity. Eur J Neurosci 2003; 18:1402-9. [PMID: 14511320 DOI: 10.1046/j.1460-9568.2003.02865.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously suggested that zinc-induced neuronal death may be mediated in part by inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), secondary to depletion of the essential cosubstrate NAD+. Given convergent evidence implicating the NAD+-catabolizing enzyme, poly ADP ribosyl polymerase (PARP) in mediating ATP depletion and neuronal death after excitotoxic and ischemic insults, we tested the specific hypothesis that the neuronal death induced by exposure to toxic levels of extracellular zinc might be partly mediated by PARP. PARP was activated in cultured mouse cortical astrocytes after a toxic acute Zn2+ exposure (350 microm Zn2+ for 15 min), but not in cortical neurons or glia after exposure to a toxic chronic Zn2+ exposure (40 microm Zn2+ for 1-4 h), an exposure sufficient to deplete NAD+ and ATP levels. Furthermore, the neurotoxicity induced by acute, but not chronic, Zn2+ exposure was reduced in mixed neuronal-glial cultures prepared from mutant mice lacking the PARP gene. These data suggest PARP activation may contribute to more fulminant forms of Zn2+-induced neuronal death.
Collapse
Affiliation(s)
- Christian T Sheline
- Department of Neurology and, Center for the Study of Nervous System Injury, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
494
|
Abstract
Hypothermia to mitigate ischemic brain tissue damage has a history of about six decades. Both in clinical and experimental studies of hypothermia, two principal arbitrary patterns of core temperature lowering have been defined: mild (32-35 degrees C) and moderate hypothermia (30-33 degrees C). The neuroprotective effectiveness of postischemic hypothermia is typically viewed with skepticism because of conflicting experimental data. The questions to be resolved include the: (i) postischemic delay; (ii) depth; and (iii) duration of hypothermia. However, more recent experimental data have revealed that a protected reduction in brain temperature can provide sustained behavioral and histological neuroprotection, especially when thermoregulatory responses are suppressed by sedation or anesthesia. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32-34 degrees C may be beneficial following acute cerebral ischemia. But the pathophysiological mechanism of this protection remains yet unclear. Although reduction of metabolism could explain protection by deep hypothermia, it does not explain the robust protection connected with mild hypothermia. A thorough understanding of the experimental data of postischemic hypothermia would lead to a more selective and effective clinical therapy. For this reason, we here summarize recent experimental data on the application of hypothermia in cerebral ischemia, discuss problems to be solved in the experimental field, and try to draw parallels to therapeutic potentials and limitations.
Collapse
Affiliation(s)
- B Schaller
- Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
495
|
Couturier JY, Ding-Zhou L, Croci N, Plotkine M, Margaill I. 3-Aminobenzamide reduces brain infarction and neutrophil infiltration after transient focal cerebral ischemia in mice. Exp Neurol 2003; 184:973-80. [PMID: 14769390 DOI: 10.1016/s0014-4886(03)00367-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 07/18/2003] [Accepted: 07/18/2003] [Indexed: 10/26/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) was shown to be detrimental in cerebral ischemia but the mechanisms whereby PARP is deleterious have yet to be determined. They may include a role in neutrophil infiltration known to aggravate ischemic damage. In this context, we investigated the effect of 3-aminobenzamide (3-AB), a PARP inhibitor, on brain damage and neutrophil infiltration after transient focal cerebral ischemia in mice. Ischemia was induced in male Swiss mice, anaesthetized with chloral hydrate (400 mg/kg, i.p.), by a 15-min-occlusion of the left middle cerebral artery using an intraluminal suture. Treatments with 3-AB were first administered intraperitoneally 15 min before reperfusion and endpoints measured at 24 h. Among the range of dosages studied (20-320 mg/kg), 40 mg/kg gave the maximal neuroprotection with a 30% decrease in the infarct volume and tended to improve the neurological score evaluated by a grip test. The same dosage was, however, devoid of effect when injection was delayed 2 or 6 h after reperfusion. Myeloperoxidase (MPO) activity used as an index of neutrophil infiltration showed that infiltration peaked 48 h after reperfusion in our model. At this time point, 3-AB (40 mg/kg given 15 min before reperfusion) markedly reduced the neutrophil infiltration, as evidenced by a 72%-decrease in MPO activity, and was still neuroprotective. Our results confirm that 3-AB reduces brain damage. Moreover, for the first time, a quantitative study shows that 3-AB decreases neutrophil infiltration elicited by cerebral ischemia.
Collapse
Affiliation(s)
- Jérôme Y Couturier
- Laboratoire de Pharmacologie, UPRES EA2510, Université René Descartes, F-75006, Paris, France
| | | | | | | | | |
Collapse
|
496
|
Sidorkina O, Espey MG, Miranda KM, Wink DA, Laval J. Inhibition of poly(ADP-RIBOSE) polymerase (PARP) by nitric oxide and reactive nitrogen oxide species. Free Radic Biol Med 2003; 35:1431-8. [PMID: 14642390 DOI: 10.1016/j.freeradbiomed.2003.08.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The poly(ADP-ribose) polymerase (PARP) family of nuclear enzymes is involved in the detection and signaling of single strand breaks induced either directly by ionizing radiation or indirectly by the sequential action of various DNA repair proteins. Therefore, PARP plays an important role in maintaining genome stability. Because PARP proteins contain two zinc finger motifs, these enzymes can be targets for reactive nitrogen oxide intermediates (RNOS) generated as a result of nitric oxide (NO) biosynthesis in an aerobic environment. The effects of RNOS on the activity of purified PARP were examined using donor compounds. Both NO and nitroxyl (HNO) donors were found to be inhibitory in a similar time and concentration manner, indicating that PARP activity can be modified under both nitrosative and oxidative conditions. Moreover, these RNOS donors elicited comparable PARP inhibition in Sf21 insect cell extract and intact human MCF-7 cancer cells. The concentrations of donor required for 90% inhibition of PARP activity produce RNOS at a similar magnitude to those generated in the cellular microenvironment of activated leukocytes, suggesting that cellular scavenging of RNOS may not be protective against PARP modification and that inhibition of PARP may be significant under inflammatory conditions.
Collapse
Affiliation(s)
- Olga Sidorkina
- Groupe "Reparation de l'ADN" UMR 8113, LBPA-ENS Cachan, Intitut Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
497
|
Sarker KP, Biswas KK, Rosales JL, Yamaji K, Hashiguchi T, Lee KY, Maruyama I. Ebselen inhibits NO-induced apoptosis of differentiated PC12 cells via inhibition of ASK1-p38 MAPK-p53 and JNK signaling and activation of p44/42 MAPK and Bcl-2. J Neurochem 2003; 87:1345-53. [PMID: 14713291 DOI: 10.1046/j.1471-4159.2003.02096.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ebselen, a selenium-containing heterocyclic compound, prevents ischemia-induced cell death. However, the molecular mechanism through which ebselen exerts its cytoprotective effect remains to be elucidated. Using sodium nitroprusside (SNP) as a nitric oxide (NO) donor, we show here that ebselen potently inhibits NO-induced apoptosis of differentiated PC12 cells. This was associated with inhibition of NO-induced phosphatidyl Serine exposure, cytochrome c release, and caspase-3 activation by ebselen. Analysis of key apoptotic regulators during NO-induced apoptosis of differentiated PC12 cells showed that ebselen blocks the activation of the apoptosis signaling-regulating kinase 1 (ASK1), and inhibits phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal protein kinase (JNK). Moreover, ebselen inhibits NO-induced p53 phosphorylation at Ser15 and c-Jun phosphorylation at Ser63 and Ser73. It appears that inhibition of p38 MAPK and p53 phosphorylation by ebselen occurs via a thiol-redox-dependent mechanism. Interestingly, ebselen also activates p44/42 MAPK, and inhibits the downregulation of the antiapoptotic protein Bcl-2 in SNP-treated PC12 cells. Together, these findings suggest that ebselen protects neuronal cells from NO cytotoxicity by reciprocally regulating the apoptotic and antiapoptotic signaling cascades.
Collapse
Affiliation(s)
- Krishna P Sarker
- Department of Laboratory and Molecular Medicine, Faculty of Medicine, Kagoshima University, Kagoshima-890, Japan.
| | | | | | | | | | | | | |
Collapse
|
498
|
Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, Bhakat KK, Mitra S, Hazra TK. Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 2003; 193:43-65. [PMID: 14599767 DOI: 10.1016/s0300-483x(03)00289-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The DNA base excision repair (BER) is a ubiquitous mechanism for removing damage from the genome induced by spontaneous chemical reaction, reactive oxygen species (ROS) and also DNA damage induced by a variety of environmental genotoxicants. DNA repair is essential for maintaining genomic integrity. As we learn more about BER, a more complex mechanism emerges which supersedes the classical, simple pathway requiring only four enzymatic reactions. The key to understand the complete BER process is to elucidate how multiple proteins interact with one another in a coordinated process under specific physiological conditions.
Collapse
Affiliation(s)
- Tadahide Izumi
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1079, USA.
| | | | | | | | | | | | | | | |
Collapse
|
499
|
Hassa PO, Buerki C, Lombardi C, Imhof R, Hottiger MO. Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J Biol Chem 2003; 278:45145-53. [PMID: 12960163 DOI: 10.1074/jbc.m307957200] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) plays an important role in the transcriptional regulation of genes involved in inflammation and cell survival. In this study, we demonstrated that NF-kappaB-dependent gene expression was inhibited by E1A in poly(ADP)-ribose polymerase-1 knock out (PARP-1 (-/-)) cells complemented with wild type PARP-1 after tumor necrosis factor alpha (TNFalpha) or lipopolysaccharide (LPS) treatment. PARP-1 and p300 synergistically coactivated NF-kappaB-dependent gene expression in response to TNFalpha and LPS. Furthermore, PARP-1 interacted directly with p300 and enhanced the interaction of NF-kappaB1/p50 to p300. The C terminus, harboring the catalytic domain of PARP-1 but not its enzymatic activity, was required for complete transcriptional coactivation of NF-kappaB by p300 in response to TNFalpha and LPS. Together, these results indicate that PARP-1 acts synergistically with p300 and plays an essential regulatory role in NF-kappaB-dependent gene expression.
Collapse
Affiliation(s)
- Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
500
|
Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, Brownlee M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003; 112:1049-57. [PMID: 14523042 PMCID: PMC198524 DOI: 10.1172/jci18127] [Citation(s) in RCA: 494] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein-1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1-deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage.
Collapse
Affiliation(s)
- Xueliang Du
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | |
Collapse
|