601
|
Tanaka H, Yamamoto M, Moriyama Y, Yamao M, Furukawa S, Sagisaka A, Nakazawa H, Mori H, Yamakawa M. A novel Rel protein and shortened isoform that differentially regulate antibacterial peptide genes in the silkworm Bombyx mori. ACTA ACUST UNITED AC 2005; 1730:10-21. [PMID: 16005991 DOI: 10.1016/j.bbaexp.2005.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/04/2005] [Accepted: 05/19/2005] [Indexed: 11/22/2022]
Abstract
Two cDNAs encoding novel Rel proteins were cloned from the silkworm, Bombyx mori. These cDNA clones (BmRelA and BmRelB) showed identical nucleotide sequences except for the 5'-region. BmRelB cDNA derived probably from an alternatively spliced mRNA lacked 241 bp nucleotides at the 5'-region of the BmRelA cDNA, resulting in a loss of the first 52 amino acids. Expression of antibacterial peptide genes was strongly inhibited upon infection with Micrococcus luteus in transgenic silkworms in which BmRel gene expression was knocked down, suggesting that these two Rel proteins are involved in activation of antibacterial peptide genes. Co-transfection experiments indicated that BmRelB activated the Attacin gene strongly and other genes to a lesser extent, whereas BmRelA activated Lebocin 4 gene strongly and Attacin and Lebocin 3 genes very weakly. The Rel homology domain of BmRelA and BmRelB was shown to bind specifically to kappaB sites of antibacterial peptide genes. Proline-rich domains of the BmRels were necessary for activation of antibacterial peptide genes. These results illustrate that a minor structural change in Rel proteins can provoke a dramatic differential activation of antibacterial peptide genes, suggesting a novel regulatory mechanism for insect antibacterial peptide gene expression.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Innate Immunity Laboratory, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
602
|
Zuccato C, Liber D, Ramos C, Tarditi A, Rigamonti D, Tartari M, Valenza M, Cattaneo E. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacol Res 2005; 52:133-9. [PMID: 15967378 DOI: 10.1016/j.phrs.2005.01.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 01/18/2005] [Accepted: 01/21/2005] [Indexed: 01/16/2023]
Abstract
Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
603
|
Koyama Y, Tsujikawa K, Matsuda T, Baba A. Endothelin increases expression of exon III- and exon IV-containing brain-derived neurotrophic factor transcripts in cultured astrocytes and rat brain. J Neurosci Res 2005; 80:809-16. [PMID: 15898104 DOI: 10.1002/jnr.20512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of endothelins (ETs) on brain-derived neurotrophic factor (BDNF) production in astrocytes were investigated. ET-1 (100 nM) increased the mRNA level and extracellular release of BDNF in cultured astrocytes. RT-PCR analyses using primer pairs that amplified exon-specific BDNF transcripts revealed that exon III- and exon IV-containing BDNF transcripts existed in cultured astrocytes, whereas exon I- and exon II-containing BDNF transcripts did not. ET-1 and Ala(1,3,11,15)-ET-1, an ET(B) receptor agonist, increased the expressions of the exon III and exon IV transcripts in cultured astrocytes. Intracerebroventricular administration of 500 pmol/day of Ala(1,3,11,15)-ET-1 increased exon III and exon IV BDNF transcripts in the rat striatum. In cultured astrocytes, Ca(2+)-chelation, W-7 (a calmodulin inhibitor), and KN93 (a Ca(2+)/calmodulin kinase inhibitor) inhibited the increases in exon IV BDNF mRNA and CCAAT enhancer-binding protein beta (C/EBPbeta) levels induced by ET-1. The ET-induced increases in exon III BDNF mRNA expression and phosphorylation of cAMP response element binding protein (CREB) were reduced by Ca(2+) chelation, W-7, KN93, PD98059 (a MEK inhibitor), and wortmannin (a phosphatidylinositol 3-kinase inhibitor). These results suggest that ETs stimulate the expressions of exon III and exon IV BDNF transcripts in astrocytes through CREB and C/EBPbeta-mediated mechanisms, respectively.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.
| | | | | | | |
Collapse
|
604
|
Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, Zhao JJ, Roberts TM, Mandel G, Hannon GJ, Depinho RA, Chin L, Elledge SJ. A genetic screen for candidate tumor suppressors identifies REST. Cell 2005; 121:837-48. [PMID: 15960972 DOI: 10.1016/j.cell.2005.03.033] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/18/2005] [Accepted: 03/30/2005] [Indexed: 01/18/2023]
Abstract
Tumorigenesis is a multistep process characterized by a myriad of genetic and epigenetic alterations. Identifying the causal perturbations that confer malignant transformation is a central goal in cancer biology. Here we report an RNAi-based genetic screen for genes that suppress transformation of human mammary epithelial cells. We identified genes previously implicated in proliferative control and epithelial cell function including two established tumor suppressors, TGFBR2 and PTEN. In addition, we uncovered a previously unrecognized tumor suppressor role for REST/NRSF, a transcriptional repressor of neuronal gene expression. Array-CGH analysis identified REST as a frequent target of deletion in colorectal cancer. Furthermore, we detect a frameshift mutation of the REST gene in colorectal cancer cells that encodes a dominantly acting truncation capable of transforming epithelial cells. Cells lacking REST exhibit increased PI(3)K signaling and are dependent upon this pathway for their transformed phenotype. These results implicate REST as a human tumor suppressor and provide a novel approach to identifying candidate genes that suppress the development of human cancer.
Collapse
Affiliation(s)
- Thomas F Westbrook
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
605
|
Abstract
RNA interference has been promoted as an ideal tool for functional genomics, but to date the success stories have principally been in model organisms. Two papers in this issue of Cell change all that: use of RNA interference libraries targeting large proportions of the human genome to uncover two novel tumor suppressor genes. REST is a transcriptional repressor that silences neuron-specific gene expression, and PITX1 is a homeodomain transcription factor that promotes the expression of a negative regulator of Ras.
Collapse
Affiliation(s)
- Julian Downward
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| |
Collapse
|
606
|
Nakatani T, Ueno S, Mori N, Matsuoka I. Role of NRSF/REST in the molecular mechanisms regulating neural-specific expression of trkC/neurotrophin-3 receptor gene. ACTA ACUST UNITED AC 2005; 135:249-59. [PMID: 15857687 DOI: 10.1016/j.molbrainres.2004.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 12/13/2004] [Accepted: 12/20/2004] [Indexed: 11/17/2022]
Abstract
The processes of differentiation and development of neurons involve the induction of neuron-specific genes by instructive signals with subsequent neurotrophic factor-driven survival and functional maturation. We have previously shown that bone morphogenetic protein-2 (BMP2) and retinoic acid synergistically induce the responsiveness of developing sympathetic neurons to neurotrophic factors, neurotrophin 3 (NT-3), and GDNF by upregulating corresponding receptors concomitantly with the induction of other neuron-specific genes including BRINP1, a neuron-specific cell-cycle regulatory protein. In the present study, we analyzed transcriptional mechanisms regulating the neuron-specific expression of TrkC/NT-3 receptor gene. TrkC gene contains at least four NRSE/RE-1 (neuron-restrictive silencing element/repressor element 1)-like elements (TrkC-NRSE A-D). Consequently, we found that in non-neuronal cells, neuron-restrictive silencing factor (NRSF) acts on TrkC-NRSE D located at the downstream of exon 3 to suppress the promoter activity of TrkC gene in a manner similar to the mechanism of NRSF suppressing BRINP1 transcription. In contrast, in neuronal cells, the biological activity of NRSF on TrkC was suppressed. From these observations, molecular mechanisms regulating the expression of neuron-specific genes via NRSE during neuronal differentiation are discussed.
Collapse
Affiliation(s)
- Toshiyuki Nakatani
- Division of Innovative Research, Creative Research Initiative "Sousei" (CRIS), Hokkaido University, Kita-21-Nishi-10, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | |
Collapse
|
607
|
Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005; 121:645-657. [PMID: 15907476 DOI: 10.1016/j.cell.2005.03.013] [Citation(s) in RCA: 724] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 12/31/2004] [Accepted: 03/15/2005] [Indexed: 02/01/2023]
Abstract
Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.
Collapse
Affiliation(s)
- Nurit Ballas
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, The State University of New York at Stony Brook, Stony Brook, New York 11794.
| | - Christopher Grunseich
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, The State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Diane D Lu
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, The State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Joan C Speh
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, The State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Gail Mandel
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, The State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
608
|
Abstract
Epigenetic strategies control the orderly acquisition and maintenance of neuronal traits. A complex network of transcriptional repressors and co-repressors mediates gene specificity for these strategies. In this issue of Cell, a study by Ballas and coworkers (Ballas et al., 2005) provides insight into the early lineage commitment events during neurogenesis. This study demonstrates that regulation of the REST/NRSF transcriptional repressor plays a fundamental role in the progression of pluripotent cells to lineage-restricted neural progenitors.
Collapse
Affiliation(s)
- Victoria V Lunyak
- Department of Medicine, University of California, San Diego, Howard Hughes Medical Institute, La Jolla, California
| | - Michael G Rosenfeld
- Department of Medicine, University of California, San Diego, Howard Hughes Medical Institute, La Jolla, California.
| |
Collapse
|
609
|
Tateno M, Ukai W, Hashimoto E, Ikeda H, Saito T. Implication of increased NRSF/REST binding activity in the mechanism of ethanol inhibition of neuronal differentiation. J Neural Transm (Vienna) 2005; 113:283-93. [PMID: 15959844 DOI: 10.1007/s00702-005-0320-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 04/17/2005] [Indexed: 10/25/2022]
Abstract
The neuron-restrictive silencer factor (NRSF), or repressor element-1 silencing transcription factor (REST), is a transcription factor that mediates negative regulation of neuronal genes. NRSF represses multiple neuronal target genes in non-neuronal and neuronal precursor cells to regulate the proper timing of neuronal gene expression during neurogenesis. In the present study, we investigated the effects of ethanol and MEK inhibitor U0126 on the DNA binding activity of NRSF in neural stem cells prepared from rat embryos. Both ethanol and U0126 enhanced NRSF binding activity measured by the method based on the principal of electrophoretic mobility shift assay (EMSA) and decreased neuronal differentiation in a concentration dependent manner. Western blot analysis revealed that ethanol suppressed phosphorylation of extracellular signal-regulated kinase (ERK) without affecting expression of total ERK. These results suggest that ethanol-induced potentiation of NRSF binding activity underlies the mechanism of ethanol inhibition of neuronal differentiation and decreased neurogenesis.
Collapse
Affiliation(s)
- M Tateno
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
610
|
Qiang M, Rani CSS, Ticku MK. Neuron-restrictive silencer factor regulates the N-methyl-D-aspartate receptor 2B subunit gene in basal and ethanol-induced gene expression in fetal cortical neurons. Mol Pharmacol 2005; 67:2115-25. [PMID: 15755907 DOI: 10.1124/mol.104.010751] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuron-restrictive silencer factor (NRSF) is a transcriptional repressor of multiple neuronal genes. This study addressed the role of NRSF in N-methyl-D-aspartate (NMDA) receptor NR2B promoter activity and the molecular mechanisms of ethanol-induced NR2B up-regulation in fetal cortical neurons. The 5'-flanking region of the NR2B gene contains five NRSE-like elements. Functional analysis of the upstream regions of the NR2B gene by transient transfection of neurons revealed that neuron-restrictive silencer element (NRSE) motifs located between base pair -1407 and -2741 represses transcription of the gene. Analysis by electrophoretic mobility shift assay and reporter gene assay identified NRSE2 and 3 as responsible for repressing NR2B gene transcription. The identity of NRSF as the functional binding factor is suggested by the specific binding of in vitro synthesized NRSF or cell lysate to the labeled probes and the specific antibody-induced supershift. Furthermore, whereas mutations of NRSE2 and 3 motifs increased the promoter activity, overexpression of NRSF reduced it significantly. The pattern of NRSF expression during development was investigated and demonstrated that the highest expression is on embryonic day 14 with moderate expression on postnatal day 0, reflecting a possible role of NRSF as a regulator during development. Treatment of cultured cortical neurons with 100 mM ethanol for 5 days caused a significant decrease in the NRSF mRNA and protein levels, NRSF/NRSE binding activity, and an increase in the promoter activity. Therefore, our studies suggest that NRSF is a negative regulator of NR2B expression and may contribute to the ethanol-induced up-regulation of the NR2B gene in fetal cortical neurons.
Collapse
Affiliation(s)
- Mei Qiang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
611
|
Gu H, Liang Y, Mandel G, Roizman B. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 2005; 102:7571-6. [PMID: 15897453 PMCID: PMC1140450 DOI: 10.1073/pnas.0502658102] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The infected cell protein (ICP)0 enables gene expression and the replication of herpes simplex virus (HSV)-1 in cells infected at low multiplicities and enhances the expression of genes introduced into cells by transfection or infection. We report that a short sequence of ICP0 is similar to a sequence in the amino terminus of CoREST, a corepressor that exists in complexes with the repressor REST and histone deacetylases (HDACs) 1 or 2 to repress cellular gene expression. In wild-type-virus-infected cells, HDAC1 dissociates from the CoREST/REST complex, CoREST and HDAC1 are phosphorylated by a process mediated by viral protein kinases, and CoREST and HDAC1 are partially translocated to the cytoplasm. In cells infected with a virus mutant (DeltaICP4), in which ICP0 accumulates, but post-alpha gene expression is blocked, HDAC1 is dissociated from the CoREST/REST complex, but translocation to the cytoplasm does not occur. After infection with a mutant virus from which ICP0 is deleted, the complex remains intact, but, under conditions of productive infection, the complex is partially translocated to the cytoplasm. These results suggest that, at low multiplicities of infection, ICP0 blocks CoREST-mediated silencing of viral genes by dissociation of HDAC1, whereas subsequent modifications and translocation of the components of the complex are the functions of other viral gene products made later in infection.
Collapse
Affiliation(s)
- Haidong Gu
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
612
|
Dong H, Wade M, Williams A, Lee A, Douglas GR, Yauk C. Molecular insight into the effects of hypothyroidism on the developing cerebellum. Biochem Biophys Res Commun 2005; 330:1182-93. [PMID: 15823568 DOI: 10.1016/j.bbrc.2005.03.099] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Indexed: 11/24/2022]
Abstract
Despite the recognized importance of thyroid hormones for normal brain development, little is known about the critical molecular events underlying this role. We investigated the molecular basis of thyroid hormone action on the developing brain by comparing genome-wide gene expression patterns in the cerebellum between euthyroid and hypothyroid juvenile mice using microarrays. Pregnant dams were treated with 0.1% or 0.04% 6-propyl-2-thiouracil (PTU) in drinking water continuously from day 13 post conception until weaning to produce hypothyroid pups. Cerebella were collected from vehicle and 0.1% PTU treated pups at post-natal day (PND) 15, and mRNA from these was subjected to microarray analysis using Agilent high-density oligonucleotide chips. Statistical analysis (MAANOVA) revealed significant differential expression in 2940 genes including 1357 up- and 1583 down-regulated genes. Further analysis (combined MAANOVA and ANOVA) identified 204 significantly altered genes. Hypothyroidism had a greater effect on gene expression in male than in female pups. Transcriptional changes in several genes [Syt12 (Synaptotagmin 12), Rcor (RE1-silencing transcription factor co-repressor), Bag3 (Bcl-associated athanogene 3), p21, cyclin D, Bax (Bcl2-associated X protein), and Pcp2 (Purkinje cell protein 2)] were confirmed using real-time (RT) PCR analysis. Significantly altered expression of Bag3 in cerebella from PND 15 and PND 60 pups exposed to PTU suggests permanent functional alterations in the hypothyroid brain. The thyroid hormone negative regulation of Rcor expression was confirmed in vitro using HepG2 cells. In addition to Rcor, expression of several other genes that code for critical components of the REST (RE1-silencing transcription factor) pathway was shown to be altered in hypothyroid animals. These results suggest that modification of this pathway may have a significant role in causing impaired development in the hypothyroid brain.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental and Occupational Toxicology Division, HECSB, Health Canada, Ottawa, Ont., Canada K1A 0L2.
| | | | | | | | | | | |
Collapse
|
613
|
Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell 2005; 14:727-38. [PMID: 15200951 DOI: 10.1016/j.molcel.2004.05.026] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 04/16/2004] [Accepted: 05/06/2004] [Indexed: 11/29/2022]
Abstract
Negative regulation of transcription is an important strategy in establishing and maintaining cell-specific gene expression patterns. Many neuronal genes are subject to active transcriptional repression outside the nervous system to establish neuronal specificity. NRSF/REST has been demonstrated to regulate at least 30 genes and contribute to their neuronal targeting by repressing transcription outside the nervous system. Further, human genome database searches reveal that over 800 genes contain an NRSE. Here we report that NRSF recruits the histone methylase G9a to silence NRSF target genes in nonneuronal cells. We show that G9a generates a highly localized domain of dimethylated histone H3-K9 around NRSEs, but H3-K27 remains unmethylated. The NRSEs are also associated with HP1. Finally, we demonstrate that dominant-negative G9a abrogates silencing of chromosomal neuronal genes. These findings implicate a role for histone methylation in targeting neuronal gene expression to the nervous system.
Collapse
Affiliation(s)
- Avtar Roopra
- Department of Neurology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
614
|
Mu X, Fu X, Sun H, Beremand PD, Thomas TL, Klein WH. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol 2005; 280:467-81. [PMID: 15882586 DOI: 10.1016/j.ydbio.2005.01.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 01/03/2005] [Accepted: 01/25/2005] [Indexed: 11/28/2022]
Abstract
Math5, a mouse homolog of the Drosophila proneural bHLH transcription factor Atonal, is essential in the developing retina to establish retinal progenitor cell competence for a ganglion cell fate. Elucidating the mechanisms by which Math5 influences progenitor cell competence is crucial for understanding how specification of neuronal cell fate occurs in the retina and it requires knowledge of the downstream target genes that depend on Math5 for their expression. To date, only a handful of genes downstream of Math5 have been identified. To better define the gene network operating downstream of Math5, we used custom-designed microarrays to examine the changes in embryonic retinal gene expression caused by deletion of math5. We identified 270 Math5-dependent genes, including those that were expressed specifically either in progenitor cells or differentiated ganglion cells. The ganglion cell-specific genes included both Brn3b-dependent and Brn3b-independent genes, indicating that Math5 regulates distinct branches of the gene network responsible for retinal ganglion cell differentiation. In math5-null progenitor cells, there was an up-regulation of the proneural genes math3, neuroD, and ngn2, indicating that Math5 suppresses the production of other cell types in addition to promoting retinal ganglion cell formation. The promoter regions of many Math5-dependent genes contained binding sites for REST/NRSF, suggesting that release from general repression in retinal progenitor cells is required for ganglion cell-specific gene activation. The identification of multiple roles for Math5 provides new insights into the gene network that defines progenitor cell competence in the embryonic retina.
Collapse
Affiliation(s)
- Xiuqian Mu
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | |
Collapse
|
615
|
Di Toro R, Baiula M, Spampinato S. Expression of the repressor element-1 silencing transcription factor (REST) is influenced by insulin-like growth factor-I in differentiating human neuroblastoma cells. Eur J Neurosci 2005; 21:46-58. [PMID: 15654842 DOI: 10.1111/j.1460-9568.2004.03828.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The repressor element-1 (RE-1) silencing transcription factor (REST) interacts with an RE-1 cis element and represses the transcription of neuron-specific genes in neuronal progenitors but is down-regulated in post-mitotic neurons. We report that REST expression is modified, in a time-dependent manner, in SH-SY5Y neuroblastoma cells exposed to insulin-like growth factor I (IGF-I), a polypeptide hormone affecting various aspects of neuronal induction and maturation. REST is increased in cells treated with IGF-I for 2 days and then declines in 5-day-treated cells concomitant with a progressive neurite extension. To investigate any role played by REST in neurodifferentiation by IGF-I, we employed an antisense oligonucleotide (AS-ODN) complementary to REST mRNA. In AS-ODN-treated cells, the effects elicited by IGF-I on cell proliferation are not influenced whereas a marked decrease of REST significantly increases neurite elongation without any gross perturbation of neurogenesis. Synapsin I and betaIII-tubulin gene promoters contain an RE-1 motif and their transcription is repressed by REST; both of them are increased in cells exposed to IGF-I for 5 days and further elevated by AS-ODN treatment. A parallel increase of growth cone-associated protein 43, a protein chosen as a neuronal marker not directly regulated by REST, is also observed. Therefore, REST is elevated during early steps of neural induction by IGF-I and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes. These results suggest a model in which differentiating neuroblastoma cells determine their extent of neurite outgrowth on the basis of REST disappearance.
Collapse
Affiliation(s)
- Rosanna Di Toro
- Department of Pharmacology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | | | | |
Collapse
|
616
|
Abstract
Discoveries concerning the molecular mechanisms of cell differentiation and development have dictated the definition of a new sub-discipline of genetics known as epigenetics. Epigenetics refers to a set of self-perpetuating, post-translational modifications of DNA and nuclear proteins that produce lasting alterations in chromatin structure as a direct consequence, and lasting alterations in patterns of gene expression as an indirect consequence. The area of epigenetics is a burgeoning subfield of genetics in which there is considerable enthusiasm driving new discoveries. Neurobiologists have only recently begun to investigate the possible roles of epigenetic mechanisms in behaviour, physiology and neuropathology. Strikingly, the relevant data from the few extant neurobiology-related studies have already indicated a theme - epigenetic mechanisms probably have an important role in synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Jonathan M Levenson
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, S607, Houston, Texas 77030, USA
| | | |
Collapse
|
617
|
Koyano-Nakagawa N, Kintner C. The expression and function of MTG/ETO family proteins during neurogenesis. Dev Biol 2005; 278:22-34. [PMID: 15649458 DOI: 10.1016/j.ydbio.2004.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 10/18/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The proneural basic helix-loop-helix (bHLH) proteins promote neurogenesis by inducing changes in gene expression required for neuronal differentiation. Here we characterize one aspect of this differentiation program by analyzing a small family of putative corepressors encoded by MTG genes. We show that MTG genes are expressed sequentially during neurogenesis as cells undergo neuronal differentiation in both the chick spinal cord and in the Xenopus primary nervous system. Using in ovo electroporation, we show that misexpressing wild-type forms of MTG proteins in the developing chick spinal cord does not detectably alter neuronal differentiation. By contrast, the number of differentiated neurons is markedly reduced when a putative dominant-negative mutant of the MTG proteins is expressed in neural precursors in a manner that can be rescued by wild-type MTGR1. Together, these results suggest that MTG family members act downstream of proneural proteins, presumably as corepressors, to promote neuronal differentiation.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
618
|
Tawadros T, Martin D, Abderrahmani A, Leisinger HJ, Waeber G, Haefliger JA. IB1/JIP-1 controls JNK activation and increased during prostatic LNCaP cells neuroendocrine differentiation. Cell Signal 2005; 17:929-39. [PMID: 15894166 DOI: 10.1016/j.cellsig.2004.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 10/25/2022]
Abstract
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Collapse
Affiliation(s)
- Thomas Tawadros
- Service of Urology, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
619
|
Kang HC, Chung BM, Chae JH, Yang SI, Kim CG, Kim CG. Identification and characterization of four novel peptide motifs that recognize distinct regions of the transcription factor CP2. FEBS J 2005; 272:1265-77. [PMID: 15720400 DOI: 10.1111/j.1742-4658.2005.04564.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although ubiquitously expressed, the transcriptional factor CP2 also exhibits some tissue- or stage-specific activation toward certain genes such as globin in red blood cells and interleukin-4 in T helper cells. Because this specificity may be achieved by interaction with other proteins, we screened a peptide display library and identified four consensus motifs in numerous CP2-binding peptides: HXPR, PHL, ASR and PXHXH. Protein-database searching revealed that RE-1 silencing factor (REST), Yin-Yang1 (YY1) and five other proteins have one or two of these CP2-binding motifs. Glutathione S-transferase pull-down and coimmunoprecipitation assays showed that two HXPR motif-containing proteins REST and YY1 indeed were able to bind CP2. Importantly, this binding to CP2 was almost abolished when a double amino acid substitution was made on the HXPR sequence of REST and YY1 proteins. The suppressing effect of YY1 on CP2's transcriptional activity was lost by this point mutation on the HXPR sequence of YY1 and reduced by an HXPR-containing peptide, further supporting the interaction between CP2 and YY1 via the HXPR sequence. Mapping the sites on CP2 for interaction with the four distinct CP2-binding motifs revealed at least three different regions on CP2. This suggests that CP2 recognizes several distinct binding motifs by virtue of employing different regions, thus being able to interact with and regulate many cellular partners.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science, Hanyang University, Korea
| | | | | | | | | | | |
Collapse
|
620
|
Abstract
Unraveling the mechanisms by which neural stem cells generate distinct cell types remains a central challenge in central nervous system (CNS) biology. Recent studies have shown that epigenetic gene regulation plays an important role in the control of cell growth and differentiation. These epigenetic controls cover a wide spectrum, including the interaction of chromatin remodeling enzymes with neurogenic transcription factors, the maintenance of genome stability in neuronal cells and the involvement of noncoding RNAs in neural fate specification. Extracellular signaling systems that control the growth and differentiation of neural stem cells act, at least in part, by interfacing with these diverse epigenetic mechanisms.
Collapse
Affiliation(s)
- Jenny Hsieh
- Laboratory of Genetics, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
621
|
Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL, Gill GN. Small CTD phosphatases function in silencing neuronal gene expression. Science 2005; 307:596-600. [PMID: 15681389 DOI: 10.1126/science.1100801] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuronal gene transcription is repressed in non-neuronal cells by the repressor element 1 (RE-1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) complex. To understand how this silencing is achieved, we examined a family of class-C RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD) phosphatases [small CTD phosphatases (SCPs) 1 to 3], whose expression is restricted to non-neuronal tissues. We show that REST/NRSF recruits SCPs to neuronal genes that contain RE-1 elements, leading to neuronal gene silencing in non-neuronal cells. Phosphatase-inactive forms of SCP interfere with REST/NRSF function and promote neuronal differentiation of P19 stem cells. Likewise, small interfering RNA directed to the single Drosophila SCP unmasks neuronal gene expression in S2 cells. Thus, SCP activity is an evolutionarily conserved transcriptional regulator that acts globally to silence neuronal genes.
Collapse
Affiliation(s)
- Michele Yeo
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
622
|
Drews VL, Lieberman AP, Meisler MH. Multiple transcripts of sodium channel SCN8A (NaV1.6) with alternative 5′- and 3′-untranslated regions and initial characterization of the SCN8A promoter. Genomics 2005; 85:245-57. [PMID: 15676283 DOI: 10.1016/j.ygeno.2004.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 09/03/2004] [Indexed: 11/18/2022]
Abstract
To identify the transcriptional start sites of the neuronal channel SCN8A, we carried out 5'-RACE (rapid amplification of cDNA ends) with RNA from human and mouse brain. We recovered four mutually exclusive 5'-untranslated exons (exon 1a to exon 1d) that map to a 1.8-kb region of genomic DNA located approximately 70 kb upstream of the first coding exon. The same 5'-untranslated exons are expressed in central, peripheral and sympathetic nervous system and in embryonic and adult brain. A 4.8-kb genomic fragment containing these 5' exons demonstrated promoter activity in transfected MN-1 cells. In transgenic mice, transcription of the 4.8-kb promoter was restricted to brain and spinal cord. The 4.8-kb promoter contains eight consensus Sp1-binding sites and two Inr sites. A potential NRSE/RE-1 site is located nearby. Two active polyadenylation sites identified by 3'-RACE are conserved in human, mouse, and chicken SCN8A. Sequence comparison of human and mouse SCN8A identified 12 conserved noncoding elements whose effect on transcription was tested in transfected cells.
Collapse
Affiliation(s)
- Valerie L Drews
- Department of Human Genetics, University of Michigan, 4708 Medical Science II, Ann Arbor, MI 48109-0618, USA
| | | | | |
Collapse
|
623
|
Dallman JE, Allopenna J, Bassett A, Travers A, Mandel G. A conserved role but different partners for the transcriptional corepressor CoREST in fly and mammalian nervous system formation. J Neurosci 2005; 24:7186-93. [PMID: 15306652 PMCID: PMC6729183 DOI: 10.1523/jneurosci.0238-04.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Identification of conserved proteins that act to establish the neuronal phenotype has relied predominantly on structural homologies of the underlying genes. In the case of the repressor element 1 silencing transcription factor (REST), a central player in blocking the neuronal phenotype in vertebrate non-neural tissue, the invertebrate homolog is absent, raising the possibility that distinct strategies are used to establish the CNS of invertebrates. Using a yeast two-hybrid screen designed specifically to identify functional analogs of REST, we show that Drosophila melanogaster uses a strategy that is functionally similar to, but appears to have evolved independently of, REST. The gene at the center of the strategy in flies encodes the repressor Tramtrack88 (Ttk88), a protein with no discernable homology to REST but that nonetheless is able to interact with the same transcriptional partners. Ttk88 uses the REST corepressor Drosophila CoREST to coordinately regulate a set of genes encoding the same neuronal hallmarks that are regulated by REST in vertebrates. Our findings indicate that repression is an important mechanism for regulating neuronal phenotype across phyla and suggest that co-option of a similar corepressor complex occurred to restrict expression of genes critical for neuronal function to a compartmentalized nervous system.
Collapse
Affiliation(s)
- Julia E Dallman
- Howard Hughes Medical Institute, State University of New York, Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
624
|
Chen S, Inozentseva-Clayton N, Dong J, Gu TT, MacDougall M. Binding of two nuclear factors to a novel silencer element in human dentin matrix protein 1 (DMP1) promoter regulates the cell type-specific DMP1 gene expression. J Cell Biochem 2005; 92:332-49. [PMID: 15108359 DOI: 10.1002/jcb.20051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DMP1 is an acidic phosphorylated protein with the spatial and temporal expression that is largely restricted to bone and tooth tissues. The biological function of DMP1 is associated with biomineralization of bone, cartilage and tooth development. To study the cell-specific expression of DMP1, a 2,512 bp upstream segment of the human gene was isolated and characterized. A series of progressive deletions of the human DMP1 5' flanking sequence were ligated to the luciferase reporter gene, and their promoter activities examined in transfected human osteoblast-like (MG-63) and dental pulp (HDP-D) cells that express DMP1 and hepatic (HepG2) and uterine (HeLa) cells lacking DMP1 expression. A critical cis-regulatory element located between nt -150 and -63 was found to act as a specific silencer responsible for the negative regulation of DMP1 in HepG2 and HeLa cells. The transcriptional activity of this element in MG-63 and HDP-D cells had a 5-7-fold increase than that observed in HepG2 and HeLa cells. Electrophoretic mobility shift assays (EMSAs) showed that a 6-bp DNA sequence in this element was bound by two nuclear factors that are expressed at high levels in HepG2 and HeLa versus MG-63 and HDP-D cells. Competitive assays by EMSAs suggest that the 6-bp core DNA sequence, AG(T/C)C(A/G)C, is a novel DNA-protein binding site and conserved with high identity in reported DMP1 promoters for all species. Furthermore, point mutations of the core sequence caused a marked increase of DMP1 promoter activity in HepG2 and HeLa cells. We speculate that this silencing cis-element may play a critical role in the regulation of DMP1 cell-specific expression.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA.
| | | | | | | | | |
Collapse
|
625
|
Kuwahara K, Takano M, Nakao K. Pathophysiological Significance of T-type Ca2+ Channels: Transcriptional Regulation of T-type Ca2+ Channel — Regulation of CACNA1H by Neuron-Restrictive Silencer Factor. J Pharmacol Sci 2005; 99:211-3. [PMID: 16272789 DOI: 10.1254/jphs.fmj05002x4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Expression of T-type Ca(2+) current in the ventricle varies during development and in cardiac diseases. The alteration in quantity of two isoforms of T-type Ca(2+) channel genes in the heart, CACNA1G and CACNA1H, contributes to the changes of T-type Ca(2+) channel activity. However, the precise mechanisms governing the transcription of T-type Ca(2+) channel genes remain largely unknown. In this review, we briefly describe our recent finding that a transcriptional repressor named neuron-restrictive silencer factor is a potent regulator of T-type Ca(2+) channel gene expression.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Japan.
| | | | | |
Collapse
|
626
|
Howard MJ. Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 2005; 277:271-86. [PMID: 15617674 DOI: 10.1016/j.ydbio.2004.09.034] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/22/2004] [Accepted: 09/27/2004] [Indexed: 01/17/2023]
Abstract
Neurons share many features in common but are distinguished by expression of phenotypic characteristics that define their specific function, location, or connectivity. One aspect of neuronal fate determination that has been extensively studied is that of neurotransmitter choice. The generation of diversity of neuronal subtypes within the developing nervous system involves integration of extrinsic and intrinsic instructive cues resulting in the expression of a core set of regulatory molecules. This review focuses on mechanisms of growth and transcription factor regulation in the generation of peripheral neural crest-derived neurons. Although the specification and differentiation of noradrenergic neurons are the focus, I have tried to integrate these into a larger picture providing a general roadmap for development of autonomic neurons. There is a core of DNA binding proteins required for the development of sympathetic, parasympathetic, and enteric neurons, including Phox2 and MASH1, whose specificity is regulated by the recruitment of additional transcriptional regulators in a subtype-specific manner. For noradrenergic neurons, the basic helix-loop-helix DNA binding protein HAND2 (dHAND) appears to serve this function. The studies reviewed here support the notion that neurotransmitter identity is closely linked to other aspects of neurogenesis and reveal a molecular mechanism to coordinate expression of pan-neuronal genes with cell type-specific genes.
Collapse
Affiliation(s)
- Marthe J Howard
- Department of Neurosciences, Medical College of Ohio, Toledo, OH 43614, USA.
| |
Collapse
|
627
|
Plaisance V, Niederhauser G, Azzouz F, Lenain V, Haefliger JA, Waeber G, Abderrahmani A. The Repressor Element Silencing Transcription Factor (REST)-mediated Transcriptional Repression Requires the Inhibition of Sp1. J Biol Chem 2005; 280:401-7. [PMID: 15528196 DOI: 10.1074/jbc.m411825200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminal differentiation of neuronal and pancreatic beta-cells requires the specific expression of genes that are targets of an important transcriptional repressor named RE-1 silencing transcription factor (REST). The molecular mechanism by which these REST target genes are expressed only in neuronal and beta-cells and are repressed by REST in other tissues is a central issue in differentiation program of neuronal and beta-cells. Herein, we showed that the transcriptional factor Sp1 was required for expression of most REST target genes both in insulin-secreting cells and neuronal-like cells where REST is absent. Inhibition of REST in a non-beta and a non-neuronal cell model restored the transcriptional activity of Sp1. This activity was also restored by trichostatin A indicating the requirement of histone deacetylases for the REST-mediated silencing of Sp1. Conversely, exogenous introduction of REST blocked Sp1-mediated transcriptional activity. The REST inhibitory effect was mediated through its C-terminal repressor domain, which could interact with Sp1. Taken together, these data show that the inhibition of Sp1 by REST is required for the silencing of its target genes expression in non-neuronal and in non-beta-cells. We conclude that the interplay between REST and Sp1 determines the cell-specific expression of REST target genes.
Collapse
Affiliation(s)
- Valérie Plaisance
- Department of Internal Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
628
|
Westbrook TF, Stegmeier F, Elledge SJ. Dissecting cancer pathways and vulnerabilities with RNAi. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:435-44. [PMID: 16869781 DOI: 10.1101/sqb.2005.70.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The latest generation of molecular-targeted cancer therapeutics has bolstered the notion that a better understanding of the networks governing cancer pathogenesis can be translated into substantial clinical benefits. However, functional annotation exists for only a small proportion of genes in the human genome, raising the likelihood that many cancer-relevant genes and potential drug targets await identification. Unbiased genetic screens in invertebrate organisms have provided substantial insights into signaling networks underlying many cellular and organismal processes. However, such approaches in mammalian cells have been limited by the lack of genetic tools. The emergence of RNA interference (RNAi) as a mechanism to suppress gene expression has revolutionized genetics in mammalian cells and has begun to facilitate decoding of gene functions on a genome scale. Here, we discuss the application of such RNAi-based genetic approaches to elucidating cancer-signaling networks and uncovering cancer vulnerabilities.
Collapse
Affiliation(s)
- T F Westbrook
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
629
|
Sugawara H, Inoue K, Iwata SI, Shimizu T, Yamada K, Mori N, Miyata A. Neural-restrictive silencers in the regulatory mechanism of pituitary adenylate cyclase-activating polypeptide gene expression. ACTA ACUST UNITED AC 2004; 123:9-14. [PMID: 15518887 DOI: 10.1016/j.regpep.2004.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known as a pleiotropic neuropeptide and is present abundantly in central nervous system. During a detailed analysis of the 5'-flanking region of the mouse PACAP gene, we found and characterized two negative regulatory elements, which are homologous to the neural-restrictive silencer element, and are termed neural-restrictive silencer-like elements 1 and 2 (NRSLE1 and NRSLE2). Their sequence and position were significantly conserved among mouse, human, and rat PACAP genes. In the electrophoretic mobility shift assay (EMSA) with nuclear extracts of Swiss-3T3 cells and individual oligonucleotide probes for NRSLE1 and NRSLE2, a specific complex was observed to have the same migration as compared with the NRSE probe of rat type II sodium channel gene (NaII). Furthermore, these complexes were efficiently competed by the unlabeled NaII probe. In the luciferase reporter assay, the reporter gene constructs containing NRSLEs, driven by heterologous SV40 promoter, exhibited repression of luciferase activity almost equal to basal level in Swiss-3T3 cells. In contrast, the repression was not observed in differentiated PC12 cells with NGF. These results suggested that the neural-restrictive silencer system might be involved in the regulatory mechanism of neuron-specific PACAP gene expression.
Collapse
Affiliation(s)
- Hideki Sugawara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | |
Collapse
|
630
|
Oda Y, Muroishi Y, Misawa H, Suzuki S. Comparative study of gene expression of cholinergic system-related molecules in the human spinal cord and term placenta. Neuroscience 2004; 128:39-49. [PMID: 15450352 DOI: 10.1016/j.neuroscience.2004.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2004] [Indexed: 11/25/2022]
Abstract
By reverse transcription-polymerase chain reaction, Southern blot analysis, direct sequencing, and immunohistochemistry, we studied the expression of cholinergic neuronal markers (choline acetyltransferase [ChAT], vesicular acetylcholine transporter [VAChT], and a high-affinity choline transporter [CHT1]), and gene regulatory molecules (repressor element-1 silencing transcription factor/neuron-restrictive silencer factor [REST/NRSF] and CoREST) in the human spinal cord and term placenta, both of which are well known to contain cells synthesizing acetylcholine. H-type, M-type, N2-type, and R-type ChAT mRNAs, VAChT mRNA, and CHT1 mRNA were detected in the spinal cord, but only H-type, M-type, and N2-type ChAT mRNAs, in the term placenta. REST/NRSF and CoREST were detected in the spinal cord and the placenta, but the amounts of both mRNAs were greater in the placenta than in the spinal cord. Further microdissection analyses revealed that the placental trophoblastic cells contained more REST/NRSF and CoREST transcripts than the spinal large motor neurons. Large motor neurons in the anterior horn of the spinal cord were immunohistochemically stained for ChAT and VAChT. In the placenta, stromal fibroblasts, endothelial cells, and trophoblastic cells of the chorionic villi were positively stained with anti-ChAT antibody but not with anti-VAChT antibody. These findings suggest that transcriptions of the R-type ChAT and VAChT mRNAs are coordinately suppressed in the human term placenta, which might be regulated in part by a REST/NRSF complex that binds to a consensus sequence of repressor element 1/neuron-restrictive silencer element (RE1/NRSE) in the 5' region upstream from exon R, whereas transcriptions of the H-type, M-type, and N2-type ChAT mRNAs might be independent of control by RE1/NRSE. It is possible that at least two separate regulatory mechanisms of gene expression are present for the human cholinergic gene locus, which might be selected by different combinations of DNA motifs and binding proteins to function in neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Y Oda
- Pathology Laboratory, ALP Company, Limited, 309 Chikaoka-machi, Kanazawa, Ishikawa 920-8217, Japan.
| | | | | | | |
Collapse
|
631
|
Iwase S, Januma A, Miyamoto K, Shono N, Honda A, Yanagisawa J, Baba T. Characterization of BHC80 in BRAF-HDAC complex, involved in neuron-specific gene repression. Biochem Biophys Res Commun 2004; 322:601-8. [PMID: 15325272 DOI: 10.1016/j.bbrc.2004.07.163] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Indexed: 11/27/2022]
Abstract
BRAF-HDAC complex (BHC) has been shown to contain six components, including BHC80, and to mediate REST-dependent transcriptional repression of neuron-specific genes in non-neuronal cells. In this study, we have examined the functional role(s) of BHC80 in mouse tissues and human cultured cells. Two isoforms of mouse BHC80 were predominantly present in the central nervous system and spermatogenic cells. Human cultured cells also contained two isoforms of BHC80. Immunohistochemical analysis showed the presence of mouse BHC80 in the nucleus of neuronal cells in the hippocampus and cerebellum. The C-terminal region of human BHC80 containing PHD zinc-finger domain was capable of binding directly to each of five other components of BHC, and of organizing BHC mediating transcriptional repression. Moreover, two isoforms of human BHC80 were distinguished from each other by reduced binding to HDAC1 and HDAC2, despite the presence of the PHD finger domain. These results suggest that BHC80 presumably serves as a scaffold protein in BHC in neuronal as well as non-neuronal cells. A possible role of BHC80 in spermatogenesis is also suggested.
Collapse
Affiliation(s)
- Shigeki Iwase
- Graduate School of Life and Environmental Sciences and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
632
|
Su X, Kameoka S, Lentz S, Majumder S. Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol Cell Biol 2004; 24:8018-25. [PMID: 15340064 PMCID: PMC515039 DOI: 10.1128/mcb.24.18.8018-8025.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
REST/NRSF is a transcriptional repressor that acts at the terminal stage of the neuronal differentiation pathway and blocks the transcription of several differentiation genes. REST/NRSF is generally downregulated during induction of neuronal differentiation. The recombinant transcription factor REST-VP16 binds to the same DNA binding site as does REST/NRSF but functions as an activator instead of a repressor and can directly activate the transcription of REST/NRSF target genes. However, it is not known whether REST-VP16 expression is sufficient to cause formation of functional neurons from neural stem cells (NSCs). Here we show that regulated expression of REST-VP16 in a physiologically relevant NSC line growing under cycling conditions converted the cells rapidly to the mature neuronal phenotype. Furthermore, when grown in the presence of retinoic acid, REST-VP16-expressing NSCs activated their target, as well as other differentiation genes that are not their direct target, converting them to the mature neuronal phenotype and enabling them to survive in the presence of mitotic inhibitors, which is a characteristic of mature neurons. In addition, these neuronal cells were physiologically active. These results showed that direct activation of REST/NRSF target genes in NSCs with a single transgene, REST-VP16, is sufficient to cause neuronal differentiation, and the findings suggested that direct activation of genes involved in the terminal stage of differentiation may cause neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Xiaohua Su
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
633
|
Wang X, Kong L, Zhang GR, Sun M, Geller AI. A preproenkephalin-neurofilament chimeric promoter in a helper virus-free herpes simplex virus vector enhances long-term expression in the rat striatum. Neurobiol Dis 2004; 16:596-603. [PMID: 15262272 DOI: 10.1016/j.nbd.2004.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/18/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022] Open
Abstract
Helper virus-free herpes simplex virus (HSV-1) plasmid vectors are an attractive system for gene transfer into neurons in the brain, but promoters that support long-term, neuronal-specific expression are required. Elucidation of general principles that govern long-term expression would likely assist efforts to develop improved promoters. Although expression from many promoters in HSV-1 vectors is unstable, two neuronal subtype-specific promoters, the preproenkephalin (ENK) promoter and the tyrosine hydroxylase (TH) promoter, support long-term expression. We have previously shown that 5' upstream sequences in the TH promoter are required for long-term expression, and addition of these upstream sequences to a neurofilament heavy gene (NF-H) promoter enhances long-term, neuronal-specific expression. The goal of this study was to determine if the upstream sequences from the TH promoter contain a unique element that enhances expression, or if other neuronal promoters also contain sequences that can enhance expression. To this end, we tested 5' upstream sequences in the ENK promoter. We isolated a vector that fuses upstream sequences from the ENK promoter to the NF-H promoter. This vector supported expression in the striatum for 2 months after gene transfer, the longest time point evaluated. Expression was neuronal specific. As ENK and TH are a peptide neurotransmitter and a classical neurotransmitter biosynthetic enzyme, respectively, these results suggest that a significant number of promoters for neurotransmitter biosynthetic genes may contain elements that can enhance expression from HSV-1 vectors. The strategy of using upstream sequences from neuronal subtype-specific promoters to enhance expression from heterologous promoters is discussed.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, West Roxbury, MA 02132, USA
| | | | | | | | | |
Collapse
|
634
|
Kim CS, Hwang CK, Choi HS, Song KY, Law PY, Wei LN, Loh HH. Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. J Biol Chem 2004; 279:46464-73. [PMID: 15322094 DOI: 10.1074/jbc.m403633200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mu opioid receptor (MOR) is expressed in the central nervous system and specific cell lines with varying expression levels perhaps playing important roles. One of the neuronal-specific transcription regulators, neuron-restrictive silencer factor (NRSF), has been shown to repress the expression of neuron-specific genes in non-neuronal cells. However, we showed here that the neuron-restrictive silencer element (NRSE) of MOR functions as a critical regulator to repress the MOR gene expression in specific neuronal cells depending on NRSF expression level. Using co-transfection studies, we showed that the NRSE of the MOR promoter is functional in NRSF-positive cells (NS20Y and HeLa) but not in NRSF-negative cells (PC12). NRSF binds to the NRSE of the MOR gene in a sequence-specific manner confirmed by supershift and chromatin immunoprecipitation assays, respectively. The suppression of NRSF activity with either trichostatin A or a dominant-negative NRSF induced MOR promoter activity and transcription of the MOR gene. When the NRSF was disrupted in NS20Y and HeLa cells using small interfering RNA, the transcription of the endogenous target MOR gene increased significantly. This provides direct evidence the role of NRSF in the cells and also indicates that NRSF expression is regulated by post-translational modification in neuronal NMB cells. Our data suggested that NRSF can function as a repressor of MOR transcription in specific cells, via a mechanism dependent on the MOR NRSE.
Collapse
Affiliation(s)
- Chun Sung Kim
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
635
|
Ma L, Song L, Radoi GE, Harrison NL. Transcriptional regulation of the mouse gene encoding the alpha-4 subunit of the GABAA receptor. J Biol Chem 2004; 279:40451-61. [PMID: 15265862 DOI: 10.1074/jbc.m406827200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid type A receptors (GABAA-Rs) mediate fast inhibitory synaptic transmission in the brain. The alpha4 subunit of the GABAA-R confers distinct pharmacological properties on the receptor and its expression pattern exhibits plasticity in response to physiological and pharmacological stimuli, including withdrawal from progesterone and alcohol. We have analyzed the promoter region of the mouse GABRA4 gene that encodes the alpha4 subunit and found that the promoter has multiple transcriptional initiation sites and lacks a TATA box. The minimal promoter for GABRA4 spans the region between -444 to -19 bp relative to the coding ATG and shows high activity in cultured mouse cortical neurons. Both Sp3 and Sp4 transcription factors can interact with the two Sp1 binding sites within the minimal promoter and are critical for maximal activity of the promoter in neurons.
Collapse
Affiliation(s)
- Limei Ma
- Department of Anesthesiology, Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
636
|
Kim MY, Ahn KY, Lee SM, Koh JT, Chun BJ, Bae CS, Lee KS, Kim KK. The promoter of brain-specific angiogenesis inhibitor 1-associated protein 4 drives developmentally targeted transgene expression mainly in adult cerebral cortex and hippocampus. FEBS Lett 2004; 566:87-94. [PMID: 15147874 DOI: 10.1016/j.febslet.2004.03.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 03/26/2004] [Indexed: 11/25/2022]
Abstract
Restricting transgene expression to specific cell types and maintaining long-term expression are major goals for gene therapy. Previously, we cloned brain-specific angiogenesis inhibitor 1-associated protein 4 (BAI1-AP4), a novel brain-specific protein that interacts with BAI1, and found that it was developmentally upregulated in the adult brain. In this report, we isolated 5 kb of the 5' upstream sequence of the mouse BAI1-AP4 gene and analyzed its promoter activity. Functional analyses demonstrated that an Sp1 site was the enhancer, and the region containing the transcription initiation site and an AP2-binding site was the basal promoter. We examined the ability of the BAI1-AP4 promoter to drive adult brain-specific expression by using it to drive lacZ expression in transgenic (TG) mice. Northern blot analyses showed a unique pattern of beta-galactosidase expression in TG brain, peaking at 1 month after birth, like endogenous BAI1-AP4. Histological analyses demonstrated the same localization and developmental expression of beta-galactosidase and BAI1-AP4 in most neurons of the cerebral cortex and hippocampus. Our data indicate that TG mice carrying the BAI1-AP4 promoter could be a valuable model system for region-specific brain diseases.
Collapse
Affiliation(s)
- Mi-Young Kim
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hak-Dong 5, Dong-Ku, Kwangju 501-190, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
637
|
Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Göttgens B, Buckley NJ. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A 2004; 101:10458-63. [PMID: 15240883 PMCID: PMC478591 DOI: 10.1073/pnas.0401827101] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The completion of whole genome sequencing projects has provided the genetic instructions of life. However, whereas the identification of gene coding regions has progressed, the mapping of transcriptional regulatory motifs has moved more slowly. To understand how distinct expression profiles can be established and maintained, a greater understanding of these sequences and their trans-acting factors is required. Herein we have used a combined in silico and biochemical approach to identify binding sites [repressor element 1/neuron-restrictive silencer element (RE1/NRSE)] and potential target genes of RE1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) within the human, mouse, and Fugu rubripes genomes. We have used this genome-wide analysis to identify 1,892 human, 1,894 mouse, and 554 Fugu RE1/NRSEs and present their location and gene linkages in a searchable database. Furthermore, we identified an in vivo hierarchy in which distinct subsets of RE1/NRSEs interact with endogenous levels of REST/NRSF, whereas others function as bona fide transcriptional control elements only in the presence of elevated levels of REST/NRSF. These data show that individual RE1/NRSE sites interact differentially with REST/NRSF within a particular cell type. This combined bioinformatic and biochemical approach serves to illustrate the selective manner in which a transcription factor interacts with its potential binding sites and regulates target genes. In addition, this approach provides a unique whole-genome map for a given transcription factor-binding site implicated in establishing specific patterns of neuronal gene expression.
Collapse
Affiliation(s)
- Alexander W Bruce
- Schools of Biochemistry and Microbiology and Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
638
|
Murai K, Naruse Y, Shaul Y, Agata Y, Mori N. Direct interaction of NRSF with TBP: chromatin reorganization and core promoter repression for neuron-specific gene transcription. Nucleic Acids Res 2004; 32:3180-9. [PMID: 15197246 PMCID: PMC434424 DOI: 10.1093/nar/gkh550] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neural restrictive silencer factor, NRSF (also known as REST) binds a neuronal cell type selective silencer element to mediate transcriptional repression of neuron-specific genes in non-neuronal cells and neuronal progenitors. Two repression domains (RD-1 and RD-2) occur in its N-terminal and C-terminal regions, respectively. RD-1 recruits mSin3 and HDAC, thereby inhibiting transcription by inducing reorganization of the chromatin structure. However, little is known about how such global repression becomes promoter-specific repression or whether the NRSF-HDAC complex can interact with transcriptional core factors at each specific promoter. Here we show evidence that NRSF interacts with core promoter factors, including TATA-binding protein (TBP). The NRSF-TBP interaction occurred between the linear segments of the N- and C-terminal-most portions of NRSF and the C-terminal half of TBP. A RD-2 mutant of NRSF lost the TBP-binding activity and was unable to repress transcription at an exogenously introduced TGTA promoter. These results indicate that the direct interaction between the NRSF C-terminal domain and TBP is essential for the C-terminal repression mechanism of NRSF. Thus, the RD-1 and RD-2 repression domains of NRSF utilize both chromatin-dependent and chromatin-independent mechanisms, which may be segregated at various stages of neural development and modulation.
Collapse
Affiliation(s)
- Kiyohito Murai
- Department of Molecular Genetics, National Institute for Longevity Sciences, Gengo 36-3, Morioka, Oobu, Aichi 474-8522, Japan
| | | | | | | | | |
Collapse
|
639
|
Miyata A, Sugawara H, Iwata SI, Shimizu T, Kangawa K. [The regulatory mechanism for neuron specific expression of PACAP gene]. Nihon Yakurigaku Zasshi 2004; 123:235-42. [PMID: 15056938 DOI: 10.1254/fpj.123.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a pleiotropic neuropeptide, is present abundantly in the central nervous system. In the 5'-flanking region of the PACAP gene, we found and characterized two negative regulatory elements, which are homologous to the neural-restrictive silencer element (NRSE). Their sequence and position were significantly conserved among mouse, human, and rat PACAP genes. NRSE is a crucial negative-acting DNA regulatory element for neuron-specific gene expression. NRSE acts through the transcription factor known as neural-restrictive silencer factor (NRSF). In non-neuronal cells, NRSF suppresses the expression of neuron-specific genes. On the other hand, in neuronal cells, NRnV, a NRSF truncated form, repress their expressions in a dominant negative manner. The electrophoretic mobility shift assay with 3T3 cells extract demonstrated the identical complexes among NRSLE-1, NRSLE2, and the NRSE of rat type II sodium channel gene. In the luciferase reporter assay, NRSLEs suppressed SV40 promoter activity in 3T3 cells, but not in PC12 cells. RT-PCR analysis revealed that PACAP and NRnV mRNAs are expressed in neuronal cells (differentiated PC12), but not in non-neuronal cells (3T3 or C6). These results suggested that the NRSE-NRSF system might be involved in the regulatory mechanism of neuron-specific expression of the PACAP gene.
Collapse
Affiliation(s)
- Atsuro Miyata
- Department of Pharmacology, Postgraduate School of Medical and Dental Sciences, Kagoshima University, Japan.
| | | | | | | | | |
Collapse
|
640
|
Toshiyuki N, Ichiro M. Molecular mechanisms regulating cell type specific expression of BMP/RA Inducible Neural-specific Protein-1 that suppresses cell cycle progression: roles of NRSF/REST and DNA methylation. ACTA ACUST UNITED AC 2004; 125:47-59. [PMID: 15193422 DOI: 10.1016/j.molbrainres.2004.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
We have recently identified a novel protein family, BMP/RA-Inducible Neural-specific Protein (BRINP) including BRINP1, 2, 3. Among BRINP family genes, BRINP1 is most highly and widely expressed in various regions of the mammalian nervous system, although its expression is also found in some non-neural tissues and cell types at low levels. We have previously suggested that BRINPs are involved in the suppression of cell-cycle progression in post-mitotic neuronal cells. In the present study, we investigated the transcriptional mechanisms regulating the cell type-specific expression of BRINP1. First, bisulfite analysis of the methylation status revealed hypermethylation of the CpG island surrounding BRINP1 exon 1 in a non-neural cell line, NIH 3T3, which expresses low but detectable levels of BRINP1, while methylation levels of the BRINP1 CpG island in either non-neural or neural tissues are very low. Treatment of NIH 3T3 cells with a demethylating agent, 5-azacytidine, upregulated the expression of BRINP1 remarkably. Then, we analyzed the promoter activity of 7 kb region surrounding BRINP1 exon 1 in neuronal and non-neuronal cells. Consequently, we found a basic promoter region and a non-neural-specific silencing region which contains neuron-restrictive silencing element/repressor element 1 (NRSE/RE-1) like element (BRINP1-NRSE). Mutation of BRINP1-NRSE recovered the BRINP1 promoter activity in non-neuronal cells. Furthermore, proteins in nuclear extract from non-neural cells bound to the BRINP1-NRSE. These results strongly suggest that BRINP1-NRSE determines neural-specific expression of BRINP1, while hypermethylation of the BRINP1-CpG island suppresses BRINP1 expression in NIH 3T3 cells.
Collapse
Affiliation(s)
- Nakatani Toshiyuki
- Division of Innovative Research, Creative Research Initiative Sousei, Hokkaido University Sapporo 001-0020, Japan
| | | |
Collapse
|
641
|
Boda B, Mas C, Giudicelli C, Nepote V, Guimiot F, Levacher B, Zvara A, Santha M, LeGall I, Simonneau M. Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells. Eur J Hum Genet 2004; 12:729-37. [PMID: 15162126 DOI: 10.1038/sj.ejhg.5201217] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive disorder involving the loss of motor neurons from the spinal cord. Homozygous absence of the survival of motor neuron 1 gene (SMN1) is the main cause of SMA, but disease severity depends primarily on the number of SMN2 gene copies. SMN protein levels are high in normal spinal cord and much lower in the spinal cord of SMA patients, suggesting neuron-specific regulation for this ubiquitously expressed gene. We isolated genomic DNA from individuals with SMN1 or SMN2 deletions and sequenced 4.6 kb of the 5' upstream regions of the these. We found that these upstream regions, one of which is telomeric and the other centromeric, were identical. We investigated the early regulation of SMN expression by transiently transfecting mouse embryonic spinal cord and fibroblast primary cultures with three transgenes containing 1.8, 3.2 and 4.6, respectively, of the SMN promoter driving beta-galactosidase gene expression. The 4.6 kb construct gave reporter gene expression levels five times higher in neurons than in fibroblasts, due to the combined effects of a general enhancer and a non-neuronal cell silencer. The differential expression observed in neurons and fibroblasts suggests that the SMN genes play a neuron-specific role during development. An understanding of the mechanisms regulating SMN promoter activity may provide new avenues for the treatment of SMA.
Collapse
Affiliation(s)
- Bernadett Boda
- Neurogénétique/INSERM E9935, Hôpital Robert Debré, 48 Boulevard Sérurier, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
642
|
Abderrahmani A, Niederhauser G, Plaisance V, Roehrich ME, Lenain V, Coppola T, Regazzi R, Waeber G. Complexin I regulates glucose-induced secretion in pancreatic β-cells. J Cell Sci 2004; 117:2239-47. [PMID: 15126625 DOI: 10.1242/jcs.01041] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neuronal-specific protein complexin I (CPX I) plays an important role in controlling the Ca2+-dependent neurotransmitter release. Since insulin exocytosis and neurotransmitter release rely on similar molecular mechanisms and that pancreatic β-cells and neuronal cells share the expression of many restricted genes, we investigated the potential role of CPX I in insulin-secreting cells. We found that pancreatic islets and several insulin-secreting cell lines express high levels of CPX I. The β-cell expression of CPX I is mediated by the presence of a neuron restrictive silencer element located within the regulatory region of the gene. This element bound the transcriptional repressor REST, which is found in most cell types with the exception of mature neuronal cells and β-cells. Overexpression of CPX I or silencing of the CPX I gene (Cplx1) by RNA interference led to strong impairment in β-cell secretion in response to nutrients such as glucose, leucine and KCl. This effect was detected both in the early and the sustained secretory phases but was much more pronounced in the early phase. We conclude that CPX I plays a critical role in β-cells in the control of the stimulated-exocytosis of insulin.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Department of Internal Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
643
|
Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 2004; 116:779-93. [PMID: 15035981 DOI: 10.1016/s0092-8674(04)00248-x] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 02/11/2004] [Accepted: 02/17/2004] [Indexed: 11/27/2022]
Abstract
Discovering the molecular mechanisms that regulate neuron-specific gene expression remains a central challenge for CNS research. Here, we report that small, noncoding double-stranded (ds) RNAs play a critical role in mediating neuronal differentiation. The sequence defined by this dsRNA is NRSE/RE1, which is recognized by NRSF/REST, known primarily as a negative transcriptional regulator that restricts neuronal gene expression to neurons. The NRSE dsRNA can trigger gene expression of neuron-specific genes through interaction with NRSF/REST transcriptional machinery, resulting in the transition from neural stem cells with neuron-specific genes silenced by NRSF/REST into cells with neuronal identity that can express neuronal genes. The mechanism of action appears to be mediated through a dsRNA/protein interaction, rather than through siRNA or miRNA. The discovery of small modulatory dsRNAs (smRNAs) extends the important contribution of noncoding RNAs as key regulators of cell behavior at both transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Tomoko Kuwabara
- Laboratory of Genetics, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
644
|
Abderrahmani A, Niederhauser G, Plaisance V, Haefliger JA, Regazzi R, Waeber G. Neuronal traits are required for glucose-induced insulin secretion. FEBS Lett 2004; 565:133-8. [PMID: 15135066 DOI: 10.1016/j.febslet.2004.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/01/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The transcriptional repressor RE1 silencer transcription factor (REST) is an important factor that restricts some neuronal traits to neurons. Since these traits are also present in pancreatic beta-cells, we evaluated their role by generating a model of insulin-secreting cells that express REST. The presence of REST led to a decrease in expression of its known target genes, whereas insulin expression and its cellular content were conserved. As a consequence of REST expression, the capacity to secrete insulin in response to mitochondrial fuels, a particularity of mature beta-cells, was impaired. These data provide evidence that REST target genes are required for an appropriate glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Department of Internal Medicine, University of Lausanne, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
645
|
Watanabe Y, Kameoka S, Gopalakrishnan V, Aldape KD, Pan ZZ, Lang FF, Majumder S. Conversion of myoblasts to physiologically active neuronal phenotype. Genes Dev 2004; 18:889-900. [PMID: 15078815 PMCID: PMC395848 DOI: 10.1101/gad.1179004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repressor element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress several terminal neuronal differentiation genes by binding to a specific DNA sequence (RE1/neuron-restrictive silencer element [NRSE]) present in their regulatory regions. REST-VP16 binds to the same RE1/NRSE, but activates these REST/NRSF target genes. However, it is unclear whether REST-VP16 expression is sufficient to cause formation of functional neurons either from neural stem cells or from heterologous stem cells. Here we show that the expression of REST-VP16 in myoblasts grown under muscle differentiation conditions blocked entry into the muscle differentiation pathway, countered endogenous REST/NRSF-dependent repression, activated the REST/NRSF target genes, and, surprisingly, activated other neuronal differentiation genes and converted the myoblasts to a physiologically active neuronal phenotype. Furthermore, in vitro differentiated neurons produced by REST-VP16-expressing myoblasts, when injected into mouse brain, survived, incorporated into the normal brain, and did not form tumors. This is the first instance in which myoblasts were converted to a neuronal phenotype. Our results suggest that direct activation of REST/NRSF target genes with a single transgene, REST-VP16, is sufficient to activate other terminal neuronal differentiation genes and to override the muscle differentiation pathways, and they suggest that this approach provides an efficient way of triggering neuronal differentiation in myoblasts and possibly other stem cells.
Collapse
Affiliation(s)
- Yumi Watanabe
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
646
|
Lunyak VV, Prefontaine GG, Rosenfeld MG. REST and Peace for the Neuronal-Specific Transcriptional Program. Ann N Y Acad Sci 2004; 1014:110-20. [PMID: 15153425 DOI: 10.1196/annals.1294.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite a genetic homogeneity, cells in multicellular organisms are structurally and functionally heterogeneous. The diversity of cell phenotypes exists due to differential transcriptional programs precisely regulated by specific nuclear factors and induced upon differentiation. The differences in gene expression programs arise during development and become heritable during cell proliferation. Over the last few years, research has focused on three molecular mechanisms that mediate epigenetic phenomena: DNA methylation, histone modification, and formation of specialized nuclear domains or territories. All of these processes are dynamic and tightly linked to the organism's development. Here we review advances in understanding the significance of epigenetic mechanisms in the establishment and maintenance of the specialized transcriptional program. We project the accumulated knowledge onto the delineation of the molecular mechanisms by which central nervous system-specific genes are expressed in the nervous system and repressed in other tissues.
Collapse
Affiliation(s)
- Victoria V Lunyak
- Howard Hughes Medical Institute, Department of Molecular Medicine, and University of California, San Diego, School of Medicine, La Jolla California 92093-0648, USA
| | | | | |
Collapse
|
647
|
Shimojo M, Hersh LB. Regulation of the cholinergic gene locus by the repressor element-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF). Life Sci 2004; 74:2213-25. [PMID: 15017977 DOI: 10.1016/j.lfs.2003.08.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cholinergic gene locus is comprised of two genes, the choline acetyltransferase gene and the vesicular acetylcholine transporter gene. The vesicular acetylcholine transporter gene is located within the first intron of the choline acetyltransferase gene. This arrangement permits coordinate regulation of the locus. Protein kinase A regulates expression of the cholinergic gene locus in PC12 cells. This regulation was found to be dependent on the presence of a 21-bp DNA sequence known as the repressor element- (RE- 1)/neuron-restrictive silencer element(NRSE). Repressor element-I silencing transcription factor (REST)/ neuron-restrictive silencer factor (NRSF), which binds to the RE-I/NRSE, is a zinc finger containing transcriptional repressor that blocks the expression of many neuronal RE-I/NRSE containing genes in nonneuronal cells. However, REST/NRSF expression has also been observed in neurons as well as the PC 12 cell line used in these studies. REST/NRSF truncated isoforms were expressed in neuronal cells, suggesting they also function in regulating neuronal gene expression. A study of REST4, one of the REST/NRSF isoforms, suggests that it regulates transcription of the cholinergic gene locus by blocking the repressor activity of REST/NRSF. Protein kinase A regulation of the cholinergic gene locus in PC 12 cells can thus be attributed, at least in part, to increased synthesis of REST4, which in turn derepresses the repressor activity of REST/NRSF.
Collapse
Affiliation(s)
- Masahito Shimojo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
648
|
Lemonde S, Rogaeva A, Albert PR. Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. J Neurochem 2004; 88:857-68. [PMID: 14756806 DOI: 10.1046/j.1471-4159.2003.02223.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of serotonin (5-HT)1A receptor expression in brain is implicated in mood disorders such as depression and anxiety. Transcriptional activity of the human 5-HT1A receptor gene was strongly repressed by a negative regulatory region containing a consensus repressor element-1 (RE-1) and two copies of the dual repressor element (DRE) identified in the rat 5-HT1A receptor gene. REST/NRSF, a silencer of neuronal genes, bound the 5-HT1A RE-1 and repressed the 5-HT1A promoter. Inactivation of RE-1 completely abolished REST-mediated repression, but resulted in only partial (15-50%) de-repression of basal 5-HT1A promoter activity. The human 5-HT1A DRE sequences bound specifically to the novel repressor Freud-1 (5'repressor element under dual repression binding protein-1) and conferred repressor activity at 5-HT1A or SV40 promoters. In 5-HT1A-negative cells [L6, human embryonic kidney (HEK) 293], the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) abolished repression mediated by both RE-1/REST and DRE/Freud-1, and induced almost complete de-repression of the 5-HT1A gene. By contrast, in 5-HT1A-expressing neuronal cells (RN46A, SN-48) TSA blocked RE-1/REST repression, but did not affect DRE/Freud-1-mediated repression. Thus in contrast to REST, Freud-1 mediates HDAC-independent repression of the 5-HT1A receptor promoter in neuronal 5-HT1A-positive cells, suggesting that HDAC recruitment might influence neuron-specific gene expression by further silencing expression in non-neuronal tissue.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Carrier Proteins
- Cell Line
- Cloning, Molecular/methods
- Dose-Response Relationship, Drug
- Electrophoretic Mobility Shift Assay/methods
- Embryo, Mammalian
- Enhancer Elements, Genetic
- Gene Expression Regulation/drug effects
- Gene Silencing/drug effects
- Humans
- Hydroxamic Acids/pharmacology
- In Vitro Techniques
- Kidney
- Luciferases/metabolism
- Molecular Sequence Data
- Myoblasts/drug effects
- Neurons/drug effects
- Neurons/metabolism
- Promoter Regions, Genetic
- Protein Synthesis Inhibitors/pharmacology
- Rats
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repressor Proteins/metabolism
- Transcription Factors/metabolism
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Sylvie Lemonde
- Ottawa Health Research Institute, Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | | |
Collapse
|
649
|
Hamelink C, Hahm SH, Huang H, Eiden LE. A restrictive element 1 (RE-1) in the VIP gene modulates transcription in neuronal and non-neuronal cells in collaboration with an upstream tissue specifier element. J Neurochem 2004; 88:1091-101. [PMID: 15009665 DOI: 10.1046/j.1471-4159.2003.02241.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vasoactive intestinal peptide (VIP) gene has been studied extensively as a prototype neuronal gene containing multiple cis-active elements that confer responsiveness to cell lineage, neurotrophic, and activity-dependent intrinsic and extrinsic cues. However, reporter genes containing the presumptive complete regulatory region 5' to the start of transcription do not confer tissue-specific gene expression in vivo. We therefore sought cis-regulatory elements downstream of the transcriptional start that might confer additional tissue-specific and tissue-restrictive properties to the VIP transcriptional unit. We report here a repressor element, similar to the canonical restrictive element-1 (RE-1), located within the first non-coding exon of the human VIP gene. The ability of this element to regulate VIP reporter gene expression in neuroblastoma and fibroblastic cells was examined. Endogenous VIP expression is high in SH-EP neuroblastoma cells, low but inducible in SH-SY5Y cells, and absent in HeLa cells. Endogenous RE-1 silencer factor (REST) expression was highest in SH-EP and HeLa cells, and significantly lower in SH-SY5Y cells. Transient transfection of a VIP reporter gene containing a mutated RE-1 sequence revealed an RE-1-dependent regulation of VIP gene expression in all three cell types, with regulation greatest in cells (SH-EP, HeLa) with highest levels of REST expression. Serial truncation of the VIP reporter gene further revealed a specific interaction between the RE-1 and a tissue-specifier element located 5 kb upstream in the VIP gene. Thus, REST can regulate VIP gene expression in both neuroblastic and non-neuronal cells, but requires coupling to the upstream tissue specifier element.
Collapse
Affiliation(s)
- Carol Hamelink
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIMH, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
650
|
Kuwahara K, Saito Y, Takano M, Arai Y, Yasuno S, Nakagawa Y, Takahashi N, Adachi Y, Takemura G, Horie M, Miyamoto Y, Morisaki T, Kuratomi S, Noma A, Fujiwara H, Yoshimasa Y, Kinoshita H, Kawakami R, Kishimoto I, Nakanishi M, Usami S, Saito Y, Harada M, Nakao K. NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function. EMBO J 2004; 22:6310-21. [PMID: 14633990 PMCID: PMC291842 DOI: 10.1093/emboj/cdg601] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reactivation of the fetal cardiac gene program is a characteristic feature of hypertrophied and failing hearts that correlates with impaired cardiac function and poor prognosis. However, the mechanism governing the reversible expression of fetal cardiac genes remains unresolved. Here we show that neuron-restrictive silencer factor (NRSF), a transcriptional repressor, selectively regulates expression of multiple fetal cardiac genes, including those for atrial natriuretic peptide, brain natriuretic peptide and alpha-skeletal actin, and plays a role in molecular pathways leading to the re-expression of those genes in ventricular myocytes. Moreover, transgenic mice expressing a dominant-negative mutant of NRSF in their hearts exhibit dilated cardiomyopathy, high susceptibility to arrhythmias and sudden death. We demonstrate that genes encoding two ion channels that carry the fetal cardiac currents I(f) and I(Ca,T), which are induced in these mice and are potentially responsible for both the cardiac dysfunction and the arrhythmogenesis, are regulated by NRSF. Our results indicate NRSF to be a key transcriptional regulator of the fetal cardiac gene program and suggest an important role for NRSF in maintaining normal cardiac structure and function.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|