51
|
Rajmohan N, Niyazi BAM, Masoud MHZ. Trace metals pollution, distribution and associated health risks in the arid coastal aquifer, Hada Al-Sham and its vicinities, Saudi Arabia. CHEMOSPHERE 2022; 297:134246. [PMID: 35259356 DOI: 10.1016/j.chemosphere.2022.134246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Trace metals pollution, distribution and associated health risk were evaluated in the arid coastal aquifer, Hada Al-Sham, Western Saudi Arabia using an integrated approach namely heavy metal pollution index (HPI), contamination index (Cd), health risk assessment (HRA) model and multivariate statistical analysis. Groundwater samples (n = 47) were analysed for EC, pH, TDS, Ag, Al, B, Ba, Co, Cd, Cr, Cu, Fe, Mo, Ni, Pb, V and Zn. Groundwater is mostly alkaline (72%) with high salinity (TDS >1500 mg/l, 77%). Average trace metals concentrations are in the dominance order of B > Cu > Al > Mo > Pb > V > Ba > Zn > Ni > Cr > Fe > Ag. Groundwater (100% wells) is unsafe for drinking based on V, Mo, Al concentrations followed by the Pb (96%), B (91%), Ni (72%), Cr (23%), Cu (17%) and Ag (6%), which exceeded the WHO and USEPA prescribed limits. Results of HPI and Cd also implied the high contamination and enhanced level of metals in the groundwater. Chronic daily intake (CDIoral), hazard quotient (HQ) and total hazard quotient (THQ) were employed for health risk assessment. HQ values reveal that 100% (Al, Mo), 85% (Cu), 21% (B), 13% (Cr) and 6% (Pb) of samples exceeded the recommended limit (>1), which can cause an adverse health risk to adult and children. Pearson correlation, principal components analyses, and Hierarchical cluster analysis justified that aluminium silicates weathering and Fe oxides/hydroxides dissolution (Pb, Cr, Ni, Fe, Ag, Al, Mo and V), evaporation, anthropogenic input (Cu and B) and dissolution of carbonate and sulphate minerals (Ba and Zn) controlled the water chemistry in this aquifer. This study recommends a proper treatment of the groundwater to be safe for various uses. The comprehensive approach, employed here, is applicable to any arid aquifers worldwide.
Collapse
Affiliation(s)
- Natarajan Rajmohan
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia.
| | - Burhan A M Niyazi
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia
| | - Milad H Z Masoud
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia; Hydrology Department, Desert Research Centre, 1 Mathaf Al-Mataria-Cairo, P. O. Box 11753, Cairo, Egypt
| |
Collapse
|
52
|
Soler-Blasco R, Murcia M, Lozano M, Sarzo B, Esplugues A, Riutort-Mayol G, Vioque J, Lertxundi N, Santa Marina L, Lertxundi A, Irizar A, Braeuer S, Ballester F, Llop S. Prenatal arsenic exposure, arsenic methylation efficiency, and neuropsychological development among preschool children in a Spanish birth cohort. ENVIRONMENTAL RESEARCH 2022; 207:112208. [PMID: 34662579 DOI: 10.1016/j.envres.2021.112208] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prenatal arsenic (As) exposure could negatively affect child neuropsychological development, but the current evidence is inconclusive. OBJECTIVES To explore the relationship between prenatal urinary total As (TAs) concentrations, the As species and the methylation efficiency, and child neuropsychological development in a Spanish birth cohort. We also studied the effect modification produced by sex and several nutrients and elements. MATERIALS AND METHODS Study subjects were 807 mother-child pairs participating in the INMA (Childhood and Environment) Project. Urinary TAs and its metabolites, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), inorganic As (iAs) and arsenobetaine were measured in the first trimester of pregnancy. Methylation efficiency was determined through the percentages of the metabolites and using principal component analysis. Children's neuropsychological development was assessed at the age of 4-5 years using the McCarthy Scales of Children's Abilities (MSCA). Multivariable linear regression models were built to assess the association between TAs, the As species and the maternal methylation efficiency, and the neuropsychological scores. We explored effect modification by sex, iron status, maternal nutrients status (serum manganese and selenium, and urinary zinc), and maternal vitamins intake (folate, and vitamins B12 and B6). RESULTS The geometric mean (95%CI) of ∑As (sum of DMA, MMA and iAs) was 7.78 (7.41, 8.17) μg/g creatinine. MMA concentrations were inversely associated with the scores for the general, verbal, quantitative, memory, executive function and working memory scales (i.e. β [CI95%] = -1.37 [-2.33, -0.41] for the general scale). An inverse association between %MMA and the memory scores was found. Children whose mothers had lower manganese, zinc and ferritin concentrations obtained lower scores on several MSCA scales with decreasing As methylation efficiency. DISCUSSION An inverse association was observed between MMA concentrations and children's neuropsychological development. Maternal levels of manganese, zinc and ferritin affected the association between As methylation efficiency and MSCA scores.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Blanca Sarzo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Jesús Vioque
- Alicante Institute for Health and Biomedical Research, ISABIAL-UMH, Alicante, Spain
| | - Nerea Lertxundi
- Biodonostia Health Research Institute, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country, UPV/ EHU, San Sebastian, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain.
| | - Amaia Irizar
- Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Simone Braeuer
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
53
|
Ulfa M, Masykur A, Nofitasari AF, Sholeha NA, Suprapto S, Bahruji H, Prasetyoko D. Controlling the Size and Porosity of Sodalite Nanoparticles from Indonesian Kaolin for Pb2+ Removal. MATERIALS 2022; 15:ma15082745. [PMID: 35454437 PMCID: PMC9024775 DOI: 10.3390/ma15082745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 01/16/2023]
Abstract
Mesoporous sodalite nanoparticles were directly synthesized from Indonesian kaolin with the addition of CTABr as a mesopore template. The studies highlighted the importance of aging time (3–12 h) and temperature (50–80 °C) on increasing surface area and mesoporosity of sodalite. Indonesian kaolin was used without pre-treatment and transformed to sodalite following the initial molar composition of 10 Na2O: 2 SiO2: Al2O3: 128 H2O. Characterization data revealed the formation of high surface area sodalite with mesoporosity at increasing aging temperatures and times. The presence of CTABr as templates produced sodalites nanoparticles with smaller aggregates than the non-template sodalite. The sodalite sample obtained at 80 °C of crystallization temperature for 9 h (S80H9) displayed the highest mesopore volume (0.07612 cm3/g) and the highest adsorption capacity of Pb2+ (212.24 mg/g). Pb2+ was suggested to adsorb via ion exchange with the Na+ counter cation and physical adsorption.
Collapse
Affiliation(s)
- Maria Ulfa
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
- Correspondence: (M.U.); or (D.P.)
| | - Abu Masykur
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
| | - Amanah Firdausa Nofitasari
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Novia Amalia Sholeha
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Suprapto Suprapto
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Hasliza Bahruji
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111, Indonesia; (A.F.N.); (N.A.S.); (S.S.)
| | - Didik Prasetyoko
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
- Correspondence: (M.U.); or (D.P.)
| |
Collapse
|
54
|
Hustad KS, Ottestad I, Olsen T, Sæther T, Ulven SM, Holven KB. Salmon fish protein supplement increases serum vitamin B12 and selenium concentrations: secondary analysis of a randomised controlled trial. Eur J Nutr 2022; 61:3085-3093. [PMID: 35362766 PMCID: PMC9363293 DOI: 10.1007/s00394-022-02857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/02/2022] [Indexed: 01/23/2023]
Abstract
Purpose The main aim of the present study was to examine the effect of a fish protein supplement made from by-products from production of Atlantic salmon, on blood concentration of micronutrients. Methods We conducted an 8-week double-blind parallel-group randomised controlled trial. In total, 88 adults were randomised to a salmon fish protein supplement or placebo, and 74 participants were included in the analysis of vitamin D, omega-3, vitamin B12, selenium, folate, zinc, homocysteine and mercury. Results During the intervention period, geometric mean (GSD) of serum vitamin B12 concentrations increased from 304 (1.40) to 359 (1.42) pmol/L in the fish protein group (P vs. controls = 0.004) and mean (SD) serum selenium increased from 1.18 (0.22) to 1.30 (0.20) μmol/L (P vs. controls = 0.002). The prevalence of low vitamin B12 status (B12 < 148–221 > pmol/L) decreased from 15.4 to 2.6% in the fish protein group, while increasing from 5.9 to 17.6% in the placebo group (P = 0.045). There was no difference between the groups in serum levels of the other micronutrients measured. Conclusion Including a salmon fish protein supplement in the daily diet for 8 weeks, increases serum vitamin B12 and selenium concentrations. From a sustainability perspective, by-products with high contents of micronutrients and low contents of contaminants, could be a valuable dietary supplement or food ingredient in populations with suboptimal intake. Trail Registration The study was registered at ClinicalTrials.gov (ID: NCT03764423) on June 29th 2018.
Collapse
Affiliation(s)
- Kristin S Hustad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
55
|
Alsufiani HM, Alkhanbashi AS, Laswad NAB, Bakhadher KK, Alghamdi SA, Tayeb HO, Tarazi FI. Zinc deficiency and supplementation in autism spectrum disorder and Phelan-McDermid syndrome. J Neurosci Res 2022; 100:970-978. [PMID: 35114017 DOI: 10.1002/jnr.25019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023]
Abstract
Approximately 1 in 36 children are diagnosed with autism spectrum disorder (ASD). The disorder is four times more common in males than in females. Zinc deficiency and mutations in SHANK2 and SHANK3 (members of a family of excitatory postsynaptic scaffolding proteins) are all risk factors that may contribute to the pathophysiology of the disease. The presence of shankopathies (loss of one copy of the SHANK3 gene) can lead to the development of Phelan-McDermid syndrome (PMDS)-a rare genetic disorder characterized by developmental delay, intellectual disability, poor motor tone, and ASD-like symptoms. We reviewed the relationship between zinc, ASD, and PMDS as well as the effect of zinc supplementation in improving symptoms of ASD and PMDS based on 22 studies published within 6 years (2015-2020). Zinc deficiency (assessed by either dietary intake, blood, hair, or tooth matrix) was shown to be highly prevalent in ASD and PMDS patients as well as in preclinical models of ASD and PMDS. Zinc supplements improved the behavioral deficits in animal models of ASD and PMDS. Clinical trials are still needed to validate the beneficial therapeutic effects of zinc supplements in ASD and PMDS patients.
Collapse
Affiliation(s)
- Hadeil M Alsufiani
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa S Alkhanbashi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A Bin Laswad
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khulood K Bakhadher
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shareefa A Alghamdi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, The Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience, Harvard Medical School and McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
56
|
Zhang R, Yang Y, Min M, Li Y. Effect of dietary supplements on Se bioavailability: A comprehensive in vitro and in vivo study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113193. [PMID: 35030521 DOI: 10.1016/j.ecoenv.2022.113193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential micronutrient for animals and humans, and it is present in many different forms with different levels of bioaccessibility in food. Based on the maldistribution of Se and overall low level of Se dietary intake in China, an integrated study was conducted in this thesis to provide references for the regulation of Se nutrition. An in vitro simulation test was used to monitor the concentration effects, the impacts of dietary supplement combinations on the bioaccessibility of Se were examined in rice, and a model animal experiment (in vivo) was used to evaluate the practicability of the Se nutrition regulation scheme. The main results were as follows: the bioaccessibility of Se was effectively increased by 30 mg·d-1 VE (VE), 300 mg·d-1 VC + 300 μg·d-1 VB9 (VC+VB9) and 30 mg·d-1 VE + 300 mg·d-1 VC + 300 μg·d-1 VB9 (3IN1) (P < 0.05). The results of the healthy broiler tests showed that the 3 treatments increased the weight and Se content of the broilers, and 3IN1 had the most significant effect (P < 0.05). VC+VB9 was the best at promoting GPx activity, while 3IN1 was the best at promoting SOD activity and the inhibition of MDA content in broilers. The results suggested that VE, VC+VB9 and 3IN1 can benefit the bioavailability of Se and the antioxidant capacity of the body. The results can be used as a scientific reference for Se nutrition regulation.
Collapse
Affiliation(s)
- Ru Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Min
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
57
|
Liu T, Man Y, Li P, Zhang H, Cheng H. A Hydroponic Study on Effect of Zinc Against Mercury Uptake by Triticale: Kinetic Process and Accumulation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:359-365. [PMID: 34181031 DOI: 10.1007/s00128-021-03298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We investigated the ability of triticale uptake of Mercury (Hg), clarified whether triticale root uptake of Hg2+ via Zinc (Zn2+) transports, using hydroponic experiments. At 25℃, when Hg exposure in solution was lower than 20 μM, Hg concentration in the roots can be better described by a hyperbolic function, which shows a saturable characteristic. Under ice-cold (< 2℃) conditions, a nonsaturable (linear) component was found. Low exposure of Zn2+ (0-1 μM) inhibited plant Hg uptake when Hg exposure in the solution ranged from 1 to 10 μM, it showed an antagonistic effect of Zn on plant uptake of Hg. When Hg exposure was 20 μM, it revealed a synergistic effect of Zn on plant uptake of Hg, Hg in the root increased at the Zn (1 μM) exposure in the solution. Our results will deepen the understanding of Hg transfer in the soil-plant system.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | | |
Collapse
|
58
|
Wang C, Gu Z, Gu X, Tan X, Wang S, Zhang R, Li R, Sun M, Gui C, Li S, Ye Y, Ma J, Su L, Liang C. Nano-selenium attenuates mitochondrial-associated apoptosis via the PI3K/AKT pathway in nickel-induced hepatotoxicity in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2022; 37:101-119. [PMID: 34612572 DOI: 10.1002/tox.23381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/01/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate the protective effects of Nano-Se against nickel (Ni)-induced hepatotoxicity and the potential mechanism. Hence, we constructed in vivo and in vitro models of Ni-induced hepatotoxicity. Sprague-Dawley (SD) rats were exposed to nickel sulfate (NiSO4 , 5.0 mg/kg, i.p.) with or without Nano-Se (0.5, 1, and 2 mg/kg, oral gavage) co-administration for 14 days, and HepG2 cells were exposed to NiSO4 (1500 μM) with or without Nano-Se (20 μM) for 24 h. Nano-Se obviously prevented Ni-induced hepatotoxicity indicated by ameliorating pathological change and decreasing Ni accumulation in rat livers. Ni induced a significant increase in hepatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSH-Px), and malondialdehyde (MDA) level, decreased the glutathione (GSH) content while compared to those in the control group. Nano-Se administration improved the hepatic antioxidant capacity through increase hepatic GSH contents and GSH-Px activity, decrease the activities of SOD, CAT, and MDA level. Nano-Se improved the cell viability, decreased active oxygen (ROS) generation and ameliorated morphological changes of nuclear structures in Ni-treated HepG2 cells. In addition, Nano-Se inhibited the Ni-induced increases of cytochrome c, caspase-9, cleaved caspase-3, increased PI3K and AKT phosphorylation both in vivo and in vitro. Besides, the PI3K inhibitor Y294002 could inhibit the protective effects of Nano-Se on apoptosis. Thus, Nano-Se significantly activates PI3K/AKT signaling to ameliorate apoptosis in Ni-induced hepatotoxicity.
Collapse
Affiliation(s)
- Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhangyu Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinyue Tan
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ruifen Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Mingkun Sun
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Chunyan Gui
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Biological Monitoring and Restoration of Environmental Pollution in Gansu Province, Lanzhou, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
59
|
Sulato ET, Luko-Sulato K, Pedrobom JH, de Oliveira LMDS, Lima GDS, Govone JS, Barreto AS, de Araújo Júnior MAG, Menegário AA. Metals and metalloids in green turtle hepatic tissue (Chelonia mydas) from Santos Basin, Brazil. ENVIRONMENTAL RESEARCH 2022; 203:111835. [PMID: 34389350 DOI: 10.1016/j.envres.2021.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Metal and metalloid concentrations in the liver tissue of green turtles (Chelonia mydas) stranded on the Brazilian coast (n = 506) were studied using inductively coupled plasma mass spectrometry and cold vapor atomic fluorescence spectrometry. The influences of occurrence registers (date and location) and biological characteristics (sex, age, and developmental stage) were assessed, as well as the temporal influences of oil exploration and production activities. The mean concentrations of Cd, Cu, Mn, Zn, and Hg were the highest reported for the liver of C. mydas on the Brazilian coast. The mean element concentrations followed the order: Cu > Zn > Cd > Mn > As > Hg > Mo > Pb > V > Ni > Ba > Cr. Further, significant differences (p < 0.05) were observed for Hg between the sexes (males > females) and for As, Cu, Pb, Mo, and V between young individuals and older individuals (≥11 years), suggesting a relationship between the dietary shift inherent to green turtle development. These results were corroborated by the curved carapace length (CCL) data, wherein individuals residing in coastal areas (CCL > 50 cm) presented higher concentrations of Cu, Pb, Mo, Zn, Ba, and V than those in the oceanic stage (CCL < 30 cm). The opposite pattern was observed for As and Hg. The influences of spatial autocorrelation (Moran Index) at a global scale and oil production activities on the element concentrations were not observed. However, five hotspots of high metal concentrations were identified via a local spatial autocorrelation (local indicator of spatial association), existing predominantly in a region of heavy anthropic activity within the sampling area. Further, baseline element concentrations were established at the 95% confidence level. Overall, the developmental stage, which is related to feeding habits, had an expressive influence on element concentrations.
Collapse
Affiliation(s)
- Everton Tiago Sulato
- Centro de Estudos Ambientais - CEA, UNESP - Univ. Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900, Rio Claro, SP, Brazil
| | - Karen Luko-Sulato
- Centro de Estudos Ambientais - CEA, UNESP - Univ. Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900, Rio Claro, SP, Brazil
| | - Jorge Henrique Pedrobom
- Centro de Estudos Ambientais - CEA, UNESP - Univ. Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900, Rio Claro, SP, Brazil
| | | | - Guilherme Dos Santos Lima
- Centro de Estudos Ambientais - CEA, UNESP - Univ. Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900, Rio Claro, SP, Brazil
| | - José Silvio Govone
- Centro de Estudos Ambientais - CEA, UNESP - Univ. Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900, Rio Claro, SP, Brazil
| | - André S Barreto
- Laboratório de Informática da Biodiversidade e Geoprocessamento, UNIVALI - Univ. do Vale do Itajaí, Rua Uruguai, 458, CEP 88302-901, Itajaí, SC, Brazil
| | - Marcus Antônio Gonçalves de Araújo Júnior
- Centro de Pesquisas Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS - Petróleo Brasileiro S.A, Avenida Horácio Macedo, 950, CEP 21941-915, Rio de Janeiro, RJ, Brazil
| | - Amauri Antonio Menegário
- Centro de Estudos Ambientais - CEA, UNESP - Univ. Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900, Rio Claro, SP, Brazil.
| |
Collapse
|
60
|
Liu J, Martin LJ, Dinu I, Field CJ, Dewey D, Martin JW. Interaction of prenatal bisphenols, maternal nutrients, and toxic metal exposures on neurodevelopment of 2-year-olds in the APrON cohort. ENVIRONMENT INTERNATIONAL 2021; 155:106601. [PMID: 33962233 DOI: 10.1016/j.envint.2021.106601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epidemiological studies suggest that Bisphenol-A (BPA) is a developmental neurotoxicant, but the modifying effects of maternal nutrient status or neurotoxicant metal co-exposures have not been reported. Bisphenol-S (BPS) is being used as a BPA-alternative, but few epidemiological studies have evaluated its effects. OBJECTIVES To examine if prenatal maternal BPA or BPS exposure are associated with children's neurodevelopment at two years of age while adjusting for effect-measure modification by sex, maternal nutrients, and co-exposure to neurotoxic metals. METHODS Total BPA and BPS concentrations were analyzed in spot maternal urine from the second trimester; metals and maternal nutrient status were analyzed in blood. Child neurodevelopment was evaluated with the Bayley Scales of Infant Development-III (Bayley-III) at age 2 (394 maternal-child pairs) and linear regression was used to investigate associations. RESULTS Among nutrients and neurotoxic metals, selenium (Se) and cadmium (Cd) were the most significant predictors of Bayley-III scale scores. Higher maternal Cd was significantly correlated with poorer motor performance (p < 0.01), and higher levels of maternal Se were significantly associated with poorer performance on the cognitive, motor, and adaptive behavior scales (p < 0.05). While maternal Cd did not modify relationships between bisphenol exposures and Bayley-III scores, both maternal Se and child sex were significant effect-measure modifiers. Associations between BPA exposure and social emotional scores were negative for boys (p = 0.056) but positive for girls (p = 0.046). Higher exposure to bisphenols was associated with lower motor scores among children with lower levels of maternal Se. CONCLUSION Higher maternal Cd was associated with poorer motor development, but it was not an effect-measure modifier of bisphenols' effects on motor development. Maternal Se may be protective against adverse effects of bisphenols, and additional nutrient-bisphenol interaction studies examining sex-specific effects of BPA and BPS on child development are warranted.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Nutrition and Health, China Agricultural University, Beijing, China
| | | | - Irina Dinu
- School of Public Health, University of Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Canada
| | - Deborah Dewey
- Departments of Paediatrics and Community Health Sciences and the Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
61
|
Lemaire J, Bustamante P, Mangione R, Marquis O, Churlaud C, Brault-Favrou M, Parenteau C, Brischoux F. Lead, mercury, and selenium alter physiological functions in wild caimans (Caiman crocodilus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117549. [PMID: 34438486 DOI: 10.1016/j.envpol.2021.117549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Environmental contaminants affect ecosystems worldwide and have deleterious effects on biota. Non-essential mercury (Hg) and lead (Pb) concentrations are well documented in some taxa and are described to cause multiple detrimental effects on human and wildlife. Additionally, essential selenium (Se) is known to be toxic at high concentrations but, at lower concentrations, Se can protect organisms against Hg toxicity. Crocodilians are known to bioaccumulate contaminants. However, the effects of these contaminants on physiological processes remain poorly studied. In the present study, we quantified Hg, Pb and Se concentrations in spectacled caimans (Caiman crocodilus) and investigated the effects of these contaminants on several physiological processes linked to osmoregulatory, hepatic, endocrine and renal functions measured through blood parameters in 23 individuals. Mercury was related to disruption of osmoregulation (sodium levels), hepatic function (alkaline phosphatase levels) and endocrine processes (corticosterone levels). Lead was related to disruption of hepatic functions (glucose and alanine aminotransferase levels). Selenium was not related to any parameters, but the Se:Hg molar ratio was positively related to the Na+ and corticosterone concentrations, suggesting a potential protective effect against Hg toxicity. Overall, our results suggest that Hg and Pb alter physiological mechanisms in wild caimans and highlight the need to thoroughly investigate the consequences of trace element contamination in crocodilians.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Rosanna Mangione
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Switzerland
| | - Olivier Marquis
- Sorbonne Université, Muséum National d'Histoire Naturelle, Parc Zoologique de Paris, 53 Avenue de Saint Maurice, 75012 Paris, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Charline Parenteau
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| |
Collapse
|
62
|
Zhang J, Li X, Shen L, Khan NU, Zhang X, Chen L, Zhao H, Luo P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J Trace Elem Med Biol 2021; 67:126782. [PMID: 34049201 DOI: 10.1016/j.jtemb.2021.126782] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder (ASD) is a common childhood neurodevelopmental disorder that may be related to trace elements. However, reports on the relationship between them are still inconsistent. In this article, we conducted a meta-analysis on this issue. We searched the PubMed, EMBASE, and Cochrane databases as of November 15, 2019. A random-effects model was used, and subgroups of studies were analyzed using samples of different measurements. Twenty-two original articles were identified (18 trace elements, including a total of 1014 children with ASD and 999 healthy controls). In autistic children, the overall levels of barium (Ba), mercury (Hg), lithium (Li), and lead (Pb) were higher. There were significant differences in the levels of copper (Cu) in the hair and serum between autistic children and the control group. The levels of Hg, Li, Pb and selenium (Se) in the hair of autistic children were higher than those of healthy children, while the levels of zinc (Zn) in the blood were lower. Excessive exposure to toxic heavy metals and inadequate intake of essential metal elements may be associated with ASD. Preventing excessive exposure to toxic metals and correcting poor dietary behaviors may be beneficial for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Jun Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Xi Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, PR China.
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiao Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Lulu Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Huan Zhao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China.
| |
Collapse
|
63
|
Xu X, Yu Z, Han B, Li S, Sun Y, Du Y, Wang Z, Gao D, Zhang Z. Luteolin alleviates inorganic mercury-induced kidney injury via activation of the AMPK/mTOR autophagy pathway. J Inorg Biochem 2021; 224:111583. [PMID: 34428638 DOI: 10.1016/j.jinorgbio.2021.111583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022]
Abstract
Inorganic mercury is a ubiquitous toxic pollutant in the environment. Exposure to inorganic mercury can cause various poisonous effects, including kidney injury. However, no safe and effective treatment for kidney injury caused by inorganic mercury has been found and used. Luteolin (Lut) possesses various beneficial bioactivities. Here, our research aims to investigate the protective effect of Lut on renal injury induced by mercury chloride (HgCl2) and identify the underlying autophagy regulation mechanism. Twenty-eight 6-8 weeks old Wistar rats were randomly assigned to four groups: control, HgCl2, HgCl2 + Lut, and Lut. We performed the determination of oxidative stress and renal function indicators, histopathological analysis, the terminal deoxynucleotidyl transferase-mediated deoxyuracil nucleoside triphosphate nick-end labeling assay to detect apoptosis, western blot detection of autophagy-related protein levels, and atomic absorption method to detect mercury content. Our results showed that Lut ameliorated oxidative stress, apoptosis and restored the autophagy and renal function caused by HgCl2 in rats. Concretely, the level of nuclear factor E2-related factor, renal adenosine monophosphate-activated protein kinase (AMPK) expression, and autophagy regulation-related proteins levels were down-regulated, and the mammalian target of rapamycin (mTOR) expression was up-regulated by HgCl2 treatment. However, Lut treatment reversed the above changes. Notably, Lut reduced the accumulation of HgCl2 in the kidneys and promoted the excretion of HgCl2 through urine. Collectively, our results demonstrate that Lut can attenuate inorganic mercury-induced renal injury via activating the AMPK/mTOR autophagy pathway. Therefore, Lut may be a potential biological medicine to protect against renal damage induced by HgCl2.
Collapse
Affiliation(s)
- Xinyue Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhongxian Yu
- Pharmacy Department, The Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Hongqi Street, Chaoyang District, Changchun City, Jilin Province 130021, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yingshuo Sun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yu Du
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ziwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Di Gao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
64
|
Silva-Filho R, Santos N, Santos MC, Nunes Á, Pinto R, Marinho C, Lima T, Fernandes MP, Santos JCC, Leite ACR. Impact of environmental mercury exposure on the blood cells oxidative status of fishermen living around Mundaú lagoon in Maceió - Alagoas (AL), Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112337. [PMID: 34029837 DOI: 10.1016/j.ecoenv.2021.112337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Mercury in the aquatic environment can lead to exposure of the human population and is a known toxic metal due to its capacity for accumulation in organs. We aimed to evaluate the mercury level in the blood and urine of fishermen and correlate it with the level of oxidative stress in blood cells. We show in this case-control study that the fishermen of the exposed group (case) of Mundaú Lagoon (Maceió - Alagoas, Brazil) have higher concentrations of total mercury in the blood (0.73-48.38 μg L-1) and urine (0.430-10.2 μg L-1) than the total mercury concentrations in blood (0.29-17.30 μg L-1) and urine (0.210-2.65 μg L-1) of the control group. In the blood cells of fishermen, we observed that the lymphomononuclear cells produced high levels of reactive oxygen species (61.7%), and the erythrocytes presented increased lipid peroxidation (151%) and protein oxidation (41.0%) and a decrease in total thiol (36.5%), GSH and the REDOX state (16.5%). The activity of antioxidant system enzymes (SOD, GPx, and GST) was also reduced in the exposed group by 26.9%, 28.3%, and 19.0%, respectively. Furthermore, hemoglobin oxygen uptake was decreased in the exposed group (40.0%), and the membrane of cells presented increased osmotic fragility (154%) compared to those in the control group. These results suggest that mercury in the blood of fishermen can be responsible for causing impairments in the oxidative status of blood cells and is probably the cause of the reduction in oxygen uptake capacity and damage to the membranes of erythrocytes.
Collapse
Affiliation(s)
- Reginaldo Silva-Filho
- Laboratory of Bioenergetics, Federal University of Alagoas, Maceió, Brazil; Laboratory of Instrumentation and Development in Analytical Chemistry, Federal University of Alagoas, Maceió, Brazil
| | - Nerveson Santos
- Laboratory of Bioenergetics, Federal University of Alagoas, Maceió, Brazil
| | - Mayara Costa Santos
- Laboratory of Instrumentation and Development in Analytical Chemistry, Federal University of Alagoas, Maceió, Brazil
| | - Ábner Nunes
- Research Group of Catalysis and Chemical Reactivity, Federal University of Alagoas, Maceió-AL, Brazil
| | | | | | - Talitta Lima
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Victory, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Mariana P Fernandes
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Victory, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Josué Carinhanha C Santos
- Laboratory of Instrumentation and Development in Analytical Chemistry, Federal University of Alagoas, Maceió, Brazil.
| | | |
Collapse
|
65
|
Jiang H, Lin W, Jiao H, Liu J, Chan L, Liu X, Wang R, Chen T. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: a review. Metallomics 2021; 13:6310585. [PMID: 34180517 DOI: 10.1093/mtomcs/mfab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Selenium (Se) is an essential trace element of fundamental importance to humans, animals, and plants. However, the uptake, transport, and metabolic processes of Se and its underlying mechanisms in plants have not been well characterized. Here, we review our current understanding of the adsorption and assimilation of Se in plants. First, we discussed the conversion of Se from inorganic Se into organic forms, the mechanisms underlying the formation of seleno-amino acids, and the detoxification of Se. We then discussed the ways in which Se protects plants against toxic metal ions in the environment, such as by alleviating oxidative stress, regulating the activity of antioxidant enzymes, sequestering metal ions, and preventing metal ion uptake and accumulation. Generally, this review will aid future research examining the molecular mechanisms underlying the antagonistic relationships between Se and toxic metals in plants.
Collapse
Affiliation(s)
- Haiyan Jiang
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongpeng Jiao
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Jinggong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou 510120, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoying Liu
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Rui Wang
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
66
|
Hu MJ, He JL, Tong XR, Yang WJ, Zhao HH, Li GA, Huang F. Associations between essential microelements exposure and the aggressive clinicopathologic characteristics of papillary thyroid cancer. Biometals 2021; 34:909-921. [PMID: 33961183 DOI: 10.1007/s10534-021-00317-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Aim of this study was to evaluate the association between multiple essential microelements exposure and the aggressive clinicopathologic characteristics of papillary thyroid carcinoma (PTC). The concentrations of 10 essential microelements in urine [cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), strontium (Sr), zinc (Zn), and iodine (I)] were measured in 608 patients newly diagnosed with PTC, including 154 males and 454 females. Chi square test and Wilcoxon rank sum test were used to compare general characteristics among males and females. Multivariate logistic regression was used to evaluate the associations between essential microelements and PTC clinicopathologic characteristics in single- and multi-microelement models. In this study, we only observed that the frequency of lymph node metastasis in males was higher than in females, and males had higher levels of zinc than females, but males had lower levels of iodine than females. It was found that high levels of Fe were associated with decreased risk of PTC tumor size > 1 cm, capsular invasion, and advanced T stage (T3/4a/4b). High levels of Co and Mo were associated with decreased risk of capsular invasion and lymph node metastasis, respectively. However, high levels of Mn and Sr were associated with increased risk of capsular invasion and multifocality respectively, and both were associated with increased risk of advanced T stage (T3/4a/4b). These findings indicated that certain essential microelements might have potential effects on PTC progression and aggressiveness. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Ming-Jun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jia-Liu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xin-Ran Tong
- Second Department of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wan-Jun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huan-Huan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guo-Ao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China. .,Laboratory for Environmental Toxicology, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
67
|
Soler-Blasco R, Murcia M, Lozano M, Sarzo B, Esplugues A, Vioque J, Lertxundi N, Marina LS, Lertxundi A, Irizar A, Braeuer S, Goesler W, Ballester F, Llop S. Urinary arsenic species and methylation efficiency during pregnancy: Concentrations and associated factors in Spanish pregnant women. ENVIRONMENTAL RESEARCH 2021; 196:110889. [PMID: 33607098 DOI: 10.1016/j.envres.2021.110889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Arsenic (As) is considered to be toxic for humans, the main routes of exposure being through drinking water and the diet. Once ingested, inorganic arsenic can be methylated sequentially to monomethyl and dimethyl arsenicals. Several factors can affect both As exposure and methylation efficiency. OBJECTIVES To describe the urinary concentrations of the different As species and evaluate the methylation efficiency during pregnancy, as well as their associated factors in a birth cohort of pregnant Spanish women. METHODS Participants in this cross-sectional study were 1017 pregnant women from two areas of Spain who had taken part in the INMA (Environment and Childhood) project (2003-2008). Total As (organic and inorganic compounds) and its main metabolites (monomethylarsonic acid, [MMA], dimethylarsinic acid, [DMA], inorganic As [iAs]) and arsenobetaine [AB]) were measured in urine samples collected during the first trimester. Sociodemographic and dietary information was collected through questionnaires. Multivariate linear regression models were used to explore the association between As species concentrations and covariates. Arsenic methylation efficiency was determined through the percentages of the metabolites and using As methylation phenotypes, obtained from principal component analysis. RESULTS Median urine concentrations were 33.0, 21.6, 6.5, 0.35 and 0.33 μg/g creatinine for total As, AB, DMA, MMA and iAs, respectively. Daily consumption of rice and seafood during the first trimester of pregnancy were positively associated with the concentration of As species (i.e., β [CI95%] = 0.36 [0.09, 0.64] for rice and iAs, and 1.06 [0.68, 1.44] for seafood and AB). TAs, AB and iAs concentrations, and DMA and MMA concentrations were associated with legume and vegetable consumption, respectively. The medians of the percentage of As metabolites were 89.7 for %DMA, 5.1 for %MMA and 4.7 for %iAs. Non-smoker women and those with higher body mass index presented a higher methylation efficiency (denoted by a higher %DMA and lower %MMA). DISCUSSION Certain dietary, lifestyle, and environmental factors were observed to have an influence on both As species concentrations and methylation efficiency in our population. Further birth cohort studies in low exposure areas are necessary to improve knowledge about arsenic exposure, especially to inorganic forms, and its potential health impact during childhood.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Blanca Sarzo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Jesús Vioque
- Alicante Institute for Health and Biomedical Research, ISABIAL-UMH, 03010, Alicante, Spain
| | - Nerea Lertxundi
- Biodonostia Health Research Institute, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country, UPV/ EHU, San Sebastian, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Department of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Amaia Irizar
- Biodonostia Health Research Institute, San Sebastian, Spain; Department of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain.
| | - Simone Braeuer
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Walter Goesler
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
68
|
Naderi M, Puar P, Zonouzi-Marand M, Chivers DP, Niyogi S, Kwong RWM. A comprehensive review on the neuropathophysiology of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144329. [PMID: 33445002 DOI: 10.1016/j.scitotenv.2020.144329] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 05/25/2023]
Abstract
As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions. A wealth of evidence has shown that exposure to excess Se may compromise the normal functioning of various key proteins, neurotransmitter systems (the glutamatergic, dopaminergic, serotonergic, and cholinergic systems), and signaling molecules involved in the control and regulation of cognitive, behavioral, and neuroendocrine functions. Elevated Se exposure has also been suspected to be a risk factor for the development of several neurodegenerative and neuropsychiatric diseases. Nonetheless, despite the various deleterious effects of excess Se on the central nervous system (CNS), Se neurotoxicity and negative behavioral outcomes are still disregarded at the expense of its beneficial health effects. This review focuses on the current state of knowledge regarding the neurobehavioral effects of Se and discusses its potential mode of action on different aspects of the central and peripheral nervous systems. This review also provides a brief history of Se discovery and uses, its physicochemical properties, biological roles in the CNS, environmental occurrence, and toxicity. We also review potential links between exposure to different forms of Se compounds and aberrant neurobehavioral functions in humans and animals, and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | | |
Collapse
|
69
|
Peng H, Zou P, Ma C, Xiong S, Lu T. Elements in potable groundwater in Rugao longevity area, China: Hydrogeochemical characteristics, enrichment patterns and health assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112279. [PMID: 33933811 DOI: 10.1016/j.ecoenv.2021.112279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Rugao city is a typical longevity area taking shallow groundwater as the primary drinking water source. To determine the relationship between longevity and groundwater conditions, the hydrogeochemical characteristics and related causes of potable groundwater were investigated. On this basis, the water quality index (WQI) and hazard index (HI) of groundwater were evaluated. Meanwhile, the nutrient indicators beneficial to human health, like Ca and Mg concentrations, were also considered to explore the relationship. The results were as following: (1) 91.3% of water samples fell under the Ca/Mg-HCO3 water type, which resulted from the dissolution of silicate rock. Na, Cl-, Br, B in groundwater emanated from seawater intrusion. The abnormal concentrations of NO3- and As also indicated that anthropogenic activities had exerted significant influences on groundwater quality. (2) The average WQI value was 30.19, which meant that the overall groundwater quality in Rugao city was pretty good. However, 8 water samples were found to have HI values above 1, which might be attributed to the high concentration of As (maximum value 0.0407 mg/L; mean value 0.0076 mg/L). In general, low WQI and HI values corresponded to towns with a high longevity population; what's more, WQI and HI values of Rugao city were lower than those of non-longevity areas. (3) Comparing with adjacent non-longevity areas, the potable groundwater in Rugao city had the characteristics of high Ca (mean value 123.57 mg/L), high Mg (mean value 50.33 mg/L) and high SO42- (mean value 525.19 mg/L). The daily intake of Ca and Mg from drinking water could meet 12.4% and 22.4% of daily Ca and Mg requirements, respectively. Also, the areas where the Sr and B concentrations were higher usually had higher life expectancy. The high concentrations of Ca, Mg, SO42-, Sr and B in drinking water, as well as low WQI and HI values, probably contribute to physical health and longevity. This research helps provide an insight into the relationship between groundwater quality and health and can serve as a reference for drinking water quality management.
Collapse
Affiliation(s)
- Hao Peng
- School of Environmental Studies, China University of Geoscience, Wuhan 430078, China
| | - Pengfei Zou
- Yantai New Era Health Industry Chemical Commodity Co., Ltd., Yantai 264000, China
| | - Chuanming Ma
- School of Environmental Studies, China University of Geoscience, Wuhan 430078, China
| | - Shuang Xiong
- Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan 430078, China
| | - Taotao Lu
- Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth 95440, Germany.
| |
Collapse
|
70
|
Hossain MB, Rakib MRJ, Jolly YN, Rahman M. Metals uptake and translocation in salt marsh macrophytes, Porteresia sp. from Bangladesh coastal area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144637. [PMID: 33385646 DOI: 10.1016/j.scitotenv.2020.144637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Studies from around the world have suggested salt marshes or coastal wetlands can be used as sites for phytoremediation of metals. However, no investigations have been conducted to assess metal accumulation and translocation capabilities of salt marsh macrophytes from Bangladesh coastal area. The aim of this study was to evaluate the uptake and translocation of eight metals, Fe, Zn, Mn, Cu, Co, Rb, Sr, and Pb in Porteresia sp. from the six salt marsh sites of Bangladesh. The leaf, shoots and root tissues of Porteresia sp. samples were analyzed for metals by using the energy-dispersive X-ray fluorescence (EDXRF). The decreasing trend of metal concentrations was, in roots; Fe > Mn > Pb > Cu > Zn > Sr > Rb > Co, in shoots; Mn >Fe > Cu > Pb > Zn > Sr > Rb > Co, in leaves; Fe > Mn > Cu > Pb > Zn > Rb > Sr > Co. Generally, roots of the Porteresia sp. showed high accumulation of the metals when compared to shoots and leaves suggesting relevant availability in the sediment. Pb was the only metal with concentrations significantly higher in the leaves and shoots than in the root. Except for Pb, bioaccumulation concentration factor (BCF) for all metals was lower than 1 in plant organs indicating poor absorption and bioavailability of metals. Higher value (>1) of BCF for Pb infers the species can potentially be used for Pb phytoremediation. However, the translocation factor (TF) confirmed the diversified mobility of the metals from below-ground part to above-ground parts for all the measured metals in the salt marsh species. Highest mobility was observed for Mn and Pb. But it was hard to find any regular trends among all the metals and all the sites.
Collapse
Affiliation(s)
- M Belal Hossain
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Y N Jolly
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
71
|
Huang H, Wang M, Hou L, Lin X, Pan S, Zheng P, Zhao Q. A potential mechanism associated with lead-induced spermatogonia and Leydig cell toxicity and mitigative effect of selenium in chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111671. [PMID: 33360290 DOI: 10.1016/j.ecoenv.2020.111671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/25/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a toxic heavy metal pollutants and can damage male reproductive function. Selenium (Se) possesses an ability of antagonizing Pb toxicity. However, biological events in the process of Pb toxicity and mitigative effect of Se are not well understood. The aim of present research was to investigate potential mechanism of Se against Pb toxicity from the perspective of oxidative stress, heat shock response and autophagy in the spermatogonia and Leydig cell of chicken. The cells from one-day-old male Hyline chickens were treated with Se (0.5 μmol/L) and/or Pb (20 μmol/L) for 24 h, respectively. Cell viability, cell ultrastucture, Pb and Se concentrations, testosterone level, oxidative stress indicators and relative expression of heat shock proteins (HSPs) and autophagy-related genes were measured. The results showed that spermatogonia was more tolerant to Pb than Leydig cell; cell injury was confirmed via histological assessment, cell viability and testosterone level; oxidative stress was further indicated by the decrease of catalase, glutathione peroxidase, glutathione-s-transferase and superoxide dismutase activities and the increase of malondialdehyde and reactive oxygen species contents. Pb increased expression of HSPs (27, 40, 60, 70 and 90). Meanwhile Pb induced autophagy through up-regulation of autophagy-related proteins 5, Beclin 1, Dynein, light chain 3 (LC3)-I and LC3-II and down-regulation of mammalian target of rapamycin in two type cells of chicken. However, Se intervention mitigated the aforementioned alterations caused by Pb. In conclusion, Pb led to oxidative stress, which triggered heat shock response and autophagy; Se administration mitigated reproductive toxicity of Pb through strengthening antioxidant defense in the spermatogonia and Leydig cell of chicken.
Collapse
Affiliation(s)
- He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Min Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lulu Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, People's Republic of China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
72
|
Brzóska MM, Kozłowska M, Rogalska J, Gałażyn-Sidorczuk M, Roszczenko A, Smereczański NM. Enhanced Zinc Intake Protects against Oxidative Stress and Its Consequences in the Brain: A Study in an In Vivo Rat Model of Cadmium Exposure. Nutrients 2021; 13:nu13020478. [PMID: 33572579 PMCID: PMC7911633 DOI: 10.3390/nu13020478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/24/2023] Open
Abstract
We examined, in a rat model of moderate environmental human exposure to cadmium (Cd), whether the enhanced intake of zinc (Zn) may protect against Cd-caused destroying the oxidative/antioxidative balance and its consequences in the brain. The intoxication with Cd (5 mg/L, 6 months) weakened the enzymatic (superoxide dismutase, glutathione peroxidase, catalase) and non-enzymatic (total thiol groups, reduced glutathione) antioxidative barrier decreasing the total antioxidative status and increased the concentrations of pro-oxidants (hydrogen peroxide, myeloperoxidase) in this organ and its total oxidative status. These resulted in the development of oxidative stress and oxidative modifications of lipids and proteins. The co-administration of Zn (30 and 60 mg/L enhancing this element intake by 79% and 151%, respectively) importantly protected against Cd accumulation in the brain tissue and this xenobiotic-induced development of oxidative stress and oxidative damage to lipids and proteins. Moreover, this bioelement also prevented Cd-mediated oxidative stress evaluated in the serum. The favorable effect of Zn was caused by its independent action and interaction with Cd. Concluding, the enhancement of Zn intake under oral exposure to Cd may prevent the oxidative/antioxidative imbalance and oxidative stress in the brain and thus protect against injury of cellular macromolecules in the nervous system.
Collapse
Affiliation(s)
- Małgorzata M. Brzóska
- Correspondence: (M.M.B.); (M.K.); Tel.: +48-85-7485604 (M.M.B. & M.K.); Fax: +48-85-7485834 (M.M.B. & M.K.)
| | - Magdalena Kozłowska
- Correspondence: (M.M.B.); (M.K.); Tel.: +48-85-7485604 (M.M.B. & M.K.); Fax: +48-85-7485834 (M.M.B. & M.K.)
| | | | | | | | | |
Collapse
|
73
|
Hossain KFB, Hosokawa T, Saito T, Kurasaki M. Zinc-pretreatment triggers glutathione and Nrf2-mediated protection against inorganic mercury-induced cytotoxicity and intrinsic apoptosis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111320. [PMID: 32947215 DOI: 10.1016/j.ecoenv.2020.111320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a hazardous metal, poses environmental problems with severe human health effects; whereas zinc (Zn) is an essential micronutrient with antioxidant properties. The purpose of this research was to investigate the effect of Zn on inorganic Hg-induced cytotoxicity in the PC12 cells. The cells were treated with HgCl2 (5 μM) for 48 h with/without 1 h prior ZnCl2-treatment (100 μM) and deliberated for further analysis. After 48 h of incubation with only Hg2+, the cell showed reduced cell viability, compromised cell membrane, DNA degradation, depleted glutathione level, ROS generation and drastically increased apoptosis. Subsequently, Hg2+-treated cells demonstrated a significant downregulation of akt, mTOR, ERK1, Nrf2, HO1, Bcl-2, Bcl-xL, and upregulation of p53, Bax, cytochrome c and cleaved caspase 3, indicating intrinsic apoptosis induction. However, cells pretreated with Zn2+ before Hg2+-exposure showed a significant improvement in cell viability, cell membrane, DNA damage, glutathione level, ROS amount and apoptotic cells, with a significant upregulation in mTOR, akt, ERK1, Nrf2, HO1, Bcl-2 and Bcl-xL, and downregulation in p53, Bax, cytochrome c and cleaved caspase 3, indicating inhibition of apoptosis. The findings suggested that Zn2+-pretreatment not only improves glutathione content but also induces activation of Nrf2-HO1 pathway, which would tend to suppress Hg-cytotoxicity.
Collapse
Affiliation(s)
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
74
|
Benvenga S, Micali A, Ieni A, Antonelli A, Fallahi P, Pallio G, Irrera N, Squadrito F, Picciolo G, Puzzolo D, Minutoli L. The Association of Myo-Inositol and Selenium Contrasts Cadmium-Induced Thyroid C Cell Hyperplasia and Hypertrophy in Mice. Front Endocrinol (Lausanne) 2021; 12:608697. [PMID: 33716965 PMCID: PMC7949001 DOI: 10.3389/fendo.2021.608697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies have demonstrated that, in addition to inducing structural changes in thyroid follicles, cadmium (Cd) increased the number of C cells. We examined the effects of myo-inositol (MI), seleno-L-methionine (Se), MI + Se, and resveratrol on C cells of mice exposed to cadmium chloride (Cd Cl2), as no data are currently available on the possible protective effects of these molecules. In contrast, we have previously shown this protective effect against CdCl2 on the thyroid follicles of mice. Ninety-eight C57 BL/6J adult male mice were divided into 14 groups of seven mice each: (i) 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); (ii) Se (0.2 mg/kg/day per os); (iii) Se (0.4 mg/kg/day per os); (iv) MI (360 mg/kg/day per os); (v) Se (0.2 mg/kg/day) + MI; (vi) Se (0.4 mg/kg/day) + MI; (vii) resveratrol (20 mg/kg); (viii) CdCl2 (2 mg/kg/day i.p.) + vehicle; (ix) CdCl2 + Se (0.2 mg/kg/day); (x) CdCl2 + Se (0.4 mg/kg/day); (xi) CdCl2 + MI; (xii) CdCl2 + Se (0.2 mg/kg/day) + MI; (xiii) CdCl2 + Se (0.4 mg/kg/day) + MI; (xiv) CdCl2 + resveratrol (20 mg/kg). After 14 days, thyroids were processed for histological, immunohistochemical, and morphometric evaluation. Compared to vehicle, Cd significantly decreased follicle mean diameter, increased CT-positive cells number, area and cytoplasmic density, and caused the disappearance of TUNEL-positive C cells, namely, the disappearance of C cells undergoing apoptosis. Se at either 0.2 or 0.4 mg/kg/day failed to significantly increase follicular mean diameter, mildly decreased CT-positive cells number, area and cytoplasmic density, and was ineffective on TUNEL-positive C cells. Instead, MI alone increased significantly follicular mean diameter and TUNEL-positive cells number, and decreased significantly CT-positive cells number, area and cytoplasmic density. MI + Se 0.2 mg/kg/day or MI + Se 0.4 mg/kg/day administration improved all five indices more markedly. Indeed, follicular mean diameter and TUNEL-positive cells number increased significantly, while CT-positive cells number, area and cytoplasmic density decreased significantly. Thus, all five indices overlapped those observed in vehicle-treated mice. Resveratrol improved significantly all the considered parameters, with a magnitude comparable to that of MI alone. In conclusion, the association Myo + Se is effective in protecting the mouse thyroid from the Cd-induced hyperplasia and hypertrophy of C cells. This benefit adds to that exerted by Myo + Se on thyrocytes and testis.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- *Correspondence: Giovanni Pallio,
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giacomo Picciolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
75
|
Hossain KFB, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Selenium modulates inorganic mercury induced cytotoxicity and intrinsic apoptosis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111262. [PMID: 32916531 DOI: 10.1016/j.ecoenv.2020.111262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) in its all forms, including inorganic Hg (iHg) is an environmental contaminant due to toxicity and diseases in human. However, a little is known about the underlying mechanisms responsible for iHg toxicity. Selenium (Se) is an essential trace element, recognized as an antioxidant and protective agent against metal toxicities. The purpose of this research was to investigate ameliorations of Se counter to iHg-mediated toxicity in PC12 cells. Cytotoxic assays have been shown that iHg (5 μM) caused oxidative stress and intrinsic apoptosis via ROS generation, oxidizing glutathione, damaging DNA, degrading cell membrane integrity, down-regulating mTOR, p-mTOR, akt and ERK1, and up-regulating cleaved caspase 3 and cytochrome c release in PC12 cells 48 h after incubation. Co-treatment of Se (5 μM) inhibited intrinsic apoptosis and oxidative stress induced by iHg (5 μM) via inhibiting ROS formation, boosting GPx contents, increasing reduced glutathione, limiting DNA degradation, improving cell membrane integrity, up-regulating mTOR, p-mTOR, akt, ERK1 and caspase 3, and down-regulating cleaved caspase 3 and cytochrome c leakage in PC12 cells. In conclusion, these results recommended that excessive ROS generation acts a critical role in iHg-influenced oxidative stress and co-treatment of Se attenuates iHg-cytotoxicity through its antioxidant properties.
Collapse
Affiliation(s)
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
76
|
Luo H, Yang Y, Wang Q, Wu Y, He Z, Yu W. Protection of Siganus oramin, rabbitfish, from heavy metal toxicity by the selenium-enriched seaweed Gracilaria lemaneiformis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111183. [PMID: 32890922 DOI: 10.1016/j.ecoenv.2020.111183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Seaweed is an inherently important entity in marine ecosystems. It is not only consumed by aquatic animals but also improves environmental quality in the mariculture. Seaweed is also part of the diet of human beings. The purpose of the present study was to evaluate the antagonism of selenium (Se)-enriched Gracilaria lemaneiformis against heavy metals, specifically, the potential of dietary Se-enriched Gracilaria to protect against heavy metal toxicity in rabbitfish (Siganus oramin). Growth rate, heavy metal (Se, Cd, Pb, Cu, Zn and Cr) concentrations, malondialdehyde (MDA), metallothionein (MT), and the activity of the antioxidants, glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) were all assessed. The results showed that the total organic and inorganic Se concentration for the 250 mg L-1 Se-enriched Gracilaria was significantly higher than those of the 50 and 10 mg L-1 treatments after 3 days of enrichment. The mean total Se concentrations in Gracilaria were 42.5 μg g-1 in the 250 mg L-1 treatment, 13.5 μg g-1 in the 50 mg L-1 treatment and 2.5 μg g-1 in the 10 mg L-1 treatment, respectively. Organic Se accounts for 80-82% of total Se in Se-enriched Gracilaria. The Se concentration of rabbitfish fed Se-enriched Gracilaria was significantly higher than control. Furthermore, Se increased Cu and Zn absorption, and enhanced MT generation, and improved GPX, CAT, and SOD antioxidant activity, and decreased MDA concentrations and lipid peroxidation levels, all antagonistic to Cd, Pb and Cr. The effects of Se-enriched Gracilaria on waterborne Cd, Pb and Cr-induced toxicity occurred via both enzymatic and non-enzymatic antioxidative mechanisms in rabbitfish. Selenium had synergistic effects on Zn and Cu in rabbitfish. For the 50 mg L-1 Se-enriched Gracilaria treatment, the Se, Cu, Zn, and antagonistic Cd, Pb, Cr, and the antioxidant enzymes CAT, SOD, GPX activities, and MT concentrations in rabbitfish were higher than that with the 250 mg L-1 and 10 mg L-1 Se-enriched Gracilaria treatments. The 50 mg L-1 Se treatment of Gracilaria was deemed to be the optimum concentration to promote growth of rabbitfish. Therefore, the obtained results suggest Se-enriched Gracilaria can antagonize heavy metal toxicity, and is an advisable Se supplement to improve the edible safety of cultured animals.
Collapse
Affiliation(s)
- Hongtian Luo
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Yufeng Yang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Qing Wang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Yongjie Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Environmental Microbiome Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Environmental Microbiome Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wenbo Yu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
77
|
Chen X, Zhang Z, Gu M, Li H, Shohag MJI, Shen F, Wang X, Wei Y. Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141166. [PMID: 32798860 DOI: 10.1016/j.scitotenv.2020.141166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) deficiency is a public health concern that is mainly caused by inadequate intake of Se from staple crops. The purpose of this study is to investigate the effects of inoculation with different arbuscular mycorrhizal fungus (AMF) strains, including Funneliformis mosseae (Fm) and Glomus versiforme (Gv), and fertilization with selenite or selenate on the accumulation and speciation of Se in rice. The results showed that using both AMF inoculation and Se fertilization could promote organic Se accumulation in rice grain than using only Se fertilization. Moreover, grain of rice inoculated with Fm and grown in soil fertilized with selenate had the highest accumulation of Se, of which selenomethionine was the dominant Se species. The AMF inoculation also led to high content of available Se and high relative abundance of Firmicutes in soil. The high concentration of available Se in soil suggests that the AMF inoculation may modify the microbial community, which then causes the Se uptake of rice to increase, in turn causing the amount of organic Se accumulated in rice to increase. Based on these results, using AMF inoculation combined with Se fertilization can be a promising strategy for Se biofortification in rice.
Collapse
Affiliation(s)
- Xue Chen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zengyu Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Minghua Gu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - M J I Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Fangke Shen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xueli Wang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
78
|
Bondad SEC, Kurasaki M. Analysis of Cadmium, Epigallocatechin Gallate, and Vitamin C Co-exposure on PC12 Cellular Mechanisms. Biol Trace Elem Res 2020; 198:627-635. [PMID: 32128694 DOI: 10.1007/s12011-020-02097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Exposure to cadmium (Cd) is a risk factor to health impairments, wherein its cytotoxicity is attributed to induction of oxidative stress. Usage of anti-oxidants, however, can help lessen the damaging effects of Cd. The effect of Cd interaction with low concentration of dietary anti-oxidants, L-ascorbic acid and (-)-epigallocatechin gallate (EGCG), to PC12 cellular mechanisms was examined. The expected toxicity of Cd was observed on PC12 cells but addition of L-ascorbic acid ameliorated this effect. On the other hand, addition of EGCG was able to increase the cytotoxicity of Cd and to decrease the protective effect of L-ascorbic acid against Cd. Increase in LDH activity and decrease in free sulfhydryl levels indicated cell membrane damage and oxidative stress, respectively, in Cd- and EGCG-Cd-treated cells. Downregulation of pro-apoptotic proteins (pro-caspase-9, p53, and ERK1) was observed in cells treated with Cd alone and EGCG-Cd, while upregulation of autophagy-linked proteins (p62 and pBeclin1) was found on L-ascorbic acid-Cd combination treatments. These findings indicate that Cd causes cells to undergo an autophagy-enhanced cell death; low-concentration EGCG and L-ascorbic acid promotes cell survival individually; however, interaction of EGCG with Cd showed enhancement of Cd toxicity and antagonism of L-ascorbic acid efficiency.
Collapse
Affiliation(s)
- Serene Ezra C Bondad
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
79
|
Zhang J, Hao X, Xu S. Selenium Prevents Lead-Induced Necroptosis by Restoring Antioxidant Functions and Blocking MAPK/NF-κB Pathway in Chicken Lymphocytes. Biol Trace Elem Res 2020; 198:644-653. [PMID: 32279190 DOI: 10.1007/s12011-020-02094-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Recent studies have identified a new existence of a genetically programmed and regulated cell death characterized by necrotic cell death morphology, termed necroptosis. Lead (Pb) is a ubiquitously distributed environmental pollutant that is highly toxic to animals and human beings. However, no detailed report has been conducted on the necroptosis in lymphocytes caused by Pb. Selenium (Se), a trace element in the body, has been shown to exert cytoprotective effect in numerous pathological injury caused by heavy metals. Here, lymphocytes isolated from chicken spleen were divided into four groups, control group, Se group, Pb group, and Pb + Se co-treatment group to investigate the potential mechanism in the necroptosis triggered by Pb and in the antagonistic effect of Se on Pb toxicity. Flow cytometry analysis and AO/EB staining showed Pb caused typical necrosis characteristics in the lymphocytes. The expression of RIP1, RIP3, and MLKL was increased, whereas the level of caspase 8 was declined in Pb group, which proved the occurrence of necroptosis. Meanwhile, Pb exposure disrupted the antioxidant enzyme (SOD, GSH-Px, and CAT) balance, promoted the expression of MAPK/NF-κB pathway factors (ERK, JNK, p38, NF-κB, and TNF-α), and activated HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90). However, those Pb-induced changes were significantly alleviated in Se + Pb group. Our study revealed that Pb could trigger lymphocyte necroptosis through MAPK/NF-κB pathway activated by oxidative stress and that Se could antagonize Pb-induced necroptosis in chicken lymphocytes.
Collapse
Affiliation(s)
- Jiayong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xiaofang Hao
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
80
|
Dai H, Wei S, Twardowska I. Biofortification of soybean (Glycine max L.) with Se and Zn, and enhancing its physiological functions by spiking these elements to soil during flowering phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139648. [PMID: 32927528 DOI: 10.1016/j.scitotenv.2020.139648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Soybean is recognized as one of the most important prospective protein sources for human nutrition under conditions of climate change and population growth. Occurrence of Se and Zn deficiency in vast areas over the globe inhabited by up to 2 billion people, induced search for a comprehensive solution to these problems through the efficient Se/Zn biofortification of soybean seeds (beans). To assess the Se/Zn accumulation efficiency and the physiological status of soybean plants, a pot experiment on Se and Zn enrichment in beans was conducted. It consisted of applying 15 different Se-deficient soil treatments with these elements during the flowering phase, alone or in dose combinations. Application of Se alone, besides Se accumulation in soybean, reduced Zn uptake from soil, but caused alterations in Zn translocation, and its multiple enrichment in beans. Addition of Zn alone promoted both Zn and Se enrichment in beans. Joint Se/Zn application in increasing doses appeared to have a strong synergistic effect on accumulation of these elements in beans and enhanced the physiological functions of the soybean. This manifested itself in the growth of photosynthetic production and soybean biomass, and in the improvement of lipid peroxidation status (REC, MDA and proline content indices). Toxicity symptoms indicated the maximum Se/Zn doses. Several-fold higher contents of Se and Zn in soybean straw compared to spiked soil suggest its possible use as Se/Zn-rich soil amendment in accordance with the circular economy goals. These novel findings may significantly contribute to human health improvement in Se and Zn deficient regions.
Collapse
Affiliation(s)
- Huiping Dai
- Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shuhe Wei
- Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China; Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Irena Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, 41-819 Zabrze, Poland.
| |
Collapse
|
81
|
Hossain KFB, Hosokawa T, Saito T, Kurasaki M. Amelioration of butylated hydroxytoluene against inorganic mercury induced cytotoxicity and mitochondrial apoptosis in PC12 cells via antioxidant effects. Food Chem Toxicol 2020; 146:111819. [PMID: 33091556 DOI: 10.1016/j.fct.2020.111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Mercury (Hg) is a toxic metal, well-known for its dangerous health effects on human. Butylated hydroxytoluene (BHT) is a phenolic component generally consumed as a food additive as an antioxidant. However, BHT induced antioxidant properties against heavy metals-influenced toxicity are little studied. We hypothesized that BHT has a regulatory effect on Hg-induced cytotoxicity. The objective of this research was to assess the protecting effects of BHT against inorganic Hg (iHg)-toxicity in PC12 cells, where cells were treated with/without HgCl2 (Hg2+) (5 μM) and BHT (100 μM) for 48 h and analyzed further. Cells treated by Hg caused a significant cell viability reduction, membrane damage, glutathione reduction, DNA fragmentation, ROS generation, with suppressed expressions of akt, mTOR, ERK1, Nrf2 and HO1; and elevated apoptotic expressions of p53, Bax, cytochrome c and active caspase 3. However, BHT and Hg2+ co-exposure showed prevention against Hg2+-toxicity by improving GSH content and inhibiting ROS generation and oxidative stress mediated damages. Additionally, BHT co-treatment inverted the pro-apoptotic proteins by augmenting pro-survival regulatory proteins akt, mTOR, ERK1, Nrf2 and HO1. These findings proved that BHT inhibits Hg2+-toxicity, hindering ROS generation and intrinsic apoptosis, via enhancing glutathione and antioxidants; and suggested BHT implications as therapeutic.
Collapse
Affiliation(s)
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
82
|
Sanito RC, You SJ, Chang TJ, Wang YF. Economic and environmental evaluation of flux agents in the vitrification of resin waste: A SWOT analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110910. [PMID: 32721344 DOI: 10.1016/j.jenvman.2020.110910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Flux agents play an important role in the pyrolysis treatment of vitrifying hazardous wastes. Among these is plasma jets, a cost-less flux agent derived from shell powder which can be used to create vitrification. It is a promising option to be applied in the vitrification of elements and to remove the VOCs of hazardous waste, namely, resin from PCB scrap in an atmospheric-pressure microwave plasma reactor. In this study, a laboratory scale experiment was conducted. The experiment was performed in the pyrolysis of resin which was added with flux agents. The economic evaluation of the flux agents, and the circular economy concept of the final residue derived from the plasma pyrolysis was then analyzed post treatment. To test the strength and weakness of the experiment, the SWOT analysis was performed. The outcome helped in the understanding of the cost-less flux agent used in the pyrolysis treatment of hazardous waste. Results showed that fusing shell powder in resin was better for improving the removal efficiency of VOCs, such as benzene and toluene as well as toxic metals than compared to other flux agents such as limestone and quartz sand. Moreover, the final residue of resin was found to fulfil the concept of circular economy where it could be reused as an absorbent of methyl blue, thereby indicating good absorption performance, from 1 ppm-100 ppm. The twelve strategies that were derived from the SWOT analysis could be used as information outlining the current internal and external condition for the development and application of shell powder. Shell powder, as a cost-less flux agent, has the potential for enhancing waste management and circular economy when used in the pyrolysis treatment of future hazardous wastes.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Department of Civil Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan
| | - Tien-Jin Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhong Xiao Road, Taipei, 106, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan.
| |
Collapse
|
83
|
Sahu C, Dwivedi DK, Jena GB. Zinc and selenium combination treatment protected diabetes-induced testicular and epididymal damage in rat. Hum Exp Toxicol 2020; 39:1235-1256. [PMID: 32233808 DOI: 10.1177/0960327120914963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Diabetes increases the possibility of germ cell damage, hypogonadism, and male infertility. Diabetic condition negatively impacts zinc (Zn) and selenium (Se) levels in the body. Zn and Se are among the most important trace elements involved in the regulation of redox reaction, antioxidants enzymes activities, and DNA expression in a germ cell. The present study aimed to elucidate the combined effects of Zn and Se treatment on diabetes-induced germ cell damage in male Sprague Dawley rats. Type 1 diabetes was induced by the single intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg). Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) were administered daily for 8 consecutive weeks. All the animals were provided with normal feed and water throughout the study. The effects on germ cell damage were evaluated by body weight, feed-water intake, organ weight, sperm count, motility, sperm head morphology, biochemical analysis, histology, immunohistochemistry, halo assay, germ cell comet assay, testes terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling (TUNEL) assay, sperm TUNEL assay, serum protein pattern analysis, and subcellular analysis using transmission electron microscopy. Further, the expressions of nuclear erythroid-derived related factor 2, catalase, glutathione peroxidase 4, and glutathione peroxidase 5 were carried out to ascertain the mechanism of protection. The present results demonstrated that 8 weeks combined treatment of Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) reduced diabetes-induced germ cell damage. This study further highlighted that Zn and Se combination treatment might be a better strategy for the germ cell protection in diabetes and deserve further investigation.
Collapse
Affiliation(s)
- C Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - D K Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| |
Collapse
|
84
|
Øyen J, Aadland EK, Liaset B, Fjære E, Dahl L, Madsen L. Lean-seafood intake increases urinary iodine concentrations and plasma selenium levels: a randomized controlled trial with crossover design. Eur J Nutr 2020; 60:1679-1689. [PMID: 32856189 PMCID: PMC7987597 DOI: 10.1007/s00394-020-02366-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Iodine deficiency due to insufficient nutritional intake is a public health challenge in several European countries, including Norway. Lean-seafood has a high iodine and arsenic (As) content and is a good source of selenium (Se). Evidence of a direct effect of increased intake of lean-seafood on iodine status is limited. The main aims were to determine the iodine status at baseline and to investigate possible dietary effects on urinary iodine concentration (UIC) after intervention with lean-seafood versus non-seafood. Plasma Se, and plasma and urinary As concentrations were also measured. METHODS A randomized controlled crossover study comprising two 4 weeks experimental periods with two balanced diets varied in main proteins (60% of total dietary proteins) of lean-seafood and non-seafood, separated by a 5 week washout period. RESULTS Twenty participants (7 males, 13 females) were included and the mean ± SD age was 50.6 ± 15.3 years for all participants. Fasting UIC was median (25th, 75th percentile) 70 (38, 110) and 79 (49, 94) µg/L in the lean-seafood and non-seafood intervention at baseline, respectively. UIC increased after 4 weeks of the lean-seafood intervention to 135 (110, 278) µg/L, but not after the non-seafood intervention [58 (33, 91) µg/L] (P diet-effect < 0.001). Fasting plasma Se increased in the lean-seafood intervention and decreased in the non-seafood intervention (P diet-effect = 0.001). Fasting urinary and plasma As increased in the lean-seafood intervention and was unchanged in the non-seafood intervention (P diet-effect < 0.001). CONCLUSION The participant's UIC was below the recommended median (100 µg/L) at baseline, but increased sufficiently after a 4 week intervention with lean-seafood.
Collapse
Affiliation(s)
- Jannike Øyen
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway.
| | - Eli Kristin Aadland
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway.,Department of Sport, Food and Natural Sciences, Western Norway University of Applied Science, Bergen, Norway
| | - Bjørn Liaset
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Even Fjære
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Lisbeth Dahl
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Lise Madsen
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
85
|
Chen L, Ma T, Wang Y, Zheng J. Health risks associated with multiple metal(loid)s in groundwater: A case study at Hetao Plain, northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114562. [PMID: 32315822 DOI: 10.1016/j.envpol.2020.114562] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/12/2023]
Abstract
To compare the health risks of multiple metal(loid)s in groundwater, and discuss the feasibility of drinking water standards, 66 groundwater samples were collected from the Hetao Plain in October 2017. Eighteen metal(loid) species (boron (B), manganese (Mn), iron (Fe), strontium (Sr), barium (Ba), lithium (Li), scandium (Sc), titanium (Ti), vanadium (V), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), rubidium (Rb), molybdenum (Mo), uranium (U)) were analyzed, and the related non-carcinogenic risks were assessed. The results showed that 83.3% of the groundwater samples had As and Fe contents above the maximum allowed contaminant levels (MCLs) in drinking water standards, followed by Mn (70.2%), B (65.2%), Se (60.6%), U (18.2%), Ni (18.2%) and Mo (1.50%). Compared with the dermal exposure pathway, oral ingestion made a risk contribution of more than 99% for all target metal(loid)s. Site-specific hazard quotient (HQ) values ranged from 2.30E+00 to 1.75E+02, indicating that multiple metal(loid)s in the drinking groundwater cause a serious non-carcinogenic risk to the local people. The risk contributions (mean value) were ranked as As (55.2%) > U (25.5%) > Li (10.8%) > other total metal(loid)s (8.60%), and the contributions of U and Li could reach 91.7% (site 20) and 69.8% (site 56), respectively. The calculation of specific health risks further indicated that the MCLs of metal(loid)s do not match the corresponding health risk well. Some metal(loid)s such as Li that showed high exposure risks in this study, still have no MCL values until now. Therefore, current drinking water standards need to be updated.
Collapse
Affiliation(s)
- Liuzhu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jiejun Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
86
|
Effects of Dietary Supplements on the Bioaccessibility of Se, Zn and Cd in Rice: Preliminary Observations from In Vitro Gastrointestinal Simulation Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144978. [PMID: 32664443 PMCID: PMC7399922 DOI: 10.3390/ijerph17144978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Trace elements such as selenium (Se) and zinc (Zn) are essential elements in the human body, while cadmium (Cd) has no physiological function. A high proportion of people consume dietary supplements to enhance the performance of the body or alter the nutrient contents within the body. Therefore, this study was conducted to evaluate the interaction effects of several popular dietary supplements on the bioaccessibility of Se, Zn and Cd in rice with the hope of identifying dietary supplements that can increase rice Se and Zn bioaccessibility but decrease rice Cd bioaccessibility. The results from in vitro gastrointestinal simulation tests showed that the bioaccessibility of these elements in rice was in the order of Cd (52.07%) > Zn (36.63%) > Se (10.19%) during the gastric phase and Zn (26.82%) > Cd (18.72%) > Se (14.70%) during the intestinal phase. The bioaccessibility of Se during the intestinal phase was greater than that during the gastric phase, and the bioaccessibility of Zn and Cd were the opposite. The bioaccessibility of Se significantly increased in response to vitamin C (VC), vitamin E (VE), vitamin B6 (VB6) and vitamin B9 (VB9), especially VC, which also increased the bioaccessibility of Zn and decreased that of Cd. Procyanidins (OPC), methionine (Met) and coenzyme Q10 (Q10) significantly reduced the bioaccessibility of Se. These results suggest that the reasonable use of dietary supplements can effectively regulate the in vivo contents of trace elements, which provide valuable information for developing health interventions to address problems for specific people, especially selenium-deficient people.
Collapse
|
87
|
Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020; 94:1443-1460. [PMID: 32394086 DOI: 10.1007/s00204-020-02702-9] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
Zinc (Zn) is one of the most important essential nutrients of great public health significance. It is involved in numerous biological functions and it is considered as a multipurpose trace element, due to its capacity to bind to more than 300 enzymes and more than 2000 transcriptional factors. Its role in biochemical pathways and cellular functions, such as the response to oxidative stress, homeostasis, immune responses, DNA replication, DNA damage repair, cell cycle progression, apoptosis and aging is significant. Zn is required for the synthesis of protein and collagen, thus contributing to wound healing and a healthy skin. Metallothioneins are metal-binding proteins and they are potent scavengers of heavy metals, including Zn, and protect the organism against stress. Zn deficiency is observed almost in 17% of the global population and affects many organ systems, leading to dysfunction of both humoral and cell-mediated immunity, thus increasing the susceptibility to infection. This review gives a thorough insight into the most recent evidence on the association between Zn biochemistry and human pathologies, epigenetic processes, gut microbial composition, drug targets and nanomedicine.
Collapse
Affiliation(s)
- Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Panagoula-Stamatina A Ntoupa
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece.
| |
Collapse
|
88
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|
89
|
Sun H, Wang X, Li H, Bi J, Yu J, Liu X, Zhou H, Rong Z. Selenium modulates cadmium-induced ultrastructural and metabolic changes in cucumber seedlings. RSC Adv 2020; 10:17892-17905. [PMID: 35515607 PMCID: PMC9053616 DOI: 10.1039/d0ra02866e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Intensive insight into the potential mechanisms of Se-induced Cd tolerance in cucumber seedlings is essential for further improvement of vegetable crop cultivation and breeding to obtain high yields and quality in Cd-contaminated soil. To reveal the ultrastructural and metabolic differences in Se-induced Cd tolerance, we examined the ultrastructures of chloroplasts and root cells and characterised 155 differentially expressed metabolites under Cd and/or Se stress using gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Exogenous Se greatly relieved Cd-caused injuries to the ultrastructures of cucumber leaves and roots; for example, the shapes of chloroplasts treated with Cd + Se improved or even began to return to normal, the nuclei of root cells began to regenerate better and the chromatin was well-distributed compared with plants treated with Cd alone. Metabolite profiling revealed several intermediates of glycolysis and the tricarboxylic acid (TCA) cycle; also, some amino acids were up-accumulated in Cd + Se-treated cucumber seedlings and down-accumulated in Cd-treated cucumber seedlings, such as pyruvic acid, galactose, lactose, glutaric acid and alanine in leaves, glucose-6-phosphate and serine in roots, and lactic acid and glycine in both leaves and roots. These metabolites may play dominant roles in developing Se-mediated Cd tolerance. Moreover, a high level of sugars and polyols, amino acids and organic acids were up-accumulated in Cd-treated plants. Meanwhile, our data suggest that high accumulation of fructose, α-ketoglutaric acid, shikimic acid, fumaric acid and succinic acid in roots is a Cd-specific response, indicating that these metabolites are vital for cucumbers to develop Cd resistance. This study extends the current understanding of the mechanisms of Se in abating Cd contamination in cucumber and demonstrates that metabolomics profiling provides a more comprehensive view of the response of plants to heavy metals. Intensive insight into the potential mechanisms of Se-induced Cd tolerance in cucumber seedlings is essential for further improvement of vegetable crop cultivation and breeding to obtain high yields and quality in Cd-contaminated soil.![]()
Collapse
Affiliation(s)
- Hongyan Sun
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Xiaoyun Wang
- Institute of Soil and Water Conservation, Shanxi Agricultural University Taiyuan 030045 P. R. China
| | - Huimin Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Jiahui Bi
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Jia Yu
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Xianjun Liu
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Huanxin Zhou
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| | - Zhijiang Rong
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology Taiyuan 030024 P. R. China +86 351 4399509 +86 15234173601
| |
Collapse
|
90
|
Benvenga S, Marini HR, Micali A, Freni J, Pallio G, Irrera N, Squadrito F, Altavilla D, Antonelli A, Ferrari SM, Fallahi P, Puzzolo D, Minutoli L. Protective Effects of Myo-Inositol and Selenium on Cadmium-Induced Thyroid Toxicity in Mice. Nutrients 2020; 12:nu12051222. [PMID: 32357526 PMCID: PMC7282027 DOI: 10.3390/nu12051222] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) damages the thyroid gland. We evaluated the effects of myo-inositol (MI), seleno-L-methionine (Se) or their combination on the thyroids of mice simultaneously administered with Cd chloride (CdCl2). Eighty-four male mice were divided into 12 groups (seven mice each). Six groups (controls) were treated with 0.9% NaCl (vehicle), Se (0.2 mg/kg/day), Se (0.4 mg/kg/day), MI (360 mg/kg/day), MI+Se (0.2 mg/kg) and MI+Se (0.4 mg/kg). The other six groups were treated with CdCl2 (2 mg/kg), CdCl2+MI, CdCl2+Se (0.2 mg/kg), CdCl2+Se (0.4 mg/kg), CdCl2+MI+Se (0.2 mg/kg) and CdCl2+MI+Se (0.4 mg/kg). An additional group of CdCl2-challenged animals (n= 7) was treated with resveratrol (20 mg/kg), an effective and potent antioxidant. All treatments lasted 14 days. After sacrifice, the thyroids were evaluated histologically and immunohistochemically. CdCl2 reduced the follicular area, increased the epithelial height, stroma, and cells expressing monocyte chemoattractant protein-1 (MCP-1) and C-X-C motif chemokine 10 (CXCL10). CdCl2+Se at 0.2/0.4 mg/kg insignificantly reversed the follicular and stromal structure, and significantly decreased the number of MCP-1 and CXCL10-positive cells. CdCl2+MI significantly reversed the thyroid structure and further decreased the number of MCP-1 and CXCL10-positive cells. CdCl2+MI+Se, at both doses, brought all indices to those of CdCl2-untreated mice. MI, particularly in association with Se, defends mice from Cd-induced damage. The efficacy of this combination was greater than that of resveratrol, at least when using the follicular structure as a read-out for a comparison. We suggest that the use of these nutraceuticals, more specifically the combination of MI plus SE, can protect the thyroid of Cd-exposed subjects.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.B.); (H.R.M.); (G.P.); (N.I.); (F.S.); (L.M.)
| | - Herbert R. Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.B.); (H.R.M.); (G.P.); (N.I.); (F.S.); (L.M.)
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.A.); (D.P.)
- Correspondence: ; Tel.: +39-090-692427; Fax: +39-090-2213630
| | - Jose Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.A.); (D.P.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.B.); (H.R.M.); (G.P.); (N.I.); (F.S.); (L.M.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.B.); (H.R.M.); (G.P.); (N.I.); (F.S.); (L.M.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.B.); (H.R.M.); (G.P.); (N.I.); (F.S.); (L.M.)
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.A.); (D.P.)
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.A.); (S.M.F.); (P.F.)
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.A.); (S.M.F.); (P.F.)
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.A.); (S.M.F.); (P.F.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.A.); (D.P.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.B.); (H.R.M.); (G.P.); (N.I.); (F.S.); (L.M.)
| |
Collapse
|
91
|
Binte Hossain KF, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Regulatory effects of dihydrolipoic acid against inorganic mercury-mediated cytotoxicity and intrinsic apoptosis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110238. [PMID: 32036095 DOI: 10.1016/j.ecoenv.2020.110238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is an extremely dangerous environmental contaminant, responsible for human diseases including neurological disorders. However, the mechanisms of inorganic Hg (iHg)-induced cell death and toxicity are little known. Dihydrolipoic acid (DHLA) is the reduced form of a naturally occurring compound lipoic acid, which act as a potent antioxidant through multiple mechanisms. So we hypothesized that DHLA has an inhibitory role on iHg-cytotoxicity. The purposes of this research were to investigate mechanism/s of cytotoxicity of iHg, as well as, the cyto-protection of DHLA against iHg induced toxicity using PC12 cells. Treatment of PC12 cells with HgCl2 (Hg2+) (0-2.5 μM) for 48 h resulted in significant toxic effects, such as, cell viability loss, high level of lactate dehydrogenase (LDH) release, DNA damage, cellular glutathione (GSH) level decrease and increased Hg accumulation. In addition, protein level expressions of akt, p-akt, mTOR, GR, NFkB, ERK1, Nrf2 and HO-1 in cells were downregulated; and cleaved caspase 3 and cytochrome c release were upregulated after Hg2+ (2.5 μM) exposure and thus inducing apoptosis. Hg2+induced apoptosis was also confirmed by flow cytometry. However, pretreatment with DHLA (50 μM) for 3 h before Hg2+ (2.5 μM) exposure showed inhibition against iHg2+-induced cytotoxicity by reversing cell viability loss, LDH release, DNA damage, GSH decrease and inhibiting Hg accumulation. Moreover, DHLA pretreatment reversed the protein level expressions of akt, p-akt, mTOR, GR, NFkB, ERK1, Nrf2, HO-1, cleaved caspase 3 and cytochrome c. In conclusion, results showed that DHLA could attenuate Hg2+-induced cytotoxicity via limiting Hg accumulation, boosting up of antioxidant defense, and inhibition of apoptosis in cells.
Collapse
Affiliation(s)
| | - Md Mostafizur Rahman
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan; Department of Environmental Science, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Tajuddin Sikder
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan; Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
92
|
Stojsavljević A, Rovčanin B, Krstić Đ, Borković-Mitić S, Paunović I, Kodranov I, Gavrović-Jankulović M, Manojlović D. Evaluation of trace metals in thyroid tissues: Comparative analysis with benign and malignant thyroid diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109479. [PMID: 31365889 DOI: 10.1016/j.ecoenv.2019.109479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/15/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Evaluation of trace metals at level of solid tissue can provide better information than blood or urine and, therefore, could highlight the role of metals in the etiology of organ-specific disease. The current study aimed to establish the baseline content of four essential (Mn, Cu, Zn, Se) and four toxic metals (As, Cd, Pb, U) in the healthy thyroid tissues (HTTs) by considering sex, age and smoking habits. A further aim was to examine whether differences in the content of metals exist in regard to the thyroid diseases, such as benign tumor (BT), Hashimoto's thyroiditis (HT), multinodular goiter (MNG) and thyroid cancer (TC). A total number of investigated tissue samples were 423. All metals were quantified by inductively coupled plasma-mass spectrometry (ICP-MS). It was found that the content of Cu and U was higher in HTTs of women, while the content of Zn was higher in HTTs of men. Increased content of Zn and decreased content of U was found in the group of HTTs above 50 years compared to a younger group (<50 years). Increased content of Cd, Pb and U distinguish smokers from the non-smokers. In comparison with other population groups worldwide, investigated Serbian population had up to 15 times reduced content of Se. Despite the difference in metal's profile according to biological variables, this study also demonstrated, for the first time, that each thyroid disease has its unique metal's profile. The most altered metal's content was found in tissues with HT. Contrarily, the greatest similarity in metal's content with HTTs was found in BT tissues. Based on the increased content, metal's that dominantly discriminated HTTs from the HT, MNG and TC was As, Pb and Cd, respectively. Reported results could highlight the role of toxic and essential trace metals in the not very well clarified etiology of thyroid diseases and, moreover, could provide a molecular basis for pathophysiological changes of metal's hazardous effects on thyroid health at the tissue level.
Collapse
Affiliation(s)
| | - Branislav Rovčanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Dr Subotića 13, Belgrade, Serbia
| | - Đurđa Krstić
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Slavica Borković-Mitić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, Belgrade 11060, Serbia
| | - Ivan Paunović
- Center for Endocrine Surgery, Clinical Center of Serbia, Dr Subotića 13, Belgrade, Serbia
| | - Igor Kodranov
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | | | - Dragan Manojlović
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia; South Ural State University, Chelyabinsk, Lenin Prospect 76, 454080, Russia
| |
Collapse
|
93
|
Johnson JK, Harris FL, Ping XD, Gauthier TW, Brown LAS. Role of zinc insufficiency in fetal alveolar macrophage dysfunction and RSV exacerbation associated with fetal ethanol exposure. Alcohol 2019; 80:5-16. [PMID: 30580016 DOI: 10.1016/j.alcohol.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND We previously reported that maternal alcohol use significantly increases the risk of sepsis in premature and term newborns. In the mouse, fetal ethanol exposure results in an immunosuppressed phenotype for the alveolar macrophage (AM) and decreases bacterial phagocytosis. In pregnant mice, ethanol decreased AM zinc homeostasis, which contributed to immunosuppression and impaired AM phagocytosis. In this study, we explored whether ethanol-induced zinc insufficiency extended to the pup AMs and contributed to immunosuppression and exacerbated viral lung infections. METHODS C57BL/6 female mice were fed a liquid diet with 25% ethanol-derived calories or pair-fed a control diet with 25% of calories as maltose-dextrin. Some pup AMs were treated in vitro with zinc acetate before measuring zinc pools or transporter expression and bacteria phagocytosis. Some dams were fed additional zinc supplements in the ethanol or control diets, and then we assessed pup AM zinc pools, zinc transporters, and the immunosuppressant TGFβ1. On postnatal day 10, some pups were given intranasal saline or respiratory syncytial virus (RSV), and then AM RSV phagocytosis and the RSV burden in the airway lining fluid were assessed. RESULTS Fetal ethanol exposure decreased pup AM zinc pools, zinc transporter expression, and bacterial clearance, but in vitro zinc treatments reversed these alterations. In addition, the expected ethanol-induced increase in TGFβ1 and immunosuppression were associated with decreased RSV phagocytosis and exacerbated RSV infections. However, additional maternal zinc supplements blocked the ethanol-induced perturbations in the pup AM zinc homeostasis and TGFβ1 immunosuppression, thereby improving RSV phagocytosis and attenuating the RSV burden in the lung. CONCLUSION These studies suggest that, despite normal maternal dietary zinc intake, in utero alcohol exposure results in zinc insufficiency, which contributes to compromised neonatal AM immune functions, thereby increasing the risk of bacterial and viral infections.
Collapse
|
94
|
Wu LL, Mao SS, Lin X, Yang RW, Zhu ZW. Evaluation of Whole Blood Trace Element Levels in Chinese Children with Autism Spectrum Disorder. Biol Trace Elem Res 2019; 191:269-275. [PMID: 30600499 DOI: 10.1007/s12011-018-1615-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which has increased markedly during the last decades. Essential trace elements play an important role in neurological function and their imbalances are common in children with ASD. The objective of the present study was to investigate whole blood levels of trace elements including zinc (Zn), copper (Cu), iron (Fe), and magnesium (Mg) in Chinese children with ASD. In total, 113 children diagnosed with ASD and 141 age-matched and gender-matched neurotypical children, divided into two gender and age groups of preschool age (2-5 years old) and school (6-10 years old) age, were examined. The quantitative analyses of whole blood trace element contents were performed by using flame atomic absorption spectroscopy. In the present study, the children with ASD generally had lower whole blood levels of Zn than the neurotypical controls. No significant differences in the whole blood Cu, Zn/Cu ratio, Fe, or Mg was detected between the ASD group and the control group. It is notable that whole blood Fe level in boys with ASD was significantly higher than in girls with ASD, and was nearly significant when compared with the control level of boys. After stratification for age, a significant 6% decrease in whole blood Zn levels was detected in preschool-aged children with ASD as compared to the control values. However, this significant ASD-related change was not detected in school-aged children. The whole blood Zn level and Zn/Cu ratio were significantly increased in school-aged children than in preschool-aged children in both ASD and control group. In addition, school-aged children with ASD had a significantly higher level of whole blood Fe than preschool-aged children with ASD. The results of the present study suggest an association between whole blood levels of Zn in Chinese children with ASD.
Collapse
Affiliation(s)
- Ling-Ling Wu
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Shan-Shan Mao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Xu Lin
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Rong-Wang Yang
- Department of Psychology, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Zhi-Wei Zhu
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China.
| |
Collapse
|
95
|
Dai H, Wei S, Skuza L, Jia G. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:179-184. [PMID: 31082582 DOI: 10.1016/j.ecoenv.2019.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 05/10/2023]
Abstract
Selenium (Se) and zinc (Zn) are necessary mineral nutrients for human body but millions of people have an inadequate intake of them, and eat food enriched with Se and Zn may minimize these problems. Chinese cabbage is an important food in people's daily life. The aim of this study was to evaluate the effects of single Se, Zn and their combination treatment in soil on their accumulation, antioxidant system and lipid peroxidation in roots and leaves of Chinese cabbage using soil pot culture experiment. When 0.5 mg kg-1 Se +30 mg kg-1 Zn and 1.0 mg kg-1 Se +30 mg kg-1 Zn were spiked in soils, Zn concentrations in roots and leaves of Chinese cabbage were significantly increased (p < 0.05) by 20.2%, 37.8% and 17.9%, 34.1% respectively compared to the treatment of 30 mg kg-1 Zn added, and the latter was significantly higher (p < 0.05) than that of former, indicating Se significantly promoted Zn accumulation. Almost all physiological indexes including POD, SOD, CAT, APX, GR, Chlorophyll a, Chlorophyll b, Carotenoids, MDA and Free proline in the treatments of Se or Zn spiked were significantly improved (p < 0.05) or basically unaffected compared to the control without Se or Zn added. The biomass change trends were similar with these indexes either. These results showed that the addition in soil of Se and Zn significantly increased their accumulation in Chinese cabbage without affected its formal growth. Particularly, the addition of Se promoted Zn accumulation. The conclusions were more important reference for the production practice of cash crop enriched of Se and Zn either.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Department of Cell Biology, Institute for Research on Biodiversity, University of Szczecin, Szczecin, 71-415, Poland
| | - Genliang Jia
- College of Science, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
96
|
Kirichuk AA, Skalny AA, Dodkhoyev JS, Skalnaya MG, Grabeklis AR, Ajsuvakova OP, Tinkov AA, Notova SV, Bjørklund G, Tinkova MN, Chizhov AY, Bobrovnitskiy IP, Bolotnikova EA, Chernigov VV, Skalny AV. The efficiency of Governmental and WFP UN Programs for improvement of nutritional status in Tajik schoolchildren as assessed by dietary intake and hair trace element content. J Trace Elem Med Biol 2019; 55:196-203. [PMID: 31345358 DOI: 10.1016/j.jtemb.2019.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND The objective of the study was to assess hair trace element and mineral content in children undergoing WFP UN and the governmental programs of school nutrition in Tajikistan. METHODS WFP program included provision or wheat flour fortified with micronutrients including Fe and Zn, and iodized salt, whereas within the governmental program hot meals were provided. A total of 202 children studying in schools that were not (Type 1, n = 100) or were involved in dietary intervention programs (Type 2, n = 102). Food and hair trace element content was assessed using ICP-MS. RESULTS Daily intake of Fe, I, Zn, B, Co, Mg, Si, and Sr in Type 2 schools was more than 2.5, 12, 4, 2.9, 2.6, 2, 3, and 2-fold higher than that in Type 1 schools. Correspondingly, anthropometric parameters in children from Type 2 schools exceeded the control values. Surprisingly, no significant difference in hair iodine levels was detected. Hair analysis demonstrated a significant increase in hair Ca, Mg, Na, Co, Cr, Cu, Fe, Li, Mn, Se, V, Zn content. Certain toxic elements including Al, As, and Be were also characterized by an increase in Type 2 schools. At the same time, nutritional intervention was associated with a significant decrease in hair B, Hg, and Sn levels. CONCLUSIONS Nutritional intervention within WFP and the governmental program was effective in increasing essential trace element supply in Tajik schoolchildren. However, further studies including a detailed assessment of nutritional and health status with a special focus on iodine and thyroid functioning are required.
Collapse
Affiliation(s)
- Anatoly A Kirichuk
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Andrey A Skalny
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia; ANO "Center for Biotic Medicine", Russia
| | | | - Margarita G Skalnaya
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia; ANO "Center for Biotic Medicine", Russia; IM Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Andrey R Grabeklis
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia; ANO "Center for Biotic Medicine", Russia; IM Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Olga P Ajsuvakova
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia; Yaroslavl State University, 150003, Yaroslavl, Russia
| | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia; Yaroslavl State University, 150003, Yaroslavl, Russia
| | - Svetlana V Notova
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Geir Bjørklund
- Ovidius University, 900527, Constanta, Romania; Council for Nutritional and Environmental Medicine, 8610, Mo i Rana, Norway
| | - Margarita N Tinkova
- ANO "Center for Biotic Medicine", Russia; Orenburg Central District Hospital, 460000, Orenburg, Russia
| | - Alexey Ya Chizhov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Igor P Bobrovnitskiy
- Centre for Strategic Planning, Russian Ministry of Health, 119435, Moscow, Russia
| | | | | | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia; Trace Element Institute for UNESCO, 69100, Lyon, France.
| |
Collapse
|
97
|
Kim JJ, Kim YS, Kumar V. Heavy metal toxicity: An update of chelating therapeutic strategies. J Trace Elem Med Biol 2019; 54:226-231. [PMID: 31109617 DOI: 10.1016/j.jtemb.2019.05.003] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
AIM This review illustrates heavy metals toxicity, currently available therapies and the role and efficacy of chelation therapy for its management. SUMMARY Heavy metals are necessary for various biological processes, but they become harmful in excess. Specifically, they induce oxidative stress by generating free radicals and reducing antioxidant levels. Heavy metals also alter the confirmation of protein and DNA and inhibit their function. Chelation therapy is commonly used to treat metals toxicity. Chelation is a chemical process that occurs when interaction between a central metal atom/ion and ligand leads to formation of a complex ring-like structure. The ligand has a donor ion/molecule, which has a lone pair of electrons and may be monodentate to polydentate. Each metal has a different reactivity with a ligand, so a specific chelation agent is required for each metal. Combination therapy with a chelating agent and an antioxidant led to improved outcome. CONCLUSION Heavy metal poisoning is a common health problem because of mining, smelting, industrial, agricultural and sewage waste. Heavy metals can be efficiently excreted from the body following treatment with proper chelation agents.
Collapse
Affiliation(s)
- Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Republic of Korea
| | - You-Sam Kim
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Republic of Korea
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Republic of Korea.
| |
Collapse
|
98
|
Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology. J Inorg Biochem 2019; 195:111-119. [DOI: 10.1016/j.jinorgbio.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
99
|
Zoidis E, Papadomichelakis G, Pappas AC, Theodorou G, Fegeros K. Effects of Selenium and Cadmium on Breast Muscle Fatty-Acid Composition and Gene Expression of Liver Antioxidant Proteins in Broilers. Antioxidants (Basel) 2019; 8:antiox8050147. [PMID: 31137881 PMCID: PMC6562737 DOI: 10.3390/antiox8050147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
The present work was part of a project intended to evaluate whether organic selenium (Se) has the potential to protect against toxic effects exerted by cadmium (Cd). For this reason, 300 as-hatched, one-day-old broiler chickens were randomly allocated in four dietary treatments with five replicate pens per treatment. Chickens in T1 treatment, were offered a diet supplemented with 0.3 ppm Se (as Se-yeast), without added Cd; in T2 treatment, they were offered a diet with 0.3 ppm Se and 10 ppm Cd; in T3 treatment, they were offered a diet with 0.3 ppm Se and 100 ppm Cd; in T4 treatment, chickens were offered a diet supplemented with 3 ppm Se and 100 ppm Cd. Cadmium was added to the diets in T2, T3, and T4 as CdCl2. On the fourth and sixth weeks, liver and breast samples were obtained from two broilers per replicate pen. Relative gene expression levels of catalase (CAT), superoxide dismutase 1 (SOD1) and 2 (SOD2), methionine sulfoxide reductase A (MSRA) and B3 (MSRB3), iodothyronine deiodinase 1 (DIO1), 2 (DIO2), and 3 (DIO3), glutathione peroxidase 1 (GPX1) and 4 (GPX4), thioredoxin reductase 1 (TXNRD1) and 3 (TXNRD3), and metallothionein 3 (MT3) were analyzed by real-time quantitative PCR in liver, whereas the fatty-acid (FA) profile of breast muscle was determined by gas chromatography. Broilers supplemented with 0.3 ppm Se could tolerate low levels of Cd present in the diets, as there were no significant changes in the breast muscle FA profile, whereas excess Cd led to decreased polyunsaturated fatty acids (PUFAs), and in particular n-6 PUFA. Furthermore, treatments mainly affected the messenger RNA (mRNA) expression of SOD2, TXNRD3, and MT3, while age affected CAT, MSRB3, DIO2, DIO3, GPX4, TXNRD1, and MT3. In conclusion, dietary Se may help against the negative effects of Cd, but cannot be effective when Cd is present at excessive amounts in the diet.
Collapse
Affiliation(s)
- Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - George Papadomichelakis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Athanasios C Pappas
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Georgios Theodorou
- Department of Animal Breeding and Husbandry, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Kostas Fegeros
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
100
|
Results of the first national human biomonitoring in Slovenia: Trace elements in men and lactating women, predictors of exposure and reference values. Int J Hyg Environ Health 2019; 222:563-582. [DOI: 10.1016/j.ijheh.2019.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
|