601
|
Bardwell L, Cook JG, Zhu-Shimoni JX, Voora D, Thorner J. Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins. Proc Natl Acad Sci U S A 1998; 95:15400-5. [PMID: 9860980 PMCID: PMC28054 DOI: 10.1073/pnas.95.26.15400] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1998] [Accepted: 10/21/1998] [Indexed: 11/18/2022] Open
Abstract
Kss1, a yeast mitogen-activated protein kinase (MAPK), in its unphosphorylated (unactivated) state binds directly to and represses Ste12, a transcription factor necessary for expression of genes whose promoters contain filamentous response elements (FREs) and genes whose promoters contain pheromone response elements (PREs). Herein we show that two nuclear proteins, Dig1 and Dig2, are required cofactors in Kss1-imposed repression. Dig1 and Dig2 cooperate with Kss1 to repress Ste12 action at FREs and regulate invasive growth in a naturally invasive strain. Kss1-imposed Dig-dependent repression of Ste12 also occurs at PREs. However, maintenance of repression at PREs is more dependent on Dig1 and/or Dig2 and less dependent on Kss1 than repression at FREs. In addition, derepression at PREs is more dependent on MAPK-mediated phosphorylation than is derepression at FREs. Differential utilization of two types of MAPK-mediated regulation (binding-imposed repression and phosphorylation-dependent activation), in combination with distinct Ste12-containing complexes, contributes to the mechanisms by which separate extracellular stimuli that use the same MAPK cascade can elicit two different transcriptional responses.
Collapse
Affiliation(s)
- L Bardwell
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
602
|
Abstract
Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P < 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1-14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10-50 microM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular pathophysiology associated with diabetic microangiopathy.
Collapse
Affiliation(s)
- K Kamal
- Department of Surgery (Vascular), Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
603
|
Abstract
The transcription factor TFII-I binds to distinct promoter sequences including an initiator element in several eukaryotic genes. Here we demonstrate that TFII-I is phosphorylated in vivo at serine/threonine and tyrosine residues in the absence of any apparent extracellular signals. This "basal" phosphorylation of TFII-I is not required and does not affect its specific DNA binding, but is critical for its in vitro transcriptional properties via the Vbeta promoter. To better assess the functional role of phosphorylation in regulating TFII-I activity, we focused on tyrosine phosphorylation of TFII-I. Ectopically expressed recombinant TFII-I, like its native counterpart, exhibits tyrosine phosphorylation in the absence of distinct extracellular signals. More important, mutation of a potential consensus tyrosine phosphorylation site in TFII-I leads to severe reduction in its basal transcriptional activation of the Vbeta promoter in vivo. Taken together, these data suggest that tyrosine phosphorylation of TFII-I is important for its initiator-dependent transcriptional activity.
Collapse
Affiliation(s)
- C D Novina
- Department of Pathology and the Program in Immunology, Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
604
|
Liu YZ, Chrivia JC, Latchman DS. Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44(MAPK) cascade. J Biol Chem 1998; 273:32400-7. [PMID: 9829969 DOI: 10.1074/jbc.273.49.32400] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP response element-binding protein-binding protein (CBP) functions as a transcriptional coactivator through interactions with a number of cellular and viral transcription factors. It has been suggested to play a central integrative role in gene regulation. However, little is known about signal cascades that can regulate CBP activity. Here we show that either nerve growth factor (NGF) or cAMP treatment led to enhanced activity of CBP in PC12 cells. The C-terminal glutamine-rich activation domain of CBP was shown to be responsible for induction by NGF and cAMP. NGF-induced enhancement of CBP activity was also observed in protein kinase A (PKA)-deficient PC12 cells, whereas cAMP failed to increase the transcriptional activity of CBP in these cells. Moreover, the specific PKA inhibitor H-89 blocked cAMP-induced but not NGF-induced up-regulation of CBP activity. The up-regulation of CBP transcriptional activity in response to NGF was, however, prevented by the specific inhibitor of mitogen-activated protein kinase (p42/44(MAPK)) activation, PD98059, which had no effect on the up-regulation induced by cyclic AMP, indicating that activation of the mitogen-activated protein kinase signal pathway is specifically involved in the NGF-induced activation of CBP. In addition, expression of a dominant-negative interfering mutant of p42/44(MAPK) can prevent the NGF-mediated induction of the CBP activity, whereas expression of a p42/44(MAPK) constitutively active mutant can enhance the transcriptional activity of CBP. These data indicate that activation of the p42/p44(MAPK) cascade mediates the up-regulation of the transcriptional activity of CBP by NGF, whereas the similar up-regulation induced by cyclic AMP is mediated by PKA activation.
Collapse
Affiliation(s)
- Y Z Liu
- Department of Molecular Pathology, University College London, 46 Cleveland Street, London W1P 6DB, United Kingdom
| | | | | |
Collapse
|
605
|
Abstract
New optical assay methods promise to accelerate the use of living cells in screens for drug discovery. Most of these methods employ either fluorescent or luminescent read-outs and allow cell-based assays for most targets, including receptors, ion channels and intracellular enzymes. Furthermore, genetically encoded probes offer the possibility of custom-engineered biosensors for intracellular biochemistry, specifically localized targets, and protein-protein interactions.
Collapse
Affiliation(s)
- J E González
- Aurora Biosciences Corp 11010 Torreyana Road San Diego CA 92121 USA
| | | |
Collapse
|
606
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1064] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
607
|
Abstract
Extracellular signals are transduced to the nucleus through respective signal transduction pathways. Evidence in animals and yeast indicates the importance of regulated nuclear targeting in these processes. Although little is known about plants in this regard, some plant signaling factors have recently been shown to translocate to the nucleus upon receipt of a signal.
Collapse
Affiliation(s)
- A Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan.
| |
Collapse
|
608
|
Owens GK. Molecular control of vascular smooth muscle cell differentiation. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:623-35. [PMID: 9887984 DOI: 10.1111/j.1365-201x.1998.tb10706.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in the differentiated state of the vascular smooth muscle cell (SMC) including enhanced growth responsiveness, altered lipid metabolism, and increased matrix production are known to play a key role in development of atherosclerotic disease. As such, there has been extensive interest in understanding the molecular mechanisms and factors that regulate differentiation of vascular SMC, and how this regulation might be disrupted in vascular disease. Key questions include determination of mechanisms that control the coordinate expression of genes required for the differentiated function of the smooth muscle cell, and determination as to how these regulatory processes are influenced by local environmental cues known to be important to control of smooth muscle differentiation. Of particular interest, a number of common cis regulatory elements including highly conserved CArG [CC(A/T)6GG] motifs or CArG-like motifs and a TGF beta control element have been identified in the promoters of virtually all smooth muscle differentiation marker genes characterized to date including smooth muscle alpha-actin, smooth muscle myosin heavy chain, telokin, and SM22 alpha and shown to be required for expression of these genes both in vivo and in vitro. In addition, studies have identified a number of trans factors that interact with these cis elements, and shown how the expression or activity of these factors is modified by local environmental cues such as contractile agonists that are known to influence differentiation of smooth muscle.
Collapse
Affiliation(s)
- G K Owens
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville 22908, USA
| |
Collapse
|
609
|
|
610
|
Abstract
The recently identified family of Smad proteins has given insight in the understanding of how members of the transforming growth factor-beta (TGF-beta) family relay their signal to the nucleus. Besides Smad proteins, G proteins and MAPKs are also involved in the downstream signaling of TGF-beta family members. The identification of elements that function downstream in the TGF-beta signaling pathway and the fact that these downstream players can interact with the signaling cascade of other growth factors, may give insight into the diverse biological responses evoked by the TGF-beta family members.
Collapse
Affiliation(s)
- J A Visser
- Department of Endocrinology and Reproduction, Faculty of Medicine and Health Sciences, Erasmus University, Rotterdam, Netherlands.
| | | |
Collapse
|
611
|
Pierrat B, Correia JS, Mary JL, Tomás-Zuber M, Lesslauer W. RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). J Biol Chem 1998; 273:29661-71. [PMID: 9792677 DOI: 10.1074/jbc.273.45.29661] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel ribosomal S6 kinase (RSK) family member, RSK-B, was identified in a p38alphaMAPK-baited intracellular interaction screen. RSK-B presents two catalytic domains typical for the RSK family. The protein kinase C-like N-terminal and the calcium/calmodulin kinase-like C-terminal domains both contain conserved ATP-binding and activation consensus sequences. RSK-B is a p38alphaMAPK substrate, and activated by p38alphaMAPK and, more weakly, by ERK1. RSK-B phosphorylates the cAMP response element-binding protein (CREB) and c-Fos peptides. In intracellular assays, RSK-B drives cAMP response element- and AP1-dependent reporter expression. RSK-B locates to the cell nucleus and co-translocates p38alphaMAPK. In conclusion, RSK-B is a novel CREB kinase under dominant p38alphaMAPK control, also phosphorylating additional substrates.
Collapse
Affiliation(s)
- B Pierrat
- Department of Preclinical Research, Central Nervous System Diseases, F. Hoffmann-LaRoche Ltd., CH-4070 Basel, Switzerland
| | | | | | | | | |
Collapse
|
612
|
Ostrowski J, Trzeciak L, Kołodziejski J, Bomsztyk K. Increased constitutive activity of mitogen-activated protein kinase and renaturable 85 kDa kinase in human-colorectal cancer. Br J Cancer 1998; 78:1301-6. [PMID: 9823970 PMCID: PMC2063184 DOI: 10.1038/bjc.1998.675] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Protein kinases play a key role in intracellular signalling, participating at multiple levels along the transduction cascades that trigger mitogenic response. Because protein kinases are involved in mitogenic pathways, they are likely to play a role in the abnormal proliferation of malignant cells. In this study we compared activity of mitogen-activated protein (MAP) kinase and several renaturable kinases in homogenates of 30 surgically resected colorectal cancers and their adjacent normal tissues. Using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and membrane autophosphorylation assay on homogenates obtained from normal colon mucosa and adenocarcinoma, we identified at least four renaturable kinases (50, 55, 85, 200 kDa). Compared with adjacent tissue, in most of the cancer samples only the 85-kDa kinase exhibited a higher level of autophosphorylation activity than those in normal matched tissue (P < 0.001). Moreover, the 85-kDa kinase from nearly all cancer homogenates showed faster electrophoretic mobility than the 85-kDa kinase from normal tissue homogenates. Interestingly, the 50-kDa kinase had significantly lower autophosphorylation activity in cancer tissues than those of normal tissue (P< 0.05). To assess p42-p44 MAP kinase activity, proteins were immunoprecipitated from adjacent colon mucosa and adenocarcinoma with anti-extracellular signal-related kinase (ERK) 1/2 antibodies, and MAP kinase activity was measured using MBP as a substrate. These studies revealed that MAP kinase activity in colorectal cancer was significantly higher (P < 0.001) than that in adjacent mucosa. Thus, the constitutive activity of MAP kinase and autophosphorylation activity of 85-kDa kinase are increased, whereas the autophosphorylation activity of another kinase, 50 kDa, is decreased in colorectal adenocarcinoma. However, although signal transduction pathways are markedly altered in this cancer, neither p42/p44 MAP kinase activity nor 85-kDa autokinase activity could be correlated with the established prognostic indicators.
Collapse
Affiliation(s)
- J Ostrowski
- Department of Gastroenterology, Medical Center of Postgraduate Education at the Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | |
Collapse
|
613
|
Skaper SD, Walsh FS. Neurotrophic molecules: strategies for designing effective therapeutic molecules in neurodegeneration. Mol Cell Neurosci 1998; 12:179-93. [PMID: 9828084 DOI: 10.1006/mcne.1998.0714] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Over the past several years, neurotrophic factors-a description generally applied to naturally occurring polypeptides that support the development and survival of neurons-have made considerable progress from the laboratory into the clinic. Evidence from preclinical and clinical studies indicates that it may be possible to use neurotrophic factors to prevent, slow the progression of, or even reverse the effects of a number of neurodegenerative diseases and other types of insults in both the central nervous system (CNS) and the peripheral nervous system. Initially, investigations focused on recombinant neurotrophic proteins that are identical or highly homologous to the natural human sequence. Given the difficulties inherent with a protein therapeutic approach to treating nervous system disorders, especially those of the CNS, increasing attention has now turned to the development of alternative strategies and, in particular, small molecule mimetics. Regulation of the transcription of neurotrophic factors may provide a means of manipulating endogenous factor production; gene therapy may also allow for the circumvention of exogenous neurotrophic factor administration. The problem of transport across the blood-brain barrier may be overcome by developing small-molecule mimetics that maintain the neurotrophic activity of the protein while having improved pharmacokinetic and disposition characteristics. Components of neurotrophic factor signal transduction pathways may provide additional targets for novel drugs that can induce or modulate the responses normally activated by the binding of the neurotrophic factor to its receptor. This review focusses on some of the major themes and lines of mechanistic and therapeutic advances in this fast-moving field of neuroscience.
Collapse
Affiliation(s)
- S D Skaper
- Neuroscience Research Department, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, United Kingdom
| | | |
Collapse
|
614
|
Rodems SM, Spector DH. Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. J Virol 1998; 72:9173-80. [PMID: 9765464 PMCID: PMC110336 DOI: 10.1128/jvi.72.11.9173-9180.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of many early viral genes during human cytomegalovirus (HCMV) infection is dependent on cellular transcription factors. Several immediate-early and early viral promoters contain DNA binding sites for cellular factors such as CREB, AP-1, serum response factor, and Elk-1, and these transcription factors can be activated by phosphorylation via the cellular mitogen-activated protein kinase (MAPK) signal transduction cascade. To determine if the extracellular signal-regulated MAPKs, ERK1 and ERK2, play a role in transcription factor activation during infection, we tested for ERK activity during viral infection. We found that HCMV infection resulted in the maintenance of previously activated ERK1 and ERK2 by a mechanism which appears to involve the inhibition of a cellular phosphatase activity. ERK phosphorylation and activity were sustained for at least 8 h after infection, whereas in mock-infected cells, ERK activity steadily declined by 1 h postinfection. The activity of at least one cellular substrate of the ERKs, the protein kinase RSK1, was also maintained during this period. UV inactivation experiments suggested that viral gene expression was required for sustained ERK activity. In turn, activation of the ERKs appeared to be important for viral gene expression, as evidenced by the observed decrease in the transcriptional activity of the HCMV UL112-113 promoter during infection in the presence of the MEK inhibitor PD98059. These data suggest that HCMV utilizes cellular signal transduction pathways to activate viral or cellular transcription factors involved in the control of early viral gene expression and DNA replication.
Collapse
Affiliation(s)
- S M Rodems
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0357, USA
| | | |
Collapse
|
615
|
Lord JD, McIntosh BC, Greenberg PD, Nelson BH. The IL-2 Receptor Promotes Proliferation, bcl-2 and bcl-x Induction, But Not Cell Viability Through the Adapter Molecule Shc. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
IL-2, the principal mitogenic factor for activated T cells, delivers a proliferative signal through ligation of the heterotrimeric IL-2R. This proliferative signal is critically dependent upon cytoplasmic tyrosines on the β-chain of this receptor (IL-2Rβ) becoming phosphorylated in response to ligand. We found that at least one of these tyrosines (Y338) also mediates cell survival and induction of bcl-2, bcl-x, and c-myc in the murine T cell line CTLL-2. Since the adapter molecule Shc binds to phosphorylated Y338, the specific contribution of Shc to these events was evaluated. An IL-2Rβ/Shc fusion protein, in which Shc was covalently tethered to a truncated version of IL-2Rβ lacking all cytoplasmic tyrosines, revealed a robust proliferative signal mediated through Shc. This Shc-mediated signal induced expression of c-myc as well as the antiapoptotic genes bcl-2 and bcl-x with normal magnitude and kinetics. Nonetheless, signals from this fusion protein failed to sustain the long-term viability of CTLL-2 cells. Thus, induction of bcl family genes and delivery of a competent proliferative signal are not sufficient to promote cell survival and mediate the antiapoptotic effects associated with a complete IL-2 signal.
Collapse
Affiliation(s)
- James D. Lord
- *Virginia Mason Research Center, Seattle, WA 98101
- †Fred Hutchinson Cancer Research Center, Seattle, WA 98104; and Departments of
- ‡Immunology and
| | | | - Philip D. Greenberg
- †Fred Hutchinson Cancer Research Center, Seattle, WA 98104; and Departments of
- ‡Immunology and
- §Medicine, University of Washington, Seattle, WA 98195
| | - Brad H. Nelson
- *Virginia Mason Research Center, Seattle, WA 98101
- ‡Immunology and
| |
Collapse
|
616
|
Xia Y, Wu Z, Su B, Murray B, Karin M. JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev 1998; 12:3369-81. [PMID: 9808624 PMCID: PMC317229 DOI: 10.1101/gad.12.21.3369] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1998] [Accepted: 09/04/1998] [Indexed: 11/24/2022]
Abstract
MAP kinase (MAPK) cascades are composed of a MAPK, MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Despite the existence of numerous components and ample opportunities for crosstalk, most MAPKs are specifically and distinctly activated. We investigated the basis for specific activation of the JNK subgroup of MAPKs. The specificity of JNK activation is determined by the MAPKK JNKK1, which interacts with the MAPKKK MEKK1 and JNK through its amino-terminal extension. Inactive JNKK1 mutants can disrupt JNK activation by MEKK1 or tumor necrosis factor (TNF) in intact cells only if they contain an intact amino-terminal extension. Mutations in this region interfere with the ability of JNKK1 to respond to TNF but do not affect its activation by physical stressors. As JNK and MEKK1 compete for binding to JNKK1 and activation of JNKK1 prevents its binding to MEKK1, activation of this module is likely to occur through sequential MEKK1:JNKK1 and JNKK1:JNK interactions. These results underscore a role for the amino-terminal extension of MAPKKs in determination of response specificity.
Collapse
Affiliation(s)
- Y Xia
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 USA
| | | | | | | | | |
Collapse
|
617
|
Sánchez-Mejorada G, Rosales C. Fcgamma receptor-mediated mitogen-activated protein kinase activation in monocytes is independent of Ras. J Biol Chem 1998; 273:27610-9. [PMID: 9765295 DOI: 10.1074/jbc.273.42.27610] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptors for the Fc portion of immunoglobulin molecules (FcR) present on leukocyte cell membranes mediate a large number of cellular responses that are very important in host defense, including phagocytosis, cell cytotoxicity, production and secretion of inflammatory mediators, and modulation of the immune response. Cross-linking of FcR with immune complexes leads, first to activation of protein-tyrosine kinases. The molecular events that follow and that transduce signals from these receptors to the nucleus are still poorly defined. We have investigated the signal transduction pathway from Fc receptors that leads to gene activation and production of cytokines in monocytes. Cross-linking of FcR, on the THP-1 monocytic cell line, by immune complexes resulted in both activation of the transcription factor NF-kappaB and interleukin 1 production. These responses were completely blocked by tyrosine kinase inhibitors. In contrast, expression of dominant negative mutants of Ras and Raf-1, in these cells, did not have any effect on FcR-mediated nuclear factor activation, suggesting that the mitogen-activated protein kinase (MAPK) signaling pathway was not used by these receptors. However, MAPK activation was easily detected by in vitro kinase assays, after FcR cross-linking with immune complexes. Using the specific MAPK/extracellular signal-regulated kinase kinase (MAPK kinase) inhibitor PD98059, we found that MAPK activation is necessary for FcR-dependent activation of the nuclear factor NF-kappaB. These results strongly suggest that the signaling pathway from Fc receptors leading to expression of different genes important to leukocyte biology, initiates with tyrosine kinases and requires MAPK activation; but in contrast to other tyrosine kinase receptors, FcR-mediated MAPK activation does not involve Ras and Raf.
Collapse
Affiliation(s)
- G Sánchez-Mejorada
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | |
Collapse
|
618
|
Pascuzzi P, Hamilton D, Bodily K, Arias J. Auxin-induced stress potentiates trans-activation by a conserved plant basic/leucine-zipper factor. J Biol Chem 1998; 273:26631-7. [PMID: 9756903 DOI: 10.1074/jbc.273.41.26631] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promoter element activation sequence-1 (as-1) confers tissue-specific and signal-responsive transcription in plants. Hormone and chemical stress cues are thought to activate as-1-dependent transcription through specific basic/leucine-zipper proteins, termed TGA factors, that bind this element. We report here that a highly conserved TGA factor of tobacco, TGA1a, can selectively activate transcription in response to micromolar concentrations of auxin hormones or their analogs. This induction is chemically specific, as a range of other compounds tested at similar concentrations had little or no effect. Auxin was found to augment the trans-activation potential of TGA1a through carboxyl-terminal residues. The amino-terminal domain of TGA1a, by gain-of-function assays, was found to both constitutively activate transcription and maximize the response to auxin. Further evidence indicates that the trans-activation potential of this domain in TGA1a is repressed, under basal conditions, by carboxyl-terminal residues. Because TGA1a and endogenous TGA factors are stimulated by auxin only at concentrations that inhibited cell growth, this response is likely to involve chemical stress.
Collapse
Affiliation(s)
- P Pascuzzi
- Center for Agricultural Biotechnology, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
619
|
Chen HC, Chan PC, Tang MJ, Cheng CH, Chang TJ. Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogen-activated protein kinase activation. J Biol Chem 1998; 273:25777-82. [PMID: 9748249 DOI: 10.1074/jbc.273.40.25777] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase involved in integrin-mediated signal transduction pathway. In this report, we describe that the treatment of hepatocyte growth factor (HGF) stimulates a significant increase in the tyrosine phosphorylation of FAK in human embryonic kidney 293 cells. This stimulation is independent of cell adhesion or the integrity of the actin cytoskeleton, suggesting potentially different mechanisms by which the HGF receptors and integrins regulate the tyrosine phosphorylation of FAK. Our results also suggest that the activation of Src upon HGF stimulation is likely to be one, if not the only, of the mechanisms responsible for the HGF-induced tyrosine phosphorylation of FAK. Furthermore, we showed that a mutation in the Grb2 binding site Tyr-925 of FAK partially abolishes its increase in HGF-induced phosphorylation. Finally, we demonstrated that HGF stimulates the association of FAK with Grb2 in vitro and in intact cells and provided evidence that FAK might contribute to the activation of mitogen-activated protein kinase through Ras in HGF signaling by functioning as an adapter molecule.
Collapse
Affiliation(s)
- H C Chen
- Department of Zoology, College of Agriculture, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
620
|
Abstract
During development of T cells in the thymus, T-cell receptor (TCR)-mediated recognition of self-MHC/self-peptide complexes on thymic stroma dictates the developmental fate of immature CD4+CD8+ (double positive) thymocytes. Intriguingly, TCR-generated intracellular signals can elicit two entirely different cellular responses in such thymocytes: apoptosis or further differentiation. The critical issue in understanding end-stage T-cell development is how TCR occupancy can be perceived in such markedly different ways by the TCR. Here, we review the cytoplasmic and nuclear events that result from TCR signaling during thymocyte selection. Studies aimed at distinguishing molecular components involved in positive selection (resulting in signals for further differentiation) and negative selection (resulting in apoptosis) will help solve this fascinating feature of T-lymphocyte biology. We also discuss how non-TCR-derived signaling might serve to fine tune the TCR-driven selection events in thymocytes. Central to this aspect of the conceptual framework needed to explain thymocyte selection is the observation that thymic antigen-presenting cells appear to be specialized in the induction of either positive or negative selection. Finally, we suggest a hypothesis that integrates the facts currently available on developing thymocytes, and which may serve to refine our exploration of unresolved issues in thymocyte selection. This hypothesis expands our focus to include signals from receptors other than TCRs as modulating and amplifying factors in thymocyte signaling.
Collapse
Affiliation(s)
- D Amsen
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
621
|
Nagahara A, Wang L, Del Valle J, Todisco A. Regulation of c-Jun NH2-terminal kinases in isolated canine gastric parietal cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G740-8. [PMID: 9756505 DOI: 10.1152/ajpgi.1998.275.4.g740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
c-Jun NH2-terminal kinases (JNKs) are protein kinases that are activated by a wide variety of extracellular signals. This study investigated the expression and regulation of JNKs in isolated gastric canine parietal cells. Western blot analysis of cell lysates from highly purified (>95%) parietal cells with an antibody recognizing JNK1 and to a lesser degree JNK2 revealed the presence of two bands of 46 and 54 kDa, respectively. JNK1 activity was quantitated by immunoprecipitation and in-gel kinase assays. Of the different agents tested, carbachol was the most potent inducer of JNK1 activity, whereas histamine and epidermal growth factor induced weaker responses. The proinflammatory cytokine tumor necrosis factor-alpha stimulated JNK1 but had no effect on extracellular signal-regulated kinase (ERK2) induction, suggesting that activation of JNK1 might represent an important event in mediation of the inflammatory response in the stomach. The action of carbachol was dose (0.1-100 microM) and time dependent, with a maximal stimulatory effect (fourfold) detected after 30 min of incubation and sustained for 2 h. Addition of the specific protein kinase C (PKC) inhibitor GF109203X did not affect the stimulatory action of carbachol. The intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid-AM inhibited carbachol induction of JNK1 activity by 60%. Thapsigargin (1 microM), an intracellular Ca2+-rising agent, induced JNK1 activity more than threefold. Carbachol activation of JNK1 resulted in induction of c-Jun (protein) transcriptional activity and in stimulation of parietal cell mRNA content of c-jun. In conclusion, our data indicate that carbachol induces JNK activity in gastric parietal cells via intracellular Ca2+-dependent, PKC-independent pathways, leading to induction of c-jun gene expression via phosphorylation and transcriptional activation of c-Jun.
Collapse
Affiliation(s)
- A Nagahara
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0682, USA
| | | | | | | |
Collapse
|
622
|
Tena G, Renaudin JP. Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinases in tobacco cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:173-82. [PMID: 9839464 DOI: 10.1046/j.1365-313x.1998.00283.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In higher plants, MAP kinase cascades are involved in the transduction of numerous stress-related signals but much less is known about the effect of mitogenic signals. We have analysed MAP kinase activation in tobacco cells after treatment by auxin, a growth factor required at physiological concentrations for mitosis in plant cell cultures. From in-gel assay of myelin basic protein kinase and from immunochemical detection of ERK related kinases, we show that the mitogenic effect of auxin, which was confirmed by the specific increase of several mRNAs species, did not rely on MAP kinase activation within the first 2 hours. These data contest previous results which could be due to the activation of MAP kinase by a signal other than auxin. In the second part of this study, we show that the treatment of the cells with high concentrations of various weak lipophilic acids such as auxin, in a nonphysiological concentration range, butyric or acetic acid is sufficient to activate transiently a MAP kinase. The data show that MAP kinase activation is the consequence of cytosolic acidification. Moreover, it is not sensitive to the protein kinase inhibitor staurosporine. These results suggest a functional role for cytosolic acidification as a second messenger mediating MAP kinase activation in the response of plant cells to various stresses.
Collapse
Affiliation(s)
- G Tena
- Laboratory of Plant Physiology and Molecular Biochemistry, National Institute for Agronomic Research, Montpellier, France
| | | |
Collapse
|
623
|
Chen DH, Chen CT, Zhang Y, Liu MA, Campos-Gonzalez R, Pan BT. Characterization of p96h2bk: immunoreaction with an anti-Erk(extracellular-signal-regulated kinase) peptide antibody and activity in Xenopus oocytes and eggs. Biochem J 1998; 335 ( Pt 1):43-50. [PMID: 9742211 PMCID: PMC1219750 DOI: 10.1042/bj3350043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have shown previously that oncogenic Ras induces cell cycle arrest in activated Xenopus egg extracts [Pan, Chen and Lin (1994) J. Biol. Chem. 269, 5968-5975]. The cell cycle arrest correlates with the stimulation of a protein kinase activity that phosphorylates histone H2b in vitro (designated p96(h2bk)) [Chen and Pan (1994) J. Biol. Chem. 269, 28034-28043]. We report here that p96(h2bk) is likely to be p96(ram), a protein of approx. 96 kDa that immunoreacts with a monoclonal antibody (Mk-1) raised against a synthetic peptide derived from a sequence highly conserved in Erk1/Erk2 (where Erk is extracellular-signal-regulated kinase). This is supported by two lines of evidence. First, activation/inactivation of p96(h2bk) correlates with upward/downward bandshifts of p96(ram) in polyacrylamide gels. Secondly, both p96(h2bk) and p96(ram) can be immunoprecipitated by antibody Mk-1. We also studied the activity of p96(h2bk)/p96(ram) in Xenopus oocytes and eggs. p96(h2bk)/p96(ram) was inactive in stage 6 oocytes, was active in unfertilized eggs, and became inactive again in eggs after fertilization. Since stage 6 oocytes are at G2-phase of the cell cycle, unfertilized eggs arrest at M-phase and eggs exit M-phase arrest after fertilization, the results thus indicate that p96(h2bk)/p96(ram) activity is cell cycle dependent. Moreover, microinjection of oncogenic Ras into fertilized eggs at the one-cell stage arrests the embryos at the two-cell stage, and this induced arrest is correlated with an inappropriate activation of p96(h2bk)/p96(ram). The data are consistent with the concept that inappropriate activation of p96(h2bk)/p96(ram) plays a role in the cell cycle arrest induced by oncogenic Ras.
Collapse
Affiliation(s)
- D H Chen
- Department of Surgery, Division of Neurosurgery, University of Kentucky Chandler Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
624
|
Bokemeyer D, Lindemann M, Kramer HJ. Regulation of mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle cells. Hypertension 1998; 32:661-7. [PMID: 9774360 DOI: 10.1161/01.hyp.32.4.661] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein (MAP) kinase cascades are major signaling systems by which cells transduce extracellular cues into intracellular responses. In general, MAP kinases are activated by phosphorylation on tyrosine and threonine residues and inactivated by dephosphorylation. Therefore, MAP kinase phosphatase-1 (MKP-1), a dual-specificity protein tyrosine phosphatase that exhibits catalytic activity toward both regulatory sites on MAP kinases, is suggested to be responsible for the downregulation of extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK), and p38 MAP kinase. In the present study, we examined the role of these MAP kinases in the induction of MKP-1 in vascular smooth muscle cells (VSMCs). Extracellular stimuli such as platelet-derived growth factor (PDGF), 12-O-tetradecanoylphorbol 13-acetate (TPA), and angiotensin II, which activated ERK but not SAPK/p38 MAP kinase, induced a transient induction of MKP-1 mRNA and its intracellular protein. In addition, PD 098059, an antagonist of MEK (MAP kinase/ERK kinase), the upstream kinase of ERK, significantly reduced the PDGF-induced activation of ERK and potently inhibited the expression of MKP-1 after stimulation with PDGF, thereby demonstrating the induction of MKP-1 in response to activation of the ERK signaling cascade. Furthermore, anisomycin, a potent stimulus of SAPK and p38 MAP kinase, also induced MKP-1 mRNA expression. This effect of anisomycin was significantly inhibited in the presence of the p38 MAP kinase antagonist SB 203580. These data suggest the induction of MKP-1, not only after stimulation of the cell growth promoting ERK pathway but also in response to activation of stress-responsive MAP kinase signaling cascades. We suggest that this pattern of MKP-1 induction may be a negative feedback mechanism in the control of MAP kinase activity in VSMCs.
Collapse
Affiliation(s)
- D Bokemeyer
- Medical Policlinic/Department of Medicine, Division of Nephrology, University of Bonn, Germany.
| | | | | |
Collapse
|
625
|
Abstract
Apoptosis is a regulated mode of single cell death that involves gene expression in many instances and occurs under physiological and pathological conditions in a large variety of systems. We briefly summarize major features of apoptosis in general and describe the occurrence of apoptosis in the retina in different situations that comprise animal models of retinitis pigmentosa, light-induced lesions, histogenesis during development, and others. Apoptosis can be separated into several phases: the induction by a multitude of stimuli, the effector phase in which the apoptotic signal is transmitted to the cellular death machinery, the excecution period when proteolytic cascades are activated, and the phagocytic removal of cellular remnants. Control mechanisms for retinal apoptosis are only beginning to be clarified. Potential apoptotic signal transducers were investigated in our laboratory, including metabolites of arachidonic acid and downstream mediators of signaling molecules such as transcription factors. Work in our laboratory revealed an essential role of the immediate-early gene product c-Fos in light-induced apoptosis. c-Fos is a member of the AP-1 family of transcription factors and, together with other members of this family, it may regulate apoptosis in the central nervous system. Expression of the c-fos gene in the retina can be evoked by light exposure and follows a diurnal rhythm. Future studies will have to clarify how light can control the expression of specific genes, and specifically, the role of c-fos and other genes of retinal apoptosis including potential target genes and signaling pathways.
Collapse
Affiliation(s)
- C E Remé
- Department of Ophthalmology, University Hospital, Zuerich, Switzerland.
| | | | | | | | | |
Collapse
|
626
|
Zhang Z, Yang XY, Cohen DM. Hypotonicity activates transcription through ERK-dependent and -independent pathways in renal cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1104-12. [PMID: 9755064 DOI: 10.1152/ajpcell.1998.275.4.c1104] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute hypotonic shock (50% dilution of medium with sterile water, but not with isotonic NaCl) activated the extracellular signal response kinase (ERK) mitogen-activated protein (MAP) kinases in renal medullary cells, as measured by Western analysis with a phospho-ERK-specific antibody and by in vitro kinase assay of epitope-tagged ERKs immunoprecipitated from stable HA-ERK transfectants. Hypotonicity also activated the transcription factor and ERK substrate Elk-1 in a partially PD-98059-sensitive fashion, as assessed by chimeric reporter gene assay. Consistent with these data, hypotonic stress activated transcription of the immediate-early gene transcription factor Egr-1 in a partially PD-98059-sensitive fashion. Hypotonicity-inducible Egr-1 transcription was mediated in part through 5'-flanking regions containing serum response elements and in part through the minimal Egr-1 promoter. Elimination of the Ets motifs adjacent to key regulatory serum response elements in the Egr-1 promoter diminished the effect of hypotonicity but failed to abolish it. Interestingly, hypotonicity also transiently activated p38 and c-Jun NH2-terminal kinase 1, as determined by immunoblotting with anti-phospho-MAP kinase antibodies. Taken together, these data strongly suggest that hypotonicity activates immediate-early gene transcription in renal medullary cells via MAP kinase kinase-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Z Zhang
- Divisions of Nephrology and Molecular Medicine, Oregon Health Sciences University and Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
627
|
Widegren U, Jiang XJ, Krook A, Chibalin AV, Björnholm M, Tally M, Roth RA, Henriksson J, Wallberg-henriksson H, Zierath JR. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 1998; 12:1379-89. [PMID: 9761781 DOI: 10.1096/fasebj.12.13.1379] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular signaling mechanisms by which muscle contractions lead to changes in glucose metabolism and gene expression remain largely undefined. We assessed whether exercise activates MAP kinase proteins (ERK1/2, SEK1, and p38 MAP kinase) as well as Akt and PYK2 in skeletal muscle from healthy volunteers obtained during and after one-leg cycle ergometry at approximately 70% VO2max. Exercise led to a marked increase in ERK1/2 phosphorylation, which rapidly decreased to resting levels upon recovery. Exercise increased phosphorylation of SEK1 and p38 MAP kinase to a lesser extent than ERK1/2. In contrast to ERK1/2, p38 MAP kinase phosphorylation was increased in nonexercised muscle upon cessation of exercise. Phosphorylation of the transcription factor CREB was increased in nonexercised muscle upon cessation of exercise. Exercise did not activate Akt or increase tyrosine phosphorylation of PYK2. Thus, exercise has divergent effects on parallel MAP kinase pathways, of which only p38 demonstrated a systemic response. However, our data do not support a role of Akt or PYK2 in exercise/contraction-induced signaling in human skeletal. Activation of the different MAP kinase pathways by physical exercise appears to be important in the regulation of transcriptional events in skeletal muscle.
Collapse
Affiliation(s)
- U Widegren
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, SE-114 86,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
628
|
Baumann M, Mischak H, Dammeier S, Kolch W, Gires O, Pich D, Zeidler R, Delecluse HJ, Hammerschmidt W. Activation of the Epstein-Barr virus transcription factor BZLF1 by 12-O-tetradecanoylphorbol-13-acetate-induced phosphorylation. J Virol 1998; 72:8105-14. [PMID: 9733851 PMCID: PMC110148 DOI: 10.1128/jvi.72.10.8105-8114.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BZLF1 is a member of the extended AP-1 family of transcription factors which binds to specific BZLF1 sequence motifs within early Epstein-Barr virus (EBV) promoters and to closely related AP-1 motifs. BZLF1's activity is regulated at the transcriptional level as well as through protein interactions and posttranslational modifications. Phorbol esters or immunoglobulin cross-linking both reactivate EBV from latently infected B cells via transactivation of BZLF1. We report here that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is capable of inducing BZLF1's activity even further. The induction occurs at the posttranscriptional level and depends on a single serine residue located in the DNA binding domain of BZLF1. This serine residue (S186) is phosphorylated by protein kinase C in vitro and in vivo after stimulation with TPA. Phosphorylation of S186 per se interferes with the DNA binding affinity of BZLF1 in vitro but is mandatory for TPA-induced increase in DNA binding of BZLF1, as shown in gel retardation assays and reconstruction experiments with cellular extracts. In transcriptional reporter assays, S186 is essential for the activation of BZLF1 by TPA. Presumably, a yet-to-be-identified cellular factor restores the DNA binding affinity and enhances the transcriptional activity of S186-phosphorylated BZLF1, which is required to induce the lytic phase of EBV's life cycle.
Collapse
Affiliation(s)
- M Baumann
- GSF-National Research Center for Environment and Health, Institut für Klinische Molekularbiologie und Tumorgenetik, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
629
|
Arnauld E, Arsaut J, Demotes-Mainard J. Conditional coupling of striatal dopamine D1 receptor to transcription factors: ontogenic and regional differences in CREB activation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:127-32. [PMID: 9748539 DOI: 10.1016/s0169-328x(98)00192-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The coupling of striatal dopamine D1 receptors to c-fos transcription exhibit all-or-none regional and ontogenic differences: the D1 agonist SKF 38393 fails to induce c-fos expression in the striatum, except during the early postnatal period in the striosomes, or in the caudal extremity of the striatum in adult animals. In an attempt to better delineate the mechanism responsible for interrupting or enabling this conditional coupling of D1 receptors to c-fos transcription we have examined, through immunocytochemistry and gel shift assay, the activation of the cyclic AMP-response element binding protein (CREB) transcription factor in response to the D1 agonist in the murine striatum. Phosphorylated-CREB (P-CREB) immunoreactivity in response to the dopamine D1 agonist (+/-)SKF 38393 (15 mg/kg, i.p.) was prominent in the caudal extremity of the striatum in adult animals (P90). In neonatal (P5) mice, P-CREB immunoreactive neurons were observed both in the caudal and in the rostral parts of the striatum, without obvious patchy distribution. Gel shift assays performed on nuclear protein extracts from either the rostral or the caudal part of striatal tissue of neonatal (P5) or adult (P90) mice provided quantitative assessment, showing differences both in the amplitude and in the time course of the response, since P-CREB binding in adults culminated 45 min after (+/-)SKF 38393 (15 mg/kg, i.p.) injection, wheareas the peak value appeared as soon as 10 min after injection in P5 mouse pups, suggesting the involvement of partly distinct transduction pathways.
Collapse
Affiliation(s)
- E Arnauld
- INSERM U-394, Neurobiologie Intégrative, Institut François Magendie, 1, rue Camille Saint-Saëns, F-33077, Bordeaux Cedex, France
| | | | | |
Collapse
|
630
|
Bardwell L, Cook JG, Voora D, Baggott DM, Martinez AR, Thorner J. Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev 1998; 12:2887-98. [PMID: 9744865 PMCID: PMC317171 DOI: 10.1101/gad.12.18.2887] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1998] [Accepted: 07/24/1998] [Indexed: 11/25/2022]
Abstract
The mitogen-activated protein kinase (MAPK) Kss1 has a dual role in regulating filamentous (invasive) growth of the yeast Saccharomyces cerevisiae. The stimulatory function of Kss1 requires both its catalytic activity and its activation by the MAPK/ERK kinase (MEK) Ste7; in contrast, the inhibitory function of Kss1 requires neither. This study examines the mechanism by which Kss1 inhibits invasive growth, and how Ste7 action overcomes this inhibition. We found that unphosphorylated Kss1 binds directly to the transcription factor Ste12, that this binding is necessary for Kss1-mediated repression of Ste12, and that Ste7-mediated phosphorylation of Kss1 weakens Kss1-Ste12 interaction and relieves Kss1-mediated repression. Relative to Kss1, the MAPK Fus3 binds less strongly to Ste12 and is correspondingly a weaker inhibitor of invasive growth. Analysis of Kss1 mutants indicated that the activation loop of Kss1 controls binding to Ste12. Potent repression of a transcription factor by its physical interaction with the unactivated isoform of a protein kinase, and relief of this repression by activation of the kinase, is a novel mechanism for signal-dependent regulation of gene expression.
Collapse
Affiliation(s)
- L Bardwell
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
631
|
|
632
|
Abstract
The interleukin 1 (IL-1) receptor is a critical component in mediating the inflammatory responses of IL-1, which affect nearly every cell type. Recently, major inroads have been made toward understanding the mechanism by which IL-1 interacts with its receptor and activates signal transduction. The receptor-ligand association has been visualized by X-ray crystal structure analysis, revealing intimate details that distinguish IL-1beta from the naturally-occuring receptor antagonist. Signaling studies have focused primarily on the ability of IL-1 to transduce the activation of the transcription factor, NF-kappaB, which is of central importance to inflammatory and immune responses. Virtually all of the effort has targeted the activation of a kinase which results in the phosphorylation of the inhibitory IkappaB molecule at two serines that precedes the proteolytic degradation of this inhibitor and the release of active NF-kappaB. The recent characterization of an IL-1 receptor associated kinase (IRAK) and a continuous molecular path between this kinase and that which directly phosphorylates IkappaB would seem to all but close the basic understanding of IL-1 receptor signal transduction. However, at least half of the IL-1-dependent NF-kappaB activation is independent of IRAK and uses a novel pathway involving the recruitment of phosphatidylinositol 3-kinase (PI3K) to a distinct site within the cytoplasmic domain of the IL-1 receptor. This novel pathway for NF-kappaB activation and the fact that other important transcription factors are also activated by an IL-1 receptor-dependent signal event, clearly defines additional mechanisms that influence inflammation.
Collapse
Affiliation(s)
- P E Auron
- Department of Pathology, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA 02115, USA.
| |
Collapse
|
633
|
Moilanen AM, Karvonen U, Poukka H, Jänne OA, Palvimo JJ. Activation of androgen receptor function by a novel nuclear protein kinase. Mol Biol Cell 1998; 9:2527-43. [PMID: 9725910 PMCID: PMC25523 DOI: 10.1091/mbc.9.9.2527] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Androgen receptor (AR) belongs to the nuclear receptor superfamily and mediates the biological actions of male sex steroids. In this work, we have characterized a novel 130-kDa Ser/Thr protein kinase ANPK that interacts with the zinc finger region of AR in vivo and in vitro. The catalytic kinase domain of ANPK shares considerable sequence similarity with the minibrain gene product, a protein kinase suggested to contribute to learning defects associated with Down syndrome. However, the rest of ANPK sequence, including the AR-interacting interface, exhibits no apparent homology with other proteins. ANPK is a nuclear protein that is widely expressed in mammalian tissues. Its overexpression enhances AR-dependent transcription in various cell lines. In addition to the zinc finger region, ligand-binding domain and activation function AF1 of AR are needed, as the activity of AR mutants devoid of these domains was not influenced by ANPK. The receptor protein does not appear to be a substrate for ANPK in vitro, and overexpression of ANPK does not increase the extent of AR phosphorylation in vivo. In view of this, it is likely that ANPK-mediated activation of AR function is exerted through modification of AR-associated proteins, such as coregulatory factors, and/or through stabilization of the receptor protein against degradation.
Collapse
Affiliation(s)
- A M Moilanen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
634
|
Wang X, Murphy TJ. Inhibition of cyclic AMP-dependent kinase by expression of a protein kinase inhibitor/enhanced green fluorescent fusion protein attenuates angiotensin II-induced type 1 AT1 receptor mRNA down-regulation in vascular smooth muscle cells. Mol Pharmacol 1998; 54:514-24. [PMID: 9730910 DOI: 10.1124/mol.54.3.514] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of the angiotensin II type 1 receptor (AT1-R) mRNA in vascular smooth muscle cells (VSMC) is down-regulated by a variety of agonists, including growth factors, agonists of Galphaq protein-coupled receptors, and activators of adenylyl cyclase. To determine whether cAMP-dependent protein kinases (PKA) participates in AT1-R mRNA down-regulation controlled by multiple classes of receptors, a PKA inhibitor peptide (PKIalpha) was developed and expressed in rat VSMC as a fusion with the enhanced green fluorescent protein (eGFP). PKA activity elicited both by forskolin and angiotensin II is suppressed in cells expressing this fusion protein (PKIalpha-eGFP), but platelet-derived growth factor-BB does not stimulate PKA activity in this preparation. PKIalpha-eGFP expression fully inhibits the forskolin-stimulated down-regulation of AT1-R mRNA levels and blocks 50% of the effect elicited by angiotensin II. This indicates that PKA plays a substantial role in angiotensin II-stimulated AT1-R mRNA down-regulation. However, inhibition of PKA has no effect on AT1-R mRNA down-regulation caused by platelet-derived growth factor-BB. These findings show how agonists such as angiotensin II that are not normally considered as activators of PKA can use PKA-dependent processes to modulate gene expression. These findings also provide definitive evidence that PKA-dependent pathways are involved in modulation of AT1-R mRNA levels in VSMC.
Collapse
Affiliation(s)
- X Wang
- Department of Pharmacology, Emory University School of Medicine, and Program in Molecular Therapeutics and Toxicology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
635
|
Flood DG, Finn JP, Walton KM, Dionne CA, Contreras PC, Miller MS, Bhat RV. Immunolocalization of the mitogen-activated protein kinases p42MAPK and JNK1, and their regulatory kinases MEK1 and MEK4, in adult rat central nervous system. J Comp Neurol 1998; 398:373-92. [PMID: 9714150 DOI: 10.1002/(sici)1096-9861(19980831)398:3<373::aid-cne6>3.0.co;2-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell survival, death, and stress signals are transduced from the cell surface to the cytoplasm and nucleus via a cascade of phosphorylation events involving the mitogen-activated protein kinase (MAPK) family. We compared the distribution of p42 mitogen-activated protein kinase (p42MAPK) and its activator MAPK or ERK kinase (MEK1; involved in transduction of growth and differentiation signals), with c-Jun N-terminal kinase (JNK1) and its activator MEK4 (involved in transduction of stress and death signals) in the adult rat central nervous system. All four kinases were present in the cytoplasm, dendrites, and axons of neurons. The presence of p42MAPK and JNK1 in dendrites and axons, as well as in cell bodies, suggests a role for these kinases in phosphorylation and regulation of cytoplasmic targets. A high degree of correspondence was found between the regional distribution of MEK1 and p42MAPK. Immunostaining for MEK1 and p42MAPK was intense in olfactory structures, neocortex, hippocampus, striatum, midline, and interlaminar thalamic nuclei, hypothalamus, brainstem, Purkinje cells, and spinal cord. In addition to neurons, p42MAPK was also present in oligodendrocytes. Whereas MEK4 was ubiquitously distributed, JNK1 was more selective. Immunostaining for MEK4 and JNK1 was intense in the olfactory bulb, lower cortical layers, the cholinergic basal forebrain, most nuclei of the thalamus, medial habenula, and cranial motor nuclei. The distribution of MEK1 and p42MAPK proteins only partially overlapped with that of MEK4 and JNK1. This suggests that the growth/differentiation and death/stress pathways affected by these kinases may not necessarily act to counterbalance each other in response to extracellular stimuli. The differential distribution of these kinases may control the specificity of neuronal function to extracellular signals.
Collapse
Affiliation(s)
- D G Flood
- Department of Molecular Biology, Cephalon, Inc., West Chester, Pennsylvania 19380, USA
| | | | | | | | | | | | | |
Collapse
|
636
|
Bosch M, Gil J, Bachs O, Agell N. Calmodulin inhibitor W13 induces sustained activation of ERK2 and expression of p21(cip1). J Biol Chem 1998; 273:22145-50. [PMID: 9705360 DOI: 10.1074/jbc.273.34.22145] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major signaling pathways by which extracellular signals induce cell proliferation and differentiation involves the activation of extracellular signal-regulated kinases (ERKs). Because calmodulin is essential for quiescent cells to enter cell cycle, the role of calmodulin on ERK2 activation was studied in cultured fibroblasts. Serum, phorbol esters, or active Ras induced ERK2 activation in NIH 3T3 fibroblasts. This activation was not inhibited by calmodulin blockade. Surprisingly, inhibition of calmodulin prior to fetal bovine serum addition prolonged activation of ERK2. Furthermore, inactivation of calmodulin in serum-starved cells induced ERK2 phosphorylation that was dependent on MAP kinase kinase (MEK). Inactivation of calmodulin in serum-starved cells also induced activation of Ras, Raf, and MEK. On the contrary, tyrosine phosphorylation of tyrosine kinase receptors was not observed. These results indicate that calmodulin inhibits ERK2 activation pathway at the level of Ras. Calmodulin inhibition induced overexpression of p21(cip1) which was dependent on MEK activity. We propose that inhibition of Ras by calmodulin prevents the activation of ERK2 at low serum concentration. Thus, entering into the cell cycle after serum addition would imply the overcoming of the inhibitory effect of calmodulin and consequently ERK2 activation. Furthermore, down-regulation of Ras by calmodulin may be also important to determine the duration of ERK2 activation and to prevent a high p21(cip1) expression that would lead to an inhibition of cell proliferation.
Collapse
Affiliation(s)
- M Bosch
- Departament de Biologia Cel.lular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
637
|
Thuerauf DJ, Arnold ND, Zechner D, Hanford DS, DeMartin KM, McDonough PM, Prywes R, Glembotski CC. p38 Mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6. J Biol Chem 1998; 273:20636-43. [PMID: 9685422 DOI: 10.1074/jbc.273.32.20636] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In various cell types certain stresses can stimulate p38 mitogen-activated protein kinase (p38 MAPK), leading to the transcriptional activation of genes that contribute to appropriate compensatory responses. In this report the mechanism of p38-activated transcription was studied in cardiac myocytes where this MAPK is a key regulator of the cell growth and the cardiac-specific gene induction that occurs in response to potentially stressful stimuli. In the cardiac atrial natriuretic factor (ANF) gene, a promoter-proximal serum response element (SRE), which binds serum response factor (SRF), was shown to be critical for ANF induction in primary cardiac myocytes transfected with the selective p38 MAPK activator, MKK6 (Glu). This ANF SRE does not possess sequences typically required for the binding of the Ets-related ternary complex factors (TCFs), such as Elk-1, indicating that p38-mediated induction through this element may take place independently of such TCFs. Although p38 did not phosphorylate SRF in vitro, it efficiently phosphorylated ATF6, a newly discovered SRF-binding protein that is believed to serve as a co-activator of SRF-inducible transcription at SREs. Expression of an ATF6 antisense RNA blocked p38-mediated ANF induction through the ANF SRE. Moreover, when fused to the Gal4 DNA-binding domain, an N-terminal 273-amino acid fragment of ATF6 was sufficient to support trans-activation of Gal4/luciferase expression in response to p38 but not the other stress kinase, N-terminal Jun kinase (JNK); p38-activating cardiac growth promoters also stimulated ATF6 trans-activation. These results indicate that through ATF6, p38 can augment SRE-mediated transcription independently of Ets-related TCFs, representing a novel mechanism of SRF-dependent transcription by MAP kinases.
Collapse
Affiliation(s)
- D J Thuerauf
- Department of Biology and Molecular Biology, Institute, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | | | | | | | |
Collapse
|
638
|
Ehlers RA, Bonnor RM, Wang X, Hellmich MR, Evers B. Signal transduction mechanisms in neurotensin-mediated cellular regulation. Surgery 1998. [DOI: 10.1016/s0039-6060(98)70126-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
639
|
Webb CP, Van Aelst L, Wigler MH, Vande Woude GF. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A 1998; 95:8773-8. [PMID: 9671754 PMCID: PMC21152 DOI: 10.1073/pnas.95.15.8773] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effector domain mutants of oncogenic Ras, V12S35 Ras, V12G37 Ras, and V12C40 Ras were tested for their abilities to mediate tumorigenic and metastatic phenotypes in athymic nude mice when expressed in NIH 3T3 fibroblasts. All mutants displayed comparable tumorigenic properties, but only the mutant that activates the Raf-mitogen-activated protein kinase kinase (MEK)-extracellular regulated kinase (ERK) 1/2 pathway, V12S35 Ras, induced tumors in the experimental metastasis assay. Furthermore, direct activation of the MEK-ERK1/2 pathway in NIH 3T3 cells by mos or a constitutively active form of MEK was sufficient to induce metastasis whereas R-Ras, which fails to activate the ERK1/2 pathway, is tumorigenic but nonmetastatic. The subcutaneous tumors and lung metastases derived from V12S35 Ras-transformed NIH 3T3 cells expressed higher levels of activated ERK1/2 in culture when compared with the parental cellular pool before injection, indicating that selection for cells with higher levels of activated ERK1/2 occurred during tumor growth and metastasis. By contrast, cells explanted from V12G37-Ras or V12C40-Ras-induced tumors did not show changes in the level of ERK1/2 activation when compared with the parental cells. When tumor-explanted cell lines derived from each of the effector domain mutants were passaged one additional time in vivo, all mediated rapid tumor growth, but, again, only cells derived from V12S35 Ras-tumors formed numerous metastatic lesions within the lung. These results show that the metastatic properties of the Ras effector domain mutants segregate, and that, whereas Ras-mediated tumorigenicity can arise independently of ERK1/2 activation, experimental metastasis appears to require constitutive activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- C P Webb
- Advanced BioScience Laboratories, Basic Research Program, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD 21072-1201, USA
| | | | | | | |
Collapse
|
640
|
Iwamoto Y, Chin YE, Peng X, Fu XY. Identification of a membrane-associated inhibitor(s) of epidermal growth factor-induced signal transducer and activator of transcription activation. J Biol Chem 1998; 273:18198-204. [PMID: 9660781 DOI: 10.1074/jbc.273.29.18198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many growth factors, including epidermal growth factor (EGF), can activate the signal transducer and activator of transcription (STAT) signaling pathway. Here, we demonstrate that STAT activation by EGF treatment is conditional. EGF activates STAT1 and STAT3 in A431 but not in HeLa and PC12 cells. Using a reconstituted in vitro STAT activation system, we have identified and partially purified a potential inhibitor (s) that is membrane-associated and can block STAT activation induced by EGF in vitro. However, this inhibitor has no effect on STAT complexes after they are formed. We have further shown that this inhibitor(s) also exists in many other cancer cell lines, suggesting that blocking the STAT activation during growth factor signal transduction may play a significant role in the development of many kinds of cancers.
Collapse
Affiliation(s)
- Y Iwamoto
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
641
|
Phillips T, Barnes A, Scott S, Emson P, Rees S. Human metabotropic glutamate receptor 2 couples to the MAP kinase cascade in chinese hamster ovary cells. Neuroreport 1998; 9:2335-9. [PMID: 9694224 DOI: 10.1097/00001756-199807130-00034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have examined the functional coupling of the human metabotropic glutamate receptor type 2 (mGluR2) with the regulation of the mitogen activated protein kinase (MAP kinase) signal transduction cascade. We demonstrated that L-glutamate stimulation of the human mGluR2 receptor transiently expressed in chinese hamster ovary (CHO) cells leads to a rapid increase in the activity of p42/p44 MAP kinase (also known as the extracellular signal regulated kinases, ERK1 and ERK2). Activation of p42/p44 MAP kinase has been demonstrated in a peptide phosphorylation assay and through the demonstration of a shift in electrophoretic mobility of p42 MAP kinase following activation. In both assay systems L-glutamate stimulation of MAP kinase was inhibited by pertussis toxin and by the MEK (MAP/ERK activating kinase) inhibitor PD 98059. We conclude that L-glutamate stimulation of the mGluR2 receptor in CHO cells mediated regulation of p42/p44 MAP kinase following the activation of pertussis toxin-sensitive G alpha(i) G-proteins via a distinct protein kinase signalling pathway that utilizes MEK.
Collapse
Affiliation(s)
- T Phillips
- Department of Neurobiology, Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
642
|
Pap M, Szeberényi J. Differential Ras-dependence of gene induction by nerve growth factor and second messenger analogs in PC12 cells. Neurochem Res 1998; 23:969-75. [PMID: 9690739 DOI: 10.1023/a:1021032405390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Induction of neurite formation by nerve growth factor (NGF) in PC12 pheochromocytoma cells can be efficiently inhibited by expressing a dominant negative mutant form of the small guanine nucleotide binding Ha-Ras protein in these cells. The block in NGF-induced neuritogenesis caused by inhibition of endogenous Ras proteins was found to be partially relieved by simultaneous stimulation of cAMP- or Ca++-dependent signaling pathways. Since expression of certain genes is believed to be involved in NGF-signaling leading to morphological differentiation, we decided to study the combined effects of NGF and second messenger analogs on gene expression in PC12 cell lines expressing different levels of the interfering Ras protein. We found NGF-second messenger combinations that induced normal c-fos, zif268 and nur77 early-response gene expression without neuritogenesis, and, conversely, cell lines in which certain combination treatments caused partial neuronal differentiation in the absence of substantial activation of these genes. Similarly, neurite outgrowth induced by combination treatments does not seem to require the activation of the late-response transin gene. Our results thus suggest a lack of strong correlation between NGF-stimulated early- and secondary-response gene induction and morphological differentiation.
Collapse
Affiliation(s)
- M Pap
- Department of Biology, University Medical School of Pécs, Hungary
| | | |
Collapse
|
643
|
Interleukin-6–Induced Inhibition of Multiple Myeloma Cell Apoptosis: Support for the Hypothesis That Protection Is Mediated Via Inhibition of the JNK/SAPK Pathway. Blood 1998. [DOI: 10.1182/blood.v92.1.241.413k28_241_251] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which interleukin-6 (IL-6) protects multiple myeloma (MM) plasma cells from apoptosis induced by anti-fas antibodies and dexamethasone was studied. Anti-apoptotic concentrations of IL-6 had no effect on cell-cycle distribution or activation of RAF-1 or ERK in dexamethasone- or anti–fas-treated 8226 and UCLA #1 MM cell lines. However, IL-6–dependent protection of viability correlated with an inhibition of dexamethasone- and anti–fas-induced activation ofjun kinase (JNK) and AP-1 transactivation. To test the hypothesis that cytokine-induced protection was mediated through inhibition of JNK/c-jun, we also inhibited c-junfunction in 8226 cells via introduction of a mutant dominant negative c-jun construct. Mutant c-jun–containing MM cells were also resistant to anti–fas-induced apoptosis but were significantly more sensitive to dexamethasone-induced apoptosis. These results support the notion that IL-6 protects MM cells against anti-fas through its inhibitory effects on JNK/c-junbut indicate protection against dexamethasone occurs through separate, yet unknown pathways.
Collapse
|
644
|
Abstract
Helicobacter pylori is the cause of chronic type B gastritis and occurs in almost all patients with duodenal ulcers. Infection with H. pylori is characterized by an increased production of several inflammatory cytokines. Increasing evidence suggests a central role of these cytokines in the pathogenesis of H. pylori-associated gastritis and peptic ulcer disease. Cytokines may be crucial in the recruitment and activation of inflammatory cells and in stimulation of gastrin release. In addition to their proinflammatory properties, cytokines may also inhibit the ulcer occurrence by stimulation of prostaglandins and somatostatin release and by direct impairment of acid secretion. The balance of these factors may determine the clinical outcome of H. pylori infection.
Collapse
|
645
|
Chattopadhyay S, Puente P, Deng XW, Wei N. Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:69-77. [PMID: 9744096 DOI: 10.1046/j.1365-313x.1998.00180.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have studied the roles of PhyA, PhyB and CRY1 photoreceptors and the downstream light-signaling components, COP1 and DET1, in mediating high-irradiance light-controlled activity of promoters containing synthetic light-responsive elements (LRE). Promoters with paired LREs were able to respond to a wide spectrum of light through multiple photoreceptors, while the light-inducible single LRE promoters primarily responded to a specific wavelength of light. In addition, our results indicate that Cry1 is involved in PhyB-mediated red-light induction of the G-GATA/NOS101 promoter, and that both Cry1 and PhyB are required for effective repression of the GT1/NOS101 promoter by red or blue light. An interaction between PhyA and PhyB in mediating GT1-GATA/NOS101 promoter light activation was also observed. Furthermore, our data indicate that COP1 and DET1 exert negative control in the dark only on paired LRE promoters but not single LRE promoters. From these results, we conclude that the combinatorial interaction of LREs is essential in determining the ability of light-responsive promoters to be modulated by crucial cellular regulators and to respond to diverse light environments.
Collapse
Affiliation(s)
- S Chattopadhyay
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
646
|
Fitzpatrick DR, Shirley KM, McDonald LE, Bielefeldt-Ohmann H, Kay GF, Kelso A. Distinct methylation of the interferon gamma (IFN-gamma) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-gamma promoter demethylation and mRNA expression are heritable in CD44(high)CD8+ T cells. J Exp Med 1998; 188:103-17. [PMID: 9653088 PMCID: PMC2525536 DOI: 10.1084/jem.188.1.103] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Differential genomic DNA methylation has the potential to influence the development of T cell cytokine production profiles. Therefore, we have conducted a clonal analysis of interferon (IFN)-gamma and interleukin (IL)-3 gene methylation and messenger (m)RNA expression in primary CD8+ T cells during the early stages of activation, growth, and cytokine expression. Despite similar distributions and densities of CpG methylation sites, the IFN-gamma and IL-3 promoters exhibited differential demethylation in the same T cell clone, and heterogeneity between clones. Methylation patterns and mRNA levels were correlated for both genes, but demethylation of the IFN-gamma promoter was widespread across >300 basepairs in clones expressing high levels of IFN-gamma mRNA, whereas demethylation of the IL-3 promoter was confined to specific CpG sites in the same clones. Conversely, the majority of clones expressing low or undetectable levels of IFN-gamma mRNA exhibited symmetrical methylation of four to six of the IFN-gamma promoter CpG sites. Genomic DNA methylation also has the potential to influence the maintenance or stability of T cell cytokine production profiles. Therefore, we also tested the heritability of IFN-gamma gene methylation and mRNA expression in families of clones derived from resting CD44(low)CD8+ T cells or from previously activated CD44(high)CD8+ T cells. The patterns of IFN-gamma gene demethylation and mRNA expression were faithfully inherited in all clones derived from CD44(high) cells, but variable in clones derived from CD44(low) cells. Overall, these findings suggest that differential genomic DNA methylation, including differences among cytokine genes, among individual T cells, and among T cells with different activation histories, is an important feature of cytokine gene expression in primary T cells.
Collapse
Affiliation(s)
- D R Fitzpatrick
- Leukocyte Biology Unit, The Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Queensland 4029, Australia.
| | | | | | | | | | | |
Collapse
|
647
|
Guidez F, Li AC, Horvai A, Welch JS, Glass CK. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation. Mol Cell Biol 1998; 18:3851-61. [PMID: 9632769 PMCID: PMC108969 DOI: 10.1128/mcb.18.7.3851] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1997] [Accepted: 03/27/1998] [Indexed: 02/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) independently stimulate the proliferation and differentiation of macrophages from bone marrow progenitor cells. Although the GM-CSF and M-CSF receptors are unrelated, both couple to Ras-dependent signal transduction pathways, suggesting that these pathways might account for common actions of GM-CSF and M-CSF on the expression of macrophage-specific genes. To test this hypothesis, we have investigated the mechanisms by which GM-CSF and M-CSF regulate the expression of the macrophage scavenger receptor A (SR-A) gene. We demonstrate that induction of the SR-A gene by M-CSF is dependent on AP-1 and cooperating Ets domain transcription factors that bind to sites in an M-CSF-dependent enhancer located 4.1 to 4.5 kb upstream of the transcriptional start site. In contrast, regulation by GM-CSF requires a separate enhancer located 4.5 to 4.8 kb upstream of the transcriptional start site that confers both immediate-early and sustained transcriptional responses. Results of a combination of DNA binding experiments and functional assays suggest that immediate transcriptional responses are mediated by DNA binding proteins that are constitutively bound to the GM-CSF enhancer and are activated by Ras. At 12 to 24 h after GM-CSF treatment, the GM-CSF enhancer becomes further occupied by additional DNA binding proteins that may contribute to sustained transcriptional responses. In concert, these studies indicate that GM-CSF and M-CSF differentially utilize Ras-dependent signal transduction pathways to regulate scavenger receptor gene expression, consistent with the distinct functional properties of M-CSF- and GM-CSF-derived macrophages.
Collapse
Affiliation(s)
- F Guidez
- Divisions of Endocrinology and Metabolism and Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA
| | | | | | | | | |
Collapse
|
648
|
Tomic-Canic M, Komine M, Freedberg IM, Blumenberg M. Epidermal signal transduction and transcription factor activation in activated keratinocytes. J Dermatol Sci 1998; 17:167-81. [PMID: 9697045 DOI: 10.1016/s0923-1811(98)00016-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the area of biology, many laboratories around the world are dissecting and characterizing signal transduction mechanisms and transcription factors responsive to various growth factors and cytokines, in various cell types. However, because of the differences in systems used, it is not clear whether these systems coexist, whether they interact meaningfully, and what their relative roles are. Epidermal keratinocytes are the perfect cell type in which to integrate this knowledge, because in these cells these mechanisms are known to be relevant. Keratinocytes both produce and respond to growth factors and cytokines, especially in pathological conditions and during wound healing, when the physiology of keratinocytes is altered in a way specified by the presence of a subset growth factors and cytokines. In fact, growth factors and cytokines cause the major changes in gene expression and keratinocyte behavior in various cutaneous diseases. In some cases, such as in wound healing, these responses are highly beneficial; in others, such as in psoriasis, they are pathological. It is not clear at present which are operating in which conditions, which are important for the healing process and which are harmful. Growth factors and cytokines affect keratinocytes sometimes simultaneously, at other times individually. In this manuscript we describe the signal transduction pathways responsible for the effects of interferons, the EGF/TGF alpha family and the TNF alpha/IL-1 family of signaling molecules. We also describe the important transcription factors known to be functional in epidermis, with particular emphasis on those factors that are activated by growth factors and cytokines. Finally, we describe what is known about transcriptional regulation of keratin genes, especially those specifically expressed in pathological processes in the epidermis. We expect that the enhanced understanding of the pathways regulating gene expression in keratinocytes will identify the pharmacological targets, the signal transducing proteins and the corresponding transcription factors, used by growth factors and cytokines. This research will led to development of compounds precisely aimed at those targets, allowing us to isolate and inhibit the harmful side effects of growth factors and cytokines. Such compounds should lead to highly specific and therefore more effective treatments of the cutaneous disorders in which these pathways play significant roles.
Collapse
Affiliation(s)
- M Tomic-Canic
- Ronald O. Perelman Department of Dermatology, New York University Medical Center, New York, NY 10016, USA
| | | | | | | |
Collapse
|
649
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in transducting environmental stimuli to the transcriptional machinery in the nucleus by virtue of their ability to phosphorylate and regulate the activity of various transcription factors. Originally found to be activated in response to occupancy of cell surface receptors for polypeptide hormones, cytokines, and growth factors, MAPK cascades were recently found to be activated by a variety of stresses including ischemia reperfusion, neuronal injury, osmotic shock, and exposure to UV irradiation. Therefore, MAPK cascades are likely to be important regulatory elements in a variety of stress responses.
Collapse
Affiliation(s)
- M Karin
- Department of Pharmacology, University of California, San Diego, La Jolla 92903-0636, USA
| |
Collapse
|
650
|
Bétuing S, Daviaud D, Pagès C, Bonnard E, Valet P, Lafontan M, Saulnier-Blache JS. Gbeta gamma-independent coupling of alpha2-adrenergic receptor to p21(rhoA) in preadipocytes. J Biol Chem 1998; 273:15804-10. [PMID: 9624180 DOI: 10.1074/jbc.273.25.15804] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In preadipocytes, alpha2-adrenergic receptor (alpha2-AR) stimulation leads to a Gi/Go-dependent rearrangement of actin cytoskeleton. This is characterized by a rapid cell spreading, the formation of actin stress fibers, and the increase in tyrosyl phosphorylation of the focal adhesion kinase (pp125(FAK)). These cellular events being tightly controlled by the small GTPase p21(rhoA), the existence of a Gi/Go-dependent coupling of alpha2-AR to p21(rhoA) in preadipocytes was proposed. In alpha2AF2 preadipocytes (a cell clone derived from the 3T3F442A preadipose cell line and which stably expresses the human alpha2C10-adrenergic receptor) alpha2-adrenergic-dependent induction of cell spreading, formation of actin stress fibers, and increase in tyrosyl phosphorylation of pp125(FAK) were abolished by pretreatment of the preadipocytes with the C3 exoenzyme, a toxin which impairs p21(rhoA) activity by ADP-ribosylation. Conversely, C3 exoenzyme had no effect on the alpha2-adrenergic-dependent increase in tyrosyl phosphorylation and shift of ERK2 mitogen-activated protein kinase. alpha2-Adrenergic stimulation also led to an increase in GDP/GTP exchange on p21(rhoA), as well as to an increase in the amount of p21(rhoA) in the particulate fraction of alpha2AF2 preadipocytes. Stable transfection of alpha2AF2 preadipocytes with the COOH-terminal domain of betaARK1 (betaARK-CT) (a blocker of Gbeta gamma-action), strongly inhibited the alpha2-adrenergic-dependent increase in tyrosyl phos- phorylation and shift of ERK2, without modification of the tyrosyl phosphorylation of pp125(FAK) and spreading of preadipocytes. These results show that alpha2-adrenergic-dependent reorganization of actin cytoskeleton requires the activation of p21(rhoA) in preadipocytes. Conversely to the activation of the p21(ras)/mitogen-activated protein kinase pathway, the alpha2-adrenergic activation of p21(rhoA)-dependent pathways are independent of the beta gamma-subunits of heterotrimeric G proteins.
Collapse
Affiliation(s)
- S Bétuing
- INSERM U317, Institut Louis Bugnard, Université Paul Sabatier, CHU Rangueil, Batiment L3, 31403, Toulouse Cedex 4, France
| | | | | | | | | | | | | |
Collapse
|