51
|
Hasegawa S, Yamaguchi M, Nagao H, Mishina M, Mori K. Enhanced cell-to-cell contacts between activated microglia and pyramidal cell dendrites following kainic acid-induced neurotoxicity in the hippocampus. J Neuroimmunol 2007; 186:75-85. [PMID: 17428546 DOI: 10.1016/j.jneuroim.2007.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/08/2007] [Accepted: 03/02/2007] [Indexed: 12/18/2022]
Abstract
Microglia participate in immune responses in the brain. However, little is known about the contact-mediated interaction between microglia and neurons. We report here that the cell-to-cell contacts between microglial processes and dendrites of hippocampal CA1 neurons were dramatically increased in density and area following local injection of kainic acid (KA). A similar KA-induced increase in the degree of intercellular contacts was observed in mice lacking telencephalin (TLCN), a neuronal dendritic adhesion molecule of ICAM family. The results suggest that adhesive contacts independent of TLCN and contact-mediated interactions between microglia and dendrites were promoted by excitotoxic brain injury.
Collapse
Affiliation(s)
- Sanae Hasegawa
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
52
|
Sheehan JJ, Zhou C, Gravanis I, Rogove AD, Wu YP, Bogenhagen DF, Tsirka SE. Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J Neurosci 2007; 27:1738-45. [PMID: 17301181 PMCID: PMC6673734 DOI: 10.1523/jneurosci.4987-06.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exposure of neurons to high concentrations of excitatory neurotransmitters causes them to undergo excitotoxic death via multiple synergistic injury mechanisms. One of these mechanisms involves actions undertaken locally by microglia, the CNS-resident macrophages. Mice deficient in the serine protease plasmin exhibit decreased microglial migration to the site of excitatory neurotransmitter release and are resistant to excitotoxic neurodegeneration. Microglial chemotaxis can be signaled by the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 (CC chemokine ligand 2). We show here that mice genetically deficient for MCP-1 phenocopy plasminogen deficiency by displaying decreased microglial recruitment and resisting excitotoxic neurodegeneration. Connecting these pathways, we demonstrate that MCP-1 undergoes a proteolytic processing step mediated by plasmin. The processing, which consists of removal of the C terminus of MCP-1, enhances the potency of MCP-1 in in vitro migration assays. Finally, we show that infusion of the cleaved form of MCP-1 into the CNS restores microglial recruitment and excitotoxicity in plasminogen-deficient mice. These findings identify MCP-1 as a key downstream effector in the excitotoxic pathway triggered by plasmin and identify plasmin as an extracellular chemokine activator. Finally, our results provide a mechanism that explains the resistance of plasminogen-deficient mice to excitotoxicity.
Collapse
Affiliation(s)
- John J. Sheehan
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Chun Zhou
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Iordanis Gravanis
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Andrew D. Rogove
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Yan-Ping Wu
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Daniel F. Bogenhagen
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Stella E. Tsirka
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| |
Collapse
|
53
|
Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 2006; 119:339-49. [PMID: 16410551 DOI: 10.1242/jcs.02734] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stroke and many neurodegenerative diseases culminate in neuronal death through a mechanism known as excitotoxicity. Excitotoxicity proceeds through a complex signaling pathway that includes the participation of the serine protease tissue plasminogen activator (tPA). tPA mediates neurotoxic effects on resident central nervous system cells as well alters blood-brain barrier (BBB) permeability, which further promotes neurodegeneration. Another signaling molecule that promotes neurodegeneration and BBB dysfunction is nitric oxide (NO), although its precise role in pathological progression remains unclear. We examine here the potentially interrelated roles of tPA, NO and peroxynitrite (ONOO-), which is the toxic metabolite of NO, in BBB breakdown and neurodegeneration following intrahippocampal injection of the glutamate analog kainite (KA). We find that NO and ONOO- production are linked to tPA-mediated excitotoxic injury, and demonstrate that NO provision suffices to restore the toxic effects of KA in tPA-deficient mice that are normally resistant to excitotoxicity. NO also promotes BBB breakdown and excitotoxicity. Interestingly, BBB breakdown in itself does not suffice to elicit neurodegeneration; a subsequent ONOO(-)-mediated event is required. In conclusion, NO and ONOO- function as downstream effectors of tPA-mediated excitotoxicity.
Collapse
Affiliation(s)
- Susana R Parathath
- Program in Molecular and Cellular Biology, Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
54
|
Soltys Z, Orzylowska-Sliwinska O, Zaremba M, Orlowski D, Piechota M, Fiedorowicz A, Janeczko K, Oderfeld-Nowak B. Quantitative morphological study of microglial cells in the ischemic rat brain using principal component analysis. J Neurosci Methods 2005; 146:50-60. [PMID: 15935220 DOI: 10.1016/j.jneumeth.2005.01.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 01/14/2005] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
Pathogenic stimuli induce alterations in the morphology of microglial cells. We analysed changes in lectin-stained cells on the 1st, 3rd, 7th or 14th day after transient global ischemia. Three areas differing in the degree of microglial reaction were selected for analysis: the upper cerebral cortex, the hippocampal CA1 area, and the hilus of the dentate gyrus. Nine morphological parameters, including fractal dimension, lacunarity, self-similarity range, solidity, convexity and form factor were determined. Then the resultant data were processed using principal component analysis (PCA). We found that the two first principal components together explained more than 73% of the observed variability, and may be sufficient both to describe the morphological diversity of the cells, and to determine the dynamics and direction of the changes. In both hippocampal areas, the transformation to hypertrophied and phagocytic cells was observed, but changes in the hilus were faster than in the CA1. In contrast, in the cortex, a microglial reaction was characterised by an increase in the complexity of processes. The results presented show that the quantitative morphological analysis can be an effective tool in research on the reactive behaviour of microglia and, particularly, in the detection of small and early changes in the cells.
Collapse
Affiliation(s)
- Z Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 6 Ingardena St., 30-060 Cracow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Shimizu T, Hayashi Y, Yamasaki R, Yamada J, Zhang J, Ukai K, Koike M, Mine K, von Figura K, Peters C, Saftig P, Fukuda T, Uchiyama Y, Nakanishi H. Proteolytic degradation of glutamate decarboxylase mediates disinhibition of hippocampal CA3 pyramidal cells in cathepsin D-deficient mice. J Neurochem 2005; 94:680-90. [PMID: 15992379 DOI: 10.1111/j.1471-4159.2005.03250.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although of clinical importance, little is known about the mechanism of seizure in neuronal ceroid lipofuscinosis (NCL). In the present study, we have attempted to elucidate the mechanism underlying the seizure of cathepsin D-deficient (CD-/-) mice that show a novel type of lysosomal storage disease with a phenotype resembling late infantile NCL. In hippocampal slices prepared from CD-/- mice at post-natal day (P)24, spontaneous burst discharges were recorded from CA3 pyramidal cells. At P24, the mean amplitude of IPSPs after stimulation of the mossy fibres was significantly smaller than that of wild-type mice, which was substantiated by the decreased level of gamma-aminobutyric acid (GABA) contents in the hippocampus measured by high-performance liquid chromatography (HPLC). At this stage, activated microglia were found to accumulate in the pyramidal cell layer of the hippocampal CA3 subfield of CD-/- mice. However, there was no significant change in the numerical density of GABAergic interneurons in the CA3 subfield of CD-/- mice at P24, estimated by counting the number of glutamate decarboxylase (GAD) 67-immunoreactive somata. In the hippocampus and the cortex of CD-/- mice at P24, some GABAergic interneurons displayed extremely high somatic granular immunoreactivites for GAD67, suggesting the lysosomal accumulation of GAD67. GAD67 levels in axon terminals abutting on to perisomatic regions of hippocampal CA3 pyramidal cells was not significantly changed in CD-/- mice even at P24, whereas the total protein levels of GAD67 in both the hippocampus and the cortex of CD-/- mice after P24 were significantly decreased as a result of degradation. Furthermore, the recombinant human GAD65/67 was rapidly digested by the lysosomal fraction prepared from the whole brain of wild-type and CD-/- mice. These observations strongly suggest that the reduction of GABA contents, presumably because of lysosomal degradation of GAD67 and lysosomal accumulation of its degraded forms, are responsible for the dysfunction of GABAergic interneurons in the hippocampal CA3 subfield of CD-/- mice.
Collapse
Affiliation(s)
- Tokiko Shimizu
- Laborarory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 2005; 49:375-84. [PMID: 15538754 DOI: 10.1002/glia.20124] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perivascular macrophages are believed to have a significant role in inflammation in the central nervous system (CNS). They express a number of different receptors that point toward functions in both innate immunity, through pathogen-associated molecular pattern recognition, phagocytosis, and cytokine responsiveness, and acquired immunity, through antigen presentation and co-stimulation. We are interested in the receptors that are differentially expressed by perivascular macrophages and microglia in both the normal CNS as well as in neuroinflammation and neurodegeneration. In this article we report the use of a well-characterized monoclonal antibody, 5D3, to localize the expression of the mannose receptor to perivascular macrophages in the normal CNS and in various models of brain pathology. Mannose receptor expression was limited to perivascular, meningeal, and choroid plexus macrophages in normal, inflamed, injured, and diseased CNS. In particular, activated microglia and invading hematogenous leukocytes were mannose receptor negative while expressing the F4/80 antigen, macrosialin (CD68), FcRII (CD32), scavenger receptor (CD204), and CR3 (CD11b/CD18). Since the perivascular macrophages expressing the mannose receptor are known to be the only constitutively phagocytic cells in the normal CNS, we injected clodronate-loaded liposomes intracerebroventricularly in control mice to deplete these cells. In these mice, there was no detectable mannose receptor expression in perivascular spaces after immunocytochemistry with the 5D3 monoclonal antibody. This finding underlines the value of the monoclonal antibody 5D3 as a tool to study murine perivascular macrophages selectively. Mannose receptor expression by macrophages located at blood-brain (perivascular), brain-cerebrospinal fluid (CSF) (meningeal), and CSF-blood (choroid plexus) interfaces supports a functional role of these cells in responding to external stimuli such as infection.
Collapse
Affiliation(s)
- Ian Galea
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Mueller FJ, McKercher SR, Imitola J, Loring JF, Yip S, Khoury SJ, Snyder EY. At the interface of the immune system and the nervous system: how neuroinflammation modulates the fate of neural progenitors in vivo. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:83-114. [PMID: 16315610 DOI: 10.1007/3-540-27626-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Neural stem and progenitor cells express a variety of receptors that enable them to sense and react to signals emanating from physiological and pathophysiological conditions in the brain as well as elsewhere in the body. Many of these receptors and were first described in investigations of the immune system, particularly with respect to hematopoietic stem cells. This emerging view of neurobiology has two major implications. First, many phenomena known from the hematopoietic system may actually be generalizable to stem cells from many organ systems, reflecting the cells' progenitor-mediated regenerative potential. Second, regenerative interfaces may exist between diverse organ systems; populations of cells of neuroectodermal and hematopoietic origin may interact to play a crucial role in normal brain physiology, pathology, and repair. An understanding of the origins of signals and the neural progenitors' responses might lead to the development of effective therapeutic strategies to counterbalance acute and chronic neurodegenerative processes. Such strategies may include modifying and modulating cells with regenerative potential in subtle ways. For example, stem cells might be able to detect pathology-associated signals and be used as "interpreters" to mediate drug and other therapeutic interventions. This review has focused on the role of inflammation in brain repair. We propose that resident astroglia and blood-born cells both contribute to an inflammatory signature that is unique to each kind of neuronal degeneration or injury. These cells play a key role in coordinating the neural progenitor cell response to brain injury by exerting direct and indirect environmentally mediated influence on neural progenitor cells. We suggest that investigations of the neural progenitor-immunologic interface will provide valuable data related to the mechanisms by which endogenous and exogenous neural progenitor cells react to brain pathology, ultimately aiding in the design of more effective therapeutic applications of stem cell biology. Such improvements will include: (1) ascertaining the proper timing for implanting exogenous neural progenitor cells in relation to the administration of anti-inflammatory agents; (2) identifying what types of molecules might be administered during injury to enhance the mobilization and differentiation of endogenous and exogenous neural progenitor cells while also inhibiting the detrimental aspects of the inflammatory reaction; (3) divining clues as to which molecules may be required to change the lesioned environment in order to invite the homing of reparative neural progenitor cells.
Collapse
Affiliation(s)
- F J Mueller
- Program in Developmental Regenerative Cell Biology, The Burnham Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Patel M, Li QY, Chang LY, Crapo J, Liang LP. Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage. J Neurochem 2005; 92:123-31. [PMID: 15606902 DOI: 10.1111/j.1471-4159.2004.02838.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We sought to determine whether the extracellular compartment contributed to seizure-induced superoxide (O2*-) production and to determine the role of the NADPH oxidase complex as a source of this O2*- production. The translocation of NADPH oxidase subunits (p47phox, p67phox and rac1) was assessed by immunoblot analysis and NADPH-driven O2*- production was measured using 2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl)-8-benzyl-3,7-dihydroimidazo [1,2-alpha] pyrazin-3-one-enhanced chemiluminescence. Kainate-induced status epilepticus resulted in a time-dependent translocation of NADPH oxidase subunits (p47phox, p67phox and rac-1) from hippocampal cytosol to membrane fractions. Hippocampal membrane fractions from kainate-injected rats showed increased NADPH-driven and diphenylene iodonium-sensitive O2*- production in comparison to vehicle-treated rats. The time-course of kainate-induced NADPH oxidase activation coincided with microglial activation in the rat hippocampus. Finally, kainate-induced neuronal damage and membrane oxygen consumption were inhibited in mice overexpressing extracellular superoxide dismutase. These results suggest that seizure activity activates the membrane NADPH oxidase complex resulting in increased formation of O2*-.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
59
|
Diguet E, Gross CE, Tison F, Bezard E. Rise and fall of minocycline in neuroprotection: need to promote publication of negative results. Exp Neurol 2004; 189:1-4. [PMID: 15296829 DOI: 10.1016/j.expneurol.2004.05.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 05/14/2004] [Indexed: 11/25/2022]
Abstract
Initial studies conducted on the neuroprotective effects of minocycline, a second-generation tetracycline, in experimental models of neurodegeneration gave promising results. However, more recently, minocycline has clearly been shown to have variable and even contradictory (beneficial or detrimental) effects in different species and models of neurological disorders, and its "neuroprotective" mechanisms remain to be clarified. Although its anti-inflammatory properties are likely to contribute to its neuroprotective effects observed in several animal models, a body of recent evidence indicates that our community should proceed with caution in the clinical use of minocycline for central nervous system disorders.
Collapse
Affiliation(s)
- Elsa Diguet
- CNRS UMR 5543, Université Victor Segalen Bordeaux2, Bordeaux, France
| | | | | | | |
Collapse
|
60
|
Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 2003; 100:13632-7. [PMID: 14581618 PMCID: PMC263865 DOI: 10.1073/pnas.2234031100] [Citation(s) in RCA: 1187] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.
Collapse
Affiliation(s)
- Christine T Ekdahl
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center, Biomedical Center A-11, Lund, Sweden
| | | | | | | | | |
Collapse
|
61
|
Boche D, Cunningham C, Gauldie J, Perry VH. Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metab 2003; 23:1174-82. [PMID: 14526228 DOI: 10.1097/01.wcb.0000090080.64176.44] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ischemic preconditioning is a phenomenon that describes how a sublethal ischemic insult can induce tolerance to subsequent ischemia. This phenomenon has been observed after focal or global ischemia in different animal models. However, the hypothesis that bacterial infection might lead to neuronal tolerance to injury has not been investigated. To mimic cerebral bacterial infection, we injected bacterial lipopolysaccharide (LPS) in the right dorsal hippocampus, followed 24 hours later by an excitotoxic lesion using kainic acid in the mouse model. Quantification of lesion size after cresyl violet counterstaining revealed that LPS pretreatment afforded neuroprotection to CA3 neurons against KA challenge. To investigate the events underlying this protection, we studied the cytokine profile induced after LPS injection. Interleukin (IL)-1 beta and transforming growth factor beta 1 (TGF-beta 1) were the main cytokines expressed at 24 hours after LPS injection. Because IL-1 beta has been described as deleterious in acute injury, we decided to investigate the function of TGF-beta 1. An adenovirus expressing a constitutively active form of TGF-beta 1 was injected intracerebrally 1 week before the induction of excitotoxic lesion, and neuronal protection was observed. To confirm the neuroprotective role of TGF-beta 1, the TGF-beta 1 adenovirus was replaced by recombinant human TGF-beta 1 protein and total neuroprotection was observed. Furthermore, the antibody-mediated blocking of TGF-beta 1 action prevented the protective effect of pretreatment with LPS. We have demonstrated in vivo that the cerebral tolerance phenomenon induced by LPS pretreatment is mediated by TGF-beta 1 cytokine.
Collapse
Affiliation(s)
- Delphine Boche
- CNS Inflammation Group, Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton, Hampshire, UK.
| | | | | | | |
Collapse
|
62
|
Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci 2003. [PMID: 12716930 DOI: 10.1523/jneurosci.23-08-03234.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tissue plasminogen activator (tPA) plays important roles in the brain after excitotoxic injury. It is released by both neurons and microglia and mediates neuronal death and microglial activation. Mice lacking tPA are resistant to excitotoxicity and show very limited microglial activation. Activated microglia are neurotoxic in culture, but this phenomenon is not well documented in vivo. To further understand the sequence of events through which tPA mediates microglial activation and neurodegeneration, we have generated mice that exhibit restricted expression of tPA through introduction of tPA transgenes under the control of neuronal- or microglial-specific promoters into tPA-deficient mice. Neither strain of transgenic mice shows abnormal brain morphology or inflammation in the absence of injury, and unilateral intrahippocampal kainate injections into the transgenic mice induced excitotoxicity and microglial activation reminiscent of wild-type mice. However, there are differences in the kinetics of the resulting pathology. The neuronal tPA-expressing mice exhibit accelerated microglial activation compared with wild-type or microglial tPA-expressing mice. However, microglial tPA-expressing mice exhibit greater neurodegeneration. These data suggest a model in which tPA plays different roles after kainate injection depending on whether it is released by neurons or microglia. We propose that tPA, initially secreted from injured neurons, acts as a cytokine to activate microglia at the site of injury. These activated microglia then secrete additional tPA, which promotes extracellular matrix degradation, neurodegeneration, and self-proliferation. We suggest that an approach to attenuate microglia-mediated neuronal death in vivo might be to pharmacologically prevent microglial activation.
Collapse
|
63
|
Larsson LC, Corbascio M, Pearson TC, Larsen CP, Ekberg H, Widner H. Induction of operational tolerance to discordant dopaminergic porcine xenografts. Transplantation 2003; 75:1448-54. [PMID: 12792495 DOI: 10.1097/01.tp.0000058807.45320.a2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Porcine embryonic neural tissue transplanted intracerebrally could potentially relieve the symptoms of Parkinson's disease if the immune response toward the graft could be overcome. However, conventional immunosuppressive treatments have proven inefficient in preventing rejection. An alternative is blocking the costimulatory signals for lymphocyte activation. Treatment with cytotoxic T-lymphocyte antigen 4 immunoglobulin (CTLA4Ig) and anti-CD40L has been successful in preventing rejection of xenografts in some experimental studies, but not all. Lymphocyte function antigen (LFA)-1 is an important costimulatory molecule for CD8+ T cells, and we hypothesize that blockade with anti-LFA-1 may enhance the efficacy of CTLA4Ig and anti-CD40L therapy. METHODS C57BL/6 mice received intracerebral transplants of ventral mesencephalic tissue from embryonic porcine donors. CTLA4Ig, anti-CD40L, and anti-LFA-1 were administered every other day on days 0 to 8, and the transplants were studied after 4 to 6 weeks. Grafts were histologically analyzed for size, survival of dopaminergic nerve cells, and immune responses. Recipients were challenged with cultured glia cells of donor origin or an allogeneic skin graft to evaluate tolerance induction. RESULTS Mice treated with all three substances had large grafts containing high amounts of dopamine cells but a low degree of immune response. Grafts in recipients challenged with glial cells showed an increased immunologic activity but were not rejected. Triple-treated mice showed a normal rejection process of the allogeneic skin grafts. CONCLUSION After a short course of costimulation blocking therapy, discordant neural xenografts demonstrate long-term survival, withstand immunologic challenge, yet maintain host-versus-graft reactivity. Anti-LFA-1 complements CTLA4Ig and anti-CD40L in the induction of operational tolerance to these xenografts.
Collapse
Affiliation(s)
- Lena C Larsson
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
64
|
Popovich PG, Jones TB. Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci 2003; 24:13-7. [PMID: 12498725 DOI: 10.1016/s0165-6147(02)00006-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recruitment of inflammatory leukocytes to the injured spinal cord is a physiological response that is associated with the production of cytokines and proteinases that are involved in host defense and wound repair. Cells in the spinal cord are mainly post-mitotic and tissue regeneration is poor; thus, these inflammatory mediators can exacerbate the damage to spared tissue and thereby impair spontaneous functional recovery. Although several aspects of immune function might benefit the CNS, experimental studies indicate that acute neuroinflammation aggravates tissue injury. Until the timing and nature of the molecular signals that govern leukocyte recruitment and activation after spinal injury are defined, clinical therapies designed to boost immune cell function should be avoided.
Collapse
Affiliation(s)
- Phillip G Popovich
- Department of Molecular Virology, Immunology and Medical Genetics, 2078 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
65
|
Abe Y, Nakamura H, Yoshino O, Oya T, Kimura T. Decreased neural damage after spinal cord injury in tPA-deficient mice. J Neurotrauma 2003; 20:43-57. [PMID: 12614587 DOI: 10.1089/08977150360517173] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin. It plays an important role in the nervous system, including the processes of neuronal migration, neurite outgrowth, and neuronal plasticity. tPA has also been suggested to have a role in several neuropathological conditions, such as cerebral ischemia, seizures, and demyelinating diseases. To investigate the role of tPA in spinal cord injury, wild-type mice and mice with homozygous tPA deficiency (tPA(-/-) mice) were subjected to spinal cord contusion and the differences of hindlimb function, electrophysiological changes, and histopathological changes were assessed for 6 weeks. Functional recovery was greater in tPA(-/-) mice than in wild-type mice throughout the observation period. The time course of myoelectric motor-evoked potentials supported the hindlimb functional findings. Histological examination showed that injured areas were smaller in tPA(-/-) mice than wild-type mice on Luxol fast blue staining or myelin basic protein and neurofilament protein immunostaining at 6 weeks after contusion. Electron microscopy showed that the white matter was better preserved in tPA(-/-) mice than in wild-type mice. The expression of tPA protein was widespread on the first day after contusion and this expression was detected for at least a week. Activation of microglia/macrophages and apoptotic cell death were significantly reduced in tPA(-/-) mice after contusion. This study shows that neural damage is decreased in tPA(-/-) mice after spinal cord injury. Suppression of tPA production may help to decrease secondary injury after spinal cord contusion.
Collapse
Affiliation(s)
- Yumiko Abe
- Department of Orthopedic Surgery, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| | | | | | | | | |
Collapse
|
66
|
Rogove AD, Lu W, Tsirka SE. Microglial activation and recruitment, but not proliferation, suffice to mediate neurodegeneration. Cell Death Differ 2002; 9:801-6. [PMID: 12107823 DOI: 10.1038/sj.cdd.4401041] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Revised: 12/13/2001] [Accepted: 01/31/2002] [Indexed: 11/08/2022] Open
Abstract
Microglial activation occurs during excitotoxin-induced neurodegeneration. We have reported that microglia can exhibit neurotoxic behaviors after injection of excitotoxins into the hippocampus. It is not known, however, whether microglial proliferation, which is part of the activation response, is required for neurodegeneration to be observed, or whether activation of the pre-existing resident microglia suffices. Using osteopetrotic (op/op) mice, in which injury-induced microglial proliferation does not take place, we demonstrate that only the microglia initially residing in the CNS are adequate to promote neurodegeneration. Our data suggest that there is a threshold at which a maximal microglial contribution to neurotoxicity is observed. This threshold appears to be sufficiently low, such that activation of just 40% of the microglia present in wild-type mice serves to trigger neurodegeneration. Furthermore, since the decrease in microglial numbers coincides with a decrease in tissue plasminogen activator's activity, we suggest that tissue plasminogen activator can be used as a marker for microglial proliferation.
Collapse
Affiliation(s)
- A D Rogove
- Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
67
|
Yepes M, Sandkvist M, Coleman TA, Moore E, Wu JY, Mitola D, Bugge TH, Lawrence DA. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J Clin Invest 2002. [DOI: 10.1172/jci0214308] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
68
|
Yepes M, Sandkvist M, Coleman TA, Moore E, Wu JY, Mitola D, Bugge TH, Lawrence DA. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J Clin Invest 2002; 109:1571-8. [PMID: 12070304 PMCID: PMC151009 DOI: 10.1172/jci14308] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Accepted: 04/30/2002] [Indexed: 11/17/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) is a highly specific serine proteinase expressed in the CNS during events that require neuronal plasticity. In this study we demonstrate that endogenous tPA mediates the progression of kainic acid-induced (KA-induced) seizures by promoting the synchronization of neuronal activity required for seizure spreading, and that, unlike KA-induced cell death, this activity is plasminogen-independent. Specifically, seizure induction by KA injection into the amygdala induces tPA activity and cell death in both hippocampi, and unilateral treatment of rats with neuroserpin, a natural inhibitor of tPA in the brain, enhances neuronal survival in both hippocampi. Inhibition of tPA within the hippocampus by neuroserpin treatment does not prevent seizure onset but instead markedly delays the progression of seizure activity in both rats and wild-type mice. In tPA-deficient mice, seizure progression is significantly delayed, and neuroserpin treatment does not further delay seizure spreading. In contrast, plasminogen-deficient mice show a pattern of seizure spreading and a response to neuroserpin that is similar to that of wild-type animals. These findings indicate that tPA acts on a substrate other than plasminogen and that the effects of neuroserpin on seizure progression and neuronal cell survival are mediated through the inhibition of tPA.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Vascular Biology, American Red Cross Holland Laboratory, Rockville, Maryland 20855, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Wolf OT, Dyakin V, Patel A, Vadasz C, de Leon MJ, McEwen BS, Bulloch K. Volumetric structural magnetic resonance imaging (MRI) of the rat hippocampus following kainic acid (KA) treatment. Brain Res 2002; 934:87-96. [PMID: 11955471 DOI: 10.1016/s0006-8993(02)02363-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An in vivo MRI study employing a high field (7T) magnet and a T1- and T2-weighted imaging sequence with subsequent histopathological evaluations was undertaken to develop and evaluate MRI-based volumetric measurements in the rat. The brain structures considered were the hippocampus, the cingulate cortex, the retrosplenial granular cortex and the ventricles. Control (n=3) and kainic acid (KA; n=4) treated rats were scanned 10 days following the manifestation of stage four seizures. The MRI images exhibited anatomical details (125 microm in-plane resolution) that enabled volumetric analysis with high intra-rater reliability. Volumetric analysis revealed that KA-treated rats had significantly smaller hippocampi, and a significant increase in ventricular size. The cingulate cortex and the retrosplenial granular cortex did not differ in volume between the two groups. The histological observations supported the MRI data showing neuronal loss and neuronal degeneration in CA1 and CA3 of the hippocampus, which was accompanied by strong microglia activation. These data demonstrate a reliable and valid method for the measurement of the rat hippocampus in vivo using MRI with a high field magnet, thereby providing a useful tool for future studies of rodent models of neuro-degenerative diseases.
Collapse
Affiliation(s)
- O T Wolf
- Center for Brain Health, Neuroimaging Lab., NYU School of Medicine New York, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Tooyama I, Nishimura T, Nakagawa E, Morita H, Uemura S, Aimi Y, Yasuhara O, Kimura H. Microglial reaction and neuronal death in the hippocampus of rat models of epilepsy. Neuropathology 2002. [DOI: 10.1046/j.1440-1789.1999.00224.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ikuo Tooyama
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
| | - Tsutomu Nishimura
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
- Department of Pediatrics, Tokyo Women's Medical College, Tokyo, Japan
| | - Eiji Nakagawa
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
| | - Hiroyuki Morita
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
| | - Shuji Uemura
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
| | - Yoshinari Aimi
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
| | - Osamu Yasuhara
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
| | - Hiroshi Kimura
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Seta, Otsu and,
| |
Collapse
|
71
|
Wilcockson DC, Campbell SJ, Anthony DC, Perry VH. The systemic and local acute phase response following acute brain injury. J Cereb Blood Flow Metab 2002; 22:318-26. [PMID: 11891437 DOI: 10.1097/00004647-200203000-00009] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is not known whether acute brain injury results in a systemic acute phase response (APR) or whether an APR influences outcome after an insult to the CNS. The present study sought to establish whether brain injury elicits a systemic or local APR. The expression of acute phase protein (APP) mRNA in liver and brain tissues was measured by Taqman reverse transcriptase-polymerase chain reaction after an excitotoxic lesion in the striatum or challenge with a proinflammatory cytokine. N-methyl-d-aspartate (NMDA)-induced brain lesion did not elicit a systemic APR. In contrast, proinflammatory challenge with mouse recombinant interleukin-1beta (mrIL-1beta) resulted in a significant hepatic APP mRNA expression within 6 hours. Thus, an inflammatory challenge that results in a meningitis leads to a hepatic APR, whereas acute brain injury alone, with no evidence of a meningitis, does not produce an APR. This is surprising because NMDA leads to an increase in endogenous IL-1beta synthesis. This suggests that the brain has an endogenous antiinflammatory mechanism, which protects against the spread of inflammation after an acute injury. In the brain, both excitotoxic lesions and proinflammatory challenge resulted in a profound parenchymal upregulation of APP mRNA after 6 and 12 hours in the injected hemisphere. These results suggest that the local APR may play a role as an antiinflammatory mechanism. These findings indicate a potentially pivotal role for peripheral and local APP production on outcome after brain injury.
Collapse
Affiliation(s)
- David C Wilcockson
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Southampton, Hampshire, UK
| | | | | | | |
Collapse
|
72
|
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, Hamilton, Montana 59840, USA
| |
Collapse
|
73
|
Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 2002. [DOI: 10.1002/glia.10037] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
74
|
Larsson LC, Corbascio M, Widner H, Pearson TC, Larsen CP, Ekberg H. Simultaneous inhibition of B7 and LFA-1 signaling prevents rejection of discordant neural xenografts in mice lacking CD40L. Xenotransplantation 2002; 9:68-76. [PMID: 12005106 DOI: 10.1034/j.1399-3089.2002.1o010.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transplantation of embryonic human neural tissue can restore dopamine neurotransmission and improve neurological function in patients with Parkinson's disease. Logistical and ethical factors limit the availability of human embryonic allogeneic tissue. Embryonic xenogeneic neural tissue from porcine donors is an alternative form of donor tissue, but effective immunomodulatory techniques are warranted for neural xenotransplantation to become clinically feasible. We transplanted embryonic porcine ventral mesencephalic tissue into the brains of adult untreated C57BL/6 mice, untreated CD40L-/-mice and CD40L-/-mice that received injections of anti-LFA-1, CTLA41g or both compounds. Double-treated CD40L-/-mice had large grafts with high numbers of dopaminergic neurons 4 wk after transplantation. The grafts were completely devoid of lymphocytes, macrophages and activated microglia. Untreated C57BL/6 mice had rejected their grafts. Untreated CD40L-/-mice and CD40L-/-mice treated with monotherapy of anti-LFA-1 or CTLA41g had smaller grafts and more microglial and lymphocytic infiltration than double-treated CD40L-/-mice. We conclude that immunomodulation with concomitant inhibition of LFA-1 and B7 signaling in the perioperative period in CD40L-/-mice prevented the rejection of discordant neural xenografts. The treatment most likely reduced antigen presenting capacity and interfered with the costimulatory signaling needed for T cell activation to occur.
Collapse
Affiliation(s)
- Lena C Larsson
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | | | | | |
Collapse
|
75
|
Liu W, Liu R, Schreiber SS, Baudry M. Role of polyamine metabolism in kainic acid excitotoxicity in organotypic hippocampal slice cultures. J Neurochem 2001; 79:976-84. [PMID: 11739609 DOI: 10.1046/j.1471-4159.2001.00650.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polyamines are ubiquitous cations that are essential for cell growth, regeneration and differentiation. Increases in polyamine metabolism have been implicated in several neuropathological conditions, including excitotoxicity. However, the precise role of polyamines in neuronal degeneration is still unclear. To investigate mechanisms by which polyamines could contribute to excitotoxic neuronal death, the present study examined the role of the polyamine interconversion pathway in kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures. Treatment of cultures with N1,N(2)-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), an irreversible inhibitor of polyamine oxidase, resulted in a partial but significant neuronal protection, especially in CA1 region. In addition, this pre-treatment also attenuated KA-induced increase in levels of lipid peroxidation, cytosolic cytochrome C release and glial cell activation. Furthermore, pre-treatment with a combination of cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) and MDL 72527 resulted in an additive and almost total neuronal protection against KA toxicity, while the combination of MDL 72527 and EUK-134 (a synthetic catalase/superoxide dismutase mimetic) did not provide additive protection. These data strongly suggest that the polyamine interconversion pathway partially contributes to KA-induced neurodegeneration via the production of reactive oxygen species.
Collapse
Affiliation(s)
- W Liu
- Neuroscience Program, School of Medicine, University of Southern California, Los Angeles, California 90089-2520, USA
| | | | | | | |
Collapse
|
76
|
Nathan BP, Nisar R, Randall S, Short J, Sherrow M, Wong GK, Struble RG. Apolipoprotein E is upregulated in olfactory bulb glia following peripheral receptor lesion in mice. Exp Neurol 2001; 172:128-36. [PMID: 11681846 DOI: 10.1006/exnr.2001.7762] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein E (apoE), a lipid transporting protein, has been postulated to participate in nerve regeneration. To better clarify apoE function in the olfactory system, we evaluated the amount and distribution of apoE in the olfactory bulb following olfactory nerve lesion in mice. Olfactory nerve was lesioned in 2- to 4-month-old mice by intranasal irrigation with Triton X-100. Olfactory bulbs were collected at 0, 3, 7, 21, 42, and 56 days postlesion, and both apoE concentrations and apoE distribution were determined. ApoE levels, as determined by immunoblot analysis, were twofold greater than normal during nerve degeneration at 3 days. ApoE levels remained elevated by approximately 1.5 times normal levels at 7 through 21 days after injury and returned to baseline by 56 days. Immunocytochemical studies supported these observations. ApoE immunoreactivity was prominent on the olfactory nerve at 3 days after lesion and decreased to baseline levels at later time periods. Double-labeling immunocytochemical studies confirmed that both reactive astroglia and microglia produced detectable amounts of apoE following the lesion. Return of apoE expression to baseline paralleled measures of olfactory nerve maturation as measured by olfactory marker protein. These data suggest that apoE increases concurrent with nerve degeneration. ApoE may facilitate efficient regeneration perhaps by recycling lipids from degenerating fibers for use by growing axons. The association of apoE genotype with dementing illnesses may represent a diminished ability to support a lifetime of nerve regeneration.
Collapse
Affiliation(s)
- B P Nathan
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, Illinois 61920, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Affiliation(s)
- A van der Goes
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Van den Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | |
Collapse
|
78
|
Anthony DC, Blond D, Dempster R, Perry VH. Chemokine targets in acute brain injury and disease. PROGRESS IN BRAIN RESEARCH 2001; 132:507-24. [PMID: 11545015 DOI: 10.1016/s0079-6123(01)32099-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- D C Anthony
- CNS Inflammation Group, Centre for Neuroscience at Southampton, University of Southampton, Biomedical Sciences Building, Southampton SO16 7PX, UK.
| | | | | | | |
Collapse
|
79
|
Abstract
Proteases are involved in a variety of processes including demyelination after injury to the central nervous system. Neuropsin is a serine protease, which is constitutively expressed in the neurons of the limbic system. In the present study, intrahippocampal kainate injection and enucleation were performed on adult mice. Neuropsin mRNA and protein expression was detected by in situ hybridization and immunohistochemistry. Double in situ hybridization confirmed that the mRNA expression was induced in oligodendrocytes. One day after kainate injection to the hippocampus, neuropsin mRNA was expressed, peaking 4-8 days postoperatively and disappearing at 14 days. Immunohistochemistry and immunoelectron microscopy revealed that neuropsin was expressed in the cell body of oligodendrocytes and myelin. To see if neuropsin degrades myelin protein, purified myelin was incubated with recombinant neuropsin. A decrease in the intensity of the bands of myelin basic protein was observed. These results indicate that neuropsin is involved in demyelination.
Collapse
Affiliation(s)
- X P He
- Division of Structural Cell Biology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
80
|
Boill�e S, Viala L, Peschanski M, Dreyfus PA. Differential microglial response to progressive neurodegeneration in the murine mutantwobbler. Glia 2001. [DOI: 10.1002/1098-1136(20010315)33:4<277::aid-glia1026>3.0.co;2-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
81
|
Bu J, Akhtar N, Nishiyama A. Transient expression of the NG2 proteoglycan by a subpopulation of activated macrophages in an excitotoxic hippocampal lesion. Glia 2001; 34:296-310. [PMID: 11360302 DOI: 10.1002/glia.1063] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells that express the NG2 proteoglycan (NG2+ cells) constitute a large glial population in the normal mature rodent brain. They can differentiate into oligodendrocytes but are distinct from mature oligodendrocytes, astrocytes, microglia, and neurons. Changes in NG2+ cells were examined in kainic acid-induced excitotoxic lesions of the hippocampus, and the relationship between NG2+ cells and reactive astrocytes and microglia was investigated between 1 and 90 days after lesioning. Two types of reactive NG2+ cells with altered morphology and increased NG2 immunoreactivity were observed in the lesion. Early changes, consisting of an increase in NG2 immunoreactivity and the number of processes, were apparent 24 h after lesioning and persisted through 3 months. These cells were distinct from reactive astrocytes or activated microglia/macrophages. A second type of reactive NG2+ cells appeared 2 weeks after injection, following an influx of macrophages. They had large, round cell bodies with short processes and expressed the microglia/macrophage antigens OX42 and ED1. Single cells coexpressing NG2 and macrophage/microglial antigens could be isolated from the lesion. The number of NG2+/OX42+ cells gradually declined and disappeared by 3 months after injection. They did not express glial fibrillary acidic protein or the alpha receptor for platelet-derived growth factor, indicating that they are distinct from astrocytes or oligodendrocyte progenitor cells. Cells that coexpressed NG2 and OX42 were never observed in hippocampal slice cultures treated with kainic acid, suggesting that NG2+/OX42+ cells are not derived from endogenous resident brain cells. These findings demonstrate that NG2 expression is transiently upregulated on activated macrophages/microglia that appear during the chronic stage in an excitotoxic lesion in the adult CNS.
Collapse
Affiliation(s)
- J Bu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
82
|
Soltys Z, Ziaja M, Pawlínski R, Setkowicz Z, Janeczko K. Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods. J Neurosci Res 2001; 63:90-7. [PMID: 11169618 DOI: 10.1002/1097-4547(20010101)63:1<90::aid-jnr11>3.0.co;2-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study focuses on application of quantitative methods measuring differences between particular morphological types of microglial cells as well as between their proliferating and non-proliferating examples. On the basis of subjective classification, microglial cells of three morphological types (ramified, hypertrophied and bushy) were selected from the neocortex of injured rat brain. Thereafter, the morphological complexity of each cell was assessed by calculation its fractal dimension as well as its form factor, convexity, ramification factor and solidity. The fractal dimension seemed a good parameter for detecting small changes in the space-filing capacity of cells, for example, it shows differences between ramified cells from control and injured brains. This measure seemed insensitive to some aspects of cell morphology. To obtain precise quantification of observed changes other morphological parameters had to be applied. Proliferating and non-proliferating microglial cells displayed significant differences in their solidity and ramification factors, but not in fractal dimension and convexity. The results indicated that proliferating microglia were more massive and less-ramified but they did not reduce their spatial complexity.
Collapse
Affiliation(s)
- Z Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | | | | | | | |
Collapse
|
83
|
So?tys Z, Ziaja M, Pawli?ski R, Setkowicz Z, Janeczko K. Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods. J Neurosci Res 2001. [DOI: 10.1002/1097-4547(20010101)63:1%3c90::aid-jnr11%3e3.0.co;2-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
84
|
Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 2000; 7:623-43. [PMID: 11114261 DOI: 10.1006/nbdi.2000.0299] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Cu/Zn superoxide dismutase (SOD1) is a ubiquitous small cytosolic metalloenzyme that catalyzes the conversion of superoxide anion to hydrogen peroxide (H(2)O(2)). Mutations in the SOD1 gene cause a familial form of amyotrophic lateral sclerosis (fALS). The mechanism by which mutant SOD1s causes ALS is not understood. Transgenic mice expressing multiple copies of fALS-mutant SOD1s develop an ALS-like motoneuron disease resembling ALS. Here we report that transgenic mice expressing a high concentration of wild-type human SOD1 (hSOD1(WT)) develop an array of neurodegenerative changes consisting of (1) swelling and vacuolization of mitochondria, predominantly in axons in the spinal cord, brain stem, and subiculum; (2) axonal degeneration in a number of long fiber tracts, predominantly the spinocerebellar tracts; and (3) at 2 years of age, a moderate loss of spinal motoneurons. Parallel to the development of neurodegenerative changes, hSOD1(WT) mice also develop mild motor abnormalities. Interestingly, mitochondrial vacuolization was associated with accumulation of hSOD1 immunoreactivity, suggesting that the development of mitochondrial pathology is associated with disturbed SOD1 turnover. In this study we also crossed hSOD1(WT) mice with a line of fALS-mutant SOD1 mice (hSOD1(G93A)) to generate "double" transgenic mice that express high levels of both wild-type and G93A mutant hSOD1. The "double" transgenic mice show accelerated motoneuron death, earlier onset of paresis, and earlier death as compared with hSOD1(G93A) littermates. Thus in vivo expression of high levels of wild-type hSOD1 is not only harmful to neurons in itself, but also increases or facilitates the deleterious action of a fALS-mutant SOD1. Our data indicate that it is important for motoneurons to control the SOD1 concentration throughout their processes, and that events that lead to improper synthesis, transport, or breakdown of SOD1 causing its accumulation are potentially dangerous.
Collapse
Affiliation(s)
- D Jaarsma
- Department of Anatomy, Erasmus University, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Shin DH, Lee HY, Lee HW, Lee KH, Lim HS, Jeon GS, Cho SS, Hwang DH. Activation of microglia in kainic acid induced rat retinal apoptosis. Neurosci Lett 2000; 292:159-62. [PMID: 11018301 DOI: 10.1016/s0304-3940(00)01445-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We applied a variety of methods to follow the course of kainic acid (KA) induced retinal apoptosis, especially with regard to the spatial and temporal aspects. At 24 h after KA injection, a massive cell increase, which showed terminal transferase-mediated dUTP nick-end-labeling technique positive signals, was observed in all of the retinal layers, with the exception of the outer nuclear and photoreceptor layers. Electron microscopy further confirmed that these cells might be apoptotic body ingesting phagocytes, whose function seemed to correlate with bcl-2 mRNA up-regulation. When histochemical studies were performed to determine the cellular identity of the phagocytes, the microglia were thought to be the one and only type of phagocytes involved in the KA-induced retinal apoptosis. In conclusion, we demonstrated that after KA injection, microglia were the only phagocytes to participate in clearing apoptotic debris from the inner retinal layers, and that their function might correlate with the change in expression of the bcl-2 gene family.
Collapse
Affiliation(s)
- D H Shin
- Department of Anatomy, Dankook University College of Medicine, Chonan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Lerner-Natoli M, Montpied P, Rousset MC, Bockaert J, Rondouin G. Sequential expression of surface antigens and transcription factor NFkappaB by hippocampal cells in excitotoxicity and experimental epilepsy. Epilepsy Res 2000; 41:141-54. [PMID: 10940615 DOI: 10.1016/s0920-1211(00)00132-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurodegeneration and gliosis have been extensively described after long-lasting seizures; evidence for cytokine involvement in neuron-glia interactions does exist. We have therefore studied the hippocampal expression of molecules responsible for immune and inflammatory reactions, at different time-points following either experimental status epilepticus (SE) or direct excitotoxic damage. Experiments consisting of immunohistochemical labeling of glial markers, major histocompatibility complex (MHC) and nuclear factor kappaB (NFkappaB), were performed. NFkappaB nuclear translocation was controlled and measured using the electrophoretic mobility shift assay. One day after SE, neurodegeneration was obvious in CA3 pyramidal layers; NFkappaB staining in neurons and its translocation to the nucleus enhanced. From day 4 to at least day 8 post-SE, MHC-positive microglia, NFkappaB over-expression in thickened astrocytes, and increased levels of its activated form could be observed. The excitotoxic model caused more severe lesions, but NFkappaB and MHC expression were similar in both models. These results suggest that during long-lasting seizures: (i) neuronal firing activates NFkappaB expression and translocation; (ii) microglia expresses MHC; (iii) astrocytes, probably stimulated by microglial cytokines, over-express NFkappaB, the activation of which induces a cascade of reactions, particularly the transcription of cytokines and or neuroprotective molecules. Further clarification of the toxic or protective consequences of delayed inflammatory responses may be interesting in therapy of epilepsy.
Collapse
Affiliation(s)
- M Lerner-Natoli
- CNRS UPR 9023, Laboratoire de Médecine Expérimentale, Institute de Biologie, Montpellier, France.
| | | | | | | | | |
Collapse
|
87
|
Cuadros MA, Martin D, Pérez-Mendoza D, Navascués J, Clarke PG. Response of macrophage/microglial cells to experimental neuronal degeneration in the avian isthmo-optic nucleus during development. J Comp Neurol 2000; 423:659-69. [PMID: 10880995 DOI: 10.1002/1096-9861(20000807)423:4<659::aid-cne10>3.0.co;2-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Blockade of the retrograde axonal transport of isthmo-optic nucleus (ION) neurons in the avian embryo results in their massive degeneration. We used this system to investigate the response of macrophage/microglial cells to neuronal degeneration in the embryonic brain. Colchicine was injected into the right eye of quail or chick embryos at a time when the survival of ION neurons depends on retrograde trophic support from the retina, and the chronology of the subsequent macrophage/microglial response in the ION was analyzed. This response was restricted to the ION contralateral to the injected eye; no modifications of the normal state were observed in the surrounding parenchyma or in the opposite ION, used as control. The response was first detected 18 hours after the colchicine injection (18 hours pi), when an increase of the macrophage/microglial cell number was evident. The number of these cells in the affected ION increased, peaking at 40-48 hours pi. At later survival times, macrophage/microglial cells were progressively less abundant in the affected ION, which gradually diminished in size. At 120 hours pi the only remnant of the ION was a small cluster of macrophage/microglial cells, surrounded by a clear area with scarce nonmicroglial cells, in the region formerly occupied by the ION. This study reveals that a strong macrophage/microglial response occurs in the embryonic brain in response to neuronal degeneration but that these cells do not trigger the neuronal death, as they only appear after pyknotic fragments are already observable.
Collapse
Affiliation(s)
- M A Cuadros
- Departamento de Biologia Celular, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
88
|
Herrera AJ, Castaño A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 2000; 7:429-47. [PMID: 10964613 DOI: 10.1006/nbdi.2000.0289] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have injected lipopolysaccharide (LPS) into the nigrostriatal pathway of rats in order to address the role of inflammation in Parkinson's disease (PD). LPS induced a strong macrophage/microglial reaction in Substantia nigra (SN), with a characteristic clustering of macrophage cells around blood-vessels. The SN was far more sensitive than the striatum to the inflammatory stimulus. Moreover, only the dopaminergic neurons of the SN were affected, with no detectable damage to either the GABAergic or the serotoninergic neurons. The damage to the DA neurons in the SN was permanent, as observed 1 year postinjection. Unlike the direct death of dopaminergic neurons caused by agents as MPP(+) or 6-OHDA, LPS seems to cause indirect death due to inflammatory reaction. Therefore, we suggest that the injection of a single dose of LPS within the SN is an interesting model for studying the selective effects of inflammatory reaction on dopaminergic system and also potentially useful for studying PD.
Collapse
Affiliation(s)
- A J Herrera
- Departamento de Bioquímica, Bromatología, Toxicología, y Medicina Legal, Universidad de Sevilla, Calle Prof., García González s/n, Sevilla, 41012, Spain
| | | | | | | | | |
Collapse
|
89
|
De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000; 12:2623-33. [PMID: 10947836 DOI: 10.1046/j.1460-9568.2000.00140.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Limbic status epilepticus was induced in rats by unilateral 60-min electrical stimulation of the CA3 region of the ventral hippocampus. As assessed by RT-PCR followed by Southern blot analysis, transcripts of interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist and inducible nitric oxide synthase were significantly increased 2 h after status epilepticus in the stimulated hippocampus. Induction was maximal at 6 h for interleukin-1beta (445%), interleukin-6 (405%) and tumour necrosis factor-alpha (264%) and at 24 h for interleukin-1 receptor antagonist (494%) and inducible nitric oxide synthase (432%). In rats with spontaneous seizures (60 days after status epilepticus), interleukin-1beta mRNA was still higher than controls (241%). Immunocytochemical staining of interleukin-1beta, interleukin-6 and tumour necrosis factor-alpha was enhanced in glia with a time-course similar to that of the respective transcripts. Sixty days after status epilepticus, interleukin-1beta immunoreactivity was increased exclusively in neurons in one third of the animals. Multiple intracerebroventricular injections of interleukin-1 receptor antagonist (0.5 microg/3 microL) significantly decreased the severity of behavioural convulsions during electrical stimulation and selectively reduced tumour necrosis factor-alpha content in the hippocampus measured 18 h after status epilepticus. Thus, the induction of spontaneously recurring seizures in rats involves the activation of inflammatory cytokines and related pro- and anti-inflammatory genes in the hippocampus. These changes may play an active role in hyperexcitability of the epileptic tissue.
Collapse
Affiliation(s)
- M G De Simoni
- Laboratory of Inflammation and Nervous System Diseases and Laboratory of Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Grootendorst J, Mulder M, Haasdijk E, de Kloet ER, Jaarsma D. Presence of apolipoprotein E immunoreactivity in degenerating neurones of mice is dependent on the severity of kainic acid-induced lesion. Brain Res 2000; 868:165-75. [PMID: 10854569 DOI: 10.1016/s0006-8993(00)02250-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Apolipoprotein E (apoE) is a major apolipoprotein in the central nervous system (CNS) that may play a role in various CNS disorders. ApoE is primarily localised in astrocytes, but neuronal apoE mRNA expression has been demonstrated in normal and diseased human brain, as well as in ischaemic rat brain. To obtain further insight into the role of apoE in neuronal degeneration in the CNS and conditions of neuronal apoE localisation, we have investigated in mice the distribution of apoE following neuronal injury induced by kainic acid (n=35, 25 or 35 mg kainic acid/kg BW). Consecutive series of brain sections were immunostained for apoE and markers for astroglia (GFAP) and microglia/macrophage cells (CR3). Degenerating neurones were identified with a silver-degeneration staining technique. The intensity and cellular distribution of apoE-immunoreactivity (apoE-ir) was dependent on the severity of neuronal injury. Mice that developed mild neuronal degeneration, restricted to a subset of neurones in the hippocampus, showed increased apoE-ir in astrocytes concomitant with increased GFAP-ir and mild microgliosis. In these mice, no neuronal apoE-ir was detected. In contrast, mice developing severe neuronal injury in the hippocampus - frequently also showing degeneration in other brain regions including cortex, thalamus, striatum and amygdala - showed intense apoE-ir in degenerating neurones. Surrounding the lesion, apoE-ir was increased in neuropil recurrently whereas GFAP-ir astrocytes disappeared. Thus, in mice apoE accumulates in degenerating neurones in conditions of severe neuronal injury putatively in association with disruption of the glial network.
Collapse
Affiliation(s)
- J Grootendorst
- Leiden/Amsterdam Center for Drug Research, Division of Medical Pharmacology, Leiden University, P.O. Box 9503, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
91
|
Eriksson C, Tehranian R, Iverfeldt K, Winblad B, Schultzberg M. Increased expression of mRNA encoding interleukin-1beta and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. J Neurosci Res 2000; 60:266-79. [PMID: 10740232 DOI: 10.1002/(sici)1097-4547(20000415)60:2<266::aid-jnr16>3.0.co;2-p] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kainic acid, an analogue of glutamate, injected systemically to rats evokes seizures that are accompanied by nerve cell damage primarily in the limbic system. In the present study, we have analyzed the temporal profile of the expression of the cytokines interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra), and the related IL-1beta-converting enzyme (ICE/caspase-1), in different regions of the rat brain in response to peripheral kainic acid administration (10 mg/kg, i.p.). In situ hybridization histochemistry experiments revealed that IL-1beta mRNA-expressing cells, morphologically identified as microglial cells, were mainly localized to regions showing pronounced neuronal degeneration; hippocampus, thalamus, amygdala, and certain cortical regions. The strongest expression of IL-1beta mRNA was observed after 12 hr in these regions. A weak induction of the IL-1beta mRNA expression was observed already at 2 hr. Similar results were obtained by RT-PCR analysis, showing a significantly increased expression of IL-1beta mRNA in the hippocampus and amygdala after 12 hr. In addition, RT-PCR analysis revealed that IL-1ra mRNA, and specifically mRNA encoding the secreted isoform of IL-1ra (sIL-1ra), was strongly induced in the hippocampus and amygdala at 12 and 24 hr post-injection. RT-PCR analysis of mRNA encoding caspase-1 showed a significantly increased expression in the amygdala after 12 hr. In conclusion, in response to systemic kainic acid injection IL-1beta mRNA is rapidly induced and followed by induction of IL-1ra mRNA and caspase-1 mRNA, supporting a role of the IL-1 system in the inflammatory response during excitotoxic damage.
Collapse
Affiliation(s)
- C Eriksson
- Division of Geriatric Medicine, NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
92
|
Kim H, Bing G, Jhoo W, Ko KH, Kim WK, Suh JH, Kim SJ, Kato K, Hong JS. Changes of hippocampal Cu/Zn-superoxide dismutase after kainate treatment in the rat. Brain Res 2000; 853:215-26. [PMID: 10640619 DOI: 10.1016/s0006-8993(99)02254-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to evaluate the putative role of Cu,Zn-superoxide dismutase (SOD-1) in the antioxidant defense mechanism during the neurodegenerative process, we examined the level of mRNA, the specific activity and immunocytochemical distribution for SOD-1 in the rat hippocampus after systemic injection of kainic acid (KA). Hippocampal SOD-1 mRNA levels were significantly increased by the seizure intensity 3 and 7 days after KA. These enhanced mRNA levels for SOD-1 were consistent with the increased specific activities for SOD-1, suggesting that the superoxide radical generated in neurotoxic lesion, induced SOD-1 mRNA. The CA1 and CA3 neurons lost their SOD-1-like immunoreactivity, whereas SOD-1-positive glia-like cells mainly proliferated throughout the CA1 sector and had an intense immunoreactivity at 3 and 7 days after KA. This immunocytochemical distribution for SOD-1-positive non-neuronal elements was similar to that for glial fibrillary acidic protein (GFAP)-positive cells. Each immunoreactivity for SOD-1-positive non-neuronal cell or GFAP in the layers of CA1 and CA3 disappeared 3 and 7 days after a maximal stage 5 seizure. On the other hand, activated microglial cells as selectively marked with the lectin occurred in the areas affected by KA-induced lesion. Double-labeling immunocytochemical analysis demonstrated the co-localization of SOD-1-positive glia-like cells and reactive astrocytes as labeled by GFAP or S-100 protein immunoreactivity. This finding suggested that the mobilization of astroglial cells for the synthesis of SOD-1 protein is a response to the KA insult designed to decrease the neurotoxicity induced by oxygen-derived free radicals. Therefore, these alterations might reflect the regulatory role of SOD-1 against oxygen-derived free radical-induced neuronal degeneration after systemic KA administration.
Collapse
Affiliation(s)
- H Kim
- Section of Pharmacology, Department of Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Asković S, McAtee FJ, Favara C, Portis JL. Brain infection by neuroinvasive but avirulent murine oncornaviruses. J Virol 2000; 74:465-73. [PMID: 10590136 PMCID: PMC111558 DOI: 10.1128/jvi.74.1.465-473.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive noninflammatory spongiform encephalomyelopathy after neonatal inoculation. The virus was constructed by the introduction of pol-env sequences from the wild mouse virus CasBrE into the genome of a neuroinvasive but nonneurovirulent strain of Friend murine leukemia virus (FMuLV), FB29. Although the brain infection by FrCas(E) as well as that by other neurovirulent murine retroviruses has been described in detail, little attention has been paid to the neuroinvasive but nonneurovirulent viruses. The purpose of the present study was to compare brain infection by FrCas(E) with that by FB29 and another nonneurovirulent virus, F43, which contains pol-env sequences from FMuLV 57. Both FB29 and F43 infected the same spectrum of cell types in the brain as that infected by FrCas(E), including endothelial cells, microglia, and populations of neurons which divide postnatally. Viral burdens achieved by the two nonneurovirulent viruses in the brain were actually higher than that of FrCas(E). The widespread infection of microglia by the two nonneurovirulent viruses is notable because it is infection of these cells by FrCas(E) which is thought to be a critical determinant of its neuropathogenicity. These results indicate that although the sequence of the envelope gene determines neurovirulence, this effect appears to operate through a mechanism which does not influence either viral tropism or viral burden in the brain. Although all three viruses exhibited similar tropism for granule neurons in the cerebellar cortex, there was a striking difference in the distribution of envelope proteins in those cells in vivo. The FrCas(E) envelope protein accumulated in terminal axons, whereas those of FB29 and F43 remained predominantly in the cell bodies. These observations suggest that differences in the intracellular sorting of these proteins may exist and that these differences appear to correlate with neurovirulence.
Collapse
Affiliation(s)
- S Asković
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
94
|
Bendotti C, Guglielmetti F, Tortarolo M, Samanin R, Hirst WD. Differential expression of S100beta and glial fibrillary acidic protein in the hippocampus after kainic acid-induced lesions and mossy fiber sprouting in adult rat. Exp Neurol 2000; 161:317-29. [PMID: 10683297 DOI: 10.1006/exnr.1999.7262] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of S100beta and glial fibrillary acidic protein (GFAP) was analyzed following bilateral injection of kainic acid (KA), a glutamate derivative, into the CA3 region of the adult rat hippocampus. This treatment produces a progressive degeneration of the pyramidal neurons of the hippocampus while sparing the granule cells of the dentate gyrus which undergo sprouting of their axons in the supragranular layer. Messenger RNA and protein levels were measured, by Northern blot and ELISA, in the hippocampus of lesioned and sham-operated rats 1, 7, and 30 days after KA injection. A significant increase of GFAP and its mRNA was demonstrated at each time point, whereas S100beta mRNA levels were significantly enhanced only 30 days after the KA injection and the levels of S100beta protein remained unchanged at all time points. However, when analyzed by immunohistochemistry the S100beta showed clear changes in its expression and distribution depending on the region considered. One month after KA injection, S100beta immunoreactivity was considerably reduced in the stratum radiatum of CA3 region, but there was increased S100beta immunoreactivity in the stratum moleculare. In particular, a notable band of S100beta positive, hypertrophic astrocytes appeared in the supragranular layer of the dentate gyrus where the sprouting of mossy fiber collaterals was detected by Timm's staining. These data show for the first time that an increase in S100beta expression in subpopulations of reactive astrocytes may be involved in the structural reorganization of the hippocampus following KA-induced neurodegeneration.
Collapse
Affiliation(s)
- C Bendotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri", Via Eritrea 62, Milano, 20157, Italy.
| | | | | | | | | |
Collapse
|
95
|
Rimbau V, Camins A, Romay C, González R, Pallàs M. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci Lett 1999; 276:75-8. [PMID: 10624795 DOI: 10.1016/s0304-3940(99)00792-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The neuroprotective role of C-phycocyanin was examined in kainate-injured brains of rats. The effect of three different treatments with C-phycocyanin was studied. The incidence of neurobehavioral changes was significantly lower in animals receiving C-phycocyanin. These animals also gained significantly more weight than the animals only receiving kainic acid, whereas their weight gain did not differed significantly from controls. Equivalent results were found when the neuronal damage in the hippocampus was evaluated through changes in peripheral benzodiazepine receptors (microglial marker) and heat shock protein 27 kD expression (astroglial marker). Our results are consistent with the oxygen radical scavenging properties of C-phycocyanin described elsewhere. Our findings and the virtual lack of toxicity of C-phycocyanin suggest this drug could be used to treat oxidative stress-induced neuronal injury in neurodegenerative diseases, such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- V Rimbau
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Spain.
| | | | | | | | | |
Collapse
|
96
|
Abstract
Neuronal damage in the CNS after excitotoxic injury is correlated with blood-brain barrier (BBB) breakdown. We have used a glutamate analog injection model and genetically altered mice to investigate the relationship between these two processes in the hippocampus. Our results show that BBB dysfunction occurs too late to initiate neurodegeneration. In addition, plasma infused directly into the hippocampus is not toxic and does not affect excitotoxin-induced neuronal death. To test plasma protein recruitment in neuronal degeneration, we used plasminogen-deficient (plg(-/-)) mice, which are resistant to excitotoxin-induced degeneration. Plasminogen is produced in the hippocampus and is also present at high levels in plasma, allowing us to determine the contribution of each source to cell death. Intrahippocampal delivery of plasminogen to plg(-/-) mice restored degeneration to wild-type levels, but intravenous delivery of plasminogen did not. Finally, although the neurons in plg(-/-) mice do not die after excitotoxin injection, BBB breakdown occurs to a similar extent as in wild-type mice, indicating that neuronal death is not necessary for BBB breakdown. These results indicate that excitotoxin-induced neuronal death and BBB breakdown are separable events in the hippocampus.
Collapse
|
97
|
Rogove AD, Siao C, Keyt B, Strickland S, Tsirka SE. Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell Sci 1999; 112 ( Pt 22):4007-16. [PMID: 10547361 DOI: 10.1242/jcs.112.22.4007] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue plasminogen activator mediates excitotoxin-induced neurodegeneration and microglial activation in the mouse hippocampus. Here we show that tissue plasminogen activator (tPA) acts in a protease-independent manner to modulate the activation of microglia, the cells of the central nervous system with macrophage properties. Cultured microglia from tPA-deficient mice can phagocytose as efficiently as wild-type microglia. However, tPA-deficient microglia in mixed cortical cultures exhibit attenuated activation in response to lipopolysaccharide, as judged by morphological changes, increased expression of the activation marker F4/80 and the release of the pro-inflammatory cytokine tumor necrosis factor-(α). When tPA is added to tPA deficient cortical cultures prior to endotoxin stimulation, microglial activation is restored to levels comparable to that observed in wild-type cells. Proteolytically-inactive tPA can also restore activation of tPA-deficient microglia in culture and in vivo. However, this inactive enzyme does not restore susceptibility of tPA-deficient hippocampal neurons to excitotoxin-mediated cell death. These results dissociate two different functions of tPA: inactive enzyme can mediate microglial activation, whereas proteolytically-competent protein also promotes neuronal degeneration. Thus tPA is identified as a new cytokine in the central nervous system.
Collapse
Affiliation(s)
- A D Rogove
- Program in Pharmacology, MSTP Program, Department of Psychiatry, University Medical Center at Stony Brook, Stony Brook, NY 11794-8101, USA
| | | | | | | | | |
Collapse
|
98
|
Nikkilä HV, Müller K, Ahokas A, Miettinen K, Rimón R, Andersson LC. Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry 1999; 156:1725-9. [PMID: 10553735 DOI: 10.1176/ajp.156.11.1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE There have been numerous reports of organic or structural abnormalities in the central nervous system (CNS) of patients with schizophrenia. Given that pathological conditions in the CNS are frequently reflected in the cell profiles of CSF, the authors compared the cytology of CSF from schizophrenic patients with that from a reference population in order to find out trails of elementary pathogenetic events in this serious psychiatric disease. METHOD CSF samples from 35 patients with acute schizophrenia and 46 comparison subjects were prepared by Millipore filtration. The total and differential counts of CSF mononuclear cells were performed by light microscopy. RESULTS At the beginning of treatment, the proportion of mononuclear phagocytes/macrophages in the patients' CSF was significantly higher than that in the comparison subjects. During treatment with conventional neuroleptic medication, the cytology returned to normal in several patients. CONCLUSIONS The high proportion of macrophages in schizophrenia without a significantly higher total cell count may reflect neurodevelopmental disorder, a neurodegenerative process, or subtle CNS immunoactivation with mobilization of microglia.
Collapse
Affiliation(s)
- H V Nikkilä
- Department of Psychiatry, Helsinki University, and Hesperia Hospital, Finland.
| | | | | | | | | | | |
Collapse
|
99
|
Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 1999. [PMID: 10516305 DOI: 10.1523/jneurosci.19-20-08856.1999] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is activated in brain cells after various insults, including cerebral ischemia and epileptic seizures. Although cell culture studies have suggested that the activation of NF-kappaB can prevent neuronal apoptosis, the role of this transcription factor in neuronal injury in vivo is unclear, and the specific kappaB subunits involved are unknown. We now report that mice lacking the p50 subunit of NF-kappaB exhibit increased damage to hippocampal pyramidal neurons after administration of the excitotoxin kainate. Gel-shift analyses showed that p50 is required for the majority of kappaB DNA-binding activity in hippocampus. Intraventricular administration of kappaB decoy DNA before kainate administration in wild-type mice resulted in an enhancement of damage to hippocampal pyramidal neurons, indicating that reduced NF-kappaB activity was sufficient to account for the enhanced excitotoxic neuronal injury in p50(-/-) mice. Cultured hippocampal neurons from p50(-/-) mice exhibited enhanced elevations of intracellular calcium levels and increased levels of oxidative stress after exposure to glutamate and were more vulnerable to excitotoxicity than were neurons from p50(+/+) and p50(+/-) mice. Collectively, our data demonstrate an important role for the p50 subunit of NF-kappaB in protecting neurons against excitotoxic cell death.
Collapse
|
100
|
Larsson LC, Czech KA, Widner H, Korsgren O. Discordant neural tissue xenografts survive longer in immunoglobulin deficient mice. Transplantation 1999; 68:1153-60. [PMID: 10551645 DOI: 10.1097/00007890-199910270-00016] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The immune response against discordant xenografts in the brain is incompletely understood and remains a major obstacle for future clinical applications of xenogeneic neural tissue transplants in neurodegenerative disorders. To determine the role of antibodies in the rejection process, we compared graft survival and immune reactions between immunoglobulin deficient (IgKO) and normal mice. METHODS A cell suspension of embryonic porcine ventral mesencephalon was injected into the striatum of adult normal and IgKO mice. Graft sizes and number of infiltrating CD4- and CD8-positive lymphocytes were determined by stereological methods at 4 days and 2, 4, and 6 weeks after the transplants. Microglial accumulation was determined using the optical densitometrical method. Intraparenchymal deposition of IgG was investigated at 4 days and 2 weeks. RESULTS The majority of IgKO mice had surviving grafts for up to 4 weeks, whereas survival was minimal in control mice beyond 4 days. Graft sizes differed significantly between IgKO and control mice at 2 weeks (P<0.01, Kruskal Wallis ANOVA, followed by Mann Whitney test). The majority of infiltrating lymphocytes were CD4-positive in control mice but CD8-positive in IgKO mice. Microglial accumulation was strong around surviving grafts in IgKO mice at 4 weeks. Prominent staining of IgG, diffuse in the transplanted hemisphere and specific on grafted neurons, was found in control mice. CONCLUSIONS Our results suggest that immunoglobulins play an initiating role in rejection of discordant neural xenografts. After a prolonged graft survival of approximately 4 weeks, a cellular response with a large proportion CD8-positive cells leads to rejection in IgKO mice.
Collapse
Affiliation(s)
- L C Larsson
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | |
Collapse
|