501
|
Cho E, Mohammadifar M, Choi S. A Single-Use, Self-Powered, Paper-Based Sensor Patch for Detection of Exercise-Induced Hypoglycemia. MICROMACHINES 2017; 8:mi8090265. [PMID: 30400457 PMCID: PMC6189796 DOI: 10.3390/mi8090265] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 11/21/2022]
Abstract
We report a paper-based self-powered sensor patch for prevention and management of exercise-induced hypoglycemia. The article describes the fabrication, in vitro, and in vivo characterization of the sensor for glucose monitoring in human sweat. This wearable, non-invasive, single-use biosensor integrates a vertically stacked, paper-based glucose/oxygen enzymatic fuel cell into a standard Band-Aid adhesive patch. The paper-based device attaches directly to skin, wicks sweat by using capillary forces to a reservoir where chemical energy is converted to electrical energy, and monitors glucose without external power and sophisticated readout instruments. The device utilizes (1) a 3-D paper-based fuel cell configuration, (2) an electrically conducting microfluidic reservoir for a high anode surface area and efficient mass transfer, and (3) a direct electron transfer between glucose oxidase and anodes for enhanced electron discharge properties. The developed sensor shows a high linearity of current at 0.02–1.0 mg/mL glucose centration (R2 = 0.989) with a high sensitivity of 1.35 µA/mM.
Collapse
Affiliation(s)
- Eunyoung Cho
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| | - Maedeh Mohammadifar
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
502
|
Kim J, Campbell AS, Wang J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2017; 177:163-170. [PMID: 29108571 DOI: 10.1016/j.talanta.2017.08.077] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 02/09/2023]
Abstract
The growing recent interest in wearable and mobile technologies has led to increased research efforts toward development of non-invasive glucose monitoring platforms. Continuous glucose monitoring addresses the limitations of finger-stick blood testing and provides the opportunity for optimal therapeutic interventions. This article reviews recent advances and challenges toward the development of non-invasive epidermal electrochemical glucose sensing systems. Recent reports claim success in glucose monitoring in human subjects using skin-worn electrochemical sensors. Such epidermal electrochemical biosensors obviate the disadvantages of minimally-invasive subcutaneous glucose biosensors and offer promise for improved glycemic control. The ability of such systems to monitor glucose non-invasively offers an attractive route toward advancing the management of diabetes and achieving improved glycemic control. However, realizing the potential diagnostic impact of these new epidermal sensing strategies would require extensive efforts toward addressing key technological challenges and establishing a reliable correlation to gold standard blood glucose meters.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Nanoengineering, University of California, San Diego La Jolla, CA 92093, USA
| | - Alan S Campbell
- Department of Nanoengineering, University of California, San Diego La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego La Jolla, CA 92093, USA.
| |
Collapse
|
503
|
Yu Y, Zhai J, Xia Y, Dong S. Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance. NANOSCALE 2017; 9:11846-11850. [PMID: 28795753 DOI: 10.1039/c7nr04335j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Wearable electronics are essential for the construction of epidermal energy supply and portable healthcare devices. Herein, a self-powered wearable electronic device based on a photoelectric biofuel cell has been introduced for the first time to simultaneously detect the perspiration lactate and monitor the ambient illuminance depending on independent parameters. The functions of harvesting energy, detection of body function and monitoring of ambient have been merged into a single wireless sensor. This novel design may provide a wide range of smart and exciting wearable electronics.
Collapse
Affiliation(s)
- You Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China.
| | | | | | | |
Collapse
|
504
|
Chen D, Pei Q. Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. Chem Rev 2017; 117:11239-11268. [DOI: 10.1021/acs.chemrev.7b00019] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dustin Chen
- Department of Materials Science
and Engineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Qibing Pei
- Department of Materials Science
and Engineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
505
|
Bruen D, Delaney C, Florea L, Diamond D. Glucose Sensing for Diabetes Monitoring: Recent Developments. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1866. [PMID: 28805693 PMCID: PMC5579887 DOI: 10.3390/s17081866] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
This review highlights recent advances towards non-invasive and continuous glucose monitoring devices, with a particular focus placed on monitoring glucose concentrations in alternative physiological fluids to blood.
Collapse
Affiliation(s)
- Danielle Bruen
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - Colm Delaney
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - Larisa Florea
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - Dermot Diamond
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
506
|
Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. LAB ON A CHIP 2017; 17:2713-2739. [PMID: 28702608 DOI: 10.1039/c7lc00397h] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.
Collapse
Affiliation(s)
- Ho Nam Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | | | | |
Collapse
|
507
|
Onor M, Gufoni S, Lomonaco T, Ghimenti S, Salvo P, Sorrentino F, Bramanti E. Potentiometric sensor for non invasive lactate determination in human sweat. Anal Chim Acta 2017; 989:80-87. [PMID: 28915945 DOI: 10.1016/j.aca.2017.07.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
The present work describes a non invasive lactate sensing in sweat during workout. The sensing system is based on a non-equilibrium potentiometric measure performed using disposable, chemically modified, screen printed carbon electrodes (SPCEs) that can be wetted with sweat during the exercise. The potentiometric signal, which is proportional to lactate concentration in sweat, is produced by a redox reaction activated by UV radiation, as opposed to the enzymatic reaction employed in traditional, blood-based measuring devices. The sensing system exhibits chemical selectivity toward lactate with linearity from 1 mM up to 180 mM. The dynamic linear range is suitable for measurement of lactate in sweat, which is more than 10 times concentrated than hematic lactate and reaches more than 100 mM in sweat during workout. The noninvasive measure can be repeated many times during exercise and during the recovery time in order to get personal information on the physiological and training status as well as on the physical performance. The device was successfully applied to several human subjects for the measurement of sweat lactate during prolonged cycling exercise. During the exercise sweat was simultaneously sampled on filter paper and extracted in water, and the lactate was determined by HPLC for method validation. The lactate concentration changes during the exercise reflected the intensity of physical effort. This method has perspectives in many sport disciplines as well as in health care and biomedical area.
Collapse
Affiliation(s)
- Massimo Onor
- National Research Council of Italy, C.N.R., Istituto di Chimica Dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Stefano Gufoni
- Marwan Technology Srl, Via L. Gereschi 36, 56127, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Pietro Salvo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy; Institute of Clinical Physiology, National Council of Research (IFC-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Fiodor Sorrentino
- Marwan Technology Srl, Via L. Gereschi 36, 56127, Pisa, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146, Genova, Italy
| | - Emilia Bramanti
- National Research Council of Italy, C.N.R., Istituto di Chimica Dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
508
|
Sonner Z, Wilder E, Gaillard T, Kasting G, Heikenfeld J. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. LAB ON A CHIP 2017; 17:2550-2560. [PMID: 28675233 DOI: 10.1039/c7lc00364a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Eccrine sweat has rapidly emerged as a non-invasive, ergonomic, and rich source of chemical analytes with numerous technological demonstrations now showing the ability for continuous electrochemical sensing. However, beyond active perspirers (athletes, workers, etc.), continuous sweat access in individuals at rest has hindered the advancement of both sweat sensing science and technology. Reported here is integration of sudomotor axon reflex sweat stimulation for continuous wearable sweat analyte analysis, including the ability for side-by-side integration of chemical stimulants & sensors without cross-contamination. This integration approach is uniquely compatible with sensors which consume the analyte (enzymatic) or sensors which equilibrate with analyte concentrations. In vivo validation is performed using iontophoretic delivery of carbachol with ion-selective and impedance sensors for sweat analysis. Carbachol has shown prolonged sweat stimulation in directly stimulated regions for five hours or longer. This work represents a significant leap forward in sweat sensing technology, and may be of broader interest to those interested in on-skin sensing integrated with drug-delivery.
Collapse
Affiliation(s)
- Zachary Sonner
- Department of Electrical Engineering & Computer Systems, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | | | |
Collapse
|
509
|
Neethirajan S, Tuteja SK, Huang ST, Kelton D. Recent advancement in biosensors technology for animal and livestock health management. Biosens Bioelectron 2017; 98:398-407. [PMID: 28711026 DOI: 10.1016/j.bios.2017.07.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Abstract
The term biosensors encompasses devices that have the potential to quantify physiological, immunological and behavioural responses of livestock and multiple animal species. Novel biosensing methodologies offer highly specialised monitoring devices for the specific measurement of individual and multiple parameters covering an animal's physiology as well as monitoring of an animal's environment. These devices are not only highly specific and sensitive for the parameters being analysed, but they are also reliable and easy to use, and can accelerate the monitoring process. Novel biosensors in livestock management provide significant benefits and applications in disease detection and isolation, health monitoring and detection of reproductive cycles, as well as monitoring physiological wellbeing of the animal via analysis of the animal's environment. With the development of integrated systems and the Internet of Things, the continuously monitoring devices are expected to become affordable. The data generated from integrated livestock monitoring is anticipated to assist farmers and the agricultural industry to improve animal productivity in the future. The data is expected to reduce the impact of the livestock industry on the environment, while at the same time driving the new wave towards the improvements of viable farming techniques. This review focusses on the emerging technological advancements in monitoring of livestock health for detailed, precise information on productivity, as well as physiology and well-being. Biosensors will contribute to the 4th revolution in agriculture by incorporating innovative technologies into cost-effective diagnostic methods that can mitigate the potentially catastrophic effects of infectious outbreaks in farmed animals.
Collapse
Affiliation(s)
- Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Satish K Tuteja
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Sheng-Tung Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 10608, Taiwan
| | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
510
|
Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor. Biosens Bioelectron 2017; 93:205-211. [DOI: 10.1016/j.bios.2016.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/15/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
|
511
|
Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip HMD, Rosa B, Yang GZ. A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron 2017; 93:139-145. [DOI: 10.1016/j.bios.2016.09.038] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/04/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
|
512
|
Kuwahara T, Kameda M, Isozaki K, Toriyama K, Kondo M, Shimomura M. Bioelectrocatalytic fructose oxidation with fructose dehydrogenase-bearing conducting polymer films for biofuel cell application. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
513
|
Hasanzadeh M, Shadjou N, de la Guardia M. Non-invasive diagnosis of oral cancer: The role of electro-analytical methods and nanomaterials. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
514
|
Jin H, Abu-Raya YS, Haick H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv Healthc Mater 2017; 6. [PMID: 28371294 DOI: 10.1002/adhm.201700024] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/14/2017] [Indexed: 12/16/2022]
Abstract
Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed.
Collapse
Affiliation(s)
- Han Jin
- Department of Chemical Engineering; Technion - Israel Institute of Technology; Haifa 3200003 Israel
- Faculty of Information Science and Engineering; Ningbo University; Ningbo 315211 P. R. China
| | - Yasmin Shibli Abu-Raya
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute; Technion - Israel Institute of Technology; Haifa 3200003 Israel
| | - Hossam Haick
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute; Technion - Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
515
|
Sonawane A, Manickam P, Bhansali S. Stability of Enzymatic Biosensors for Wearable Applications. IEEE Rev Biomed Eng 2017; 10:174-186. [PMID: 28541225 DOI: 10.1109/rbme.2017.2706661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Technological evolution in wearable sensors accounts for major growth and transformation in a multitude of industries, ranging from healthcare to computing and informatics to communication and biomedical sciences. The major driver for this transformation is the new-found ability to continuously monitor and analyze the patients' physiology in patients' natural setting. Numerous wearable sensors are already on the market and are summarized. Most of the current technologies have focused on electrophysiological, electromechanical, or acoustic measurements. Wearable biochemical sensing devices are in their infancy. Traditional challenges in biochemical sensing such as reliability, repeatability, stability, and drift are amplified in wearable sensing systems due to variabilities in operating environment, sample/sensor handling, and motion artifacts. Enzymatic sensing technologies, due to reduced fluidic challenges, continue to be forerunners for converting into wearable sensors. This paper reviews the recent developments in wearable enzymatic sensors. The wearable sensors have been classified in three major groups based on sensor embodiment and placement relative to the human body: 1) on-body, 2) clothing/textile-based biosensors, and 3) biosensor accessories. The sensors, which come in the forms of stickers and tattoos, are categorized as on-body biosensors. The fabric-based biosensor comes in different models such as smart-shirts, socks, gloves, and smart undergarments with printed sensors for continuous monitoring.
Collapse
|
516
|
Sempionatto JR, Nakagawa T, Pavinatto A, Mensah ST, Imani S, Mercier P, Wang J. Eyeglasses based wireless electrolyte and metabolite sensor platform. LAB ON A CHIP 2017; 17:1834-1842. [PMID: 28470263 PMCID: PMC5507201 DOI: 10.1039/c7lc00192d] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.
Collapse
|
517
|
Proto A, Penhaker M, Conforto S, Schmid M. Nanogenerators for Human Body Energy Harvesting. Trends Biotechnol 2017; 35:610-624. [PMID: 28506573 DOI: 10.1016/j.tibtech.2017.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/17/2022]
Abstract
Humans generate remarkable quantities of energy while performing daily activities, but this energy usually dissipates into the environment. Here, we address recent progress in the development of nanogenerators (NGs): devices that are able to harvest such body-produced biomechanical and thermal energies by exploiting piezoelectric, triboelectric, and thermoelectric physical effects. In designing NGs, the end-user's comfort is a primary concern. Therefore, we focus on recently developed materials giving flexibility and stretchability to NGs. In addition, we summarize common fabrics for NG design. Finally, the mid-2020s market forecasts for these promising technologies highlight the potential for the commercialization of NGs because they may help contribute to the route of innovation for developing self-powered systems.
Collapse
Affiliation(s)
- Antonino Proto
- University of Roma Tre, Department of Engineering, Via Vito Volterra, 62, Rome 00146, Italy; VSB-Technical University of Ostrava, Department of Cybernetics and Biomedical Engineering, 17. Listopadu 15, Ostrava-Poruba 70833, Czech Republic.
| | - Marek Penhaker
- VSB-Technical University of Ostrava, Department of Cybernetics and Biomedical Engineering, 17. Listopadu 15, Ostrava-Poruba 70833, Czech Republic
| | - Silvia Conforto
- University of Roma Tre, Department of Engineering, Via Vito Volterra, 62, Rome 00146, Italy
| | - Maurizio Schmid
- University of Roma Tre, Department of Engineering, Via Vito Volterra, 62, Rome 00146, Italy
| |
Collapse
|
518
|
Huynh TP, Sonar P, Haick H. Advanced Materials for Use in Soft Self-Healing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28229499 DOI: 10.1002/adma.201604973] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Indexed: 05/05/2023]
Abstract
Devices integrated with self-healing ability can benefit from long-term use as well as enhanced reliability, maintenance and durability. This progress report reviews the developments in the field of self-healing polymers/composites and wearable devices thereof. One part of the progress report presents and discusses several aspects of the self-healing materials chemistry (from non-covalent to reversible covalent-based mechanisms), as well as the required main approaches used for functionalizing the composites to enhance their electrical conductivity, magnetic, dielectric, electroactive and/or photoactive properties. The second and complementary part of the progress report links the self-healing materials with partially or fully self-healing device technologies, including wearable sensors, supercapacitors, solar cells and fabrics. Some of the strong and weak points in the development of each self-healing device are clearly highlighted and criticized, respectively. Several ideas regarding further improvement of soft self-healing devices are proposed.
Collapse
Affiliation(s)
- Tan-Phat Huynh
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD-4001, Australia
| | - Hossam Haick
- The Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
519
|
Kim DM, Moon JM, Lee WC, Yoon JH, Choi CS, Shim YB. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens Bioelectron 2017; 91:276-283. [DOI: 10.1016/j.bios.2016.12.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/22/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
|
520
|
Soleymani L, Li F. Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale. ACS Sens 2017; 2:458-467. [PMID: 28723192 DOI: 10.1021/acssensors.7b00069] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past few decades, there has been tremendous interest in developing biosensing systems that combine high sensitivity and specificity with rapid sample-to-answer times, portability, low-cost operation, and ease-of-use. Miniaturizing the biosensor dimensions into the nanoscale has been identified as a strategy for addressing the functional requirements of point-of-care and wearable biosensors. However, it is important to consider that decreasing the critical dimensions of biosensing elements impacts the two most important performance metrics of biosensors: limit-of-detection and response time. Miniaturization into the nanoscale enhances signal-to-noise-ratio by increasing the signal density (signal/geometric surface area) and reducing background signals. However, there is a trade-off between the enhanced signal transduction efficiency and the longer time it takes to collect target analytes on sensor surfaces due to the increase in mass transport times. By carefully considering the signal transduction mechanisms and reaction-transport kinetics governing different classes of biosensors, it is possible to develop structure-level and device-level strategies for leveraging miniaturization toward creating biosensors that combine low limit-of-detection with rapid response times.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department
of Engineering Physics, School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Feng Li
- Department
of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
521
|
Abstract
Ingestible sensing capsules are fast emerging as a critical technology that has the ability to greatly impact health, nutrition, and clinical areas. These ingestible devices are noninvasive and hence are very attractive for customers. With widespread access to smart phones connected to the Internet, the data produced by this technology can be readily seen and reviewed online, and accessed by both users and physicians. The outputs provide invaluable information to reveal the state of gut health and disorders as well as the impact of food, medical supplements, and environmental changes on the gastrointestinal tract. One unique feature of such ingestible sensors is that their passage through the gut lumen gives them access to each individual organ of the gastrointestinal tract. Therefore, ingestible sensors offer the ability to gather images and monitor luminal fluid and the contents of each gut segment including electrolytes, enzymes, metabolites, hormones, and the microbial communities. As such, an incredible wealth of knowledge regarding the functionality and state of health of individuals through key gut biomarkers can be obtained. This Review presents an overview of the gut structure and discusses current and emerging digestible technologies. The text is an effort to provide a comprehensive overview of ingestible sensing capsules, from both a body physiology point of view as well as a technological view, and to detail the potential information that they can generate.
Collapse
Affiliation(s)
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Kyle J. Berean
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
522
|
Huynh C, Brunelle E, Agudelo J, Halámek J. Bioaffinity-based assay for the sensitive detection and discrimination of sweat aimed at forensic applications. Talanta 2017; 170:210-214. [PMID: 28501160 DOI: 10.1016/j.talanta.2017.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
Abstract
Sweat is a well-known piece of biological evidence that is actually used much less than expected. Biological samples are important because their components can often provide some type of information about a person-of-interest. Sweat, in particular, is important because of its DNA content which can be extracted and analyzed to provide information that can be imperative to a criminal investigation. While it is a very important source of forensic information, the methods for detection and discrimination of sweat are limited, causing it to be overlooked during evidence collection. This manuscript presents a biocatalytic method for sweat detection that utilizes an enzyme cascade system that has the capability to detect trace amounts of sweat and distinguish it from saliva, even after the sample has dried. The results show the initial calibration studies performed to insure that the cascade performs well using both mimicked and authentic sweat samples which have components that could negatively affect the enzymes needed for the analysis. The method presented here also has the potential to be adapted for on-site analysis. The initial results of the development of a sweat-sensitive strip are shown here.
Collapse
Affiliation(s)
- Crystal Huynh
- University at Albany, State University of New York, United States
| | - Erica Brunelle
- University at Albany, State University of New York, United States
| | - Juliana Agudelo
- University at Albany, State University of New York, United States
| | - Jan Halámek
- University at Albany, State University of New York, United States.
| |
Collapse
|
523
|
Ruan JL, Chen C, Shen JH, Zhao XL, Qian SH, Zhu ZG. A Gelated Colloidal Crystal Attached Lens for Noninvasive Continuous Monitoring of Tear Glucose. Polymers (Basel) 2017; 9:polym9040125. [PMID: 30970805 PMCID: PMC6432312 DOI: 10.3390/polym9040125] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 01/20/2023] Open
Abstract
Patients of diabetes mellitus urgently need noninvasive and continuous glucose monitoring in daily point-of-care. As the tear glucose concentration has a positive correlation with that in blood, the hydrogel colloidal crystal integrated into contact lens possesses promising potential for noninvasive monitoring of glucose in tears. This paper presents a new glucose-responsive sensor, which consists a crystalline colloidal array (CCA) embedded in hydrogel matrix, attached onto a rigid gas permeable (RGP) contact lens. This novel sensing lens is able to selectively diffract visible light, whose wavelength shifts between 567 and 468 nm according to the alternation of the glucose concentration between 0 and 50 mM and its visible color change between reddish yellow, green, and blue. The detection limit of responsive glucose concentration can be reduced to 0.05 mM. Its combination with a contact lens endows it with excellent biocompatibility and portability, which shows great possibility for it to push the development of glucose-detecting devices into new era.
Collapse
Affiliation(s)
- Jia-Li Ruan
- Department of Ophthalmology, EENT Hospital of Fudan University, Shanghai 200031, China.
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Jian-Hua Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xue-Ling Zhao
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Shao-Hong Qian
- Department of Ophthalmology, EENT Hospital of Fudan University, Shanghai 200031, China.
| | - Zhi-Gang Zhu
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| |
Collapse
|
524
|
Hauke A, Kumar LSS, Kim MY, Pegan J, Khine M, Li H, Plaxco KW, Heikenfeld J. Superwetting and aptamer functionalized shrink-induced high surface area electrochemical sensors. Biosens Bioelectron 2017; 94:438-442. [PMID: 28334628 DOI: 10.1016/j.bios.2017.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
Electrochemical sensing is moving to the forefront of point-of-care and wearable molecular sensing technologies due to the ability to miniaturize the required equipment, a critical advantage over optical methods in this field. Electrochemical sensors that employ roughness to increase their microscopic surface area offer a strategy to combatting the loss in signal associated with the loss of macroscopic surface area upon miniaturization. A simple, low-cost method of creating such roughness has emerged with the development of shrink-induced high surface area electrodes. Building on this approach, we demonstrate here a greater than 12-fold enhancement in electrochemically active surface area over conventional electrodes of equivalent on-chip footprint areas. This two-fold improvement on previous performance is obtained via the creation of a superwetting surface condition facilitated by a dissolvable polymer coating. As a test bed to illustrate the utility of this approach, we further show that electrochemical aptamer-based sensors exhibit exceptional signal strength (signal-to-noise) and excellent signal gain (relative change in signal upon target binding) when deployed on these shrink electrodes. Indeed, the observed 330% gain we observe for a kanamycin sensor is 2-fold greater than that seen on planar gold electrodes.
Collapse
Affiliation(s)
- A Hauke
- Novel Devices Laboratory, School of Electronics and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, USA
| | - L S Selva Kumar
- Novel Devices Laboratory, School of Electronics and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, USA
| | - M Y Kim
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - J Pegan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - M Khine
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - H Li
- Department of Chemistry and Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - K W Plaxco
- Department of Chemistry and Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - J Heikenfeld
- Novel Devices Laboratory, School of Electronics and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
525
|
Weinberg PD, del Río Hernández A, Brown R. Engineering solutions for cancer. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
526
|
Lee YK, Jang KI, Ma Y, Koh A, Chen H, Jung HN, Kim Y, Kwak JW, Wang L, Xue Y, Yang Y, Tian W, Jiang Y, Zhang Y, Feng X, Huang Y, Rogers JA. Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. ADVANCED FUNCTIONAL MATERIALS 2017; 9:1605476. [PMID: 28989338 PMCID: PMC5630126 DOI: 10.1002/adfm.201605476] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements.
Collapse
Affiliation(s)
- Yoon Kyeung Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kyung-In Jang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
| | - Yinji Ma
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Ahyeon Koh
- Department of Biomedical Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - Hang Chen
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Han Na Jung
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yerim Kim
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jean Won Kwak
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Liang Wang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; Institute of Chemical Machinery and Process Equipment, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yiyuan Yang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenlong Tian
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yu Jiang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Xue Feng
- Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry Mechanical Engineering, Electrical Engineering and Computer Science, Neurological Surgery, Simpson Querrey Institute for Bio Nanotechnology, McCormick School of Engineering and Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
527
|
|
528
|
Zafar S, Lu M, Jagtiani A. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors. Sci Rep 2017; 7:41430. [PMID: 28134275 PMCID: PMC5278393 DOI: 10.1038/srep41430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023] Open
Abstract
Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.
Collapse
Affiliation(s)
- Sufi Zafar
- IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Minhua Lu
- IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Ashish Jagtiani
- IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| |
Collapse
|
529
|
Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 2017; 46:366-388. [PMID: 27841420 PMCID: PMC5529146 DOI: 10.1039/c6cs00206d] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Collapse
Affiliation(s)
- Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Muhammet Poyraz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA, USA
| |
Collapse
|
530
|
Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat Commun 2017; 8:14030. [PMID: 28094788 PMCID: PMC5247576 DOI: 10.1038/ncomms14030] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication ‘bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours. Synthetic biology offers the ability to explore new ways of manipulating gene expression and function. Here the authors demonstrate an electrogenetic device that allows control of transcription by an exogenous electrical signal.
Collapse
|
531
|
Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123. [PMID: 27958710 PMCID: PMC5793870 DOI: 10.1021/acs.analchem.6b04630] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nicole R. Blumenfeld
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Tassaneewan Laksanasopin
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
532
|
Wen D, Liu Y, Yue C, Li J, Cai W, Liu H, Li X, Bai F, Zhang H, Lin L. A wireless smart UV accumulation patch based on conductive polymer and CNT composites. RSC Adv 2017. [DOI: 10.1039/c7ra10789g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A wearable, highly sensitive, and wireless UV patch was successfully fabricated to record the accumulative UV radiation in terms of resistance.
Collapse
Affiliation(s)
- Dandan Wen
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- University of Electronic Science and Technology
- Chengdu
- China
- Berkeley Sensor and Actuator Center
| | - Yumeng Liu
- Berkeley Sensor and Actuator Center
- University of California
- Berkeley
- USA
| | - Chuang Yue
- Berkeley Sensor and Actuator Center
- University of California
- Berkeley
- USA
- Pen-Tung Sah Institute of Micro-Nano Science and Technology
| | - Jing Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology
- Xiamen University
- Xiamen 361005
- China
| | - Weihua Cai
- Berkeley Sensor and Actuator Center
- University of California
- Berkeley
- USA
| | - Huiliang Liu
- Berkeley Sensor and Actuator Center
- University of California
- Berkeley
- USA
- Tsinghua-Berkeley Shenzhen Institute
| | - Xiaoqian Li
- Berkeley Sensor and Actuator Center
- University of California
- Berkeley
- USA
| | - Feiming Bai
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- University of Electronic Science and Technology
- Chengdu
- China
| | - Huaiwu Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices
- University of Electronic Science and Technology
- Chengdu
- China
| | - Liwei Lin
- Berkeley Sensor and Actuator Center
- University of California
- Berkeley
- USA
- Tsinghua-Berkeley Shenzhen Institute
| |
Collapse
|
533
|
Wei X, Liu Z, Jin X, Huang L, Gurav DD, Sun X, Liu B, Ye J, Qian K. Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal Chim Acta 2017; 950:147-155. [DOI: 10.1016/j.aca.2016.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/01/2022]
|
534
|
Bettazzi F, Marrazza G, Minunni M, Palchetti I, Scarano S. Biosensors and Related Bioanalytical Tools. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
535
|
Shameer K, Badgeley MA, Miotto R, Glicksberg BS, Morgan JW, Dudley JT. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2017; 18:105-124. [PMID: 26876889 PMCID: PMC5221424 DOI: 10.1093/bib/bbv118] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/27/2015] [Indexed: 01/01/2023] Open
Abstract
Monitoring and modeling biomedical, health care and wellness data from individuals and converging data on a population scale have tremendous potential to improve understanding of the transition to the healthy state of human physiology to disease setting. Wellness monitoring devices and companion software applications capable of generating alerts and sharing data with health care providers or social networks are now available. The accessibility and clinical utility of such data for disease or wellness research are currently limited. Designing methods for streaming data capture, real-time data aggregation, machine learning, predictive analytics and visualization solutions to integrate wellness or health monitoring data elements with the electronic medical records (EMRs) maintained by health care providers permits better utilization. Integration of population-scale biomedical, health care and wellness data would help to stratify patients for active health management and to understand clinically asymptomatic patients and underlying illness trajectories. In this article, we discuss various health-monitoring devices, their ability to capture the unique state of health represented in a patient and their application in individualized diagnostics, prognosis, clinical or wellness intervention. We also discuss examples of translational bioinformatics approaches to integrating patient-generated data with existing EMRs, personal health records, patient portals and clinical data repositories. Briefly, translational bioinformatics methods, tools and resources are at the center of these advances in implementing real-time biomedical and health care analytics in the clinical setting. Furthermore, these advances are poised to play a significant role in clinical decision-making and implementation of data-driven medicine and wellness care.
Collapse
Affiliation(s)
| | - Marcus A Badgeley
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Riccardo Miotto
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin S Glicksberg
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph W Morgan
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joel T Dudley
- Harris Center for Precision Wellness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Health Evidence and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
536
|
Recent trends in electrochemical sensors for multianalyte detection – A review. Talanta 2016; 161:894-916. [DOI: 10.1016/j.talanta.2016.08.084] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
|
537
|
Choi DH, Kim JS, Cutting GR, Searson PC. Wearable Potentiometric Chloride Sweat Sensor: The Critical Role of the Salt Bridge. Anal Chem 2016; 88:12241-12247. [PMID: 28193033 DOI: 10.1021/acs.analchem.6b03391] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The components of sweat provide an array of potential biomarkers for health and disease. Sweat chloride is of interest as a biomarker for cystic fibrosis, electrolyte metabolism disorders, electrolyte balance, and electrolyte loss during exercise. Developing wearable sensors for biomarkers in sweat is a major technological challenge. Potentiometric sensors provide a relatively simple technology for on-body sweat chloride measurement, however, equilibration between reference and test solutions has limited the time over which accurate measurements can be made. Here, we report on a wearable potentiometric chloride sweat sensor. We performed parametric studies to show how the salt bridge geometry determines equilibration between the reference and test solutions. From these results, we show a sweat chloride sensor can be designed to provide accurate measurements over extended times. We then performed on-body tests on healthy subjects while exercising to establish the feasibility of using this technology as a wearable device.
Collapse
Affiliation(s)
- Dong-Hoon Choi
- Institute for Nanobiotechnology, John Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jin Seob Kim
- Department of Mechanical Engineering, John Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Garry R Cutting
- Department of Pediatrics, John Hopkins University , Baltimore, United States
| | - Peter C Searson
- Institute for Nanobiotechnology, John Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, John Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
538
|
Witkowska Nery E, Kundys M, Jeleń PS, Jönsson-Niedziółka M. Electrochemical Glucose Sensing: Is There Still Room for Improvement? Anal Chem 2016; 88:11271-11282. [DOI: 10.1021/acs.analchem.6b03151] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emilia Witkowska Nery
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Magdalena Kundys
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paulina S. Jeleń
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | |
Collapse
|
539
|
De Guzman K, Morrin A. Screen-printed Tattoo Sensor towards the Non-invasive Assessment of the Skin Barrier. ELECTROANAL 2016. [DOI: 10.1002/elan.201600572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Keana De Guzman
- School of Chemical Sciences; National Centre for Sensor Research; Insight Centre for Data Analytics; Dublin City University; Dublin 9 Ireland
| | - Aoife Morrin
- School of Chemical Sciences; National Centre for Sensor Research; Insight Centre for Data Analytics; Dublin City University; Dublin 9 Ireland
| |
Collapse
|
540
|
Chen J, Yu C, Zhao Y, Niu Y, Zhang L, Yu Y, Wu J, He J. A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron 2016; 91:892-899. [PMID: 27836589 DOI: 10.1016/j.bios.2016.10.067] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 11/16/2022]
Abstract
The small amount of cell-free fetal DNA (cffDNA) can be a useful biomarker for early non-invasive prenatal diagnosis (NIPD) of achondroplasia. In this study, a novel non-invasive electrochemical DNA sensor for ultrasensitive detecting FGFR3 mutation gene, a pathogenic gene of achondroplasia, based on biocatalytic signal materials and the biotin-streptavidin system are presented. Notably encapsulation of hemin in metal-organic frameworks-based materials (hemin-MOFs) and platinum nanoparticles (PtNPs) were used to prepare hemin-MOFs/PtNPs composites via a one-beaker-one-step reduction. We utilized hemin-MOFs/PtNPs for signal amplification because the promising hemin-MOFs/PtNPs nanomaterial has remarkable ability of catalyze H2O2 as well as excellent conductivity. To further amplify the electrochemical signal, reduced graphene oxide-tetraethylene pentamine (rGO-TEPA), gold nanoparticles and streptavidin were selected for modification of the electrode to enhance the conductivity and immobilize more biotin-modified capture probe (Bio-CP) through the high specificity and superior affinity between streptavidin and biotin. The electrochemical signal was primarily derived from the synergistic catalysis of H2O2 by hemin and PtNPs and recorded by Chronoamperometry. Under the optimal conditions, this newly designed biosensor exhibited sensitive detection of FGFR3 from 0.1fM to 1nM with a low detection limit of 0.033fM (S/N=3). We proposed that this ultrasensitive biosensor is useful for the early non-invasive prenatal diagnosis of achondroplasia.
Collapse
Affiliation(s)
- Jun Chen
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yilin Zhao
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Niu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Zhang
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yujie Yu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Wu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
541
|
Bandodkar AJ, López CS, Vinu Mohan AM, Yin L, Kumar R, Wang J. All-printed magnetically self-healing electrochemical devices. SCIENCE ADVANCES 2016; 2:e1601465. [PMID: 27847875 PMCID: PMC5099985 DOI: 10.1126/sciadv.1601465] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/29/2016] [Indexed: 05/18/2023]
Abstract
The present work demonstrates the synthesis and application of permanent magnetic Nd2Fe14B microparticle (NMP)-loaded graphitic inks for realizing rapidly self-healing inexpensive printed electrochemical devices. The incorporation of NMPs into the printable ink imparts impressive self-healing ability to the printed conducting trace, with rapid (~50 ms) recovery of repeated large (3 mm) damages at the same or different locations without any user intervention or external trigger. The permanent and surrounding-insensitive magnetic properties of the NMPs thus result in long-lasting ability to repair extreme levels of damage, independent of ambient conditions. This remarkable self-healing capability has not been reported for existing man-made self-healing systems and offers distinct advantages over common capsule and intrinsically self-healing systems. The printed system has been characterized by leveraging crystallographic, magnetic hysteresis, microscopic imaging, electrical conductivity, and electrochemical techniques. The real-life applicability of the new self-healing concept is demonstrated for the autonomous repair of all-printed batteries, electrochemical sensors, and wearable textile-based electrical circuits, indicating considerable promise for widespread practical applications and long-lasting printed electronic devices.
Collapse
|
542
|
Sarauli D, Borowski A, Peters K, Schulz B, Fattakhova-Rohlfing D, Leimkühler S, Lisdat F. Investigation of the pH-Dependent Impact of Sulfonated Polyaniline on Bioelectrocatalytic Activity of Xanthine Dehydrogenase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David Sarauli
- Biosystems
Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, D-15745, Wildau, Germany
- Department
of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 5-13 (E), D-81377, Munich, Germany
| | - Anja Borowski
- Biosystems
Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, D-15745, Wildau, Germany
| | - Kristina Peters
- Department
of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 5-13 (E), D-81377, Munich, Germany
| | - Burkhard Schulz
- Institute
for Thin
Film and Microsensor Technologies, Kantstr. 55, D-14513 Teltow, Germany
| | - Dina Fattakhova-Rohlfing
- Department
of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 5-13 (E), D-81377, Munich, Germany
| | - Silke Leimkühler
- Institute
for Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Fred Lisdat
- Biosystems
Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, D-15745, Wildau, Germany
| |
Collapse
|
543
|
Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
544
|
Levine JA. The Baetylus Theorem-the central disconnect driving consumer behavior and investment returns in Wearable Technologies. ACTA ACUST UNITED AC 2016; 7:59-65. [PMID: 27617162 PMCID: PMC5017154 DOI: 10.4236/ti.2016.73008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Wearable Technology market may increase fivefold by the end of the decade. There is almost no academic investigation as to what drives the investment hypothesis in wearable technologies. This paper seeks to examine this issue from an evidence-based perspective. There is a fundamental disconnect in how consumers view wearable sensors and how companies market them; this is called The Baetylus Theorem where people believe (falsely) that by buying a wearable sensor they will receive health benefit; data suggest that this is not the case. This idea is grounded social constructs, psychological theories and marketing approaches. A marketing proposal that fails to recognize The Baetylus Theorem and how it can be integrated into a business offering has not optimized its competitive advantage. More importantly, consumers should not falsely believe that purchasing a wearable technology, improves health.
Collapse
Affiliation(s)
- James A Levine
- Obesity Solutions, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ 85259 and Arizona State University, Obesity Solutions, 1000 S. Cady Mall 144, Tempe, Arizona 85287
| |
Collapse
|
545
|
Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A, Cinti S, Mercier PP, Wang J. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00356] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jayoung Kim
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Itthipon Jeerapan
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Somayeh Imani
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas N. Cho
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Amay Bandodkar
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Stefano Cinti
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Patrick P. Mercier
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering and ‡Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
546
|
Hooton K, Han W, Li L. Comprehensive and Quantitative Profiling of the Human Sweat Submetabolome Using High-Performance Chemical Isotope Labeling LC–MS. Anal Chem 2016; 88:7378-86. [DOI: 10.1021/acs.analchem.6b01930] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kevin Hooton
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wei Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
547
|
Wang H, Liu Z, Ding J, Lepró X, Fang S, Jiang N, Yuan N, Wang R, Yin Q, Lv W, Liu Z, Zhang M, Ovalle-Robles R, Inoue K, Yin S, Baughman RH. Downsized Sheath-Core Conducting Fibers for Weavable Superelastic Wires, Biosensors, Supercapacitors, and Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:4998-5007. [PMID: 27135200 DOI: 10.1002/adma.201600405] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Hair-like-diameter superelastic conducting fibers, comprising a buckled carbon nanotube sheath on a rubber core, are fabricated, characterized, and deployed as weavable wires, biosensors, supercapacitors, and strain sensors. These downsized sheath-core fibers provide the demonstrated basis for glucose sensors, supercapacitors, and electrical interconnects whose performance is undegraded by giant strain, as well as ultrafast strain sensors that exploit strain-dependent capacitance changes.
Collapse
Affiliation(s)
- Hongyan Wang
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Institute of Materials Physics and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin, 300384, China
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
| | - Zunfeng Liu
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Department of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jianning Ding
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Department of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xavier Lepró
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shaoli Fang
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nan Jiang
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ninyi Yuan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Department of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Run Wang
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Department of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Qu Yin
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Department of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wei Lv
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Department of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhongsheng Liu
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Department of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mei Zhang
- High-Performance Materials Institute, Florida State University, Tallahassee, FL, 32310, USA
| | - Raquel Ovalle-Robles
- Lintec of America, Nano-Science and Technology Center, Richardson, TX, 75081, USA
| | - Kanzan Inoue
- Lintec of America, Nano-Science and Technology Center, Richardson, TX, 75081, USA
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Institute of Materials Physics and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin, 300384, China
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
| | - Ray H Baughman
- Jiangnan Graphene Research Institute, Changzhou, 213149, China
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
548
|
Wang S, Chinnasamy T, Lifson MA, Inci F, Demirci U. Flexible Substrate-Based Devices for Point-of-Care Diagnostics. Trends Biotechnol 2016; 34:909-921. [PMID: 27344425 DOI: 10.1016/j.tibtech.2016.05.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022]
Abstract
Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications.
Collapse
Affiliation(s)
- ShuQi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China; Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA.
| | - Thiruppathiraja Chinnasamy
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA
| | - Mark A Lifson
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA
| | - Fatih Inci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA; Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
549
|
Abstract
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices.
Collapse
Affiliation(s)
- Yong Lin Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maneesh K. Gupta
- Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Blake N. Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
550
|
Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, Nuvoli S, Bagella P, Demartis MI, Fiore V, Manetti R, Serra PA. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. SENSORS 2016; 16:s16060780. [PMID: 27249001 PMCID: PMC4934206 DOI: 10.3390/s16060780] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented.
Collapse
Affiliation(s)
- Gaia Rocchitta
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Angela Spanu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Gavinella Latte
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Giordano Madeddu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Grazia Galleri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Susanna Nuvoli
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Paola Bagella
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Maria Ilaria Demartis
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Vito Fiore
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Roberto Manetti
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| |
Collapse
|