51
|
Kaya İ, Özdemir H, Çapraz Ö, Atmaca E, Türkel V, Deniz A, Demir G, Ünal A. An urban air quality assessment based on a meteorological perspective. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1021. [PMID: 37548794 DOI: 10.1007/s10661-023-11643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
An integrated approach to understanding all measured pollutants with multi-discipline in different time scales and understanding the mechanisms hidden under low air quality (AQ) conditions is essential for tackling potential air pollution issues. In this study, the air pollution of Sivas province was analyzed with meteorological and PM2.5 data over six years to assess the city's AQ in terms of PM2.5 pollution and analyze the effect of meteorological factors on it. It was found that the winter period (January-February-November-December) of every year except 2019-which has missing data-is the period with the highest air pollution in the province. In addition, the days exceeding the daily PM2.5 limit values in 2016, 2017, 2020, and 2021 were also seen in the spring and summer months, which inclined the study to focus on additional pollutant sources such as long-range dust transport and road vehicles. The year 2017 has the highest values and was analyzed in detail. Pollution periods with the most increased episodes in 2018 were analyzed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and Dust Regional Atmospheric Model (DREAM) models. As a result of the study, the average PM2.5 values in 2017 were 31.66 ± 19.2 µg/m3 and a correlation of -0.49 between temperature and PM2.5. As a result of model outputs, it was found that the inversion is intensely observed in the province, which is associated with an increase of PM2.5 during the episodes. Dust transport from northwestern Iraq and northeastern Syria is observed, especially on days with daily average PM2.5 values above 100 µg/m3. Additionally, planetary boundary layer (PBL) data analysis with PM pollution revealed a significant negative correlation (r = -0.61). Air pollutants, particularly PM2.5, were found to be higher during lower PBL levels.
Collapse
Affiliation(s)
- İbrahim Kaya
- Sivas Directorate Republic of Türkiye Ministry of Environment, Urbanization and Climate Change, 58080, Sivas, Merkez, Türkiye.
| | - Hüseyin Özdemir
- Climate and Marine Sciences, Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Özkan Çapraz
- Climate and Marine Sciences, Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Eyüp Atmaca
- Environmental Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, 58140, Merkez, Sivas, Türkiye
| | - Veysel Türkel
- ARI Teknokent, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Ali Deniz
- Faculty of Aeronautics and Astronautics, Meteorological Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Göksel Demir
- Hamidiye Faculty of Health Sciences, Occupational Health and Safety Department, University of Health Sciences, 34668, Istanbul, Üsküdar, Türkiye
| | - Alper Ünal
- Climate and Marine Sciences, Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| |
Collapse
|
52
|
Amma C, Inomata Y, Kohno R, Satake M, Furukawa A, Nagata Y, Sugiyama H, Seto T, Suzuki R. Copper in airborne fine particulate matter (PM 2.5) from urban sites causes the upregulation of pro-inflammatory cytokine IL-8 in human lung epithelial A549 cells. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5879-5891. [PMID: 37179508 DOI: 10.1007/s10653-023-01599-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Fine atmospheric particles, such as PM2.5, are strongly related to the onset and exacerbation of inflammatory responses leading to the development of respiratory and cardiovascular diseases. PM2.5 is a complex mixture of tiny particles with different properties (i.e., size, morphology, and chemical components). Moreover, the mechanism by which PM2.5 induces inflammatory responses has not been fully elucidated. Therefore, it is necessary to determine the composition of PM2.5 to identify the main factors causing PM2.5-associated inflammation and diseases. In the present study, we investigated PM2.5 from two sites (Fukue, a remote monitoring site, and Kawasaki, an urban monitoring site) with greatly different environments and PM2.5 compositions. The results of ICP-MS and EDX-SEM indicated that PM2.5 from Kawasaki contained more metals and significantly induced the expression of the pro-inflammatory cytokine gene IL-8 compared to the PM2.5 from Fukue. We also verified the increased secretion of IL-8 protein from exposure to PM2.5 from Kawasaki. We further investigated their effects on inflammatory response and cytotoxicity using metal nanoparticles (Cu, Zn, and Ni) and ions and found that the Cu nanoparticles caused a dose-dependent increase in IL-8 expression together with significant cell death. We also found that Cu nanoparticles enhanced the secretion of IL-8 protein. These results suggest that Cu in PM2.5 is involved in lung inflammation.
Collapse
Affiliation(s)
- Chisato Amma
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yayoi Inomata
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Risa Kohno
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Minami Satake
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Atsushi Furukawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yuka Nagata
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hironori Sugiyama
- Instrumental Analysis Division, Engineering and Technology Department, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takafumi Seto
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
53
|
Lintusaari H, Kuuluvainen H, Vanhanen J, Salo L, Portin H, Järvinen A, Juuti P, Hietikko R, Teinilä K, Timonen H, Niemi JV, Rönkkö T. Sub-23 nm Particles Dominate Non-Volatile Particle Number Emissions of Road Traffic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37448254 PMCID: PMC10373488 DOI: 10.1021/acs.est.3c03221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Ultrafine particles (<100 nm) in urban air are a serious health hazard not yet fully understood. Therefore, particle number concentration monitoring was recently included in the WHO air quality guidelines. At present, e.g., the EU regulates particle number only regarding the emissions of solid particles larger than 23 nm emitted by vehicles. The aim of this study was to examine the non-volatile fraction of sub-23 nm particles in a traffic-influenced urban environment. We measured the number concentration of particles larger than 1.4, 3, 10, and 23 nm in May 2018. Volatile compounds were thermally removed in the sampling line and the line losses were carefully determined. According to our results, the sub-23 nm particles dominated the non-volatile number concentrations. Additionally, based on the determined particle number emission factors, the traffic emissions of non-volatile sub-10 nm particles can be even 3 times higher than those of particles larger than 10 nm. Yet, only a fraction of urban sub-10 nm particles consisted of non-volatiles. Thus, while the results highlight the role of ultrafine particles in the traffic-influenced urban air, a careful consideration is needed in terms of future particle number standards to cover the varying factors affecting measured concentrations.
Collapse
Affiliation(s)
- Henna Lintusaari
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| | - Heino Kuuluvainen
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| | | | - Laura Salo
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| | - Harri Portin
- Helsinki Region Environmental Services Authority, Helsinki 00240, Finland
| | - Anssi Järvinen
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| | - Paxton Juuti
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| | - Riina Hietikko
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| | - Kimmo Teinilä
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00560, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00560, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority, Helsinki 00240, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| |
Collapse
|
54
|
Power AL, Tennant RK, Stewart AG, Gosden C, Worsley AT, Jones R, Love J. The evolution of atmospheric particulate matter in an urban landscape since the Industrial Revolution. Sci Rep 2023; 13:8964. [PMID: 37268751 DOI: 10.1038/s41598-023-35679-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Atmospheric particulate matter (PM) causes 3.7 million annual deaths worldwide and potentially damages every organ in the body. The cancer-causing potential of fine particulates (PM2.5) highlights the inextricable link between air quality and human health. With over half of the world's population living in cities, PM2.5 emissions are a major concern, however, our understanding of exposure to urban PM is restricted to relatively recent (post-1990) air quality monitoring programmes. To investigate how the composition and toxicity of PM has varied within an urban region, over timescales encompassing changing patterns of industrialisation and urbanisation, we reconstructed air pollution records spanning 200 years from the sediments of urban ponds in Merseyside (NW England), a heartland of urbanisation since the Industrial Revolution. These archives of urban environmental change across the region demonstrate a key shift in PM emissions from coarse carbonaceous 'soot' that peaked during the mid-twentieth century, to finer combustion-derived PM2.5 post-1980, mirroring changes in urban infrastructure. The evolution of urban pollution to a recent enhanced PM2.5 signal has important implications for understanding lifetime pollution exposures for urban populations over generational timescales.
Collapse
Affiliation(s)
- Ann L Power
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter, UK.
| | - Richard K Tennant
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter, UK
| | - Alex G Stewart
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter, UK
- Ex - Cheshire and Merseyside Public Health England Centre, Liverpool, UK
| | - Christine Gosden
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter, UK
| | - Annie T Worsley
- Strata Environmental, 16 South Erradale, Gairloch, Scotland, UK
| | - Richard Jones
- Geography Department, University of Exeter, Exeter, UK
| | - John Love
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
55
|
Torres-Blas I, Horsler H, Paredes UM, Perkins M, Priestnall SL, Brekke P. Impact of exposure to urban air pollution on grey squirrel (Sciurus carolinensis) lung health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121312. [PMID: 36893972 DOI: 10.1016/j.envpol.2023.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The increased rate of global urbanisation has recently exacerbated the significant public health problem of traffic related air pollution. Despite the known significant impact on human health, little is known about the effects of air pollution on wildlife health. The lung is the primary target organ for the effects of exposure to air pollution, leading to lung inflammation, altering the lung epigenome, culminating in respiratory disease. In this study, we aimed to assess lung health and DNA methylation profiles in Eastern grey squirrel (Sciurus carolinensis) populations living across an urban-rural air pollution gradient. Squirrel lung health was assessed in four populations situated across the most polluted inner-city boroughs to the less polluted edges of Greater London. We also assessed lung DNA methylation across three London sites and a further two rural sites in Sussex and North Wales. Lung and tracheal diseases were present in 28% and 13% of the squirrels respectively. Specifically, focal inflammation (13%), focal macrophages with vacuolated cytoplasm (3%) and endogenous lipid pneumonia (3%). There was no significant difference in prevalence of lung, tracheal diseases, anthracosis (carbon presence) or lung DNA methylation levels between urban sites and urban and rural sites respectively or NO2 levels. BALT (Bronchus-Associated Lymphoid Tissue) was significantly smaller in the site with highest NO2 and contained the highest carbon loading compared to sites with lower NO2, however differences in carbon loading in between sites were not significant. High pollution site individuals also had significantly higher numbers of alveolar macrophages which suggests that grey squirrels are exposed to and respond to traffic-related air pollution and further research is needed to understand the impact of traffic-related air pollutants on wildlife health.
Collapse
Affiliation(s)
- Irene Torres-Blas
- Dept Pathobiology & Population Sciences, The Royal Veterinary College, Hawkshead Lane, N Mymms, Hatfield, AL9 7TA, UK; Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Helen Horsler
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ursula M Paredes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew Perkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Simon L Priestnall
- Dept Pathobiology & Population Sciences, The Royal Veterinary College, Hawkshead Lane, N Mymms, Hatfield, AL9 7TA, UK
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| |
Collapse
|
56
|
Aglan A, Synn AJ, Nurhussien L, Chen K, Scheerens C, Koutrakis P, Coull B, Rice MB. Personal and community-level exposure to air pollution and daily changes in respiratory symptoms and oxygen saturation among adults with COPD. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100052. [PMID: 37293389 PMCID: PMC10249721 DOI: 10.1016/j.heha.2023.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Air pollution exposure is associated with hospital admissions for Chronic Obstructive Pulmonary Disease (COPD). Few studies have investigated whether daily personal exposure to air pollutants affects respiratory symptoms and oxygenation among COPD patients. Methodology We followed 30 former smokers with COPD for up to 4 non-consecutive 30-day periods in different seasons. Participants recorded worsening of respiratory symptoms (sub-categorized as breathing or bronchitis symptoms) by daily questionnaire, and oxygen saturation by pulse oximeter. Personal and community-level exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) were measured by portable air quality monitors and stationary monitors in the Boston area. We used generalized and multi-level linear mixed-effects models to estimate associations of the 24-hour average of each pollutant in the previous day with changes in respiratory symptoms and oxygen saturation. Results Higher community-level exposure to air pollutants was associated with worsening respiratory symptoms. An interquartile range (IQR) higher community-level O3 was associated with a 1.35 (95%CI: 1.07-1.70) higher odds of worsening respiratory symptoms. The corresponding ORs for community-level PM2.5 and NO2 were 1.18 (95%CI: 1.02-1.37) and 1.06 (95%CI: 0.90-1.25), respectively. Community-level NO2 was associated with worsening bronchitis symptoms (OR=1.25, 95%CI: 1.00-1.56), but not breathing symptoms. Personal PM2.5 exposure was associated with lower odds of worsening respiratory symptoms (OR=0.91; 95%CI: 0.81-1.01). Personal exposure to NO2 was associated with 0.11% lower oxygen saturation (95%CI: -0.22, 0.00) per IQR. Conclusions In this COPD population, there was a pattern of worsening respiratory symptoms associated with community-level exposure to O3 and PM2.5, and worsening oxygenation associated with personal exposure to NO2.
Collapse
Affiliation(s)
- Amro Aglan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Andrew J. Synn
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Lina Nurhussien
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Kelly Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Charlotte Scheerens
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Public Health and Primary Care, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| |
Collapse
|
57
|
Birinci E, Özdemir ET, Deniz A. An investigation of the effects of sand and dust storms in the North East Sahara Desert on Turkish airports and PM 10 values: 7 and 8 April, 2013 events. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:708. [PMID: 37212911 DOI: 10.1007/s10661-023-11288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/20/2023] [Indexed: 05/23/2023]
Abstract
Between April 7 and April 10, 2013, a cyclone with a value of 995 hPa that developed in the central Mediterranean transported dust from the Sahara Desert towards Turkey. At 13 airports in Turkey, dust haze and widespread dust were seen during different occasions in this period and caused the observation of so-called "Blowing dust events." This cyclone blew dust towards the Cappadocia airport, and the prevailing visibility decreased to 3800 m, making it the lowest value measured during the transition of this cyclone. In this study, Aviation Routine Weather Report (Metar) and Aviation Selected Special Weather Report (Speci) observations of airports in North Africa and Turkey were evaluated for the period between April 3 and April 11, 2013. With this cyclone the prevailing visibility at Benina Airport in Libya decreased to 50 m on April 6, 2013. This study aims to evaluate long-distance dust transport's effects on meteorological visibility at airports in Turkey and examine the episodic changes of PM10 values measured by air quality monitoring stations. Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model outputs were used to determine the trajectories of long-distance dust particles. Powder red, green, and blue (RGB) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images, Cloud-Aerosol LIDAR Infrared Pathfinder Satellite Observations (CALIPSO) images, the Barcelona Supercomputing Center-Dust Regional Atmosphere Model (BSC-DREAM8b) outputs, and Global Forecast System (GFS) synoptic maps were used for analysis. In addition, PM10 values obtained from air quality monitoring stations were examined. According to the data obtained from the CALIPSO images, the dust concentration on the Eastern Mediterranean reaches up to 5 km. The episodic values obtained from certain air quality measurement stations are Adana 701, Gaziantep 629, Karaman 900, Nevşehir 1343, and Yozgat 782 µg/m3 on an hourly average.
Collapse
Affiliation(s)
- Enes Birinci
- Department of Meteorological Engineering, İstanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Emrah Tuncay Özdemir
- Department of Meteorological Engineering, İstanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ali Deniz
- Department of Meteorological Engineering, İstanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
58
|
Chebaicheb H, de Brito JF, Chen G, Tison E, Marchand C, Prévôt ASH, Favez O, Riffault V. Investigation of four-year chemical composition and organic aerosol sources of submicron particles at the ATOLL site in northern France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121805. [PMID: 37172769 DOI: 10.1016/j.envpol.2023.121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
This study presents the first long-term online measurements of submicron (PM1) particles at the ATOLL (ATmospheric Observations in liLLe) platform, in northern France. The ongoing measurements using an Aerosol Chemical Speciation Monitor (ACSM) started at the end of 2016 and the analysis presented here spans through December 2020. At this site, the mean PM1 concentration is 10.6 μg m-3, dominated by organic aerosols (OA, 42.3%) and followed by nitrate (28.9%), ammonium (12.3%), sulfate (8.6%), and black carbon (BC, 8.0%). Large seasonal variations of PM1 concentrations are observed, with high concentrations during cold seasons, associated with pollution episodes (e.g. over 100 μg m-3 in January 2017). To study OA origins over this multiannual dataset we performed source apportionment analysis using rolling positive matrix factorization (PMF), yielding two primary OA factors, a traffic-related hydrocarbon-like OA (HOA) and biomass-burning OA (BBOA), and two oxygenated OA (OOA) factors. HOA showed a homogeneous contribution to OA throughout the seasons (11.8%), while BBOA varied from 8.1% (summer) to 18.5% (winter), the latter associated with residential wood combustion. The OOA factors were distinguished between their less and more oxidized fractions (LO-OOA and MO-OOA, on average contributing 32% and 42%, respectively). During winter, LO-OOA is identified as aged biomass burning, so at least half of OA is associated with wood combustion during this season. Furthermore, ammonium nitrate is also a predominant aerosol component during cold-weather pollution episodes - associated with fertilizer usage and traffic emissions. This study provides a comprehensive analysis of submicron aerosol sources at the recently established ATOLL site in northern France from multiannual observations, depicting a complex interaction between anthropogenic and natural sources, leading to different mechanisms of air quality degradation in the region across different seasons.
Collapse
Affiliation(s)
- Hasna Chebaicheb
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environment, 59000, Lille, France; Institut National de L'environnement Industriel et des Risques (INERIS), 60550, Verneuil-en-Halatte, France; Laboratoire Central de Surveillance de La Qualité de L'Air (LCSQA), F-60550, Verneuil-en-Halatte, France
| | - Joel F de Brito
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environment, 59000, Lille, France.
| | - Gang Chen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland; MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, W120BZ, UK
| | - Emmanuel Tison
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environment, 59000, Lille, France
| | - Caroline Marchand
- Institut National de L'environnement Industriel et des Risques (INERIS), 60550, Verneuil-en-Halatte, France; Laboratoire Central de Surveillance de La Qualité de L'Air (LCSQA), F-60550, Verneuil-en-Halatte, France
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Olivier Favez
- Institut National de L'environnement Industriel et des Risques (INERIS), 60550, Verneuil-en-Halatte, France; Laboratoire Central de Surveillance de La Qualité de L'Air (LCSQA), F-60550, Verneuil-en-Halatte, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environment, 59000, Lille, France; Laboratoire Central de Surveillance de La Qualité de L'Air (LCSQA), F-60550, Verneuil-en-Halatte, France
| |
Collapse
|
59
|
McCarron A, Semple S, Braban CF, Swanson V, Gillespie C, Price HD. Public engagement with air quality data: using health behaviour change theory to support exposure-minimising behaviours. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:321-331. [PMID: 35764891 PMCID: PMC10234807 DOI: 10.1038/s41370-022-00449-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/03/2023]
Abstract
Exposure to air pollution prematurely kills 7 million people globally every year. Policy measures designed to reduce emissions of pollutants, improve ambient air and consequently reduce health impacts, can be effective, but are generally slow to generate change. Individual actions can therefore supplement policy measures and more immediately reduce people's exposure to air pollution. Air quality indices (AQI) are used globally (though not universally) to translate complex air quality data into a single unitless metric, which can be paired with advice to encourage behaviour change. Here we explore, with reference to health behaviour theories, why these are frequently insufficient to instigate individual change. We examine the health behaviour theoretical steps linking air quality data with reduced air pollution exposure and (consequently) improved public health, arguing that a combination of more 'personalised' air quality data and greater public engagement with these data will together better support individual action. Based on this, we present a novel framework, which, when used to shape air quality interventions, has the potential to yield more effective and sustainable interventions to reduce individual exposures and thus reduce the global public health burden of air pollution.
Collapse
Affiliation(s)
- Amy McCarron
- Biological and Environmental Sciences, University of Stirling, Stirling, UK.
| | - Sean Semple
- Institute of Social Marketing and Health, University of Stirling, Stirling, UK
| | | | | | | | - Heather D Price
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
60
|
Li S, Liu B, Liu Y, Ding YQ, Zhang J, Feng L. Effects of maternal urban particulate matter SRM 1648a exposure on birth outcomes and offspring growth in mice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2387-2400. [PMID: 35972609 DOI: 10.1007/s10653-022-01352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The association between exposure to particulate matter (PM) during pregnancy and abnormal birth outcomes is still inconclusive. This study aims to provide more evidence for this public health concern by investigating birth outcomes and the growth of offspring in mice exposed to PM during pregnancy. C57BL/6 J pregnant mice were exposed to PM via nasal drip at three doses or solvent control. The dam weight gain was recorded during pregnancy. The number of pups, pup weight, and placental weight were recorded at embryonic day 18.5 (E18.5) necropsy. For mice that gave birth naturally, we calculated the gestation length and measured the body weight of offspring once a week from the 1st to the 6th week after birth. The results showed that there were no significant differences in maternal body weight gain, conception rate, pregnancy duration, and litter size among different groups. There were no significant differences in fetal weight, placental weight, and fetal/placental weight ratio at E18.5. Weight gain in offspring was reduced after birth. The average body weight of offspring in the high-dose group was significantly lower than that in the control group at weeks 5 in female pups. There were no significant differences in the body weight of male offspring among groups from 1st to the 6th. Together, our study indicated that maternal exposure to PM did not significantly impact birth outcomes of C57BL/6 J mice but affected growth trajectories in offspring after birth in a dose- and fetal sex-dependent manner.
Collapse
Affiliation(s)
- Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
- Division of Reproductive Science, Department of Obstetrics and Gynecology, Duke University Medical Center, Box 103208, Durham, NC, 27710, USA.
| |
Collapse
|
61
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
62
|
He T, Jin L, Li X. On the triad of air PM pollution, pathogenic bioaerosols, and lower respiratory infection. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1067-1077. [PMID: 34236582 PMCID: PMC8264819 DOI: 10.1007/s10653-021-01025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 05/21/2023]
Abstract
Airborne particulate matter (PM) pollution, as a leading environmental health risk, causes millions of premature deaths globally every year. Lower respiratory infection (LRI) is a sensitive response to short-term exposure to outdoor PM pollution. The airborne transmission of etiological agents of LRI, as an important pathway for infection and morbidity, bridges the public health issues of air quality and pathogen infectivity, virulence, resistance, and others. Enormous efforts are underway to identify common pathogens and substances that are etiological agents for LRI and to understand the underlying toxicological and clinical basis of health effects by identifying mechanistic pathways. Seasonal variations and geographical disparities in the survival and infectivity of LRI pathogens are unsolved mysteries. Weather conditions in geographical areas may have a key effect, but also potentially connect LRI with short-term increases in ambient air PM pollution. Statistical associations show that short-term elevations in fine and coarse PM lead to increases in respiratory infections, but the causative agents could be chemical or microbiological and be present individually or in mixtures, and the interactions between chemical and microbiological agents remain undefined. Further investigations on high-resolution monitoring of airborne pathogens in relation to PM pollution for an integrated exposure-response assessment and mechanistic study are warranted. Improving our understanding of the spatiotemporal features of pathogenic bioaerosols and air pollutants and translating scientific evidence into effective policies is vital to reducing the health risks and devastating death toll from PM pollution.
Collapse
Affiliation(s)
- Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
63
|
Jia L, Xu Y, Duan M. Explosive formation of secondary organic aerosol due to aerosol-fog interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161338. [PMID: 36608824 DOI: 10.1016/j.scitotenv.2022.161338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Aerosol particles can profoundly affect the local environment and global climate. Explosive growths of secondary organic aerosol (SOA) are frequently observed during serious haze evens, but their fundamental mechanism remains unclear. We used chamber experiments and kinetic model simulations to reveal the microphysical mechanism for explosive organic aerosol formation. The evolution of SOA with organic vapors under dry and highly humid conditions was determined based on a high-resolution Orbitrap mass spectrometer. We found that the condensation of gas-phase organics could lead to the formation of cloud or fog droplets with relative humidity below 100 %; meanwhile, the aerosol-fog interaction could result in the explosive growth of SOA. Monomeric products from toluene oxidation were verified to primarily contribute to the increased SOA in super humid conditions, which are mainly assigned to be intermediate- and semi-volatile organic compounds. Moreover, we demonstrated that the decreasing temperatures could dramatically amplify organic compounds' co-condensing influence on SOA explosive formation and activation at relative humidity above 85 % and temperature below 20 °C. Our findings revealed that aerosol-fog interaction is the fundamental driving force for explosive organic aerosol formation. It indicates that overlooking the co-condensation of organic vapors with water could significantly underestimate SOA and liquid water content in 3D models.
Collapse
Affiliation(s)
- Long Jia
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - YongFu Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - MinZheng Duan
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
64
|
Ramar M, Yano N, Fedulov AV. Intra-Airway Treatment with Synthetic Lipoxin A4 and Resolvin E2 Mitigates Neonatal Asthma Triggered by Maternal Exposure to Environmental Particles. Int J Mol Sci 2023; 24:ijms24076145. [PMID: 37047118 PMCID: PMC10093944 DOI: 10.3390/ijms24076145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Particulate matter in the air exacerbates airway inflammation (AI) in asthma; moreover, prenatal exposure to concentrated urban air particles (CAPs) and diesel exhaust particles (DEPs) predisposes the offspring to asthma and worsens the resolution of AI in response to allergens. We previously tested the hypothesis that such exposure impairs the pathways of specialized proresolving mediators that are critical for resolution and found declined Lipoxin A4 (LxA4) and Resolvin E2 (RvE2) levels in the "at-risk" pups of exposed mothers. Here, we hypothesized that supplementation with synthetic LxA4 or RvE2 via the airway can ameliorate AI after allergen exposure, which has not been tested in models with environmental toxicant triggers. BALB/c newborns with an asthma predisposition resultant from prenatal exposure to CAPs and DEPs were treated once daily for 3 days with 750 ng/mouse of LxA4 or 300 ng/mouse of RvE2 through intranasal instillation, and they were tested with the intentionally low-dose ovalbumin protocol that elicits asthma in the offspring of particle-exposed mothers but not control mothers, mimicking the enigmatic maternal transmission of asthma seen in humans. LxA4 and RvE2 ameliorated the asthma phenotype and improved AI resolution, which was seen as declining airway eosinophilia, lung tissue infiltration, and proallergic cytokine levels.
Collapse
Affiliation(s)
- Mohankumar Ramar
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Naohiro Yano
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
65
|
Molina Rueda E, Carter E, L’Orange C, Quinn C, Volckens J. Size-Resolved Field Performance of Low-Cost Sensors for Particulate Matter Air Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:247-253. [PMID: 36938150 PMCID: PMC10018765 DOI: 10.1021/acs.estlett.3c00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter (PM) air pollution is a major health hazard. The health effects of PM are closely linked to particle size, which governs its deposition in (and penetration through) the respiratory tract. In recent years, low-cost sensors that report particle concentrations for multiple-sized fractions (PM1.0, PM2.5, PM10) have proliferated in everyday use and scientific research. However, knowledge of how well these sensors perform across the full range of reported particle size fractions is limited. Unfortunately, erroneous particle size data can lead to spurious conclusions about exposure, misguided interventions, and ineffectual policy decisions. We assessed the linearity, bias, and precision of three low-cost sensor models, as a function of PM size fraction, in an urban setting. Contrary to manufacturers' claims, sensors are only accurate for the smallest size fraction (PM1). The PM1.0-2.5 and PM2.5-10 size fractions had large bias, noise, and uncertainty. These results demonstrate that low-cost aerosol sensors (1) cannot discriminate particle size accurately and (2) only report linear and precise measures of aerosol concentration in the accumulation mode size range (i.e., between 0.1 and 1 μm). We recommend that crowdsourced air quality monitoring networks stop reporting coarse (PM2.5-10) mode and PM10 mass concentrations from these sensors.
Collapse
Affiliation(s)
- Emilio Molina Rueda
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ellison Carter
- Department
of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christian L’Orange
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Casey Quinn
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - John Volckens
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
66
|
Zhang X, Feng T, Wang C, Li C. Local Fiscal Pressure and Public Health: Evidence from China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5126. [PMID: 36982038 PMCID: PMC10049343 DOI: 10.3390/ijerph20065126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Under the dual challenges of global downward economic pressure and the COVID-19 pandemic, studying the impact of local government fiscal pressure on public health is a meaningful endeavor. First, this paper analyzes the impact of local government fiscal pressure on public health and clarifies its impact mechanisms. Second, by utilizing panel data of 31 Chinese provinces from 2000 to 2020, two-way fixed-effects and mediating-effects models are developed to identify the effects and impact mechanisms of local government fiscal pressure on public health. The results show that local government fiscal pressure can be detrimental to public health through three main mechanisms: reducing public health fiscal expenditures, hindering industrial structure upgrading, and exacerbating environmental pollution. Heterogeneity analysis finds that the negative effects of local government fiscal pressure on public health mainly exist in Central and Western China. Accordingly, three policy implications are proposed: optimizing the fiscal system, accelerating industrial upgrading, and improving the appraisal system of local officers.
Collapse
Affiliation(s)
- Xu Zhang
- School of Economics and Management, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Tianchu Feng
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji 311800, China
| | - Chengjun Wang
- School of Economics and Management, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Chaozhu Li
- China Institute for Rural Studies, Tsinghua University, Beijing 100084, China
| |
Collapse
|
67
|
Zhang H, Yu Z, Zhu C, Yang R, Yan B, Jiang G. Green or not? Environmental challenges from photovoltaic technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121066. [PMID: 36639047 DOI: 10.1016/j.envpol.2023.121066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The booming demands for energy and the drive towards low-carbon energy sources have prompted a worldwide emerging constructions of photovoltaic (PV) solar energy facilities. Compared with fossil-based electrical power system, PV solar energy has significantly lower pollutants and greenhouse gases (GHG) emissions. However, PV solar technology are not free of adverse environmental consequences such as biodiversity and habitat loss, climatic effects, resource consumption, and disposal of massive end-of-life PV panels. This review highlights the benefits and potential environmental impacts of implementing PV technologies. To the end, some proposals are recommended to improve this new technology's sustainability.
Collapse
Affiliation(s)
- Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhigang Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chengcheng Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
68
|
Bessa MJ, Brandão F, Rosário F, Moreira L, Reis AT, Valdiglesias V, Laffon B, Fraga S, Teixeira JP. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:67-96. [PMID: 36692141 DOI: 10.1080/10937404.2023.2166638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relationship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)particulate material toxicity assessment, this review provides an overview of the available human respiratory models and exposure systems for in vitro testing, advantages, limitations, and existing investigations using models of different complexity. A brief overview of the human respiratory system, pathway and fate of inhaled (nano)particles is also presented.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fernanda Rosário
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Luciana Moreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Ana Teresa Reis
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Departamento de Psicología, Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
69
|
Liang H, Zhou X, Zhu Y, Li D, Jing D, Su X, Pan P, Liu H, Zhang Y. Association of outdoor air pollution, lifestyle, genetic factors with the risk of lung cancer: A prospective cohort study. ENVIRONMENTAL RESEARCH 2023; 218:114996. [PMID: 36481370 DOI: 10.1016/j.envres.2022.114996] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The effect of air pollution exposure on incident lung cancer remains uncertain, and the modifying role of lifestyle and genetic susceptibility in association between air pollution and lung cancer is ambiguous. METHODS A total of 367,623 participants from UK biobank cohort were enrolled in the analysis. The concentrations of particle matter (PM2.5, PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), were evaluated by land-use regression model. Cox proportional hazard model was applied to assess the associations between air pollution and incident lung cancer. A lifestyle risk score and a polygenic risk score were established to investigate whether lifestyle and heritable risk could modify the effect of air pollution on lung cancer risk. RESULTS Per interquartile range (IQR) increment in annual concentrations of PM2.5 (HR = 1.22, 95% CI, 1.15∼1.30), NO2 (HR = 1.19, 95% CI, 1.10∼1.27), and NOx (HR = 1.14, 95% CI, 1.09∼1.20) were associated with increased risk of lung cancer. We observed an additive interaction between air pollution including PM2.5 and NOx and lifestyle or genetic risk. Individuals with high air pollution exposure, poor lifestyle and high genetic risk had the highest risk of incident lung cancer. CONCLUSION Long-term exposures to air pollution is associated with increased risk of lung cancer, and this effect was modified by lifestyle or genetic risk. Integrated interventions for environmental pollution by government and adherence to healthy lifestyle by individuals are advocated for lung cancer prevention.
Collapse
Affiliation(s)
- Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xin Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xiaoli Su
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| | - Hong Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
70
|
Wang W, Hafeez M, Jiang H, Ahmad W, Badar H, Salahodjaev R. Environmental factors and its influence on human health in BRICS: implications for human development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22509-22519. [PMID: 36301398 DOI: 10.1007/s11356-022-23678-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BRICS economies are facing severe environmental issues that exert a detrimental impact on human health. The analysis intends to examine the impact of CO2 emissions, environmental policy stringency, and environmental innovations on health outcomes for the BRICS economies. The long-run results of the ARDL-PMG infer that CO2 has a significant negative in the life expectancy model while it has a significant positive in the death rate model. These findings imply that the rise in CO2 emissions reduces life expectancy and increases the death rate in BRICS economies. On the other side, the estimates of environmental innovation and environmental policy stringency are positively significant in the life expectancy model; however, in the death rate model, the estimate of environmental innovation is insignificant, and environmental policy stringency is negatively significant in the death rate model. In a nutshell, the findings imply that CO2 emissions exacerbate health problems, environmental innovations, and environmental policy stringency, improving the health status of the people. Our findings suggest that the BRICS economies should revisit their environmental policies for the betterment of human health.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Public Administration, Law School, Shantou University, 243 Daxue Road, Shantou, Guangdong, People's Republic of China
- Institute of Local Government Development, Shantou, 515063, People's Republic of China
| | - Muhammad Hafeez
- Institute of Business Management Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hong Jiang
- Department of Public Administration, Law School, Shantou University, 243 Daxue Road, Shantou, Guangdong, People's Republic of China.
- Institute of Local Government Development, Shantou, 515063, People's Republic of China.
| | - Waseem Ahmad
- Institute of Business Management Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hammad Badar
- Institute of Business Management Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Raufhon Salahodjaev
- Department of Mathematical Methods in Economics, Tashkent State University of Economics, Tashkent, Uzbekistan
| |
Collapse
|
71
|
Urban Air Pollution and Greenness in Relation to Public Health. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2023; 2023:8516622. [PMID: 36755782 PMCID: PMC9902165 DOI: 10.1155/2023/8516622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 02/02/2023]
Abstract
Background Air pollution is the result of economic growth and urbanization. Air pollution has been progressively recognized as a serious problem for cities, through widespread effects on health and well-being. There is less concern from stakeholders about greenness and air pollution mitigating factors in an urban area. This research targeted to indicate the spatial dissemination of greenery, air quality levels (PM2.5, PM10, CO2, and AQI), and exposure to air quality-related health risks for the people in the urban area. Method The data were collected by measuring air quality at transportation stations and manufacturing industries with Air visual pro, then observing and mapping greenness in the city within the administrative boundary by GIS (street greenery, forest, availability of greenness in the manufacturing industry), and lastly questionnaire and interview were employed for air quality-related health issues. Then, the air quality data were analyzed by using USAQI standards and health messages. Both quantitative and qualitative research approach had employed to explore air pollution levels, availability of greenness, and air quality-related health issues. Moreover, Health questionnaires and greenness were correlated with air quality levels by a simple linear regression model. Result The result indicated that there was unhealthy air quality in the transportation and manufacturing industries. The measured air quality showed in a range of 50.13-96.84 μg/m3 of PM2.5, 645-1764 ppm of CO2, and 137-179 Air quality index (AQI). The highest mean of PM2.5 and air quality concentrations at Addis Ababa transportation stations and manufacturing sites ranged between 63.46 and 104.45 μg/m3 and 179-326, respectively. It was observed with less street greenery and greenness available in residential, commercial areas, and manufacturing industries. The pollution level was beyond the limit of WHO standards. The result has shown a health risk to the public in the city, particularly for drivers, street vendors, and manufacturing industry employees. Among 480 respondents, 57.92% experienced health risks due to air pollution by medical evidence. Conclusion High health risks due to industries and old motor vehicles in the city need to be reduced by introducing policies and strategies for low-carbon, minimizing traveling distance, encouraging high occupancy vehicles, and promoting a green legacy in the street network and green building.
Collapse
|
72
|
Xu X, Shi K, Huang Z, Shen J. What Factors Dominate the Change of PM 2.5 in the World from 2000 to 2019? A Study from Multi-Source Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2282. [PMID: 36767646 PMCID: PMC9915345 DOI: 10.3390/ijerph20032282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 05/30/2023]
Abstract
As the threat to human life and health from fine particulate matter (PM2.5) increases globally, the life and health problems caused by environmental pollution are also of increasing concern. Understanding past trends in PM2.5 and exploring the drivers of PM2.5 are important tools for addressing the life-threatening health problems caused by PM2.5. In this study, we calculated the change in annual average global PM2.5 concentrations from 2000 to 2020 using the Theil-Sen median trend analysis method and reveal spatial and temporal trends in PM2.5 concentrations over twenty-one years. The qualitative and quantitative effects of different drivers on PM2.5 concentrations in 2020 were explored from natural and socioeconomic perspectives using a multi-scale geographically weighted regression model. The results show that there is significant spatial heterogeneity in trends in PM2.5 concentration, with significant decreases in PM2.5 concentrations mainly in developed regions, such as the United States, Canada, Japan and the European Union countries, and conversely, significant increases in PM2.5 in developing regions, such as Africa, the Middle East and India. In addition, in regions with more advanced science and technology and urban management, PM2.5 concentrations are more evenly influenced by various factors, with a more negative influence. In contrast, regions at the rapid development stage usually continue their economic development at the cost of the environment, and under a high intensity of human activity. Increased temperature is known as the most important factor for the increase in PM2.5 concentration, while an increase in NDVI can play an important role in the reduction in PM2.5 concentration. This suggests that countries can achieve good air quality goals by setting a reasonable development path.
Collapse
Affiliation(s)
- Xiankang Xu
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Kaifang Shi
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyu Huang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Jingwei Shen
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
73
|
Wang X, Ma Z, Chen J, Dong J. Can Regional Eco-Efficiency Forecast the Changes in Local Public Health: Evidence Based on Statistical Learning in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1381. [PMID: 36674136 PMCID: PMC9859319 DOI: 10.3390/ijerph20021381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Regional eco-efficiency affects local public health through intermediaries such as economic and environmental impacts. Considering multiple factors, the implicit and uncertain relationship with regional characteristics, and the limited data availability, this paper investigated the forecasting of changes in local public health-including the number of visits to hospitals (VTH), outpatients with emergency treatment (OWET), number of inpatients (NI), number of health examinations (NOHE), and patients discharged (PD)-using calculated regional eco-efficiency with the Least Square-Support Vector Machine-Forecasting Model and acquired empirical evidence, utilizing the province-level data in China. Results: (1) regional eco-efficiency is a good predictor in both a single and multi-factor situation; (2) the prediction accuracy for five dimensions of the changes in local public health was relatively high, and the volatility was lower and more stable throughout the whole forecasting period; and (3) regional heterogeneity, denoted by three economic and demographic factors and three medical supply and technical level factors, improved the forecasting performance. The findings are meaningful for provincial-level decision-makers in China in order for them to know the current status or trends of medical needs, optimize the allocation of medical resources in advance, and enable ample time to tackle urgent emergencies, and, finally, the findings can serve to evaluate the social effects of improving regional eco-efficiency via local enterprises or individuals and adopting sustainable development strategies.
Collapse
Affiliation(s)
- Xianning Wang
- School of Economics and Management, Chongqing Normal University, Chongqing 401331, China
- Big Data Marketing Research and Applications Center, Chongqing Normal University, Chongqing 401331, China
- Regional Economics Applications Laboratory (REAL), University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Zhengang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jiusheng Chen
- School of Economics and Management, Chongqing Normal University, Chongqing 401331, China
| | - Jingrong Dong
- School of Economics and Management, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
74
|
Jegasothy E, Hanigan IC, Van Buskirk J, Morgan GG, Jalaludin B, Johnston FH, Guo Y, Broome RA. Acute health effects of bushfire smoke on mortality in Sydney, Australia. ENVIRONMENT INTERNATIONAL 2023; 171:107684. [PMID: 36577296 DOI: 10.1016/j.envint.2022.107684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bushfire smoke is a major ongoing environmental hazard in Australia. In the summer of 2019-2020 smoke from an extreme bushfire event exposed large populations to high concentrations of particulate matter (PM) pollution. In this study we aimed to estimate the effect of bushfire-related PM of less than 2.5 μm in diameter (PM2.5) on the risk of mortality in Sydney, Australia from 2010 to 2020. METHODS We estimated concentrations of PM2.5 for three subregions of Sydney from measurements at monitoring stations using inverse-distance weighting and cross-referenced extreme days (95th percentile or above) with satellite imagery to determine if bushfire smoke was present. We then used a seasonal and trend decomposition method to estimate the Non-bushfire PM2.5 concentrations on those days. Daily PM2.5 concentrations above the Non-bushfire concentrations on bushfire smoke days were deemed to be Bushfire PM2.5. We used distributed-lag non-linear models to estimate the effect of Bushfire and Non-bushfire PM2.5 on daily counts of mortality with sub-analyses by age. These models controlled for seasonal trends in mortality as well as daily temperature, day of week and public holidays. RESULTS Within the three subregions, between 110 and 134 days were identified as extreme bushfire smoke days within the subregions of Sydney. Bushfire-related PM2.5 ranged from 6.3 to 115.4 µg/m3. A 0 to 10 µg/m3 increase in Bushfire PM2.5 was associated with a 3.2% (95% CI 0.3, 6.2%) increase in risk of all-cause death, cumulatively, in the 3 days following exposure. These effects were present in those aged 65 years and over, while no effect was observed in people under 65 years. CONCLUSION Bushfire PM2.5 exposure is associated with an increased risk of mortality, particularly in those over 65 years of age. This increase in risk was clearest at Bushfire PM2.5 concentrations up to 30 µg/m3 above background (Non-bushfire), with possible plateauing at higher concentrations of Bushfire PM2.5.
Collapse
Affiliation(s)
- Edward Jegasothy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; University Centre for Rural Health, Faculty of Medicine and Health, University of Sydney, Lismore, NSW, Australia; The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia.
| | - Ivan C Hanigan
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; WHO Collaborating Centre for Environmental Health Impact Assessment, School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Joe Van Buskirk
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Sydney Local Health District, NSW Health, Camperdown, NSW, Australia
| | - Geoffrey G Morgan
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; University Centre for Rural Health, Faculty of Medicine and Health, University of Sydney, Lismore, NSW, Australia; The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia
| | - Bin Jalaludin
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; School of Population Health, University of New South Wales, NSW, Australia
| | - Fay H Johnston
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yuming Guo
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Richard A Broome
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; Health Protection NSW, NSW Health, St Leonards, NSW, Australia
| |
Collapse
|
75
|
Mavragani A, Yousefi S, Kahoro E, Karisani P, Liang D, Sarnat J, Agichtein E. Detecting Elevated Air Pollution Levels by Monitoring Web Search Queries: Algorithm Development and Validation. JMIR Form Res 2022; 6:e23422. [PMID: 36534457 PMCID: PMC9808603 DOI: 10.2196/23422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Real-time air pollution monitoring is a valuable tool for public health and environmental surveillance. In recent years, there has been a dramatic increase in air pollution forecasting and monitoring research using artificial neural networks. Most prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for long-term forecasting of outdoor ozone (O3), oxides of nitrogen, and fine particulate matter (PM2.5). Given that traditional, highly sophisticated air quality monitors are expensive and not universally available, these models cannot adequately serve those not living near pollutant monitoring sites. Furthermore, because prior models were built based on physical measurement data collected from sensors, they may not be suitable for predicting the public health effects of pollution exposure. OBJECTIVE This study aimed to develop and validate models to nowcast the observed pollution levels using web search data, which are publicly available in near real time from major search engines. METHODS We developed novel machine learning-based models using both traditional supervised classification methods and state-of-the-art deep learning methods to detect elevated air pollution levels at the US city level by using generally available meteorological data and aggregate web-based search volume data derived from Google Trends. We validated the performance of these methods by predicting 3 critical air pollutants (O3, nitrogen dioxide, and PM2.5) across 10 major US metropolitan statistical areas in 2017 and 2018. We also explore different variations of the long short-term memory model and propose a novel search term dictionary learner-long short-term memory model to learn sequential patterns across multiple search terms for prediction. RESULTS The top-performing model was a deep neural sequence model long short-term memory, using meteorological and web search data, and reached an accuracy of 0.82 (F1-score 0.51) for O3, 0.74 (F1-score 0.41) for nitrogen dioxide, and 0.85 (F1-score 0.27) for PM2.5, when used for detecting elevated pollution levels. Compared with using only meteorological data, the proposed method achieved superior accuracy by incorporating web search data. CONCLUSIONS The results show that incorporating web search data with meteorological data improves the nowcasting performance for all 3 pollutants and suggest promising novel applications for tracking global physical phenomena using web search data.
Collapse
Affiliation(s)
| | - Safoora Yousefi
- Department of Computer Science, Emory University, Atlanta, GA, United States
| | - Elvis Kahoro
- Department of Computer Science, Pomona College, Claremont, CA, United States
| | - Payam Karisani
- Department of Computer Science, Emory University, Atlanta, GA, United States
| | - Donghai Liang
- Department of Environmental Health, Emory University, Atlanta, GA, United States
| | - Jeremy Sarnat
- Department of Environmental Health, Emory University, Atlanta, GA, United States
| | - Eugene Agichtein
- Department of Computer Science, Emory University, Atlanta, GA, United States
| |
Collapse
|
76
|
Bozalija A, Maliqi S, Islami P, Iljazi A, Islami H. The Reaction of Airways of Employees Working in the Environments Polluted with Heavy Metals in Mine Kosovo. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/28705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper is studied the respiratory function as a result of the impact of air pollution in the environment of the sector of exploitation of heavy minerals such Pb, Zn, Au, Ag, Bi, Cd, PM in the mines of Trepça, Kosovo. Lung function parameters are determined by Body plethysmography. Airway resistance (Raw) was recorded and Intra-Thoracic Gas Volume (ITGV) was measured and specific resistance (SRaw) and airway specific conductance (SGaw) were calculated. The research was done in two groups, the control group and the experimental one. The control group consisted of 24 healthy people, while the experimental one is made up of 52 mining workers for the exploitation of minerals in the Trepçamine, Kosovo. The results obtained from this research indicate that the mean value of specific resistance (SRaw) is significantly higher in the experimental group (p<0.01), compared to the control group (p>0.1). Also, in this study it was confirmed that smoking favors the negative effects of air contamination in the mineral exploitation sector, the changes are significant (p<0.01). Respiratory system parameters of the control group and the experimental group were measured before and after bronchoprovocation with histamine-aerosol (1 mg/ml). The differences between these two groups after provocation were statistically significant (p<0.01). Respiratory changes from air pollution with noxae in mines where metals are mined, it takes a long time for changes in respiratory function to appear. Therefore, exposure of workers to these conditions poses a risk to their health, causing bronchial reactivity, bronchial asthma or, obstructive pulmonary syndrome.
Collapse
|
77
|
Pérez Velasco R, Jarosińska D. Update of the WHO global air quality guidelines: Systematic reviews - An introduction. ENVIRONMENT INTERNATIONAL 2022; 170:107556. [PMID: 36395555 PMCID: PMC9720155 DOI: 10.1016/j.envint.2022.107556] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 05/15/2023]
Abstract
This paper aims to serve as an introduction to the Special Issue in Environment International entitled "Update of the WHO Global Air Quality Guidelines: Systematic Reviews". The article has two main objectives. One is to provide the context to this Special Issue, related to (a) policy context, overall exposure to air pollution, and burden of disease attributable to air pollution, and the other is to describe (b) the WHO guideline development process, with special emphasis on the systematic reviews. In particular, this paper presents the systematic reviews and other supporting evidence that was used and discussed during the process and summarizes important methodological information about the approaches taken to conduct the systematic reviews. These approaches include the definition of population, exposure, comparator, outcomes and study design (PECOS) questions, the assessment of the risk of bias in individual studies and the assessment of the overall certainty of the evidence. In summary, the new WHO global air quality guidelines are informed by the best available scientific evidence covering a vast number of research papers published until September 2018, and appraised by experts and stakeholders in the field of air quality. However, research gaps remain and, therefore, further research is warranted.
Collapse
Affiliation(s)
- Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Platz der Vereinten Nationen 1, 53113 Bonn, Germany.
| | - Dorota Jarosińska
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Platz der Vereinten Nationen 1, 53113 Bonn, Germany.
| |
Collapse
|
78
|
Wei S, Semple S. Exposure to fine particulate matter (PM 2.5) from non-tobacco sources in homes within high-income countries: a systematic review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:553-566. [PMID: 36467893 PMCID: PMC9703437 DOI: 10.1007/s11869-022-01288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED The health impacts associated with exposure to elevated concentrations of fine particulate matter (PM2.5) are well recognised. There is a substantial number of studies characterising PM2.5 concentrations outdoors, as well as in homes within low- and middle-income countries. In high-income countries (HICs), there is a sizeable literature on indoor PM2.5 relating to smoking, but the evidence on exposure to PM2.5 generated from non-tobacco sources in homes is sparse. This is especially relevant as people living in HICs spend the majority of their time at home, and in the northern hemisphere households often have low air exchange rates for energy efficiency. This review identified 49 studies that described indoor PM2.5 concentrations generated from a variety of common household sources in real-life home settings in HICs. These included wood/solid fuel burning appliances, cooking, candles, incense, cleaning and humidifiers. The reported concentrations varied widely, both between sources and within groups of the same source. The burning of solid fuels was found to generate the highest indoor PM2.5 concentrations. On occasion, other sources were also reported to be responsible for high PM2.5 concentrations; however, this was only in a few select examples. This review also highlights the many inconsistencies in the ways data are collected and reported. The variable methods of measurement and reporting make comparison and interpretation of data difficult. There is a need for standardisation of methods and agreed contextual data to make household PM2.5 data more useful in epidemiological studies and aid comparison of the impact of different interventions and policies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11869-022-01288-8.
Collapse
Affiliation(s)
- Shuying Wei
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, FK9 4LA UK
| | - Sean Semple
- Institute for Social Marketing and Health, University of Stirling, Stirling, FK9 4LA UK
| |
Collapse
|
79
|
Zhang X, Nan S, Lu S, Wang M. Spatial Effects of Air Pollution on the Siting of Enterprises: Evidence from China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14484. [PMID: 36361381 PMCID: PMC9656830 DOI: 10.3390/ijerph192114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The siting of enterprises is important for enterprises to formulate business objectives and business strategies, both of which are crucial to the development of enterprises in the future. Although there exists an irrefutable fact that the increasingly serious environmental problems are affecting the behaviors of enterprises, how air pollution affects the siting of enterprises has received little academic attention. Therefore, using the dataset of Chinese prefecture-level cities from 2014 to 2020, this paper employs the Spatial Durbin Model to investigate the direct and spatial spillover effects of air pollution on the site selection of enterprises. In addition, this paper also establishes a mediation effect model to explore the impact mechanism of air pollution on the site selection of enterprises. The empirical results show that air pollution exerts a negative impact on both the local and spatially related regions' enterprises' site selection, and the above conclusion is reinforced through a series of robustness checks. The heterogeneity analysis demonstrates that air pollution has a greater inhibitory effect on the siting of low-cleaning enterprises and small-scale enterprises for the local and adjacent regions. The mechanism analysis results indicate that air pollution inhibits the siting of enterprises by reducing the local labor endowment and market scale. Our study enriches the relevant theory of air pollution and enterprises' location nexus, and it also provides an empirical basis for the Chinese government to formulate policies related to air governance and the siting of enterprises.
Collapse
|
80
|
Jainonthee C, Wang YL, Chen CWK, Jainontee K. Air Pollution-Related Respiratory Diseases and Associated Environmental Factors in Chiang Mai, Thailand, in 2011-2020. Trop Med Infect Dis 2022; 7:341. [PMID: 36355883 PMCID: PMC9696662 DOI: 10.3390/tropicalmed7110341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 03/28/2025] Open
Abstract
The unfavorable effects of global climate change, which are mostly the result of human activities, have had a particularly negative effect on human health and the planet's ecosystems. This study attempted to determine the seasonality and association of air pollution, in addition to climate conditions, with two respiratory infections, influenza and pneumonia, in Chiang Mai, Thailand, which has been considered the most polluted city on Earth during the hot season. We used a seasonal-trend decomposition procedure based on loess regression (STL) and a seasonal cycle subseries (SCS) plot to determine the seasonality of the two diseases. In addition, multivariable negative binomial regression (NBR) models were used to assess the association between the diseases and environmental variables (temperature, precipitation, relative humidity, PM2.5, and PM10). The data revealed that influenza had a clear seasonal pattern during the cold months of January and February, whereas the incidence of pneumonia showed a weak seasonal pattern. In terms of forecasting, the preceding month's PM2.5 and temperature (lag1) had a significant association with influenza incidence, while the previous month's temperature and relative humidity influenced pneumonia. Using air pollutants as an indication of respiratory disease, our models indicated that PM2.5 lag1 was correlated with the incidence of influenza, but not pneumonia. However, there was a linear association between PM10 and both diseases. This research will help in allocating clinical and public health resources in response to potential environmental changes and forecasting the future dynamics of influenza and pneumonia in the region due to air pollution.
Collapse
Affiliation(s)
- Chalita Jainonthee
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Ying-Lin Wang
- School of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Colin W. K. Chen
- Southeast Bangkok College, Bangkok 10260, Thailand
- Sustainable Management Association, Bangkok 10230, Thailand
| | - Karuna Jainontee
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai 57120, Thailand
| |
Collapse
|
81
|
Saadeh R, Khader Y, Malkawi M, Allouh MZ. Communicating the Risks of Air Pollution to the Public: A Perspective from Jordan and Lebanon. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221127851. [PMID: 36277840 PMCID: PMC9583232 DOI: 10.1177/11786302221127851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Communicating air pollution to the public is essential in reducing exposure to air pollutants through increasing awareness and promoting precautionary actions. However, one way to approach the public is through healthcare professionals who are considered public health leaders and could influence the public's opinion. The current study aimed to investigate the perception of health experts about communicating air pollution to the public. METHODS Personal interviews of 32 health professionals were conducted to report their opinions about communication of air pollution through an open-ended questionnaire. Interview questions were focused on 5 themes: common air pollutants and health risks, goals and barriers of communication, types of information to disseminate, target groups, and vehicles of communication. RESULTS Interviewees agreed that air pollution should be communicated to the public. Major barriers to achieving effective communication were people's poor comprehension and lack of interest of policymakers. The levels of pollution, associated health risks, and ways to protect one's self were the most frequently reported types of information to distribute. Most interviewees focused on patients with pre-existing conditions and children as the main target groups. Further, social media and text messages were preferred as vehicles of communication. CONCLUSION Although not all interviewees had a clear idea of how to develop and implement a communication system, most of them agreed on its importance in protecting the public. More emphasis on this topic and further investigations are expected to increase the interest of health care professionals in communicating the risks of air pollution and advocating for public health policies regarding air pollution.
Collapse
Affiliation(s)
- Rami Saadeh
- Department of Public Health and
Community Medicine, Faculty of Medicine, Jordan University of Science and
Technology, Irbid, Jordan
| | - Yousef Khader
- Department of Public Health and
Community Medicine, Faculty of Medicine, Jordan University of Science and
Technology, Irbid, Jordan
| | - Mazen Malkawi
- World Health Organization, Regional
Office for the Eastern Mediterranean, Centre for Environmental Health Action, Amman,
Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, College of
Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
82
|
Air pollution and public health in Latin America and the Caribbean (LAC): a systematic review with meta-analysis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:122. [PMID: 36196224 PMCID: PMC9523187 DOI: 10.1186/s43088-022-00305-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Background Over the years, air pollution has garnered increased attention from researchers who continue to provide studies and suggestive data that prove there is an ever-increasing risk of air pollution on the health of humans, terrestrial, and aquatic animals. A measurement involved in the quantity of certain traceable particles within the air, namely: Particulate Matter (PM) 2.5 and 10, ozone (O3), Nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) emissions, all converted to Air Quality Index. Most studies are predominantly from developed nations with limited research conducted in developing nations such as those in Latin America and the Caribbean. Main body In this systematic review, we examined the impact of air pollution on public health. A database search produced 1,118 studies, of which four were selected for a quantitative meta-analysis that explored hazard ratios concerning exposure to elevated levels of PM2.5. The meta-analysis results show that exposure to PM2.5 increases the risk of an adverse health event by as much as 2% five days after exposure. Results also indicated a consensus on the negative impacts of air pollution on public health. The results also suggest that more can be done within the region to combat or at the very least minimize the impact of air pollution to public health. Conclusion The pooled data from the studies reviewed show that there is an increased risk of an adverse health event on the day of exposure to PM2.5 and every subsequent day after exposure. A pattern exists between hospitalization and air pollution due to increased susceptibility to respiratory infections and asthma development. Combating the harmful effects of air pollution should be a top priority in Latin America and the Caribbean.
Collapse
|
83
|
Chen H, Oliver BG, Pant A, Olivera A, Poronnik P, Pollock CA, Saad S. Effects of air pollution on human health - Mechanistic evidence suggested by in vitro and in vivo modelling. ENVIRONMENTAL RESEARCH 2022; 212:113378. [PMID: 35525290 DOI: 10.1016/j.envres.2022.113378] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Airborne particulate matter (PM) comprises both solid and liquid particles, including carbon, sulphates, nitrate, and toxic heavy metals, which can induce oxidative stress and inflammation after inhalation. These changes occur both in the lung and systemically, due to the ability of the small-sized PM (i.e. diameters ≤2.5 μm, PM2.5) to enter and circulate in the bloodstream. As such, in 2016, airborne PM caused ∼4.2 million premature deaths worldwide. Acute exposure to high levels of airborne PM (eg. during wildfires) can exacerbate pre-existing illnesses leading to hospitalisation, such as in those with asthma and coronary heart disease. Prolonged exposure to PM can increase the risk of non-communicable chronic diseases affecting the brain, lung, heart, liver, and kidney, although the latter is less well studied. Given the breadth of potential disease, it is critical to understand the mechanisms underlying airborne PM exposure-induced disorders. Establishing aetiology in humans is difficult, therefore, in-vitro and in-vivo studies can provide mechanistic insights. We describe acute health effects (e.g. exacerbations of asthma) and long term health effects such as the induction of chronic inflammatory lung disease, and effects outside the lung (e.g. liver and renal change). We will focus on oxidative stress and inflammation as this is the common mechanism of PM-induced disease, which may be used to develop effective treatments to mitigate the adverse health effect of PM exposure.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Anushriya Pant
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Annabel Olivera
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip Poronnik
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
84
|
Leite ADS, Rousse S, Léon J, Trindade RIF, Haoues‐Jouve S, Carvallo C, Dias‐Alves M, Proietti A, Nardin E, Macouin M. Barking up the Right Tree: Using Tree Bark to Track Airborne Particles in School Environment and Link Science to Society. GEOHEALTH 2022; 6:e2022GH000633. [PMID: 36089983 PMCID: PMC9432803 DOI: 10.1029/2022gh000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Children's exposure to air pollution affects both their health and learning skills. Fine and ultrafine particulate matter (PM2.5, PM1), notably issued from traffic sources in urban centers, belong to the most potential harmful health hazards. However their monitoring and the society's awareness on their dangers need to be consolidated. In this study, raising teacher and pupil involvement for air quality improvement in their schools environment is reached through developing a passive monitoring technique (bio-sensors made of tree bark). The experiment was implemented in two urban elementary schools situated close to a main traffic road of the city of Toulouse (South of France). Magnetic properties, carbonaceous fraction measurements, and scanning electronic microscopy (SEM-EDX) investigations were realized both on passive bio-sensors and filters issued from active sampling. We find that traffic is the main PM1 source for both outdoors and indoors at schools. Higher levels of outdoor PM in the school's environments compared to urban background are reached especially in the cold period. The schools proximity to a main traffic source and lack of ventilation are the main causes for observed PM1 accumulation in classrooms. The co-working experiment with educational teams and pupils shows that the use of bio-sensors is a driver for children empowerment to air pollution and therefore represents a potential key tool for the teachers though limiting eco-anxiety. As PM accumulation is observed in many scholar environments across Europe, the proposed methodology is a step toward a better assessment of PM impact on pupil's health and learning skills.
Collapse
Affiliation(s)
- A. d. S. Leite
- Géosciences Environnement ToulouseCNRSIRDUniversité Toulouse 3CNESToulouseFrance
| | - S. Rousse
- Géosciences Environnement ToulouseCNRSIRDUniversité Toulouse 3CNESToulouseFrance
| | - J.‐F. Léon
- Laboratoire d’AérologieCNRSUniversité Toulouse 3ToulouseFrance
| | - R. I. F. Trindade
- Departamento de GeofísicaInstituto de Astronomia, Geofísica e Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
| | - S. Haoues‐Jouve
- Laboratoire Interdisciplinaire Solidarités Sociétés TerritoiresCNRSUniversité Toulouse 2EHESSENSFEAToulouseFrance
| | - C. Carvallo
- Institut de Minéralogie, de Physique des Matériaux et de CosmochimieUMR 7590Sorbonne UniversitéParisFrance
| | - M. Dias‐Alves
- Laboratoire d’AérologieCNRSUniversité Toulouse 3ToulouseFrance
| | - A. Proietti
- Centre de Microcaractérisation Raimond CastaingUniversité Toulouse 3ToulouseFrance
| | - E. Nardin
- Géosciences Environnement ToulouseCNRSIRDUniversité Toulouse 3CNESToulouseFrance
| | - M. Macouin
- Géosciences Environnement ToulouseCNRSIRDUniversité Toulouse 3CNESToulouseFrance
| |
Collapse
|
85
|
Hu C, Liu B, Wang S, Zhu Z, Adcock A, Simpkins J, Li X. Spatiotemporal Correlation Analysis of Hydraulic Fracturing and Stroke in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10817. [PMID: 36078531 PMCID: PMC9518207 DOI: 10.3390/ijerph191710817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic fracturing or fracking has led to a rapid growth of oil and gas production in the United States, but the impact of fracking on public health is an important but underresearched topic. We designed a methodology to study spatiotemporal correlations between the risk of fracking and stroke mortality. An annualized loss expectancy (ALE) model is applied to quantify the risk of fracking. The geographically and temporally weighted regression (GTWR) model is used to analyze spatiotemporal correlations of stroke mortality, fracking ALE, and nine other socioeconomic- and health-related factors. The analysis shows that fracking ALE is moderately correlated with stroke mortality at ages over 65 in most states of fracking, in addition to cardiovascular disease and drug overdose being positively correlated with stroke mortality. Furthermore, the correlations between fracking ALE and stroke mortality in men appear to be higher than in women near the Marcellus Shale, including Ohio, Pennsylvania, West Virginia, and Virginia, while stroke mortality among women is concentrated in the Great Plains, including Montana, Wyoming, New Mexico, and Oklahoma. Lastly, within two kilometers of the fracking mining activity, the level of benzene in the air was found to be significantly correlated with the fracking activity in Colorado.
Collapse
Affiliation(s)
- Chuanbo Hu
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Bin Liu
- Department of Management Information Systems, West Virginia University, Morgantown, WV 26505, USA
| | - Shuo Wang
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Zhenduo Zhu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Amelia Adcock
- Department of Neurology, West Virginia University, Morgantown, WV 26505, USA
| | - James Simpkins
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
86
|
Ziou M, Tham R, Wheeler AJ, Zosky GR, Stephens N, Johnston FH. Outdoor particulate matter exposure and upper respiratory tract infections in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:112969. [PMID: 35183515 DOI: 10.1016/j.envres.2022.112969] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While the relationship between outdoor particulate matter (PM) and lower respiratory tract infections in children and adolescents is accepted, we know little about the impacts of outdoor PM on the risk of developing or aggravating upper respiratory tract infections (URTIs). METHODS We aimed to review the literature examining the relationship between outdoor PM exposure and URTIs in children and adolescents. A systematic search of EMBASE, MEDLINE, PubMed, Scopus, CINAHL and Web of Science databases was undertaken on April 3, 2020 and October 27, 2021. Comparable short-term studies of time-series or case-crossover designs were pooled in meta-analyses using random-effects models, while the remainder of studies were combined in a narrative analysis. Quality, risk of bias and level of evidence for health effects were appraised using a combination of emerging frameworks in environmental health. RESULTS Out of 1366 articles identified, 34 were included in the systematic review and 16 of these were included in meta-analyses. Both PM2.5 and PM10 levels were associated with hospital presentations for URTIs (PM2.5: RR = 1.010, 95%CI = 1.007-1.014; PM10: RR = 1.016, 95%CI = 1.011-1.021) in the meta-analyses. Narrative analysis found unequivocally that total suspended particulates were associated with URTIs, but mixed results were found for PM2.5 and PM10 in both younger and older children. CONCLUSION This study found some evidence of associations between PM and URTIs in children and adolescents, the relationship strength increased with PM10. However, the number of studies was limited and heterogeneity was considerable, thus there is a need for further studies, especially studies assessing long-term exposure and comparing sources.
Collapse
Affiliation(s)
- Myriam Ziou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel Tham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
87
|
Zhang L, Yang Y, Lin Y, Chen H. Human Health, Environmental Quality and Governance Quality: Novel Findings and Implications From Human Health Perspective. Front Public Health 2022; 10:890741. [PMID: 35812483 PMCID: PMC9263448 DOI: 10.3389/fpubh.2022.890741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
Human health and wellbeing are intimately linked to the state of the environment. The current study emphasizes the role of environmental quality, government policies, and human health. This paper provides a detailed literature review of existing findings regarding our key variables of interest. The results argue that the implications of poor government policies and environmental pollution for rising economic development have led to poor environmental quality and health issues for humans. Based on earlier investigations, the present study reviewed the state-of-the-art review and determined innovative insights for outdoor and indoor environment difficulties. This study provides a detailed review of human health, environmental quality, and governance quality. In addition, the study conducts an empirical analysis using the annual data of low-income countries from 1996 to 2020. Government actions and health systems must be modified immediately to address these rising concerns successfully. The report offers policy recommendations for addressing health, governance, and environmental change mitigation issues, all of which are directly or indirectly related to the study. This article presents an overview of environmental change's health impacts and explores how health hazards may be reduced or eliminated through effective adaptation strategies.
Collapse
Affiliation(s)
- Liqin Zhang
- School of Economics, Fujian Normal University, Fuzhou, China
| | - Yuping Yang
- School of Economics, Fujian Normal University, Fuzhou, China
| | - Yesong Lin
- Fuzhou Lianjiang Ecological Environment Bureau, Fuzhou, China
| | - Huangxin Chen
- School of Economics, Fujian Normal University, Fuzhou, China
- *Correspondence: Huangxin Chen
| |
Collapse
|
88
|
Talebi S, Lary DJ, Wijeratne LOH, Fernando B, Lary T, Lary M, Sadler J, Sridhar A, Waczak J, Aker A, Zhang Y. Decoding Physical and Cognitive Impacts of Particulate Matter Concentrations at Ultra-Fine Scales. SENSORS (BASEL, SWITZERLAND) 2022; 22:4240. [PMID: 35684862 PMCID: PMC9185251 DOI: 10.3390/s22114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The human body is an incredible and complex sensing system. Environmental factors trigger a wide range of automatic neurophysiological responses. Biometric sensors can capture these responses in real time, providing clues about the underlying biophysical mechanisms. In this prototype study, we demonstrate an experimental paradigm to holistically capture and evaluate the interactions between an environmental context and physiological markers of an individual operating that environment. A cyclist equipped with a biometric sensing suite is followed by an environmental survey vehicle during outdoor bike rides. The interactions between environment and physiology are then evaluated though the development of empirical machine learning models, which estimate particulate matter concentrations from biometric variables alone. Here, we show biometric variables can be used to accurately estimate particulate matter concentrations at ultra-fine spatial scales with high fidelity (r2 = 0.91) and that smaller particles are better estimated than larger ones. Inferring environmental conditions solely from biometric measurements allows us to disentangle key interactions between the environment and the body. This work sets the stage for future investigations of these interactions for a larger number of factors, e.g., black carbon, CO2, NO/NO2/NOx, and ozone. By tapping into our body's 'built-in' sensing abilities, we can gain insights into how our environment influences our physical health and cognitive performance.
Collapse
Affiliation(s)
- Shawhin Talebi
- Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA; (D.J.L.); (L.O.H.W.); (B.F.); (T.L.); (M.L.); (J.S.); (A.S.); (J.W.); (A.A.); (Y.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Xie G, Yue J, Yang W, Yang L, Xu M, Sun L, Zhang B, Guo L, Chung MC. Effects of PM 2.5 and its constituents on hemoglobin during the third trimester in pregnant women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35193-35203. [PMID: 35060058 PMCID: PMC9076737 DOI: 10.1007/s11356-022-18693-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Anemia has been a public health issue evoking global concern, and the low hemoglobin (Hb) concentration links to adverse pregnancy outcomes. However, the associations of PM2.5 and its constituents with Hb and anemia in pregnant women remain unclear. In this retrospective birth cohort study, 7932 pregnant women who delivered in the First Affiliated Hospital of Xi'an Jiaotong University from 2015 to 2018 were included. The Hb during the third trimester in pregnant women was assessed before delivery. PM2.5 and its constituents (BC, NH4+, NO3-, OM, SO42-, and Dust) during pregnancy were retrieved from the V4.CH.03 product constructed by the Atmospheric Composition Analysis Group. Generalized linear regression model was applied to investigate the effects of PM2.5 and its constituents on Hb and anemia during the third trimester in pregnant women. The means and standard deviations of PM2.5, BC, NH4+, NO3-, OM, SO42-, and Dust were 69.56 (15.24), 10.02 (2.72), 8.11 (1.77), 14.96 (5.42), 15.36 (4.11), 10.08 (1.20), and 10.98 (1.85) μg/m3, respectively. Per IQR increase (μg/m3) of PM2.5, BC, NO3-, and OM linked to - 0.75 (- 1.50, - 0.01), - 0.85 (- 1.65, - 0.04), - 0.79 (- 1.56, - 0.03), and - 0.73 (- 1.44, - 0.03) g/L decrease of Hb during the third trimester in multiparous pregnant women, but not for NH4+, SO42-, Dust, and primiparous pregnant women. PM2.5 and its constituents had no significant association with anemia, except for Dust (OR: 0.90, 95% CI: 0.82, 0.99, per IQR increase) in primiparous pregnant women. Besides, SO42- was of lag effects on Hb and anemia in multiparous pregnant women. Moreover, non-linear associations were found among PM2.5 and its constituents, Hb, and anemia. Therefore, exposure to PM2.5 and some constituents of PM2.5 was associated with reduced Hb level during the third trimester in multiparous pregnant women. Related departments and pregnant women should take targeted actions to eliminate the detrimental effects of PM2.5 and its constituents on pregnancy outcomes.
Collapse
Affiliation(s)
- Guilan Xie
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Jie Yue
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China.
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Mengmeng Xu
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Leqian Guo
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
| | - Mei Chun Chung
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
90
|
Zhou X, Gao Y, Wang D, Chen W, Zhang X. Association Between Sulfur Dioxide and Daily Inpatient Visits With Respiratory Diseases in Ganzhou, China: A Time Series Study Based on Hospital Data. Front Public Health 2022; 10:854922. [PMID: 35433609 PMCID: PMC9008542 DOI: 10.3389/fpubh.2022.854922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Background Sulfur dioxide (SO2) has been reported to be related to the mortality of respiratory diseases, but the relationship between SO2 and hospital inpatient visits with respiratory diseases and the potential impact of different seasons on this relationship is still unclear. Methods The daily average concentrations of air pollutants, including SO2 and meteorological data in Ganzhou, China, from 2017 to 2019 were collected. The data on daily hospitalization for respiratory diseases from the biggest hospital in the city were extracted. The generalized additive models (GAM) and the distributed lag non-linear model (DLNM) were employed to evaluate the association between ambient SO2 and daily inpatient visits for respiratory diseases. Stratified analyses by gender, age, and season were performed to find their potential effects on this association. Results There is a positive exposure-response relationship between SO2 concentration and relative risk of respiratory inpatient visits. Every 10 μg/m3 increase in SO2 was related to a 3.2% (95% CI: 0.6–6.7%) exaltation in daily respiratory inpatient visits at lag3. In addition, SO2 had a stronger association with respiratory inpatient visits in women, older adults (≥65 years), and warmer season (May-Oct) subgroups. The relationship between SO2 and inpatient visits for respiratory diseases was robust after adjusting for other air pollutants, including PM10, NO2, O3, and CO. Conclusion This time-series study showed that there is a positive association between short-term SO2 exposure and daily respiratory inpatient visits. These results are important for local administrators to formulate environmental public health policies.
Collapse
Affiliation(s)
- Xingye Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanfang Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokang Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
91
|
Particulate Matter Exposure and the Changes in Immune Biomarkers: Effects of Biyeom-Go on the Nasal Mucosa of Patients with Allergic Rhinitis and a Particulate Matter-Treated Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4259669. [PMID: 35378908 PMCID: PMC8976652 DOI: 10.1155/2022/4259669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
This study was to investigate the effects of Biyeom-go (BYG, an herbal formula) on immune biomarkers present in the nasal mucosa of patients with allergic rhinitis under exposure to particulate matter 2.5 (PM2.5), and on changes in goblet cells and immune biomarkers in mice under exposure to Korea diesel particulate matter (KDP20). Thirty patients showing characteristic allergic rhinitis symptoms were enrolled in Jeonju-si, Korea, and treated with BYG thrice a day for four weeks. Changes in the expression of immune biomarkers (interleukin 4 (IL-4), IL-5, IL-8, IL-13, IL-33, and thymic stromal lymphopoietin (TSLP) mRNA), total nasal symptom scores (TNSS), mini-rhinitis-specific quality of life questionnaire (RQLQ) results, and visual analog scale scores were evaluated after 4 weeks of treatment. Additionally, the difference in PM2.5 concentrations in the air in Jeonju-si, Korea (November, 2019 ∼ March, 2020), was analyzed to determine the change in TNSS. KDP20 (100 μg/mL) was exposed to C57BL/6 mice for 10 days; 0.05% Nasonex (a positive control, mometasone furoate), or BYG was administrated for 5 days twice a day. The expression of inflammatory factors was detected via qRT-PCR using nasopharynx tissue samples of mice. BYG treatment was found to be associated with significant improvement in total nasal symptoms, especially itching and sneezing (p < 0.0001), and mini-RQLQ after 4 weeks. IL-8 (p < 0.01), IL-33 (p < 0.01), and TSLP (p < 0.001) expression levels decreased after BYG treatment. In mice, administration of BYG reduced the number of goblet cells increased through KDP20 treatment. KDP20-induced immune biomarkers (IL-33, TSLP, tumor necrosis factor alpha, and IL-8) were also significantly downregulated in the nasopharynx tissue after BYG treatment. Therefore, BYG may show therapeutic effects against allergic rhinitis in humans, and it was confirmed that the expression of PM-induced inflammatory factors in mice was decreased via BYG treatment.
Collapse
|
92
|
K P, Kumar P. A critical evaluation of air quality index models (1960-2021). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:324. [PMID: 35359193 DOI: 10.1007/s10661-022-09896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The formulation of an adequate and practical Atmospheric Air Quality Management Plan at different spatial scales at local (micro), city (medium), national (macro)), and temporal (short and long term) is an indispensable solution to prevent the public from air pollution health risk. The air quality monitoring system provides regulatory agencies a comprehensive data of current air contaminants in a particular location. Then, air monitoring data of pollutants is processed into a dimensionless unit called the "Air Quality Index" (AQI); it serves as an information medium for the people to know the air quality health of their location and takes preventative steps accordingly (public participation). Thus, the AQI is a beneficial tool for the public, stakeholders, and regulators to understand the current state of air quality. AQI across the globe considers the number of pollutants (most of the developed countries and some developing countries considers PM2.5 to measure the overall status of air quality being monitored), averaging time for which pollutants are measured, calculation method to compute air quality indices for each pollutant, calculation mode to aggregate the overall index, scale of an index, categories, colour coding scheme, and related descriptive terms of the pollutants. This article presents rationalized and extensive reviews of various Air Quality Index (AQI) models utilized worldwide from 1960 to 2021, comparing them based on several parameters such as types and number of pollutants (criteria or hazardous air pollutants), averaging time (long-term or short-term), calculation methods (linear or nonlinear), calculation modes [single-pollutant (maximum value) or multi-pollutants (combined effect)]. By analysing the strengths and flaws of all the AQI models developed so far, it is recommended to develop a more reliable, extensible, and comparable AQI model to be employed as an executive tool for designing strategic pollution abatement programs to preserve public health.
Collapse
Affiliation(s)
- Priti K
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India, 201002
- CSIR-Central Scientific Instruments Organisation, Technology Block, Sector 30-C, Chandigarh, India, 160030
| | - Prashant Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India, 201002.
- CSIR-Central Scientific Instruments Organisation, Technology Block, Sector 30-C, Chandigarh, India, 160030.
| |
Collapse
|
93
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|
94
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
95
|
Albano GD, Montalbano AM, Gagliardo R, Anzalone G, Profita M. Impact of Air Pollution in Airway Diseases: Role of the Epithelial Cells (Cell Models and Biomarkers). Int J Mol Sci 2022; 23:2799. [PMID: 35269941 PMCID: PMC8911203 DOI: 10.3390/ijms23052799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Biomedical research is multidisciplinary and often uses integrated approaches performing different experimental models with complementary functions. This approach is important to understand the pathogenetic mechanisms concerning the effects of environmental pollution on human health. The biological activity of the substances is investigated at least to three levels using molecular, cellular, and human tissue models. Each of these is able to give specific answers to experimental problems. A scientific approach, using biological methods (wet lab), cell cultures (cell lines or primary), isolated organs (three-dimensional cell cultures of primary epithelial cells), and animal organisms, including the human body, aimed to understand the effects of air pollution on the onset of diseases of the respiratory system. Biological methods are divided into three complementary models: in vitro, ex vivo, and in vivo. In vitro experiments do not require the use of whole organisms (in vivo study), while ex vivo experiments use isolated organs or parts of organs. The concept of complementarity and the informatic support are useful tools to organize, analyze, and interpret experimental data, with the aim of discussing scientific notions with objectivity and rationality in biology and medicine. In this scenario, the integrated and complementary use of different experimental models is important to obtain useful and global information that allows us to identify the effect of inhaled pollutants on the incidence of respiratory diseases in the exposed population. In this review, we focused our attention on the impact of air pollution in airway diseases with a rapid and descriptive analysis on the role of epithelium and on the experimental cell models useful to study the effect of toxicants on epithelial cells.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Angela Marina Montalbano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Rosalia Gagliardo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Mirella Profita
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| |
Collapse
|
96
|
Cheng I, Yang J, Tseng C, Wu J, Conroy SM, Shariff-Marco S, Lin Gomez S, Whittemore AS, Stram DO, Le Marchand L, Wilkens LR, Ritz B, Wu AH. Outdoor ambient air pollution and breast cancer survival among California participants of the Multiethnic Cohort Study. ENVIRONMENT INTERNATIONAL 2022; 161:107088. [PMID: 35063793 PMCID: PMC10908249 DOI: 10.1016/j.envint.2022.107088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Within the Multiethnic Cohort (MEC), we examined the association between air pollution and mortality among African American, European American, Japanese American, and Latina American women diagnosed with breast cancer. METHODS We used a land use regression (LUR) model and kriging interpolation to estimate nitrogen oxides (NOx , NO2) and particulate matter (PM2.5, PM10) exposures for 3,089 breast cancer cases in the MEC, who were diagnosed from 1993 through 2013 and resided largely in Los Angeles County, California. Cox proportional hazards models were used to examine the association of time-varying air pollutants with all-cause, breast cancer, cardiovascular disease (CVD), and non-breast cancer/non-CVD mortality, accounting for key covariates. RESULTS We identified 1,125 deaths from all causes (474 breast cancer, 272 CVD, 379 non-breast cancer/non-CVD deaths) among the 3,089 breast cancer cases with 8.1 years of average follow-up. LUR and kriged NOX (per 50 ppb) and NO2 (per 20 ppb), PM2.5 (per 10 µg/m3), and PM10 (per 10 µg/m3) were positively associated with risks of all-cause (Hazard Ratio (HR) range = 1.13-1.25), breast cancer (HR range = 1.19-1.45), and CVD mortality (HR range = 1.37-1.60). Associations were statistically significant for LUR NOX and CVD mortality (HR = 1.60; 95% CI: 1.08-2.37) and kriged NO2 and breast cancer mortality (HR = 1.45; 95% CI 1.02-2.07). Gaseous and PM pollutants were positively associated with breast cancer mortality across racial/ethnic group. CONCLUSION In this study, air pollutants have a harmful impact on breast cancer survival. Additional studies should evaluate potential confounding by socioeconomic factors. These data support maintaining clean air laws to improve survival for women with breast cancer.
Collapse
Affiliation(s)
- Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA.
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| | - Shannon M Conroy
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
| | | | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
97
|
Lenssen ES, Pieters RHH, Nijmeijer SM, Oldenwening M, Meliefste K, Hoek G. Short-term associations between barbecue fumes and respiratory health in young adults. ENVIRONMENTAL RESEARCH 2022; 204:111868. [PMID: 34453901 DOI: 10.1016/j.envres.2021.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies have associated biomass combustion with (respiratory) morbidity and mortality, primarily in indoor settings. Barbecuing results in high outdoor air pollution exposures, but the health effects are unknown. OBJECTIVE The objective was to investigate short-term changes in respiratory health in healthy adults, associated with exposure to barbecue fumes. METHODS 16 healthy, adult volunteers were exposed to barbecue smoke in outdoor air in rest during 1.5 h, using a repeated-measures design. Major air pollutants were monitored on-site, including particulate matter <2.5 μm (PM2.5), particle number concentrations (PNC) and black- and brown carbon. At the same place and time-of-day, subjects participated in a control session, during which they were not exposed to barbecue smoke. Before and immediately after all sessions lung function was measured. Before, immediately after, 4- and 18 h post-sessions nasal expression levels of interleukin (IL)-8, IL6 and Tumor Necrosis Factor alpha (TNFα) were determined in nasal swabs, using quantitative polymerase chain reaction. Associations between major air pollutants, lung function and inflammatory markers were assessed using mixed linear regression models. RESULTS High PM2.5 levels and PNCs were observed during barbecue sessions, with averages ranging from 553 to 1062 μg/m3 and 109,000-463,000 pt/cm3, respectively. Average black- and brown carbon levels ranged between 4.1-13.0 and 5.0-16.2 μg/m3. A 1000 μg/m3 increase in PM2.5 was associated with 2.37 (0.97, 4.67) and 2.21 (0.98, 5.00) times higher expression of IL8, immediately- and 18 h after exposure. No associations were found between air pollutants and lung function, or the expression of IL6 or TNFα. DISCUSSION Short-term exposure to air pollutants emitted from barbecuing was associated with a mild respiratory response in healthy young adults, including prolonged increase in nasal IL8 without a change in lung function and other measured inflammatory markers. The results might indicate prolonged respiratory inflammation, due to short-term exposure to barbecue fumes.
Collapse
Affiliation(s)
- Esther S Lenssen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Raymond H H Pieters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Sandra M Nijmeijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Marieke Oldenwening
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Kees Meliefste
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
98
|
Moon HG, Jung Y, Shin B, Lee D, Kim K, Woo DH, Lee S, Kim S, Kang CY, Lee T, Kim C. Identification of Chemical Vapor Mixture Assisted by Artificially Extended Database for Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22031169. [PMID: 35161915 PMCID: PMC8840270 DOI: 10.3390/s22031169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 05/06/2023]
Abstract
A fully integrated sensor array assisted by pattern recognition algorithm has been a primary candidate for the assessment of complex vapor mixtures based on their chemical fingerprints. Diverse prototypes of electronic nose systems consisting of a multisensory device and a post processing engine have been developed. However, their precision and validity in recognizing chemical vapors are often limited by the collected database and applied classifiers. Here, we present a novel way of preparing the database and distinguishing chemical vapor mixtures with small data acquisition for chemical vapors and their mixtures of interest. The database for individual vapor analytes is expanded and the one for their mixtures is prepared in the first-order approximation. Recognition of individual target vapors of NO2, HCHO, and NH3 and their mixtures was evaluated by applying the support vector machine (SVM) classifier in different conditions of temperature and humidity. The suggested method demonstrated the recognition accuracy of 95.24%. The suggested method can pave a way to analyze gas mixtures in a variety of industrial and safety applications.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Center for Ecological Risk Assessment, Korea Institute of Toxicology (KIT), Jinju 52834, Korea; (H.G.M.); (S.K.)
| | - Youngmo Jung
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Beomju Shin
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Donggeun Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Kayoung Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Deok Ha Woo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Seok Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Sooyeon Kim
- Center for Ecological Risk Assessment, Korea Institute of Toxicology (KIT), Jinju 52834, Korea; (H.G.M.); (S.K.)
| | - Chong-Yun Kang
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Taikjin Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
- Correspondence: (T.L.); (C.K.)
| | - Chulki Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
- Correspondence: (T.L.); (C.K.)
| |
Collapse
|
99
|
Ihantola T, Hirvonen MR, Ihalainen M, Hakkarainen H, Sippula O, Tissari J, Bauer S, Di Bucchianico S, Rastak N, Hartikainen A, Leskinen J, Yli-Pirilä P, Martikainen MV, Miettinen M, Suhonen H, Rönkkö TJ, Kortelainen M, Lamberg H, Czech H, Martens P, Orasche J, Michalke B, Yildirim AÖ, Jokiniemi J, Zimmermann R, Jalava PI. Genotoxic and inflammatory effects of spruce and brown coal briquettes combustion aerosols on lung cells at the air-liquid interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150489. [PMID: 34844316 DOI: 10.1016/j.scitotenv.2021.150489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 05/05/2023]
Abstract
Solid fuel usage in residential heating and cooking is one of the largest sources of ambient and indoor air particulate matter, which causes adverse effects on the health of millions of peoples worldwide. Emissions from solid fuel combustion, such as biomass or coal, are detrimental to health, but toxicological responses are largely unknown. In the present study, we compared the toxicological responses regarding cytotoxicity, inflammation and genotoxicity of spruce (SPR) and brown coal briquette (BCB) combustion aerosols on human alveolar epithelial cells (A549) as well as a coculture of A549 and differentiated human monocytic cells (THP-1) into macrophages exposed at the air-liquid interface (ALI). We included both the high emissions from the first hour and moderate emissions from the third hour of the batch combustion experiment in one ALI system, whereas, in the second ALI system, we exposed the cells during the whole 4-hour combustion experiment, including all combustion phases. Physico-chemical properties of the combustion aerosol were analysed both online and offline. Both SPR and BCB combustion aerosols caused mild cytotoxic but notable genotoxic effects in co-cultured A549 cells after one-hour exposure. Inflammatory response analysis revealed BCB combustion aerosols to cause a mild increase in CXCL1 and CXCL8 levels, but in the case of SPR combustion aerosol, a decrease compared to control was observed.
Collapse
Affiliation(s)
- Tuukka Ihantola
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland.
| | | | - Mika Ihalainen
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Henri Hakkarainen
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Olli Sippula
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Jarkko Tissari
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Stefanie Bauer
- Comprehensive Molecular Analytics and Joint Mass Spectrometry Centre, Helmholtz Zentrum München, Gmunder Str. 37, D-81379 München, Germany
| | - Sebastiano Di Bucchianico
- Comprehensive Molecular Analytics and Joint Mass Spectrometry Centre, Helmholtz Zentrum München, Gmunder Str. 37, D-81379 München, Germany
| | - Narges Rastak
- Comprehensive Molecular Analytics and Joint Mass Spectrometry Centre, Helmholtz Zentrum München, Gmunder Str. 37, D-81379 München, Germany
| | - Anni Hartikainen
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Jani Leskinen
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Pasi Yli-Pirilä
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | | | - Mirella Miettinen
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Heikki Suhonen
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Teemu J Rönkkö
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Miika Kortelainen
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Heikki Lamberg
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Hendryk Czech
- Comprehensive Molecular Analytics and Joint Mass Spectrometry Centre, Helmholtz Zentrum München, Gmunder Str. 37, D-81379 München, Germany; Chair of Analytical Chemistry and Joint Mass Spectrometry Centre, Rostock University, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Patrick Martens
- Chair of Analytical Chemistry and Joint Mass Spectrometry Centre, Rostock University, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Jürgen Orasche
- Comprehensive Molecular Analytics and Joint Mass Spectrometry Centre, Helmholtz Zentrum München, Gmunder Str. 37, D-81379 München, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Jorma Jokiniemi
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Ralf Zimmermann
- Comprehensive Molecular Analytics and Joint Mass Spectrometry Centre, Helmholtz Zentrum München, Gmunder Str. 37, D-81379 München, Germany; Chair of Analytical Chemistry and Joint Mass Spectrometry Centre, Rostock University, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Pasi I Jalava
- University of Eastern Finland, Yliopistonranta 1, FI-70210 Kuopio, Finland
| |
Collapse
|
100
|
Gladson LA, Cromar KR, Ghazipura M, Knowland KE, Keller CA, Duncan B. Communicating respiratory health risk among children using a global air quality index. ENVIRONMENT INTERNATIONAL 2022; 159:107023. [PMID: 34920275 DOI: 10.1016/j.envint.2021.107023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Air pollution poses a serious threat to children's respiratory health around the world. Satellite remote-sensing technology and air quality models can provide pollution data on a global scale, necessary for risk communication efforts in regions without ground-based monitoring networks. Several large centers, including NASA, produce global pollution forecasts that may be used alongside air quality indices to communicate local, daily risk information to the public. Here we present a health-based, globally applicable air quality index developed specifically to reflect the respiratory health risks among children exposed to elevated outdoor air pollution. Additive, excess-risk air quality indices were developed using 51 different coefficients derived from time-series health studies evaluating the impacts of ambient fine particulate matter, nitrogen dioxide, and ozone on children's respiratory morbidity outcomes. A total of four indices were created which varied based on whether or not the underlying studies controlled for co-pollutants and in the adjustment of excess risks of individual pollutants. Combined with historical estimates of air pollution provided globally at a 25 × 25 km2 spatial resolution from the NASA's Goddard Earth Observing System composition forecast (GEOS-CF) model, each of these indices were examined in a global sample of 664 small and 140 large cities for study year 2017. Adjusted indices presented the most normal distributions of locally-scaled index values, which has been shown to improve associations with health risks, while indices based on coefficients controlling for co-pollutants had little effect on index performance. We provide the steps and resources need to apply our final adjusted index at the local level using freely-available forecasting data from the GEOS-CF model, which can provide risk communication information for cities around the world to better inform individual behavior modification to best protect children's respiratory health.
Collapse
Affiliation(s)
- Laura A Gladson
- Marron Institute of Urban Management, New York University, New York, USA; New York University Grossman School of Medicine, New York, NY, USA
| | - Kevin R Cromar
- Marron Institute of Urban Management, New York University, New York, USA; New York University Grossman School of Medicine, New York, NY, USA.
| | - Marya Ghazipura
- Marron Institute of Urban Management, New York University, New York, USA; New York University Grossman School of Medicine, New York, NY, USA
| | - K Emma Knowland
- Universities Space Research Association, Columbia, MD, USA; NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Christoph A Keller
- Universities Space Research Association, Columbia, MD, USA; NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Bryan Duncan
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|