5351
|
Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun 2016; 17:213-9. [PMID: 26986782 PMCID: PMC4895389 DOI: 10.1038/gene.2016.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
The vitamin D receptor (VDR) is a ligand-activated transcription factor that regulates gene expression in many cell types, including immune cells. It requires binding of 1,25 dihydroxy vitamin D3 (1,25D3) for activation. Many autoimmune diseases show latitude-dependent prevalence and/or association with vitamin D deficiency, and vitamin D supplementation is commonly used in their clinical management. 1,25D3 is regulated by genes associated with the risk of autoimmune diseases and predominantly expressed in myeloid cells. We determined the VDR cistrome in monocytes and monocyte-derived inflammatory (DC1) and tolerogenic dendritic cells (DC2). VDR motifs were highly overrepresented in ChIP-Seq peaks in stimulated monocyte (40%), DC1 (21%) and DC2 (47%), P<E(-100) for all. Of the nearly 11 000 VDR-binding peaks identified across the genome in DC1s, 1317 were shared with DC2s (91% of DC2 sites) and 1579 with monocytes (83% of monocyte sites). Latitude-dependent autoimmune disease risk polymorphisms were highly overrepresented within 5 kb of the peaks. Several transcription factor recognition motifs were highly overrepresented in the peaks, including those for the autoimmune risk gene, BATF. This evidence indicates that VDR regulates hundreds of myeloid cell genes and that the molecular pathways controlled by VDR in these cells are important in maintaining tolerance.
Collapse
|
5352
|
Guo C, Wu K. Risk Genes of Inflammatory Bowel Disease in Asia: What Are the Most Important Pathways Affected? Dig Dis 2016; 34:5-11. [PMID: 26982027 DOI: 10.1159/000442917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetic factors play an important role in the pathogenesis of inflammatory bowel disease (IBD), and IBD is now recognized as a complex disease that results from interplay between genetic and environment factors. To date, over 160 IBD-susceptible loci have been identified using genome-wide association studies (GWAS). The risk genes identified in these studies are involved in various pathways in innate and adaptive immune response such as innate bacterial sensing, autophagy and interleukin-23 receptor/T-helper cell 17 pathway. It was initially believed that the genetic backgrounds of Asian IBD patients differ from that of other populations. Recent GWAS and meta-analysis found that there is pervasive sharing of risk loci between the East and West. Overlapping risk genes between populations of different ancestries indicate that pathways underlying the etiology of IBD may be common between Asia and other areas. However, the importance of individual pathways may be different in Asia from the Western countries. Identifying the most important pathways affected in Asian IBD patients may provide a better understanding of pathogenesis of IBD in Asia and improve the clinical management of the patients.
Collapse
Affiliation(s)
- Changcun Guo
- Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | |
Collapse
|
5353
|
Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH. ATG16L1: A multifunctional susceptibility factor in Crohn disease. Autophagy 2016; 11:585-94. [PMID: 25906181 DOI: 10.1080/15548627.2015.1017187] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease.
Collapse
Key Words
- ATG16L1
- ATG16L1, autophagy-related 16-like 1 (S. cerevisiae)
- BCL2, B-cell CLL/lymphoma 2
- Crohn disease
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GWAS, genome-wide association studies
- IBD, inflammatory bowel disease
- MDP, muramyl dipeptide
- MTOR, mechanistic target of rapamycin
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- NOD2
- NOD2, nucleotide-binding oligomerization domain containing 2
- RIPK2, receptor-interacting serine-threonine kinase 2
- SNP, single-nucleotide polymorphism
- T300A, threonine-to-alanine substitution at amino acid position 300
- TNF/TNF-α, tumor necrosis factor
- UC, ulcerative colitis
- ULK1, unc-51 like autophagy-activating kinase 1
- XBP1, X-box binding protein 1
- autophagy
- bacterial clearance
- endoplasmic reticulum stress
Collapse
Affiliation(s)
- Mohammad Salem
- a Department of Gastroenterology ; Medical Section; Herlev Hospital; University of Copenhagen ; Copenhagen , Denmark
| | | | | | | | | |
Collapse
|
5354
|
Van Der Kraak L, Langlais D, Jothy S, Beauchemin N, Gros P. Mapping hyper-susceptibility to colitis-associated colorectal cancer in FVB/NJ mice. Mamm Genome 2016; 27:213-24. [PMID: 26979842 DOI: 10.1007/s00335-016-9625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/25/2016] [Indexed: 11/24/2022]
Abstract
Inbred strains of mice differ in susceptibility to colitis-associated colorectal cancer (CA-CRC). We tested 10 inbred strains of mice for their response to azoxymethane/dextran sulfate sodium-induced CA-CRC and identified a bimodal inter-strain distribution pattern when tumor multiplicity was used as a phenotypic marker of susceptibility. The FVB/NJ strain was particularly susceptible showing a higher tumor burden than any other susceptible strains (12.5-week post-treatment initiation). FVB/NJ hyper-susceptibility was detected as early as 8-week post-treatment initiation with FVB/NJ mice developing 5.5-fold more tumors than susceptible A/J or resistant B6 control mice. Linkage analysis by whole genome scan in informative (FVB/NJ×C3H/HeJ)F2 mice identified a novel susceptibility locus designated as C olon c ancer s usceptibility 6 (Ccs6) on proximal mouse chromosome 6. When gender was used as a covariate, a LOD score of 5.4 was computed with the peak marker being positioned at rs13478727, 43.8 Mbp. Mice homozygous for FVB/NJ alleles at this locus had increased tumor multiplicity compared to homozygous C3H/HeJ mice. Positional candidates in this region of chromosome 6 were analyzed with respect to a possible role in carcinogenesis and a role in inflammatory response using a new epigenetic gene scoring tool (Myeloid Inflammation Score).
Collapse
Affiliation(s)
- Lauren Van Der Kraak
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - David Langlais
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Serge Jothy
- Department of Laboratory Medicine and Pathology, St. Michael's Hospital and University of Toronto, Toronto, ON, M5B 1W8, Canada
| | - Nicole Beauchemin
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada. .,Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
5355
|
Pers TH, Timshel P, Ripke S, Lent S, Sullivan PF, O'Donovan MC, Franke L, Hirschhorn JN. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes. Hum Mol Genet 2016; 25:1247-54. [PMID: 26755824 PMCID: PMC4764200 DOI: 10.1093/hmg/ddw007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/29/2015] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approach, we show that genes in associated loci: (1) are highly expressed in cortical brain areas; (2) are enriched for ion channel pathways (false discovery rates <0.05); and (3) contain 62 genes that are functionally related to each other and hence represent promising candidates for experimental follow up. We validate the relevance of the prioritized genes by showing that they are enriched for rare disruptive variants and de novo variants from schizophrenia sequencing studies (odds ratio 1.67, P = 0.039), and are enriched for genes encoding members of mouse and human postsynaptic density proteomes (odds ratio 4.56, P = 5.00 × 10(-4); odds ratio 2.60, P = 0.049).The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Author.
Collapse
Affiliation(s)
- Tune H Pers
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA, Medical and Population Genetics Program and The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, København Ø 2100, Denmark, Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Pascal Timshel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, København Ø 2100, Denmark, Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02142, USA
| | | | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA, Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine and National Centre for Mental Health, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen 9711, The Netherlands and
| | - Joel N Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA, Medical and Population Genetics Program and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5356
|
Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, Park YR, Raychaudhuri S, Pouget JG, Hübenthal M, Folseraas T, Wang Y, Esko T, Metspalu A, Westra HJ, Franke L, Pers TH, Weersma RK, Collij V, D'Amato M, Halfvarson J, Jensen AB, Lieb W, Degenhardt F, Forstner AJ, Hofmann A, Schreiber S, Mrowietz U, Juran BD, Lazaridis KN, Brunak S, Dale AM, Trembath RC, Weidinger S, Weichenthal M, Ellinghaus E, Elder JT, Barker JNWN, Andreassen OA, McGovern DP, Karlsen TH, Barrett JC, Parkes M, Brown MA, Franke A. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016; 48:510-8. [PMID: 26974007 PMCID: PMC4848113 DOI: 10.1038/ng.3528] [Citation(s) in RCA: 538] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
We simultaneously investigated the genetic landscape of ankylosing spondylitis, Crohn's disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis to investigate pleiotropy and the relationship between these clinically related diseases. Using high-density genotype data from more than 86,000 individuals of European ancestry, we identified 244 independent multidisease signals, including 27 new genome-wide significant susceptibility loci and 3 unreported shared risk loci. Complex pleiotropy was supported when contrasting multidisease signals with expression data sets from human, rat and mouse together with epigenetic and expressed enhancer profiles. The comorbidities among the five immune diseases were best explained by biological pleiotropy rather than heterogeneity (a subgroup of cases genetically identical to those with another disease, possibly owing to diagnostic misclassification, molecular subtypes or excessive comorbidity). In particular, the strong comorbidity between primary sclerosing cholangitis and inflammatory bowel disease is likely the result of a unique disease, which is genetically distinct from classical inflammatory bowel disease phenotypes.
Collapse
Affiliation(s)
- David Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Luke Jostins
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sarah L Spain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Adrian Cortes
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jörn Bethune
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Buhm Han
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Yu Rang Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Division of Endocrinology, Boston Children's Hospital, Cambridge, Massachusetts, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, Massachusetts, USA
| | | | - Harm-Jan Westra
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Tune H Pers
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, Massachusetts, USA.,Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Mauro D'Amato
- Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden.,BioCruces Health Research Institute and Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Boeck Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wolfgang Lieb
- Institute of Epidemiology, University Hospital Schleswig-Holstein, Kiel, Germany.,PopGen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany.,Department of General Internal Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ulrich Mrowietz
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian Albrechts University of Kiel, Kiel, Germany
| | - Brian D Juran
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | - Konstantinos N Lazaridis
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders M Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Stephan Weidinger
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian Albrechts University of Kiel, Kiel, Germany
| | - Michael Weichenthal
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian Albrechts University of Kiel, Kiel, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Jonathan N W N Barker
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Dermot P McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, USA.,Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Jeffrey C Barrett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, Queensland, Australia
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
5357
|
Sadler T, Bhasin JM, Xu Y, Barnholz-Sloan J, Chen Y, Ting AH, Stylianou E. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn's disease-associated fibrosis. Clin Epigenetics 2016; 8:30. [PMID: 26973718 PMCID: PMC4789277 DOI: 10.1186/s13148-016-0193-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/29/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fibrosis of the intestine is a common and poorly understood complication of Crohn's disease (CD) characterized by excessive deposition of extracellular matrix and accompanied by narrowing and obstruction of the gut lumen. Defining the molecular characteristics of this fibrotic disorder is a vital step in the development of specific prediction, prevention, and treatment strategies. Previous epigenetic studies indicate that alterations in DNA methylation could explain the mechanism by which mesenchymal cells adopt the requisite pro-fibrotic phenotype that promotes fibrosis progression. However, to date, genome-wide analysis of the DNA methylome of any type of human fibrosis is lacking. We employed an unbiased approach using deep sequencing to define the DNA methylome and transcriptome of purified fibrotic human intestinal fibroblasts (HIF) from the colons of patients with fibrostenotic CD. RESULTS When compared with normal fibroblasts, we found that the majority of differential DNA methylation was within introns and intergenic regions and not associated with CpG islands. Only a low percentage occurred in the promoters and exons of genes. Integration of the DNA methylome and transcriptome identified regions in three genes that inversely correlated with gene expression: wingless-type mouse mammary tumor virus integration site family, member 2B (WNT2B) and two eicosanoid synthesis pathway enzymes (prostacyclin synthase and prostaglandin D2 synthase). These findings were independently validated by RT-PCR and bisulfite sequencing. Network analysis of the data also identified candidate molecular interactions relevant to fibrosis pathology. CONCLUSIONS Our definition of a genome-wide fibrosis-specific DNA methylome provides new gene networks and epigenetic states by which to understand mechanisms of pathological gene expression that lead to fibrosis. Our data also provide a basis for development of new fibrosis-specific therapies, as genes dysregulated in fibrotic Crohn's disease, following functional validation, can serve as new therapeutic targets.
Collapse
Affiliation(s)
- Tammy Sadler
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA
| | - Jeffrey M Bhasin
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jill Barnholz-Sloan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH USA
| | - Yanwen Chen
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH USA
| | - Angela H Ting
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA
| | - Eleni Stylianou
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue/NC-22, Cleveland, OH 44195 USA.,Department of Gastroenterology and Hepatology, Digestive Diseases Institute, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
5358
|
Park HJ, Jung ES, Kong KA, Park EM, Cheon JH, Choi JH. Identification of OCTN2 variants and their association with phenotypes of Crohn's disease in a Korean population. Sci Rep 2016; 6:22887. [PMID: 26965072 PMCID: PMC4786794 DOI: 10.1038/srep22887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/23/2016] [Indexed: 12/19/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory bowel disease and a genetic variant in the OCTN2, g.-207G > C is significantly associated with CD susceptibility. This study was aimed to identify novel OCTN2 functional promoter variants and their roles in transcriptional regulation using various in vitro assays. In addition, we investigated the association between OCTN2 genotypes and CD through genetic analysis using DNA samples from 193 patients with CD and 281 healthy controls. Among the three major promoter haplotypes of OCTN2 identified, one haplotype, H3, showed a significant decrease in promoter activity: two polymorphisms in H3 were associated with a significant reduction in promoter activity. In particular, we found that the reduced transcriptional activity of those two polymorphisms results from a reduction in the binding affinity of the activators, NF-E2 and YY1, to the OCTN2 promoter. The functional haplotype of the OCTN2 promoter was associated with clinical course of CD such as the disease behavior and need for surgery. However, genetic variants or haplotypes of OCTN2 did not affect the susceptibility to CD. Our results suggest that a common promoter haplotype of OCTN2 regulates the transcriptional rate of OCTN2 and influences the clinical course of CD.
Collapse
Affiliation(s)
- Hyo Jin Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Eun Suk Jung
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyoung Ae Kong
- Clinical Trial Center, Ewha Womans University Medical Center, Seoul, 07985, Korea
| | - Eun-Mi Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Ha Choi
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 07985, Korea
| |
Collapse
|
5359
|
Grazul H, Kanda LL, Gondek D. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes 2016; 7:101-14. [PMID: 26963277 PMCID: PMC4856465 DOI: 10.1080/19490976.2016.1138197] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shifts in microbial populations of the intestinal tract have been associated with a multitude of nutritional, autoimmune, and infectious diseases. The limited diversity following antibiotic treatments creates a window for opportunistic pathogens, diarrhea, and inflammation as the microbiome repopulates. Depending on the antibiotics used, microbial diversity can take weeks to months to recover. To alleviate this loss of diversity in the intestinal microbiota, supplementation with probiotics has become increasingly popular. However, our understanding of the purported health benefits of these probiotic bacteria and their ability to shape the microbiome is significantly lacking. This study examined the impact of probiotics concurrent with antibiotic treatment or during the recovery phase following antibiotic treatment of mice. We found that probiotics did not appear to colonize the intestine themselves or shift the overall diversity of the intestinal microbiota. However, the probiotic supplementation did significantly change the types of bacteria which were present. In particular, during the recovery phase the probiotic caused a suppression of Enterobacteriaceae outgrowth (Shigella and Escherichia) while promoting a blooming of Firmicutes, particularly from the Anaerotruncus genus. These results indicate that probiotics have a significant capacity to remodel the microbiome of an individual recovering from antibiotic therapy.
Collapse
Affiliation(s)
- Hannah Grazul
- Biology Department, Center for Natural Science, Ithaca College, Ithaca NY
| | - L. Leann Kanda
- Biology Department, Center for Natural Science, Ithaca College, Ithaca NY
| | - David Gondek
- Biology Department, Center for Natural Science, Ithaca College, Ithaca NY
| |
Collapse
|
5360
|
Turner AW, Martinuk A, Silva A, Lau P, Nikpay M, Eriksson P, Folkersen L, Perisic L, Hedin U, Soubeyrand S, McPherson R. Functional Analysis of a Novel Genome-Wide Association Study Signal in SMAD3 That Confers Protection From Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2016; 36:972-83. [PMID: 26966274 DOI: 10.1161/atvbaha.116.307294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease-associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. APPROACH AND RESULTS By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D', 0.97; r(2), 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (P<0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent (P<0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. CONCLUSIONS The coronary artery disease-associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Adam W Turner
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Amy Martinuk
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Anada Silva
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Paulina Lau
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Majid Nikpay
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Per Eriksson
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Lasse Folkersen
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Ljubica Perisic
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Ulf Hedin
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Sebastien Soubeyrand
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.)
| | - Ruth McPherson
- From the Atherogenomics Laboratory (A.W.T., A.M., A.S., P.L., S.S., R.M.) and Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre (M.N., R.M.), University of Ottawa Heart Institute, Ottawa, Canada; Atherosclerosis Research Unit (P.E., L.F.) and Department of Molecular Medicine and Surgery (L.P., U.H.), Karolinska University Hospital, Stockholm, Sweden; and Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark (L.F.).
| |
Collapse
|
5361
|
Dysbiosis in intestinal inflammation: Cause or consequence. Int J Med Microbiol 2016; 306:302-309. [PMID: 27012594 DOI: 10.1016/j.ijmm.2016.02.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota encompasses hundreds of bacterial species that constitute a relatively stable ecosystem. Alteration in the microbiota composition may arise from infections, immune defects, metabolic alterations, diet or antibiotic treatment. Dysbiosis is considered as an alteration in microbiota community structure and/or function, capable of causing/driving a detrimental distortion of microbe-host homeostasis. A variety of pathologies are associated with changes in the community structure and function of the gut microbiota, suggesting a link between dysbiosis and disease etiology. With an emphasis in this review on inflammatory bowel diseases (IBD), the non-trivial question is whether dysbiosis is the cause or consequence of inflammation. It is important to understand whether changes in microbial ecosystems are causally linked to the pathology and to what extend disease risk is predicable based on characteristic changes in community structure and/or function. Local changes in tissue integrity associated with focal areas of inflammation may result in the selection of a dysbiotic bacterial community associated with the propagation of a disease phenotype. This review outlines the role of dysbiosis in intestinal inflammation with particular focus on IBD-relevant gnotobiotic mouse models, the factors implicated in the development of dysbiosis and the means available to investigate dysbiosis in the context of human diseases.
Collapse
|
5362
|
Barnett MPG, Dommels YEM, Butts CA, Zhu S, McNabb WC, Roy NC. Inoculation with enterococci does not affect colon inflammation in the multi-drug resistance 1a-deficient mouse model of IBD. BMC Gastroenterol 2016; 16:31. [PMID: 26940566 PMCID: PMC4778357 DOI: 10.1186/s12876-016-0447-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/24/2016] [Indexed: 01/08/2023] Open
Abstract
Background Intestinal bacteria are thought to play a role in the pathogenesis of human inflammatory bowel disease (IBD). We investigated whether oral inoculation with specific intestinal bacteria increased colon inflammation in the multi-drug resistance 1a-deficient (Mdr1a–/–) mouse model of IBD. Methods Five-week-old Mdr1a–/– mice (FVB background) and FVB mice were randomly assigned to one of two treatment groups (Control or Inoculation, n = 12 per group). All mice were fed AIN-76A rodent diet, and mice in the Inoculation groups also received a single oral bacterial inoculation consisting of twelve cultured Enterococcus species combined with conventional intestinal flora obtained from the gastrointestinal tract of healthy mice (EF.CIF). Body weight, food intake, and disease activity index (DAI) were assessed throughout the study, and at 21 or 24 weeks of age, inflammation was assessed post-mortem by determining colon length and histological injury score (HIS), and plasma serum amyloid A (SAA). Results Mdr1a–/– mice consumed more food than FVB mice at 13 weeks of age (P < 0.05). There was also a significant effect of genotype on body weight, with Mdr1a–/– mice weighing less than FVB mice throughout the study (P < 0.05) regardless of treatment, but there was no effect of inoculation on body weight (P > 0.25). Colon HIS of Mdr1a–/– mice was significantly higher than that of FVB mice in the Control (9.3 ± 4.7 (mean ± SD) vs. 0.58 ± 0.51; P < 0.001) and Inoculation (6.7 ± 5.1 vs. 0.92 ± 0.39; P < 0.001) groups. There was no difference in colon HIS of Mdr1a–/– mice in the Control group compared with Mdr1a–/– mice in the Inoculation group (P = 0.25), nor was there any difference in within-group variation of colon HIS in these two Mdr1a–/– groups. DAI was higher in Mdr1a–/– mice than in FVB mice, but there was no effect of treatment in either strain, nor were there any differences in colon length or plasma SAA. Conclusions Inoculation of Mdr1a–/– mice with the EF.CIF inoculum described here does not increase colon inflammation or reduce the observed variability of inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12876-016-0447-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew P G Barnett
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, 4474, New Zealand. .,Gravida: National Centre for Growth and Development, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Yvonne E M Dommels
- Food and Nutrition, Food Innovation, Plant & Food Research, Palmerston North, 4474, New Zealand.
| | - Christine A Butts
- Food and Nutrition, Food Innovation, Plant & Food Research, Palmerston North, 4474, New Zealand.
| | - Shuotun Zhu
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Warren C McNabb
- AgResearch, Palmerston North, 4474, New Zealand. .,Riddet Institute, Massey University, Palmerston North, 4474, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, 4474, New Zealand. .,Gravida: National Centre for Growth and Development, Private Bag 92019, Auckland, 1142, New Zealand. .,Riddet Institute, Massey University, Palmerston North, 4474, New Zealand.
| |
Collapse
|
5363
|
Bennett KM, Parnell EA, Sanscartier C, Parks S, Chen G, Nair MG, Lo DD. Induction of Colonic M Cells during Intestinal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1166-79. [PMID: 26948422 DOI: 10.1016/j.ajpath.2015.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 11/24/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
Intestinal M (microfold) cells are specialized epithelial cells overlying lymphoid tissues in the small intestine. Unlike common enterocytes, M cells lack an organized apical brush border, and are able to transcytose microparticles across the mucosal barrier to underlying antigen-presenting cells. We found that in both the dextran sodium sulfate and Citrobacter rodentium models of colitis, significantly increased numbers of Peyer's patch (PP) phenotype M cells were induced at the peak of inflammation in colonic epithelium, often accompanied by loosely organized lamina propria infiltrates. PP type M cells are thought to be dependent on cytokines, including tumor necrosis factor (TNF)-α and receptor activator of nuclear factor kappa-B ligand; these cytokines were also found to be induced in the inflamed tissues. The induction of M cells was abrogated by anti-TNF-α blockade, suggesting that anti-TNF-α therapies may have similar effects in clinical settings, although the functional consequences are not clear. Our results suggest that inflammatory cytokine-induced PP type M cells may be a useful correlate of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Kaila M Bennett
- Bioengineering Interdepartmental Graduate Program, School of Medicine, University of California, Riverside, Riverside, California; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Erinn A Parnell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Candice Sanscartier
- Bioengineering Interdepartmental Graduate Program, School of Medicine, University of California, Riverside, Riverside, California; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Sophia Parks
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Gang Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California.
| |
Collapse
|
5364
|
Genome-Wide Copy Number Variation Scan Identifies Complement Component C4 as Novel Susceptibility Gene for Crohn's Disease. Inflamm Bowel Dis 2016; 22:505-15. [PMID: 26595553 DOI: 10.1097/mib.0000000000000623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The genetic component of Crohn's disease (CD) is well known, with 140 susceptibility loci identified so far. In addition to single nucleotide polymorphisms typically studied in genome-wide scans, copy number variation is responsible for a large proportion of human genetic variation. METHODS We performed a genome-wide search for copy number variants associated with CD using array comparative genomic hybridization. One of the found regions was validated independently through real-time PCR. Serum levels of the found gene were measured in patients and control subjects. RESULTS We found copy number differences for the C4S and C4L gene variants of complement component C4 in the central major histocompatibility complex region on chromosome 6p21. Specifically, we saw that CD patients tend to have lower C4L and higher C4S copies than control subjects (P = 5.00 × 10 and P = 9.11 × 10), which was independent of known associated classical HLA I and II alleles (P = 7.68 × 10 and P = 6.29 × 10). Although C4 serum levels were not different between patients and control subjects, the relationship between C4 copy number and serum level was different for patients and control subjects with higher copy numbers leading to higher serum concentrations in control subjects, compared with CD patients (P < 0.001). CONCLUSIONS C4 is part of the classical activation pathway of the complement system, which is important for (auto)immunity. Low C4L or high C4S copy number, and corresponding effects on C4 serum level, could lead to an exaggerated response against infections, possibly leading to (auto)immune disease.
Collapse
|
5365
|
Gutierrez-Arcelus M, Rich SS, Raychaudhuri S. Autoimmune diseases - connecting risk alleles with molecular traits of the immune system. Nat Rev Genet 2016; 17:160-74. [PMID: 26907721 PMCID: PMC4896831 DOI: 10.1038/nrg.2015.33] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome-wide strategies have driven the discovery of more than 300 susceptibility loci for autoimmune diseases. However, for almost all loci, understanding of the mechanisms leading to autoimmunity remains limited, and most variants that are likely to be causal are in non-coding regions of the genome. A critical next step will be to identify the in vivo and ex vivo immunophenotypes that are affected by risk variants. To do this, key cell types and cell states that are implicated in autoimmune diseases will need to be defined. Functional genomic annotations from these cell types and states can then be used to resolve candidate genes and causal variants. Together with longitudinal studies, this approach may yield pivotal insights into how autoimmunity is triggered.
Collapse
Affiliation(s)
- Maria Gutierrez-Arcelus
- Division of Genetics, and Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Partners Center for Personalized Genetic Medicine, Boston, Massachusetts 02115, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Soumya Raychaudhuri
- Division of Genetics, and Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Partners Center for Personalized Genetic Medicine, Boston, Massachusetts 02115, USA
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 77, Sweden
| |
Collapse
|
5366
|
Authors' Response. J Pediatr Gastroenterol Nutr 2016; 62:e31-2. [PMID: 26650102 DOI: 10.1097/mpg.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
5367
|
Differential Levels of Tl1a Affect the Expansion and Function of Regulatory T Cells in Modulating Murine Colitis. Inflamm Bowel Dis 2016; 22:548-59. [PMID: 26818423 PMCID: PMC4752386 DOI: 10.1097/mib.0000000000000653] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Expression of TL1A (tumor necrosis factor-like ligand 1A) is increased in patients with inflammatory bowel disease (IBD). Mice with elevated T-cell expression of Tl1a (L-Tg) have increased regulatory T cells, yet develop worsened colitis and intestinal fibrosis. The aim of this study was to investigate the role of Tl1a in the differentiation and function of Tregs and their effects in modulating murine colitis. METHODS Tl1a overexpressing L-Tg, Foxp3-mRFP (FIR)-LTg, and DR3KO-LTg mice were used for the study. In the L-Tg mice, Tl1a expressing cells can be identified by green fluorescent protein (GFP). RESULTS We report that Foxp3 expression in the L-Tg mice is variable based on high or low level of Tl1a expression, referred to herein as GFPhigh and GFPlow T cells. Treg-specific suppressive molecules were highly expressed on the GFPlow Foxp3 Tregs and were significantly reduced on Tregs expressing high Tl1a. In vitro suppression function was significantly enhanced in the GFPlow compared with the GFPhigh Tregs. RAG mice cotransferred with either GFPlow or wild-type Tregs were protected from colitis. Furthermore, GFPlow Tregs lost the suppression function in the absence of DR3 (Death receptor 3). CONCLUSIONS Tregs expressing low levels of Tl1a ameliorate murine colitis and promote the maintenance of Treg suppressor function in a DR3-dependent manner, partly due to a heightened regulatory program. These data reveal novel roles for differential levels of Tl1a in regulating T cell-mediated immune responses that have implications in understanding the pathogenesis of IBD.
Collapse
|
5368
|
Hong S, Jin JW, Park JH, Kim JK, Jeong HD. Analysis of proinflammatory gene expression by RBIV infection in rock bream, Oplegnathus faciatus. FISH & SHELLFISH IMMUNOLOGY 2016; 50:317-326. [PMID: 26386196 DOI: 10.1016/j.fsi.2015.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Early induction of proinflammatory cytokines is known to regulate the later immune responses to inhibit the progress of infectious diseases. In this study, proinflammatory cytokine gene expression has been studied in immune tissues to understand the early immune response induced by megalocytivirus in rock bream (Oplegnathus faciatus). For this, we have cloned interleukin (IL)-1β and IL-8 gene and performed the phylogenetic and structural analysis. Also the constitutive gene expressions of IL-1β and IL-8 were assessed in 12 organs and found to be the highest expression in tail fin and liver, respectively. The expressions of proinflammatory cytokine genes including IL-1β, IL-8, TNFα and Cox-2, and antiviral genes like Mx and IFN1 were analysed by stimulation with PAMPs and RBIV infection. In vitro study showed the highly up-regulated proinflammatory gene expressions in head kidney and the moderate up-regulation in spleen by LPS. Same concentration of polyI:C moderately upregulated IL-1β gene expression in head kidney but down-regulated IL-8 and TNFα gene expression in head kidney and spleen at 8 h. Mx and IFN1 gene expressions were highly upregulated by polyI:C in head kidney and spleen cells in vitro. By RBIV infection, proinflammatory gene expressions were initially up-regulated and later down-regulated in head kidney. In spleen, although mostly not significant, proinflammatory cytokine gene expressions were down-regulated by RBIV infection except up-regulation of Cox-2 gene expression by low concentration of RBIV at 24 h. Mx and IFN1 gene expressions were down-regulated by high dose of RBIV infection in vitro. In vivo study revealed that IL-8, TNFα, and IFN1 gene expressions were down-regulated in brain, head kidney, spleen, and gill while up-regulated in heart and liver, indicating differential proinflammatory and antiviral responses in the organs. It is supposed that down-regulation of proinflammatory gene expression in the immune organs may result in the failure of antiviral immune responses, causing high mortalities by megalocytivirus infection in rock bream.
Collapse
Affiliation(s)
- Suhee Hong
- Department of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Ji Woong Jin
- Namhae Fisheries Hatchery Station, Korea Fisheries Resources Agency, Wando 537-806, South Korea
| | - Jae-Heon Park
- Department of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Joong-Kyun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Hyun Do Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
5369
|
Weaning Off Prognosis Factors of Home Parenteral Nutrition for Children With Primary Digestive Disease. J Pediatr Gastroenterol Nutr 2016; 62:462-8. [PMID: 26398153 DOI: 10.1097/mpg.0000000000000980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of the present study was to describe the indications for home parenteral nutrition (HPN) in children with primary digestive diseases and to identify factors associated with weaning off. METHODS All the children initially discharged on HPN between January 1, 2000, and December 31, 2009, for chronic intestinal failure (IF) were included. The associations between clinical factors and weaning off of HPN were assessed using a multivariable Cox regression model. RESULTS Among the 151 children (boys = 58%) included in this study, 98 (65%) presented with short bowel syndrome (SBS), 17 (11%) with digestive neuromuscular disorders, 14 (9%) with mucosal diseases, 13 (9%) with inflammatory bowel disease, and 9 (6%) with other primary digestive diseases. The probability of survival was ∼100%. At the end of the follow-up, the probability for weaning off of HPN was 0.73 (95% confidence interval 0.54-0.84) but varied according to the underlying cause of IF (for example, SBS and inflammatory bowel disease had a better prognosis). The median time until weaning off was 21 months (95% confidence interval 18-38 months). Unfavourable prognostic factors for weaning off of HPN included a bowel remnant of <40 cm, the presence of <50% of the colon, and daily lipid intakes >1.5 g · kg · day. Underlying disease was also associated with weaning off. CONCLUSIONS HPN is a safe therapeutic option for children with chronic IF requiring long-term nutritional management. Prognostic factors for weaning off of HPN were identified, and they highlight the relevance of SBS anatomy and parenteral nutrition caloric intake. The outcome of children on HPN was primarily dependent on the underlying disease.
Collapse
|
5370
|
Huntington JT, Boomer LA, Pepper VK, Diefenbach KA, Dotson JL, Nwomeh BC. Minimally Invasive Ileal Pouch-Anal Anastomosis with Rectal Eversion Allows for Equivalent Outcomes in Continence in Pediatric Patients. J Laparoendosc Adv Surg Tech A 2016; 26:222-5. [PMID: 26565925 DOI: 10.1089/lap.2015.0429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Justin T. Huntington
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Laura A. Boomer
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Victoria K. Pepper
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Karen A. Diefenbach
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Jennifer L. Dotson
- Department of Gastroenterology, Nationwide Children's Hospital, Columbus, Ohio
| | - Benedict C. Nwomeh
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
5371
|
Sifuentes-Dominguez L, Patel AS. Genetics and Therapeutics in Pediatric Ulcerative Colitis: the Past, Present and Future. F1000Res 2016; 5. [PMID: 26973787 PMCID: PMC4776672 DOI: 10.12688/f1000research.7440.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing and remitting disease with significant phenotypic and genotypic variability. Though more common in adults, UC is being increasingly diagnosed in childhood. The subsequent lifelong course of disease results in challenges for the patient and physician. Currently, there is no medical cure for UC. Even though surgical removal of the colon can be curative, complications including infertility in females make colectomy an option often considered only when the disease presents with life-threatening complications or when medical management fails. One of the greatest challenges the clinician faces in the care of patients with UC is the inability to predict at diagnosis which patient is going to respond to a specific therapy or will eventually require surgery. This therapeutic conundrum frames the discussion to follow, specifically the concept of individualized or personalized treatment strategies based on genetic risk factors. As we move to therapeutics, we will elucidate traditional approaches and discuss known and novel agents. As we look to the future, we can expect increasing integrated approaches using several scientific disciplines to inform how genetic interactions shape and mold the pathogenesis and therapeutics of UC.
Collapse
Affiliation(s)
| | - Ashish S Patel
- Children's Health, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5372
|
Eun CS, Kwak MJ, Han DS, Lee AR, Park DI, Yang SK, Kim YS, Kim JF. Does the intestinal microbial community of Korean Crohn's disease patients differ from that of western patients? BMC Gastroenterol 2016; 16:28. [PMID: 26922889 PMCID: PMC4770608 DOI: 10.1186/s12876-016-0437-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background Intestinal microbiota play an important role in maintaining the homeostasis of the host immune system. To analyze the alteration of the intestinal microbial community structure in Korean Crohn’s disease (CD) patients, we performed a comparative metagenomic analysis between healthy people and CD patients using fecal samples and mucosal tissues of ileocecal valve. Methods 16S rRNA genes from fecal samples or mucosal tissues of 35 CD patients and 15 healthy controls (HC) were amplified using a universal primer set and sequenced with GS FLX Titanium. The microbial composition and diversity of each sample were analyzed with the mothur pipeline, and the association between microbial community and clinical characteristics of the patients were investigated. Results The contribution of bacterial groups to the intestinal microbial composition differed between CD and HC, especially in fecal samples. Global structure and individual bacterial abundance of intestinal microbial community were different between feces and ileocecal tissues in HC. In CD patients with active stage, relative abundances of Gammaproteobacteria and Fusobacteria were higher in both fecal and mucosal tissue samples. Moreover, the intestinal microbial community structure was altered by anti-tumor necrosis factor (anti-TNF) treatment. Conclusions Our 16S rRNA sequence data demonstrate intestinal dysbiosis at the community level in Korean CD patients, which is similar to alterations of the intestinal microbial community seen in the western counterparts. Clinical disease activity and anti-TNF treatment might affect the intestinal microbial community structure in CD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12876-016-0437-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Min-Jung Kwak
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea.
| | - A Reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Dong Il Park
- Department of Internal Medicine, Sungkyunkwan University, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Internal Medicine, Ulsan University, Seoul, Korea
| | - Yong Seok Kim
- Department of Biochemistry, Hanyang University, Seoul, Korea
| | - Jihyun F Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, Korea
| |
Collapse
|
5373
|
Integrating Immunologic Signaling Networks: The JAK/STAT Pathway in Colitis and Colitis-Associated Cancer. Vaccines (Basel) 2016; 4:vaccines4010005. [PMID: 26938566 PMCID: PMC4810057 DOI: 10.3390/vaccines4010005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cytokines are believed to be crucial mediators of chronic intestinal inflammation in inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Many of these cytokines trigger cellular effects and functions through signaling via janus kinase (JAK) and signal transducer and activator of transcription (STAT) molecules. In this way, JAK/STAT signaling controls important events like cell differentiation, secretion of cytokines or proliferation and apoptosis in IBD in both adaptive and innate immune cells. Moreover, JAK/STAT signaling, especially via the IL-6/STAT3 axis, is believed to be involved in the transition of inflammatory lesions to tumors leading to colitis-associated cancer (CAC). In this review, we will introduce the main cellular players and cytokines that contribute to pathogenesis of IBD by JAK/STAT signaling, and will highlight the integrative function that JAK/STATs exert in this context as well as their divergent role in different cells and processes. Moreover, we will explain current concepts of the implication of JAK/STAT signaling in CAC and finally discuss present and future therapies for IBD that interfere with JAK/STAT signaling.
Collapse
|
5374
|
Xu J, Zhou L, Ji L, Chen F, Fortmann K, Zhang K, Liu Q, Li K, Wang W, Wang H, Xie W, Wang Q, Liu J, Zheng B, Zhang P, Huang S, Shi T, Zhang B, Dang Y, Chen J, O'Malley BW, Moses RE, Wang P, Li L, Xiao J, Hoffmann A, Li X. The REGγ-proteasome forms a regulatory circuit with IκBɛ and NFκB in experimental colitis. Nat Commun 2016; 7:10761. [PMID: 26899380 PMCID: PMC4764899 DOI: 10.1038/ncomms10761] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/16/2016] [Indexed: 12/26/2022] Open
Abstract
Increasing incidence of inflammatory bowel disorders demands a better understanding of the molecular mechanisms underlying its multifactorial aetiology. Here we demonstrate that mice deficient for REGγ, a proteasome activator, show significantly attenuated intestinal inflammation and colitis-associated cancer in dextran sodium sulfate model. Bone marrow transplantation experiments suggest that REGγ's function in non-haematopoietic cells primarily contributes to the phenotype. Elevated expression of REGγ exacerbates local inflammation and promotes a reciprocal regulatory loop with NFκB involving ubiquitin-independent degradation of IκBɛ. Additional deletion of IκBɛ restored colitis phenotypes and inflammatory gene expression in REGγ-deficient mice. In sum, this study identifies REGγ-mediated control of IκBɛ as a molecular mechanism that contributes to NFκB activation and promotes bowel inflammation and associated tumour formation in response to chronic injury. REGγ is a component of ubiquitin-independent 20S proteasome that targets many regulatory proteins for degradation. Here the authors show that REGγ is induced in DSS colitis and promotes degradation of IκBɛ, and that REGγ-deficient mice have less NFκB activation and are more resistant to the disease.
Collapse
Affiliation(s)
- Jinjin Xu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Zhou
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Ji
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Fengyuan Chen
- The Fifth Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Karen Fortmann
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California 90025, USA
| | - Kun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Qingwu Liu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Ke Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Weicang Wang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Wang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Xie
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Qingwei Wang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jiang Liu
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Pei Zhang
- Department of Pathology, the Second Chengdu Municipal Hospital, Chengdu 610017, China
| | - Shixia Huang
- Department of Molecular and Cellular Biology, The Dan L. Duncan Cancer Center, Baylor College of Medicine. One Baylor Plaza, Houston, Texas 77030, USA
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Biaohong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Yongyan Dang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwu Chen
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, The Dan L. Duncan Cancer Center, Baylor College of Medicine. One Baylor Plaza, Houston, Texas 77030, USA
| | - Robb E Moses
- Department of Molecular and Cellular Biology, The Dan L. Duncan Cancer Center, Baylor College of Medicine. One Baylor Plaza, Houston, Texas 77030, USA
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Alexander Hoffmann
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Department of Molecular and Cellular Biology, The Dan L. Duncan Cancer Center, Baylor College of Medicine. One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
5375
|
Yamada A, Arakaki R, Saito M, Tsunematsu T, Kudo Y, Ishimaru N. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2016; 22:2195-205. [PMID: 26900284 PMCID: PMC4734996 DOI: 10.3748/wjg.v22.i7.2195] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Regulatory T (Treg) cells play key roles in various immune responses. For example, Treg cells contribute to the complex pathogenesis of inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis during onset or development of that disease. Many animal models of IBD have been used to investigate factors such as pathogenic cytokines, pathogenic bacteria, and T-cell functions, including those of Treg cells. In addition, analyses of patients with IBD facilitate our understanding of the precise mechanism of IBD. This review article focuses on the role of Treg cells and outlines the pathogenesis and therapeutic strategies of IBD based on previous reports.
Collapse
|
5376
|
Ailem M, Role F, Nadif M, Demenais F. Unsupervised text mining for assessing and augmenting GWAS results. J Biomed Inform 2016; 60:252-9. [PMID: 26911523 DOI: 10.1016/j.jbi.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/21/2015] [Accepted: 02/14/2016] [Indexed: 12/31/2022]
Abstract
Text mining can assist in the analysis and interpretation of large-scale biomedical data, helping biologists to quickly and cheaply gain confirmation of hypothesized relationships between biological entities. We set this question in the context of genome-wide association studies (GWAS), an actively emerging field that contributed to identify many genes associated with multifactorial diseases. These studies allow to identify groups of genes associated with the same phenotype, but provide no information about the relationships between these genes. Therefore, our objective is to leverage unsupervised text mining techniques using text-based cosine similarity comparisons and clustering applied to candidate and random gene vectors, in order to augment the GWAS results. We propose a generic framework which we used to characterize the relationships between 10 genes reported associated with asthma by a previous GWAS. The results of this experiment showed that the similarities between these 10 genes were significantly stronger than would be expected by chance (one-sided p-value<0.01). The clustering of observed and randomly selected gene also allowed to generate hypotheses about potential functional relationships between these genes and thus contributed to the discovery of new candidate genes for asthma.
Collapse
Affiliation(s)
- Melissa Ailem
- LIPADE, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France
| | - François Role
- LIPADE, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France
| | - Mohamed Nadif
- LIPADE, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France
| | - Florence Demenais
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris F-75010, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75010, France
| |
Collapse
|
5377
|
Hu Y, Le Leu RK, Christophersen CT, Somashekar R, Conlon MA, Meng XQ, Winter JM, Woodman RJ, McKinnon R, Young GP. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 2016; 37:366-375. [PMID: 26905582 DOI: 10.1093/carcin/bgw019] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
This study evaluated whether dietary resistant starch (RS) and green tea extract (GTE), which have anti-inflammatory and anticancer properties, protect against colitis-associated colorectal cancer (CAC) using a rat model, also investigated potential mechanisms of action of these agents including their effects on the gut microbiota. Rats were fed a control diet or diets containing 10% RS, 0.5% GTE or a combination of the two (RS + GTE). CAC was initiated with 2 weekly azoxymethane (AOM) injections (10mg/kg) followed by 2% dextran sodium sulphate in drinking water for 7 days after 2 weeks on diets. Rats were killed 20 weeks after the first AOM. Colon tissues and tumours were examined for histopathology by H&E, gene/protein expression by PCR and immunohistochemistry and digesta for analyses of fermentation products and microbiota populations. RS and RS + GTE (but not GTE) diets significantly (P< 0.05) decreased tumour multiplicity and adenocarcinoma formation, relative to the control diet. Effects of RS + GTE were not different from RS alone. RS diet caused significant shifts in microbial composition/diversity, with increases in Parabacteroides, Barnesiella, Ruminococcus, Marvinbryantia and Bifidobacterium as primary contributors to the shift. RS-containing diets increased short chain fatty acids (SCFA) and expression of the SCFA receptor GPR43 mRNA, and reduced inflammation (COX-2, NF-kB, TNF-α and IL-1β mRNA) and cell proliferation P< 0.05. GTE had no effect. This is the first study that demonstrates chemopreventive effects of RS (but not GTE) in a rodent CAC model, suggesting RS might have benefit to patients with ulcerative colitis who are at an increased risk of developing CRC.
Collapse
Affiliation(s)
- Ying Hu
- Flinders Centre for Innovation in Cancer , Flinders University of South Australia , Bedford Park , South Australia , Australia
| | - Richard K Le Leu
- Flinders Centre for Innovation in Cancer, Flinders University of South Australia, Bedford Park, South Australia, Australia.,CSIRO Food and Nutrition, Adelaide, South Australia, Australia
| | - Claus T Christophersen
- CSIRO Food and Nutrition, Adelaide, South Australia, Australia.,School of Medical and Health Science, Edith Cowan University, Western Australia, Australia, and
| | - Roshini Somashekar
- Flinders Centre for Innovation in Cancer , Flinders University of South Australia , Bedford Park , South Australia , Australia
| | - Michael A Conlon
- CSIRO Food and Nutrition , Adelaide , South Australia , Australia
| | - Xing Q Meng
- Biostatistics, Flinders Prevention, Promotion and Primary Health Care , General Practice , Flinders University of South Australia , Bedford Park , South Australia , Australia
| | - Jean M Winter
- Flinders Centre for Innovation in Cancer , Flinders University of South Australia , Bedford Park , South Australia , Australia
| | - Richard J Woodman
- Biostatistics, Flinders Prevention, Promotion and Primary Health Care , General Practice , Flinders University of South Australia , Bedford Park , South Australia , Australia
| | - Ross McKinnon
- Flinders Centre for Innovation in Cancer , Flinders University of South Australia , Bedford Park , South Australia , Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer , Flinders University of South Australia , Bedford Park , South Australia , Australia
| |
Collapse
|
5378
|
Roehe R, Dewhurst RJ, Duthie CA, Rooke JA, McKain N, Ross DW, Hyslop JJ, Waterhouse A, Freeman TC, Watson M, Wallace RJ. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLoS Genet 2016; 12:e1005846. [PMID: 26891056 PMCID: PMC4758630 DOI: 10.1371/journal.pgen.1005846] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome. Methane is a highly potent greenhouse gas and ruminants are the major source of methane emissions from anthropogenic activities. Here we show in an experiment with cattle that genetic selection of low-emitting animals is a viable option based on a newly developed selection criterion. The experimental data provided a comprehensive insight into the host additive genetic influence on the microbiome, the impact of nutrition on genetics and the microbiome, and the effect of metagenomic microbial genes on the analysed traits. We developed a selection criterion to change those traits by evaluation of hosts based on the relative abundance of microbial genes. This criterion is shown to be highly informative and it is therefore suggested to be used in studies analysing different traits and species. This study provides a proof of principle that there is an additive genetic influence of the host on its microbiome and that selection for the desired host can be based on the abundance of a suite of genes in the ruminal metagenome associated with the trait. The use of this criterion will allow genetic analysis on a large number of hosts, previously a significant barrier to determination of host genetic effects on such traits.
Collapse
Affiliation(s)
| | | | | | | | - Nest McKain
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | - Tom C. Freeman
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Mick Watson
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - R. John Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
5379
|
Yamamoto-Furusho JK, Posadas-Sánchez R, Alvarez-León E, Vargas-Alarcón G. Protective role of Interleukin 27 (IL-27) gene polymorphisms in patients with ulcerative colitis. Immunol Lett 2016; 172:79-83. [PMID: 26905929 DOI: 10.1016/j.imlet.2016.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/25/2022]
Abstract
Ulcerative colitis (UC) is a chronic condition of unknown etiology and a polygenic disease. The interleukin 27 (IL-27) have been implicated in the pathogenesis of several autoimmune diseases including inflammatory bowel disease. Several polymorphisms of IL-27 have been associated with several types of cancer and immune disorders. The aim of the present study was to evaluate the association between IL-27 gene polymorphisms and the development of UC. Four polymorphisms of IL-27p28 gene (rs181206, rs26528, rs17855750, and rs40837) and three of the Epstein-Barr virus-induced gene 3 (EBI3) (rs428253, rs4740, and rs4905) were genotyped by 5' exonuclease TaqMan genotyping assays on an ABI Prism 7900HT Fast Real-Time PCR System in 375 Mexican patients with UC and 1599 Mexican Mestizo healthy unrelated individuals. IL-27 levels were determined in 458 healthy controls. Under recessive model adjusted by age and gender, the IL-27p28 rs17855750 polymorphism was associated with decreased risk of developing UC (OR=0.27, 95% CI: 0.06-1.13, P=0.031). On the other hand, under recessive models adjusted by age and gender, the EBI3 rs428253 (OR=0.54, 95% CI: 0.29-0.99, P=0.035), rs4740 (OR=0.60, 95% CI: 0.36-1.01, P=0.046) and rs4905 (OR=0.59, 95% CI: 0.35-1.01, P=0.043) were associated with decreased risk of developing UC. Similar levels of IL-27 were observed among the genotypes of the studied polymorphisms. IL-27 polymorphisms might play a protective role for the development of UC in the Mexican population.
Collapse
Affiliation(s)
- Jesús K Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | | | - Edith Alvarez-León
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
5380
|
Protective and pro-inflammatory roles of intestinal bacteria. ACTA ACUST UNITED AC 2016; 23:67-80. [PMID: 26947707 DOI: 10.1016/j.pathophys.2016.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Abstract
The intestinal mucosal surface in all vertebrates is exposed to enormous numbers of microorganisms that include bacteria, archaea, fungi and viruses. Coexistence of the host with the gut microbiota represents an active and mutually beneficial relationship that helps to shape the mucosal and systemic immune systems of both mammals and teleosts (ray-finned fish). Due to the potential for enteric microorganisms to invade intestinal tissue and induce local and/or systemic inflammation, the mucosal immune system has developed a number of protective mechanisms that allow the host to mount an appropriate immune response to invading bacteria, while limiting bystander tissue injury associated with these immune responses. Failure to properly regulate mucosal immunity is thought to be responsible for the development of chronic intestinal inflammation. The objective of this review is to present our current understanding of the role that intestinal bacteria play in vertebrate health and disease. While our primary focus will be humans and mice, we also present the new and exciting comparative studies being performed in zebrafish to model host-microbe interactions.
Collapse
|
5381
|
Radillo O, Pascolo L, Martelossi S, Dal Bo S, Ventura A. Fecal Calprotectin: Diagnostic Accuracy of the Immunochromatographic CalFast Assay in a Pediatric Population. J Clin Lab Anal 2016; 30:500-5. [PMID: 26879689 DOI: 10.1002/jcla.21886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/12/2015] [Accepted: 07/29/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Fecal calprotectin is a noninvasive marker for bowel diseases and it is high valuable to follow disease activity in Crohn's disease (CD) and ulcerative colitis (UC). In this study, we evaluated the diagnostic performance of the recently introduced immunochromatographic assay CalFast in comparison to the well-known ELISA tests for calprotectin assay to obtain a rapid diagnosis of bowel inflammation in pediatric patients. METHODS CalFast was tested in parallel to the classic ELISA tests CalPrest and PhiCal (gold standards for the calprotectin determination) on 148 fecal samples from pediatric subjects including 104 healthy subjects, 29 with CD, and 15 with UC. RESULTS In this study, the sensitivity and specificity of CalFast, CalPrest, and PhiCal were 86.4%, 88.6%, and 93.2% and 86.6%, 74%, and 64.4%, respectively. The area under the curve, obtained from receiver operating characteristic analysis, indicated the lack of significant difference among all the kits used. CONCLUSION The immunochromatographic assay demonstrated good diagnostic predictive values, comparable to those of the ELISA methods, and may represent a valid alternative in order to save operators' time. The test, in fact, has a short turnaround time and does not need a specific ELISA instrumentation.
Collapse
Affiliation(s)
- Oriano Radillo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Stefano Martelossi
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Sara Dal Bo
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Ventura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
5382
|
Hyams JS, Di Lorenzo C, Saps M, Shulman RJ, Staiano A, van Tilburg M. Functional Disorders: Children and Adolescents. Gastroenterology 2016; 150:S0016-5085(16)00181-5. [PMID: 27144632 DOI: 10.1053/j.gastro.2016.02.015] [Citation(s) in RCA: 775] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Characterization of childhood and adolescent functional gastrointestinal disorders (FGIDs) has evolved during the two decade long Rome process now culminating in Rome IV. The era of diagnosing a FGID only when organic disease has been excluded is waning,as we now have evidence to support symptom-based diagnosis. In child/adolescent Rome IV we extend this concept by removing the dictum that there was "no evidence for organic disease" in all definitions and replacing it with "after appropriate medical evaluation the symptoms cannot be attributed to another medical condition". This change allows the clinician to perform selective or no testing to support a positive diagnosis of a FGID. We also point out that FGIDs can coexist with other medical conditions that themselves result in gastrointestinal symptoms (e.g., inflammatory bowel disease). In Rome IV functional nausea and functional vomiting are now described. Rome III "abdominal pain related functional gastrointestinal disorders" (AP-FGID) has been changed to functional abdominal pain disorders (FAPD) and we have derived a new term, "functional abdominal pain -not otherwise specified", to describe children who do not fit a specific disorder such as irritable bowel, functional dyspepsia, or abdominal migraine. Rome IV FGID definitions should enhance clarity for both clinicians and researchers.
Collapse
Affiliation(s)
- Jeffrey S Hyams
- Head, Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06101
| | - Carlo Di Lorenzo
- Head, Division of Digestive Diseases, Hepatology, and Nutrition, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Miguel Saps
- Division of Digestive Diseases, Hepatology, and Nutrition, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Robert J Shulman
- Baylor College of Medicine, Children's Nutrition Research Center, Texas Children's Hospital, 1100 Bates Street, Houston, TX 77030
| | - Annamaria Staiano
- Department of Translational Science, Section of Pediatrics, University of Naples, Federico II, Via S. Pansini, 5 80131 Naples, Italy
| | - Miranda van Tilburg
- University of North Carolina at Chapel Hill Department of Gastroenterology and Hepatology 130 Mason Farm rd, #4106 CB 7080 Chapel Hill NC
| |
Collapse
|
5383
|
Li L, Katani R, Schilling M, Kapur V. Molecular Epidemiology ofMycobacterium aviumsubsp.paratuberculosison Dairy Farms. Annu Rev Anim Biosci 2016; 4:155-76. [DOI: 10.1146/annurev-animal-021815-111304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lingling Li
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| | - Robab Katani
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| | - Megan Schilling
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| |
Collapse
|
5384
|
Shmuel-Galia L, Aychek T, Fink A, Porat Z, Zarmi B, Bernshtein B, Brenner O, Jung S, Shai Y. Neutralization of pro-inflammatory monocytes by targeting TLR2 dimerization ameliorates colitis. EMBO J 2016; 35:685-98. [PMID: 26884587 DOI: 10.15252/embj.201592649] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/15/2016] [Indexed: 01/21/2023] Open
Abstract
Monocytes have emerged as critical driving force of acute inflammation. Here, we show that inhibition of Toll-like receptor 2(TLR2) dimerization by a TLR2 transmembrane peptide (TLR2-p) ameliorated DSS-induced colitis by interfering specifically with the activation of Ly6C(+) monocytes without affecting their recruitment to the colon. We report that TLR2-p directly interacts with TLR2 within the membrane, leading to inhibition of TLR2-TLR6/1 assembly induced by natural ligands. This was associated with decreased levels of extracellular signal-regulated kinases (ERK) signaling and reduced secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-23, IL-12, and IL-1β. Altogether, our study provides insights into the essential role of TLR2 dimerization in the activation of pathogenic pro-inflammatory Ly6C(hi) monocytes and suggests that inhibition of this aggregation by TLR2-p might have therapeutic potential in the treatment of acute gut inflammation.
Collapse
Affiliation(s)
- Liraz Shmuel-Galia
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Tegest Aychek
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Avner Fink
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Biological Services, The Weizmann Institute of Science, Rehovot, Israel
| | - Batya Zarmi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Biana Bernshtein
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5385
|
Wei WH, Loh CY, Worthington J, Eyre S. Immunochip Analyses of Epistasis in Rheumatoid Arthritis Confirm Multiple Interactions within MHC and Suggest Novel Non-MHC Epistatic Signals. J Rheumatol 2016; 43:839-45. [PMID: 26879349 DOI: 10.3899/jrheum.150836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Studying statistical gene-gene interactions (epistasis) has been limited by the difficulties in performance, both statistically and computationally, in large enough sample numbers to gain sufficient power. Three large Immunochip datasets from cohort samples recruited in the United Kingdom, United States, and Sweden with European ancestry were used to examine epistasis in rheumatoid arthritis (RA). METHODS A full pairwise search was conducted in the UK cohort using a high-throughput tool and the resultant significant epistatic signals were tested for replication in the United States and Swedish cohorts. A forward selection approach was applied to remove redundant signals, while conditioning on the preidentified additive effects. RESULTS We detected abundant genome-wide significant (p < 1.0e-13) epistatic signals, all within the MHC region. These signals were reduced substantially, but a proportion remained significant (p < 1.0e-03) in conditional tests. We identified 11 independent epistatic interactions across the entire MHC, each explaining on average 0.12% of the phenotypic variance, nearly all replicated in both replication cohorts. We also identified non-MHC epistatic interactions between RA susceptible loci LOC100506023 and IRF5 with Immunochip-wide significance (p < 1.1e-08) and between 2 neighboring single-nucleotide polymorphism near PTPN22 that were in low linkage disequilibrium with independent interaction (p < 1.0e-05). Both non-MHC epistatic interactions were statistically replicated with a similar interaction pattern in the US cohort only. CONCLUSION There are multiple but relatively weak interactions independent of the additive effects in RA and a larger sample number is required to confidently assign additional non-MHC epistasis.
Collapse
Affiliation(s)
- Wen-Hua Wei
- From the Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.W.H. Wei*, PhD, Lecturer in Statistical Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; C.Y. Loh*, MRes, PhD Student, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; J. Worthington, PhD, Professor of Chronic Disease Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre; S. Eyre, PhD, Senior Research Fellow on Rheumatological Disorders, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre.
| | - Chia-Yin Loh
- From the Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.W.H. Wei*, PhD, Lecturer in Statistical Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; C.Y. Loh*, MRes, PhD Student, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; J. Worthington, PhD, Professor of Chronic Disease Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre; S. Eyre, PhD, Senior Research Fellow on Rheumatological Disorders, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Jane Worthington
- From the Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.W.H. Wei*, PhD, Lecturer in Statistical Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; C.Y. Loh*, MRes, PhD Student, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; J. Worthington, PhD, Professor of Chronic Disease Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre; S. Eyre, PhD, Senior Research Fellow on Rheumatological Disorders, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Stephen Eyre
- From the Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.W.H. Wei*, PhD, Lecturer in Statistical Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; C.Y. Loh*, MRes, PhD Student, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester; J. Worthington, PhD, Professor of Chronic Disease Genetics, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre; S. Eyre, PhD, Senior Research Fellow on Rheumatological Disorders, Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre
| |
Collapse
|
5386
|
Jostins L, McVean G. Trinculo: Bayesian and frequentist multinomial logistic regression for genome-wide association studies of multi-category phenotypes. Bioinformatics 2016; 32:1898-900. [PMID: 26873930 PMCID: PMC4908321 DOI: 10.1093/bioinformatics/btw075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Motivation: For many classes of disease the same genetic risk variants underly many related phenotypes or disease subtypes. Multinomial logistic regression provides an attractive framework to analyze multi-category phenotypes, and explore the genetic relationships between these phenotype categories. We introduce Trinculo, a program that implements a wide range of multinomial analyses in a single fast package that is designed to be easy to use by users of standard genome-wide association study software. Availability and implementation: An open source C implementation, with code and binaries for Linux and Mac OSX, is available for download at http://sourceforge.net/projects/trinculo Supplementary information:Supplementary data are available at Bioinformatics online. Contact: lj4@well.ox.ac.uk
Collapse
Affiliation(s)
- Luke Jostins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, UK Christ Church, University of Oxford, St Aldates, Oxford OX1 1DP, UK
| | - Gilean McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, UK
| |
Collapse
|
5387
|
Liu CH, Ho BC, Chen CL, Chang YH, Hsu YC, Li YC, Yuan SS, Huang YH, Chang CS, Li KC, Chen HY. ePIANNO: ePIgenomics ANNOtation tool. PLoS One 2016; 11:e0148321. [PMID: 26859295 PMCID: PMC4747527 DOI: 10.1371/journal.pone.0148321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/15/2016] [Indexed: 12/04/2022] Open
Abstract
Recently, with the development of next generation sequencing (NGS), the combination of chromatin immunoprecipitation (ChIP) and NGS, namely ChIP-seq, has become a powerful technique to capture potential genomic binding sites of regulatory factors, histone modifications and chromatin accessible regions. For most researchers, additional information including genomic variations on the TF binding site, allele frequency of variation between different populations, variation associated disease, and other neighbour TF binding sites are essential to generate a proper hypothesis or a meaningful conclusion. Many ChIP-seq datasets had been deposited on the public domain to help researchers make new discoveries. However, researches are often intimidated by the complexity of data structure and largeness of data volume. Such information would be more useful if they could be combined or downloaded with ChIP-seq data. To meet such demands, we built a webtool: ePIgenomic ANNOtation tool (ePIANNO, http://epianno.stat.sinica.edu.tw/index.html). ePIANNO is a web server that combines SNP information of populations (1000 Genomes Project) and gene-disease association information of GWAS (NHGRI) with ChIP-seq (hmChIP, ENCODE, and ROADMAP epigenomics) data. ePIANNO has a user-friendly website interface allowing researchers to explore, navigate, and extract data quickly. We use two examples to demonstrate how users could use functions of ePIANNO webserver to explore useful information about TF related genomic variants. Users could use our query functions to search target regions, transcription factors, or annotations. ePIANNO may help users to generate hypothesis or explore potential biological functions for their studies.
Collapse
Affiliation(s)
- Chia-Hsin Liu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ling Chen
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Huan Huang
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Chi-Sheng Chang
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
5388
|
Kochi Y. Genetics of autoimmune diseases: perspectives from genome-wide association studies. Int Immunol 2016; 28:155-61. [PMID: 26857735 DOI: 10.1093/intimm/dxw002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWASs) for autoimmune diseases (ADs) have identified many risk loci and have provided insights into the etiology of each disease. Some of these loci, such asPTPN22,IL23RandSTAT4, are shared among different ADs, and the combination of risk loci may determine an individual's susceptibility for a disease. The majority of GWAS loci are expression quantitative trait loci (eQTLs), where disease-causing variants regulate expression of neighboring (or sometimes distant) genes. Because the eQTL effects are often cell type-specific, the incorporation of epigenetic data from disease-related cell types and tissues is expected to refine the identification of causal variants. The cumulative eQTL effects in multiple genes may influence the activity or fate of immune cells, which in turn may affect the function of the immune system in individuals. In this paper, I review the etiology of ADs by focusing on important immune cells (Th1 cells, Th17 cells and regulatory T cells), important pathways (antigen-receptor signaling and type I interferon signaling) and relevant genes identified in GWASs.
Collapse
Affiliation(s)
- Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 113-8655, Japan
| |
Collapse
|
5389
|
Liu AQ, Huang WY, Li QQ, Hao Q, Zhai HH. Difference of clinical characteristics of inflammatory bowel disease in different age groups of patients: A single-center analysis. Shijie Huaren Xiaohua Zazhi 2016; 24:623-630. [DOI: 10.11569/wcjd.v24.i4.623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare the characteristics of inflammatory bowel disease (IBD) in different age groups of patients to provide a vigorous basis for the clinical diagnosis and treatment of this disease.
METHODS: Five hundred and sixty-seven IBD patients treated at the General Hospital of Ningxia Medical University from January 2002 to December 2014 were divided into four groups according to the age at diagnosis: <17 years, 17-39 years, 40-59 years and >60 years. Gender, disease duration, clinical symptoms, extra-intestinal manifestations and complications were retrospectively compared in the four groups.
RESULTS: The hospitalization rate for each group showed an upward trend in recent years, and it was more common in men. The disease condition was more serious in the >60 age group than other groups, and most of the cases (85.39%) in the >60 age group belonged to the severe type. Crohn's disease activity index (CDAI) scores for CD patients in each group were similar, and most CD patients had a disease in remission or with moderate activity. With regard to the lesion location, UC in the <17 and 17-39 age groups was characterized by proctitis (100% and 53.25%, respectively), ascending colitis was more prevalent in the 40-59 age group (57.69%), and the whole colon was often involved in the >60 age group (79.78%). For CD, the terminal ileum inflammation was more common in the <17 and >60 age groups (50% and 46.67%, respectively), while colitis dominated in the 17-39 and 40-59 age groups (51.52% and 46.67%, respectively).
CONCLUSION: The <17 and >60 age groups have different clinical features and disease characteristics from those in the 17-39 and 40-59 age groups.
Collapse
|
5390
|
Legaki E, Gazouli M. Influence of environmental factors in the development of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther 2016; 7:112-125. [PMID: 26855817 PMCID: PMC4734944 DOI: 10.4292/wjgpt.v7.i1.112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/20/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023] Open
Abstract
Idiopathic inflammatory bowel diseases (IBD), Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial diseases that are manifested after disruption of a genetic predisposed individual and its intestinal microflora through an environmental stimulus. Urbanization and industrialization are associated with IBD. Epidemiological data, clinical observations and family/immigrants studies indicate the significance of environmental influence in the development of IBD. Some environmental factors have a different effect on the subtypes of IBD. Smoking and appendectomy is negatively associated with UC, but they are aggravating factors for CD. A westernized high fat diet, full of refined carbohydrates is strongly associated with the development of IBD, contrary to a high in fruit, vegetables and polyunsaturated fatty acid-3 diet that is protective against these diseases. High intake of nonsteroidal antiinflammatory drug and oral contraceptive pills as well as the inadequacy of vitamin D leads to an increased risk for IBD and a more malignant course of disease. Moreover, other factors such as air pollution, psychological factors, sleep disturbances and exercise influence the development and the course of IBD. Epigenetic mechanism like DNA methylation, histone modification and altered expression of miRNAS could explain the connection between genes and environmental factors in triggering the development of IBD.
Collapse
|
5391
|
Leitner GC, Vogelsang H. Pharmacological- and non-pharmacological therapeutic approaches in inflammatory bowel disease in adults. World J Gastrointest Pharmacol Ther 2016; 7:5-20. [PMID: 26855808 PMCID: PMC4734954 DOI: 10.4292/wjgpt.v7.i1.5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 12/14/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic inflammatory conditions mainly of the colon and small intestine. Crohn's disease (CD) and ulcerative colitis (UC) are the most frequent types of IBD. IBD is a complex disease which arises as a result of the interaction of environmental, genetic and immunological factors. It is increasingly thought that alterations of immunological reactions of the patients to their own enterable bacteria (microfilm) may contribute to inflammation. It is characterized by mucosal and sub mucosal inflammation, perpetuated by infiltration of activated leukocytes. CD may affect the whole gastrointestinal tract while UC only attacks the large intestine. The therapeutic goal is to achieve a steroid-free long lasting remission in both entities. UC has the possibility to be cured by a total colectomy, while CD never can be cured by any operation. A lifelong intake of drugs is mostly necessary and essential. Medical treatment of IBD has to be individualized to each patient and usually starts with anti-inflammatory drugs. The choice what kind of drugs and what route administered (oral, rectal, intravenous) depends on factors including the type, the localization, and severity of the patient's disease. IBD may require immune-suppression to control symptoms such as prednisolone, thiopurines, calcineurin or sometimes folic acid inhibitors or biologics like TNF-α inhibitors or anti-integrin antibodies. For both types of disease (CD, UC) the same drugs are available but they differ in their preference in efficacy between CD and UC as 5-aminosalicylic acid for UC or budesonide for ileocecal CD. As therapeutic alternative the main mediators of the disease, namely the activated pro-inflammatory cytokine producing leukocytes can be selectively removed via two apheresis systems (Adacolumn and Cellsorba) in steroid-refractory or dependent cases. Extracorporeal photopheresis results in an increase of regulatory B cells, regulatory CD8(+) T cells and T-regs Type 1. Both types of apheresis were able to induce clinical remission and mucosal healing accompanied by tapering of steroids.
Collapse
|
5392
|
Soubières AA, Poullis A. Emerging role of novel biomarkers in the diagnosis of inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2016; 7:41-50. [PMID: 26855811 PMCID: PMC4734953 DOI: 10.4292/wjgpt.v7.i1.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
There is currently no gold standard test for the diagnosis of inflammatory bowel disease (IBD). Physicians must rely on a number of diagnostic tools including clinical and endoscopic evaluation as well as histologic, serologic and radiologic assessment. The real difficulty for physicians in both primary and secondary care is differentiating between patients suffering from functional symptoms and those with true underlying IBD. Alongside this, there is always concern regarding the possibility of a missed, or delayed diagnosis of ulcerative colitis (UC) or Crohn’s disease. Even once the diagnosis of IBD has been made, there is often uncertainty in distinguishing between cases of UC or Crohn’s. As a consequence, in cases of incorrect diagnosis, optimal treatment and management may be adversely affected. Endoscopic evaluation can be uncomfortable and inconvenient for patients. It carries significant risks including perforation and in terms of monetary cost, is expensive. The use of biomarkers to help in the diagnosis and differentiation of IBD has been increasing over time. However, there is not yet one biomarker, which is sensitive of specific enough to be used alone in diagnosing IBD. Current serum testing includes C-reactive protein and erythrocyte sedimentation rate, which are cheap, reliable but non-specific and thus not ideal. Stool based testing such as faecal calprotectin is a much more specific tool and is currently in widespread clinical use. Non-invasive sampling is of the greatest clinical value and with the recent advances in metabolomics, genetics and proteomics, there are now more tools available to develop sensitive and specific biomarkers to diagnose and differentiate between IBD. Many of these new advances are only in early stages of development but show great promise for future clinical use.
Collapse
|
5393
|
Xu L, Ma L, Lian J, Yang J, Chen S. Gene expression alterations in inflamed and unaffected colon mucosa from patients with mild inflammatory bowel disease. Mol Med Rep 2016; 13:2729-35. [PMID: 26861951 DOI: 10.3892/mmr.2016.4880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 01/13/2016] [Indexed: 11/06/2022] Open
Abstract
An endoscopic examination is currently the most reliable method for monitoring disease activity in patients with inflammatory bowel disease (IBD). However, endoscopic evaluations are unable to detect mucosal inflammation at the earliest stages. The present study aimed to evaluate the molecular profiles of inflamed and unaffected colon mucosa from patients with mild Crohn's disease (CD) and ulcerative colitis (UC), in order to identify a more sensitive method for monitoring mucosal impairment. Patients were recruited and colon biopsies from the inflamed and the normal‑appearing mucosa of patients with mild IBD were obtained by colonoscopy. Gene expression analysis was performed using microarrays, after which Gene Ontology and clustering were performed using bioinformatics. In addition, the levels of inflammatory cytokines were analyzed by reverse transcription‑quantitative polymerase chain reaction. A total of 620 genes in the inflamed and 210 genes in the unaffected colon mucosa with at least a 3‑fold change, as compared with healthy controls, were detected in patients with mild CD, and 339 genes in the inflamed and 483 genes in the unaffected colon mucosa were detected in patients with mild UC. Heat mapping demonstrated a similarity in the gene alteration patterns, and altered transcripts overlapped, between the inflamed and unaffected colon mucosa. Interferon‑γ and interleukin‑17 mRNA levels were comparably elevated in the inflamed and unaffected colon mucosa from patients with IBD. Marked gene expression alterations were detected in the inflamed and unaffected colon mucosa from patients with mild IBD, and these showed marked similarity and overlap between the two groups. The results of the present study suggested that inflammation was not limited to the endoscopic lesions and that gene expression profiling may be considered a sensitive tool for monitoring mucosal inflammation, predicting relapses and optimizing therapeutic strategies for patients with IBD.
Collapse
Affiliation(s)
- Lili Xu
- Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lili Ma
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jingjing Lian
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jiayin Yang
- Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shiyao Chen
- Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
5394
|
Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Ba NN, Thai VH, Abel L, Alcaïs A, Schurr E. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. PLoS Negl Trop Dis 2016; 10:e0004412. [PMID: 26844546 PMCID: PMC4742274 DOI: 10.1371/journal.pntd.0004412] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Background Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R). The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility. Methodology An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs). Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL) analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels. Principal Findings A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863) that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen. Significance The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn’s disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases. A major challenge of current leprosy control is the management of host pathological immune responses coined Type-1 Reactions (T1R). T1R are characterized by acute inflammatory episodes whereby cellular immune responses are directed against host peripheral nerve cells. T1R affects up half of all leprosy patients and are a major cause of leprosy-associated disabilities. Since there is evidence that host genetic factors predispose leprosy patients to T1R, we have conducted a candidate gene study to test if LRRK2 gene variants are T1R risk factors. The choice of LRRK2 was motivated by the fact that LRRK2 was associated with leprosy per se in some but not in other studies. We reasoned that this may reflect different proportions of leprosy patients with T1R in the different samples and that LRRK2 may in truth be a T1R susceptibility gene. Here, we show that variants overlapping the LRRK2 gene, reported as suggestive leprosy per se susceptibility factors in a previous genome-wide association study, are preferentially associated with T1R. The main SNP carrying most of the association signal is the amino-acid change M2397T (rs3761863) which is known to impact LRRK2 turnover. Interestingly, eQTL SNPs counterbalanced the effect of the M2397T variant but this compensatory mechanism was abrogated by Mycobacterium leprae antigen stimulation.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | - Jérémy Manry
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, United States of America
- Centre d’Investigation Clinique, Unité de Recherche Clinique, Necker and Cochin Hospitals, Paris, France
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
- * E-mail:
| | | |
Collapse
|
5395
|
Gomes AVBT, de Souza Morais SM, Menezes-Filho SL, de Almeida LGN, Rocha RP, Ferreira JMS, Dos Santos LL, Malaquias LCC, Coelho LFL. Demethylation profile of the TNF-α promoter gene is associated with high expression of this cytokine in Dengue virus patients. J Med Virol 2016; 88:1297-302. [PMID: 26792115 DOI: 10.1002/jmv.24478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 11/09/2022]
Abstract
Dengue is the most prevalent arthropod-borne viral illness in humans. The overexpression of cytokines by Dengue virus (DENV) infected cells is associated with the most severe forms of the disease. Unmethylated CpG islands are related to a transcriptionally active structure, whereas methylated DNA recruits methyl-binding proteins that inhibit gene expression. Several studies have described the importance of epigenetic events in the regulation and expression of many cytokines. The purpose of the present study was to evaluate the methylation status of the IFN-γ and TNF-α promoters in DNA extracted from dengue infected patients using methylation-specific polymerase chain reaction. A high frequency of demethylation was observed in the TNF-α promoter of DENV infected patients when compared to non-infected controls. The patients with an unmethylated profile showed higher expression of TNF-α mRNA than patients with the methylated status. No difference was found in the methylation frequency between the two analyzed groups regarding the IFN-γ promoter or in the expression of IFN-γ transcripts. The present study provides the first association of TNF-α promoter demethylation in DENV infected individuals and demonstrates a correlation between the methylation status of the region analyzed and the expression of TNF-α transcripts in DENV infected patients. J. Med. Virol. 88:1297-1302, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Stella Maria de Souza Morais
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Sergio Luiz Menezes-Filho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Raissa Prado Rocha
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Luciana Lara Dos Santos
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei, Divinópolis, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
5396
|
Ngoh EN, Weisser SB, Lo Y, Kozicky LK, Jen R, Brugger HK, Menzies SC, McLarren KW, Nackiewicz D, van Rooijen N, Jacobson K, Ehses JA, Turvey SE, Sly LM. Activity of SHIP, Which Prevents Expression of Interleukin 1β, Is Reduced in Patients With Crohn's Disease. Gastroenterology 2016; 150:465-76. [PMID: 26481854 DOI: 10.1053/j.gastro.2015.09.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/08/2015] [Accepted: 09/29/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Crohn's disease (CD) is associated with a dysregulated immune response to commensal micro-organisms in the intestine. Mice deficient in inositol polyphosphate 5'-phosphatase D (INPP5D, also known as SHIP) develop intestinal inflammation resembling that of patients with CD. SHIP is a negative regulator of PI3Kp110α activity. We investigated mechanisms of intestinal inflammation in Inpp5d(-/-) mice (SHIP-null mice), and SHIP levels and activity in intestinal tissues of subjects with CD. METHODS We collected intestines from SHIP-null mice, as well as Inpp5d(+/+) mice (controls), and measured levels of cytokines of the interleukin 1 (IL1) family (IL1α, IL1β, IL1ra, and IL6) by enzyme-linked immunosorbent assay. Macrophages were isolated from lamina propria cells of mice, IL1β production was measured, and mechanisms of increased IL1β production were investigated. Macrophages were incubated with pan-phosphatidylinositol 3-kinase inhibitors or PI3Kp110α-specific inhibitors. Some mice were given an antagonist of the IL1 receptor; macrophages were depleted from ilea of mice using clodronate-containing liposomes. We obtained ileal biopsies from sites of inflammation and peripheral blood mononuclear cells (PBMCs) from treatment-naïve subjects with CD or without CD (controls), and measured SHIP levels and activity. PBMCs were incubated with lipopolysaccharide and adenosine triphosphate, and levels of IL1β production were measured. RESULTS Inflamed intestinal tissues and intestinal macrophages from SHIP-null mice produced higher levels of IL1B and IL18 than intestinal tissues from control mice. We found PI3Kp110α to be required for macrophage transcription of Il1b. Macrophage depletion or injection of an IL1 receptor antagonist reduced ileal inflammation in SHIP-null mice. Inflamed ileal tissues and PBMCs from patients with CD had lower levels of SHIP protein than controls (P < .0001 and P < .0002, respectively). There was an inverse correlation between levels of SHIP activity in PBMCs and induction of IL1β production by lipopolysaccharide and adenosine triphosphate (R(2) = .88). CONCLUSIONS Macrophages from SHIP-deficient mice have increased PI3Kp110α-mediated transcription of Il1b, which contributes to spontaneous ileal inflammation. SHIP levels and activity are lower in intestinal tissues and peripheral blood samples from patients with CD than controls. There is an inverse correlation between SHIP activity and induction of IL1β production by lipopolysaccharide and adenosine triphosphate in PBMCs. Strategies to reduce IL1B might be developed to treat patients with CD found to have low SHIP activity.
Collapse
Affiliation(s)
- Eyler N Ngoh
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelley B Weisser
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Young Lo
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa K Kozicky
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roger Jen
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hayley K Brugger
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan C Menzies
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith W McLarren
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominika Nackiewicz
- Department of Surgery, Child & Family Research Institute, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Kevan Jacobson
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan A Ehses
- Department of Surgery, Child & Family Research Institute, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Division of Allergy and Immunology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5397
|
Cao Z, Conway KL, Heath RJ, Rush JS, Leshchiner ES, Ramirez-Ortiz ZG, Nedelsky NB, Huang H, Ng A, Gardet A, Cheng SC, Shamji AF, Rioux JD, Wijmenga C, Netea MG, Means TK, Daly MJ, Xavier RJ. Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and Intestinal Inflammation. Immunity 2016; 43:715-26. [PMID: 26488816 DOI: 10.1016/j.immuni.2015.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 04/08/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022]
Abstract
CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.
Collapse
Affiliation(s)
- Zhifang Cao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kara L Conway
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert J Heath
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason S Rush
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Natalia B Nedelsky
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Aylwin Ng
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Agnès Gardet
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shih-Chin Cheng
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - John D Rioux
- Research Center, Montreal Heart Institute and Université de Montréal, QC H1T 1C8, Canada
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen T9700 RB, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5398
|
Derikx LAAP, Dieleman LA, Hoentjen F. Probiotics and prebiotics in ulcerative colitis. Best Pract Res Clin Gastroenterol 2016; 30:55-71. [PMID: 27048897 DOI: 10.1016/j.bpg.2016.02.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota is one of the key players in the etiology of ulcerative colitis. Manipulation of this microflora with probiotics and prebiotics is an attractive strategy in the management of ulcerative colitis. Several intervention studies for both the induction and maintenance of remission in ulcerative colitis patients have been performed. Most of these studies evaluated VSL#3 or E. Coli Nissle 1917 and in general there is evidence for efficacy of these agents for induction and maintenance of remission. However, studies are frequently underpowered, lack a control group, and are very heterogeneous investigating different probiotic strains in different study populations. The absence of well-powered robust randomized placebo-controlled trials impedes the widespread use of probiotics and prebiotics in ulcerative colitis. However, given the promising results that are currently available, probiotics and prebiotics may find their way to the treatment algorithm for ulcerative colitis in the near future.
Collapse
Affiliation(s)
- Lauranne A A P Derikx
- Inflammatory Bowel Disease Centre, Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Levinus A Dieleman
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Frank Hoentjen
- Inflammatory Bowel Disease Centre, Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
5399
|
Putignani L, Del Chierico F, Vernocchi P, Cicala M, Cucchiara S, Dallapiccola B. Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood-Adulthood Transition. Inflamm Bowel Dis 2016; 22:487-504. [PMID: 26588090 DOI: 10.1097/mib.0000000000000602] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal disorders, although clinically heterogeneous, share pathogenic mechanisms, including genetic susceptibility, impaired gut barrier function, altered microbiota, and environmental triggers (infections, social and behavioral factors, epigenetic control, and diet). Gut microbiota has been studied for inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) in either children or adults, while modifiable gut microbiota features, acting as risk and premorbid factors along the childhood-adulthood transition, have not been thoroughly investigated so far. Indeed, the relationship between variations of the entire host/microbiota/environmental scenario and clinical phenotypes is still not fully understood. In this respect, tracking gut dysbiosis grading may help deciphering host phenotype-genotype associations and microbiota shifts in an integrated top-down omics-based approach within large-scale pediatric and adult case-control cohorts. Large-scale gut microbiota signatures and host inflammation patterns may be integrated with dietary habits, under genetic and epigenetic constraints, providing gut dysbiosis profiles acting as risk predictors of IBD or IBS in preclinical cases. Tracking dysbiosis supports new personalized/stratified IBD and IBS prevention programmes, generating Decision Support System tools. They include (1) high risk or flare-up recurrence -omics-based dysbiosis profiles; (2) microbial and molecular biomarkers of health and disease; (3) -omics-based pipelines for laboratory medicine diagnostics; (4) health apps for self-management of score-based dietary profiles, which can be shared with clinicians for nutritional habit and lifestyle amendment; (5) -omics profiling data warehousing and public repositories for IBD and IBS profile consultation. Dysbiosis-related indexes can represent novel laboratory and clinical medicine tools preventing or postponing the disease, finally interfering with its natural history.
Collapse
Affiliation(s)
- Lorenza Putignani
- *Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; †Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; ‡Gastroenterology Unit, University Campus Bio-Medico of Rome, Rome, Italy; §Department of Pediatrics, Center for Pediatric Inflammatory Bowel Disease, University of Rome "La Sapienza," Rome, Italy; and ‖Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
5400
|
Valcheva R, Dieleman LA. Prebiotics: Definition and protective mechanisms. Best Pract Res Clin Gastroenterol 2016; 30:27-37. [PMID: 27048894 DOI: 10.1016/j.bpg.2016.02.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The increase in chronic metabolic and immunologic disorders in the modern society is linked to major changes in the dietary patterns. These chronic conditions are associated with intestinal microbiota dysbiosis where important groups of carbohydrate fermenting, short-chain fatty acids-producing bacteria are reduced. Dietary prebiotics are defined as a selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Application of prebiotics may then restore the gut microbiota diversity and activity. Unlike the previously accepted prebiotics definition, where a limited number of bacterial species are involved in the prebiotic activity, new data from community-wide microbiome analysis demonstrated a broader affect of the prebiotics on the intestinal microbiota. These new findings require a revision of the current definition. In addition, prebiotics may exert immunomodulatory effects through microbiota-independent mechanisms that will require future investigations involving germ-free animal disease models.
Collapse
Affiliation(s)
- Rosica Valcheva
- Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, AB, Canada.
| | - Levinus A Dieleman
- Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, AB, Canada
| |
Collapse
|