51
|
Folda A, Scalcon V, Tonolo F, Rigobello MP, Bindoli A. Thiamine disulfide derivatives in thiol redox regulation: Role of thioredoxin and glutathione systems. Biofactors 2025; 51:e2121. [PMID: 39302148 DOI: 10.1002/biof.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Thiamine (vitamin B1), under the proper conditions, is able to reversibly open the thiazole ring, forming a thiol-bearing molecule that can be further oxidized to the corresponding disulfide. To improve the bioavailability of the vitamin, several derivatives of thiamine in the thioester or disulfide form were developed and extensively studied over time, as apparent from the literature. We have examined three thiamine-derived disulfides: thiamine disulfide, sulbutiamine, and fursultiamine with reference to their intervention in modulating the thiol redox state. First, we observed that both glutathione and thioredoxin (Trx) systems were able to reduce the three disulfides. In particular, thioredoxin reductase (TrxR) reduced these disulfides either directly or in the presence of Trx. In Caco-2 cells, the thiamine disulfide derivatives did not modify the total thiol content, which, however, was significantly decreased by the concomitant inhibition of TrxR. When oxidative stress was induced by tert-butyl hydroperoxide, the thiamine disulfides exerted a protective effect, indicating that the thiol form deriving from the reduction of the disulfides might be the active species. Further, the thiamine disulfides examined were shown to increase the nuclear levels of the transcription factor nuclear factor erythroid 2 related factor 2 and to stimulate both expression and activity of NAD(P)H quinone dehydrogenase 1 and TrxR. However, other enzymes of the glutathione and Trx systems were scarcely affected. As the thiol redox balance plays a critical role in oxidative stress and inflammation, the information presented can be of interest for further research, considering the potential favorable effect exerted in the cell by many sulfur compounds, including the thiamine-derived disulfides.
Collapse
Affiliation(s)
- Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience (CNR), University of Padova, Padova, Italy
| |
Collapse
|
52
|
Li M, Ren X, Lu F, Pang S, Ding L, Wang L, Xie S, Geng L, Xu J, Yang T. IDENTIFYING POTENTIAL KEY FERROPTOSIS-RELATED GENES AND THERAPEUTIC DRUGS IN SEPSIS-INDUCED ARDS BY BIOINFORMATICS AND EXPERIMENTAL VERIFICATION. Shock 2025; 63:141-154. [PMID: 39283066 DOI: 10.1097/shk.0000000000002478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
ABSTRACT Background: Acute respiratory distress syndrome (ARDS) is a serious pathological process with high mortality. Ferroptosis is pivotal in sepsis, whose regulatory mechanisms in sepsis-induced ARDS remains unknown. We aimed to determine key ferroptosis-related genes in septic ARDS and investigate therapeutic traditional Chinese medicine. Method: Sepsis-induced ARDS dataset obtained from Gene Expression Omnibus was analyzed to identify ferroptosis-related differentially expressed genes. Enrichment analysis and protein-protein interaction network construction were performed to identify hub genes. Immune cells infiltration was analyzed and competitive endogenous RNA network was constructed. The diagnostic value of hub genes in septic ARDS was analyzed and the occurrence of ferroptosis and the expression of hub genes were detected. Traditional Chinese medicine targeting hub genes was predicted via SymMap database and was verified. Results: Sixteen ferroptosis-related differentially expressed genes were obtained, among which the top four genes ( IL1B , TXN , MAPK3 , HSPB1 ) were selected as hub genes, which may be potential diagnostic markers of septic ARDS. Immunoassay showed that sepsis-induced ARDS and hub genes were closely related to immune cells. The competitive endogenous RNA network showed 26 microRNAs and 38 long noncoding RNA. Ferroptosis occurred and the expressions of IL1B , MAPK3 , and TXN were increased in septic ARDS mice and LPS-challenged human pulmonary alveolar epithelial cells. Sea buckthorn alleviated septic lung injury and affected hub genes expression. Conclusions: Ferroptosis-related genes of IL1B , MAPK 3, and TXN serve as potential diagnostic genes for sepsis-induced ARDS. Sea buckthorn may be therapeutic medication for ARDS. This study provides a new direction for septic ARDS treatment.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaojing Ren
- Department of Anesthesiology, Tianjin Baodi Hospital, Tianjin, China
| | - Futai Lu
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Shenyue Pang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Ling Ding
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Wang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Shuhua Xie
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Licheng Geng
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Jiangang Xu
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Tao Yang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
53
|
Chen A, Covitz RM, Folsom AA, Mu X, Peck RF, Noh S. Symbiotic T6SS affects horizontal transmission of Paraburkholderia bonniea among Dictyostelium discoideum amoeba hosts. ISME COMMUNICATIONS 2025; 5:ycaf005. [PMID: 40046898 PMCID: PMC11882306 DOI: 10.1093/ismeco/ycaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/09/2025]
Abstract
Three species of Paraburkholderia are able to form facultative symbiotic relationships with the amoeba, Dictyostelium discoideum. These symbiotic Paraburkholderia share a type VI secretion system (T6SS) that is absent in other close relatives. We tested the phenotypic and transcriptional effect of tssH ATPase gene disruption in P. bonniea on its symbiosis with D. discoideum. We hypothesized that the ∆tssH mutant would have a significantly reduced ability to affect host fitness or transmit itself from host to host. We found that the T6SS does not directly affect host fitness. Instead, wildtype P. bonniea had significantly higher rates of horizontal transmission compared to ∆tssH. In addition, we observed significant differences in the range of infection prevalence achieved by wildtype vs. ∆tssH symbionts over multiple host social stages in the absence of opportunities for environmental symbiont acquisition. Successful symbiont transmission significantly contributes to sustained symbiotic association. Therefore, the shared T6SS appears necessary for a long-term evolutionary relationship between D. discoideum and its Paraburkholderia symbionts. The lack of difference in host fitness outcomes was confirmed by indistinguishable host gene expression patterns between hosts infected by wildtype or ∆tssH P. bonniea in an RNA-seq time series. These data also provided insight into how Paraburkholderia symbionts may evade phagocytosis by its amoeba host. Most significantly, cellular oxidant detoxification and lysosomal hydrolase delivery appear to be subject to the push and pull of host-symbiont crosstalk.
Collapse
Affiliation(s)
- Anna Chen
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Rachel M Covitz
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
- School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, United States
| | - Abigail A Folsom
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Xiangxi Mu
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Ronald F Peck
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Suegene Noh
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| |
Collapse
|
54
|
Johnson SS, Liu D, Ewald JT, Robles-Planells C, Pulliam C, Christensen KA, Bayanbold K, Wels BR, Solst SR, O’Dorisio MS, Menda Y, Spitz DR, Fath MA. Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth. Cancer Biol Ther 2024; 25:2382524. [PMID: 39054566 PMCID: PMC11275529 DOI: 10.1080/15384047.2024.2382524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH). The pharmacokinetic, pharmacodynamic, and safety profile of AF was examined in nude mice with DMS273 xenografts administered AF intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1-5 d. Plasma levels of AF were 10-20 μM (determined by mass spectrometry of gold), and the optimal inhibition of TrxR activity was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. This AF treatment extended for 14 d, inhibited TrxR (>75%), and resulted in a significant prolongation of median overall survival from 19 to 23 d (p = .04, N = 30 controls, 28 AF). In this experiment, there were no observed changes in animal bodyweight, complete blood counts (CBCs), bone marrow toxicity, blood urea nitrogen, or creatinine. These results support the hypothesis that AF effectively inhibits TrxR both in vitro and in vivo in SCLC, sensitizes NETs and SCLC to sorafenib, and could be repurposed as an adjuvant therapy with targeted agents that induce disruptions in thiol metabolism.
Collapse
Affiliation(s)
- Spenser S. Johnson
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Dijie Liu
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Jordan T. Ewald
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | | | - Casey Pulliam
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Keegan A. Christensen
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Khaliunaa Bayanbold
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Brian R. Wels
- State Hygienic Laboratory, University of Iowa, IA, USA
| | - Shane R. Solst
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - M. Sue O’Dorisio
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Yusuf Menda
- Department of Radiology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, IA, USA
| | - Douglas R. Spitz
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Melissa A. Fath
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| |
Collapse
|
55
|
Januskevicius A, Vasyle E, Rimkunas A, Palacionyte J, Kalinauskaite-Zukauske V, Malakauskas K. Serum T2-High Inflammation Mediators in Eosinophilic COPD. Biomolecules 2024; 14:1648. [PMID: 39766355 PMCID: PMC11674300 DOI: 10.3390/biom14121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Eosinophils are central inflammatory cells in asthma; however, a portion of patients with chronic obstructive pulmonary disease (COPD) have blood or sputum eosinophilia, a condition termed eosinophilic COPD (eCOPD), which may contribute to the progression of the disease. We hypothesize that eosinophilic inflammation in eCOPD patients is related to Type 2 (T2)-high inflammation seen in asthma and that serum mediators might help us to identify T2-high inflammation in patients and choose an appropriate personalized treatment strategy. Thus, we aimed to investigate ten serum levels of T2-high inflammation mediators in eCOPD patients and compare them to severe non-allergic eosinophilic asthma (SNEA) patients. We included 8 subjects with eCOPD, 10 with SNEA, and 11 healthy subjects (HS) as a control group. The concentrations of biomarkers in serum samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). In this study, we found that eCOPD patients were distinguished from SNEA patients by elevated serum levels of sIL-5Rα, MET, TRX1, ICTP, and IL-4, as well as decreased serum levels of eotaxin-1 and sFcεRI. Moreover, MET, ICTP, eotaxin-1, and sFcεRI demonstrated high sensitivity and specificity as potential biomarkers for eCOPD patients. Furthermore, serum levels of IL-5 and IL-25 in combination with sIL-5Rα, MET, and IL-4 demonstrated a high value in identifying T2-high inflammation in eCOPD patients. In conclusion, this study highlights that while T2-high inflammation drives eosinophilic inflammation in both eCOPD and SNEA through similar mechanisms, the distinct expression of its mediators reflects an imbalance between T1 and T2 inflammation pathways in eCOPD patients. A combined analysis of serum mediators may aid in identifying T2-high inflammation in eCOPD patients and in selecting an appropriate personalized treatment strategy.
Collapse
Affiliation(s)
- Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (J.P.); (V.K.-Z.)
| | | | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (J.P.); (V.K.-Z.)
| |
Collapse
|
56
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
57
|
Hu Z, Zhou Y, Gao C, Liu J, Pan C, Guo J. Astragaloside IV attenuates podocyte apoptosis via regulating TXNIP/NLRP3/GSDMD signaling pathway in diabetic nephropathy. Diabetol Metab Syndr 2024; 16:296. [PMID: 39696607 DOI: 10.1186/s13098-024-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES Among all the diabetes complications brought on by persistent inflammation is diabetic kidney disease (DKD). One essential method of the inflammatory response's programmed cell death is anthrax. One of the main causes of diabetic renal disease progression in a high-glycemic environment is the lysis of renal resident cells. METHOD This investigation sought to determine whether Astragaloside IV (AS-IV)'s anti-pyroptosis action provides a protective function for the kidneys. For 12 weeks, db/db mice received 40 mg/kg of AS-IV by transgastric gavage. To validate the possible in vitro mechanism, mouse podocytes were cultivated for additional experiments. RESULTS In vitro, AS-IV led to a significant reduction in blood urea nitrogen (BUN), urine albumen-to-creatinine ratio (UACR), serum creatinine (CREA), and hyperglycemia in db/db mice and lessen the pathological alterations in the kidney. Moreover, pyrin structural domain of the NLR family pyrin domain containing 3 (NLRP3), cleaved-caspase-1, gasdermin D (GSDMD), IL-18, and IL-1β were down-expressed and podocyte markers podocin and nphs1 were up-regulated following AS-IV intervention. By silencing GSDMD, we demonstrated in vitro that HG-stimulated podocytes undergo pyroptosis. We also discovered that AS-IV can mitigate this pyroptosis. To confirm that AS-IV prevented the NLRP3 inflammasome from activating, the NLRP3 inhibitor CY-09 was employed. It was also discovered that AS-IV prevents the expression of TXNIP and NLRP3 as well as their interaction. GSDMD expression was significantly downregulated following TXNIP-siRNA treatment, whereas GSDMD expression was upregulated in TXNIP overexpression cells; this upregulation could be undone with AS-IV. CONCLUSIONS The anti-pyroptosis effect of AS-IV via the TXNIP-NLRP3-GSDMD axis improves the renal function and podocyte damage of db/db mice and delays the onset of DKD, according to in vivo and in vitro experimental data.
Collapse
Affiliation(s)
- Zhibo Hu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yu Zhou
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Cailing Gao
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Junfen Liu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Jun Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
58
|
Li JG, Zhang CJ, Liang LY, Lu TY, Zhong LG, Zhong WC, Niu CY, Sun J, Liao XP, Zhou YF. Assessment of anti-MRSA activity of auranofin and florfenicol combination: a PK/PD analysis. J Appl Microbiol 2024; 135:lxae299. [PMID: 39694699 DOI: 10.1093/jambio/lxae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
AIMS Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen with multidrug-resistant phenotypes increasingly prevalent in both human and veterinary clinics. This study evaluated the potential of auranofin (AF) as an antibiotic adjuvant to enhance the anti-MRSA activity of florfenicol (FFC) and established a pharmacokinetic/pharmacodynamic (PK/PD) model to compare the efficacy of FFC alone or in combination with AF against MRSA. METHODS AND RESULTS We observed an increased susceptibility and significant synergistic effects of MRSA to FFC in the presence of AF. The combination treatment of FFC and AF significantly inhibited MRSA biofilm formation and decreased the metabolic activity of mature biofilms. Importantly, AF fully restored the efficacy of FFC in both Galleria mellonella larvae and murine models. PK/PD studies demonstrated that the AUC24h/MIC targets required to achieve the bacteriostatic and bactericidal effects were significantly lower with the combination therapy compared to florfenicol monotherapy. CONCLUSIONS These results reveal the potential of AF as a novel adjuvant to improve the efficacy of FFC in treating MRSA invasive infections and provide valuable PK/PD insights for designing effective combination therapies.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Chuan-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Liu-Yan Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Long-Gen Zhong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Wei-Cheng Zhong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Chao-Yan Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, China
| |
Collapse
|
59
|
Chauhan N, Dedman CJ, Baldreki C, Dowle AA, Larson TR, Rickaby REM. Contrasting species-specific stress response to environmental pH determines the fate of coccolithophores in future oceans. MARINE POLLUTION BULLETIN 2024; 209:117136. [PMID: 39427478 DOI: 10.1016/j.marpolbul.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Molecular mechanisms driving species-specific environmental sensitivity in coccolithophores are unclear but crucial in understanding species selection and adaptation to environmental change. This study examined proteomic and physiological changes in three species under varying pH conditions. We showed that changing pH drives intracellular oxidative stress and changes membrane potential. Upregulation in antioxidant, DNA repair and cell cycle-related protein-groups indicated oxidative damage across high (pH 8.8) and low pH (pH 7.6) compared to control pH (pH 8.2), and correlated with reduced growth rates. Upregulation of mitochondrial proteins suggested higher metabolite demand for restoring cellular homeostasis under pH-induced stress. Photosynthetic rates generally correlated with CO2 availability, driving higher net carbon fixation rates at low pH. The intracellular pH-buffering capacity of the coastal Chrysotila carterae and high metabolic adaptability in the bloom-forming Gephyrocapsa huxleyi will likely facilitate their adaptation to ocean acidification or artificial ocean alkalinisation. However, the pH sensitivity of the ancient open-ocean Coccolithus braarudii will possibly result in reduced growth and shrinking of its ecological niche.
Collapse
Affiliation(s)
- Nishant Chauhan
- Department of Earth Sciences, University of Oxford, UK; Department of Earth Sciences, University of Cambridge, UK.
| | - Craig J Dedman
- Department of Earth Sciences, University of Oxford, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, UK
| | - Chloë Baldreki
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
60
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
61
|
Xiong Y, Yong Z, Zhao Q, Hua A, Wang X, Chen X, Yang X, Li Z. Hydroxyethyl starch-based self-reinforced nanomedicine inhibits both glutathione and thioredoxin antioxidant pathways to boost reactive oxygen species-powered immunotherapy. Biomaterials 2024; 311:122673. [PMID: 38897030 DOI: 10.1016/j.biomaterials.2024.122673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The adaptive antioxidant systems of tumor cells, predominantly glutathione (GSH) and thioredoxin (TRX) networks, severely impair photodynamic therapy (PDT) potency and anti-tumor immune responses. Here, a multistage redox homeostasis nanodisruptor (Phy@HES-IR), integrated by hydroxyethyl starch (HES)-new indocyanine green (IR820) conjugates with physcion (Phy), an inhibitor of the pentose phosphate pathway (PPP), is rationally designed to achieve PDT primed cancer immunotherapy. In this nanodisruptor, Phy effectively depletes intracellular GSH of tumor cells by inhibiting 6-phosphogluconate dehydrogenase (6PGD) activity. Concurrently, it is observed for the first time that the modified IR820-NH2 molecule not only exerts PDT action but also interferes with TRX antioxidant pathway by inhibiting thioredoxin oxidase (TRXR) activity. The simultaneous weakening of two major antioxidant pathways of tumor cells is favorable to maximize the PDT efficacy induced by HES-IR conjugates. By virtue of the excellent protecting ability of the plasma expander HES, Phy@HES-IR can remain stable in the blood circulation and efficiently enrich in the tumor region. Consequently, PDT and metabolic modulation synergistically induced immunogenic cell death, which not only suppressed primary tumors but also stimulated potent anti-tumor immunity to inhibit the growth of distant tumors in 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhengtao Yong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingfu Zhao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
62
|
Sadowski M, Zawieja E, Chmurzynska A. The impact of N-acetylcysteine on lactate, biomarkers of oxidative stress, immune response, and muscle damage: A systematic review and meta-analysis. J Cell Mol Med 2024; 28:e70198. [PMID: 39632267 PMCID: PMC11617117 DOI: 10.1111/jcmm.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
N-acetylcysteine (NAC) is a compound whose mechanism of action is intricately linked to the provision of cysteine for glutathione synthesis. It has been used in medicine and has also made significant inroads into sports, as it can modify the levels of several biomarkers, including those of oxidative processes, inflammation and muscle damage after exercise. Because the effectiveness of NAC supplementation is unclear, the primary objective of the present study was to perform a meta-analysis elucidating how NAC supplementation alters the concentrations of GSH (glutathione), GSSG (glutathione disulfide), TBARS (thiobarbituric acid reactive substances), IL-6 (interleukin 6), TNF-α (tumour necrosis factor alpha), CK (creatine kinase), lactate, and muscle soreness after physical exertion. Suitable studies were searched for from February to September 2023, and the results of those included (n = 20) indicate that NAC supplementation significantly diminishes both muscle soreness (p = 0.03; the mean difference (MD) of NAC's effect was -0.43 with a 95% confidence interval (CI), -0.81, -0.04) and lactate concentrations after exercise (p = 0.03; the MD -0.56 mmol/L; 95% CI, -1.07, -0.06). A substantial decrease was observed in concentrations of IL-6 (p = 0.03; the standardized MD (SMD) was -1.71; 95% CI, -3.26, -0.16) and TBARS (p = 0.02; SMD was -1.03, 95% CI, -1.90, -0.15). Furthermore, an elevation in GSH concentration was observed following supplementation. However, we saw no significant effect of NAC on TNF-α, CK or GSSG concentrations. NAC supplementation holds promise for attenuating muscle soreness, lactate, TBARS and IL-6 concentrations and increasing GSH level following physical exertion.
Collapse
Affiliation(s)
- Marcin Sadowski
- Department of Human Nutrition and DieteticsPoznań University of Life SciencesPoznańPoland
| | - Emilia Zawieja
- Department of Human Nutrition and DieteticsPoznań University of Life SciencesPoznańPoland
| | - Agata Chmurzynska
- Department of Human Nutrition and DieteticsPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
63
|
Rey P, Henri P, Alric J, Blanchard L, Viola S. Participation of the stress-responsive CDSP32 thioredoxin in the modulation of chloroplast ATP-synthase activity in Solanum tuberosum. PLANT, CELL & ENVIRONMENT 2024; 47:5372-5390. [PMID: 39189948 DOI: 10.1111/pce.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Plant thioredoxins (TRXs) are involved in numerous metabolic and signalling pathways, such as light-dependent regulation of photosynthesis. The atypical TRX CDSP32, chloroplastic drought-induced stress protein of 32 kDa, includes two TRX-fold domains and participates in responses to oxidative stress as an electron donor to other thiol reductases. Here, we further characterised potato lines modified for CDSP32 expression to clarify the physiological roles of the TRX. Upon high salt treatments, modified lines displayed changes in the abundance and redox status of CDSP32 antioxidant partners, and exhibited sensitivity to combined saline-alkaline stress. In non-stressed plants overexpressing CDSP32, a lower abundance of photosystem II subunits and ATP-synthase γ subunit was noticed. The CDSP32 co-suppressed line showed altered chlorophyll a fluorescence induction and impaired regulation of the transthylakoid membrane potential during dark/light and light/dark transitions. These data, in agreement with the previously reported interaction between CDSP32 and ATP-synthase γ subunit, suggest that CDSP32 affects the redox regulation of ATP-synthase activity. Consistently, modelling of protein complex 3-D structure indicates that CDSP32 could constitute a suitable partner of ATP-synthase γ subunit. We discuss the roles of the TRX in the regulation of both photosynthetic activity and enzymatic antioxidant network in relation with environmental conditions.
Collapse
Affiliation(s)
- Pascal Rey
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Patricia Henri
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Jean Alric
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Laurence Blanchard
- Aix Marseille University, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul, France
| | - Stefania Viola
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| |
Collapse
|
64
|
Pak SW, Kim WI, Lee SJ, Park SH, Cho YK, Kim JS, Kim JC, Kim SH, Shin IS. TXNIP regulates pulmonary inflammation induced by Asian sand dust. Redox Biol 2024; 78:103421. [PMID: 39520910 DOI: 10.1016/j.redox.2024.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Asian sand dust (ASD), a seasonal dust storm originating from the deserts of China and Mongolia, affects Korea and Japan during the spring, carrying soil particles and a variety of biochemical components. Exposure to ASD has been associated with the onset and exacerbation of respiratory disorders, although the underlying mechanisms remain unclear. This study investigates ASD-induced pulmonary toxicity and its mechanistic pathways, focusing on the role of thioredoxin-interacting protein (TXNIP). Using TXNIP knock-out (KO) mice and adeno-associated virus (AAV)-mediated TXNIP overexpression transgenic mice, we explored how TXNIP modulates ASD-induced pulmonary inflammation. Mice were exposed to ASD via intranasal administration on days 1, 3, and 5 to induce inflammation. ASD exposure led to significant pulmonary inflammation, evidenced by increased inflammatory cell counts and elevated cytokine levels in bronchoalveolar lavage fluid, as well as heightened protein expression of the TXNIP/NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. TXNIP KO mice exhibited attenuated airway inflammation and downregulation of the NLRP3 inflammasome compared to wild-type controls, while AAV-mediated TXNIP overexpression mice showed exacerbated inflammatory responses, including elevated NLRP3 inflammasome expression, compared to AAV-GFP controls. These findings suggest that TXNIP is a key regulator of ASD-induced pulmonary inflammation.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk, 28503, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk, 53212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
65
|
Wang Y, Hou Y, He C, Zhao Y, Duan C, Nie X, Li J. Toxic effects of acute and chronic atorvastatin exposure on antioxidant systems, autophagy processes, energy metabolism and life history in Daphnia magna. CHEMOSPHERE 2024; 369:143792. [PMID: 39577804 DOI: 10.1016/j.chemosphere.2024.143792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Atorvastatin (ATV) is a representative for hypolipidemic pharmaceuticals and is widely detectable in aquatic environments around the world. However, there are limited studies on the potential effects of ATV on aquatic non-target organisms, especially on aquatic invertebrates. In the present study, the model organism, Daphnia magna was used to investigate the responses of antioxidant system, autophagy process and energy metabolism under the acute exposure of ATV (24 h-96 h), and the changes of physiological parameters of D. magna in response to chronic ATV exposure (21 d) was addressed as well. The results showed that ATV caused oxidative stress in D. magna and elevated activities of antioxidant enzymes (SOD, GST, GPx, and TrxR) at 48 h. However, the progressively increasing oxidative pressure eventually suppressed antioxidant capacities and triggered the transcriptional autophagy process in organism under the regulation of Sestrin as well as its regulated genes (P62, LC3, ATG1, and ATG4B). ATV also altered the expression of DNA methylation related genes. Unlike the clinical response, we found acute ATV exposure led to lipid accumulation in D. magna, affecting energy metabolism. Chronic exposure of higher concentration of ATV (50, 500 μg L-1) adversely affected growth and reproduction parameters of D. magna, caused delayed molting, reduced body length, and decreased number and delayed time of neonates production. Lethal effects were observed in the 5000 μg L-1 of ATV. The present study investigated the toxic effects and mechanisms of acute and chronic ATV exposure on D. magna to provide a scientific basis for evaluating the potential ecological risks of statins on aquatic invertebrates.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, 510663, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Cuiping He
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, 510663, China
| |
Collapse
|
66
|
Tang Q, Cheng T, Liu W. Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks. Animals (Basel) 2024; 14:3466. [PMID: 39682431 DOI: 10.3390/ani14233466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Tick eggs contain a series of proteins that play important roles in egg development. A thorough characterization of egg protein expression throughout development is essential for understanding tick embryogenesis and for screening candidate molecules to develop novel interventions. In this study, eggs at four developmental stages (0, 7, 14, and 21 incubation days) were collected, and their protein extraction was profiled using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). On the first day of egg protein extraction, protein bands from day-1 eggs were re-collected and subsequently analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dynamic changes in forty egg proteins during development were further investigated using LC-parallel reaction monitoring (PRM)/MS analysis. A total of 108 transcripts were detected in day-1 eggs. Based on protein functions and families, these transcripts were classified into eight categories: transporters, enzymes, immunity and antimicrobial proteins, proteinase inhibitors, cytoskeletal proteins, heat shock proteins, secreted proteins, and uncharacterized proteins. Identification of the protein bands revealed that nine bands predominantly consisted of vitellogenin and vitellin-A, while other notable proteins included cathepsins and Kunitz domain-containing proteins. LC-PRM/MS analysis indicated that 28 transcripts increased significantly in abundance, including 13/18 enzymes, 1/1 antimicrobial peptide, 2/2 neutrophil elastase inhibitors, 3/4 vitellogenins, 3/3 heat shock proteins, 3/3 cytoskeletal proteins, 1/1 elongation factor-1, and 1/1 uncharacterized protein. Conversely, five transcripts showed a decrease significantly, including 1/1 Kunitz domain-containing protein, 2/6 aspartic proteases, and 2/5 serpins. This research provides a comprehensive overview of egg proteins and highlights the dynamic changes in protein expression during embryonic development, which may be pivotal for understanding protein functions and selecting potential candidates for further study.
Collapse
Affiliation(s)
- Qiwu Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
67
|
Gao F, Zhou X, Yang D, Chen J, Kgosi VT, Zhang C, Ma J, Tang W, Liang Z, Sun H. Potential Utility of Bacillus amyloliquefaciens SFB-1 as a Biocontrol Agent for Sweetpotato Black Rot Caused by Ceratocystis fimbriata. Genes (Basel) 2024; 15:1540. [PMID: 39766807 PMCID: PMC11675987 DOI: 10.3390/genes15121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Sweetpotato black rot, caused by Ceratocystis fimbriata, is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of Bacillus amyloliquefaciens SFB-1 against C. fimbriata. Methods: The antagonistic activities of strain SFB-1 on C. fimbriata were assessed through in vitro assays, including evaluations of mycelial inhibition, spore germination, and mycelial morphology. Pathogenicity assays on harvested sweetpotato roots assessed lesion diameter and depth. A transcriptomic analysis of C. fimbriata exposed to strain SFB-1 was performed to explore the underlying antifungal mechanism of SFB-1 on C. fimbriata. The qRT-PCR was employed to validate the RNA-seq results. Results: In vitro assays demonstrated that strain SFB-1 inhibited C. fimbriata mycelial growth by up to 81.01%, caused mycelial swelling, and completely suppressed spore germination at 108 CFU/mL. The cell-free supernatant of strain SFB-1 also suppressed C. fimbriata growth. Pathogenicity assays revealed that strain SFB-1 treatments reduced lesion diameter and depth on harvested sweetpotato roots by over 50% compared to untreated controls. Transcriptomic analysis of C. fimbriata treated with strain SFB-1 identified 1164 differentially expressed genes, with significant alterations in genes associated with cell wall integrity, cell membrane stability, spore germination, detoxification, and antioxidant responses. The qRT-PCR validation of 16 genes confirmed the consistency with the RNA-seq results. Conclusions: B. amyloliquefaciens SFB-1 demonstrates significant biocontrol efficacy against C. fimbriata through multiple mechanisms, positioning it as a promising solution for the sustainable management of sweetpotato black rot.
Collapse
Affiliation(s)
- Fangyuan Gao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Xiaosi Zhou
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Jingwei Chen
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Veronica Tshegofatso Kgosi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengling Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Jukui Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Wei Tang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Zhao Liang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| |
Collapse
|
68
|
Li Q, Feng H, Tian Q, Xiang Y, Wang X, He YX, Zhu K. Discovery of antibacterial diketones against gram-positive bacteria. Cell Chem Biol 2024; 31:1874-1884.e6. [PMID: 39089260 DOI: 10.1016/j.chembiol.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 08/03/2024]
Abstract
The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.
Collapse
Affiliation(s)
- Qian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanzhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Tian
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
69
|
Ji K, Zhang Y, Zhang T, Li D, Yuan Y, Wang L, Huang Q, Chen W. sll1019 and slr1259 encoding glyoxalase II improve tolerance of Synechocystis sp. PCC 6803 to methylglyoxal- and ethanol- induced oxidative stress by glyoxalase pathway. Appl Environ Microbiol 2024; 90:e0056424. [PMID: 39431850 PMCID: PMC11577758 DOI: 10.1128/aem.00564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
The glyoxalase pathway is the primary detoxification mechanism for methylglyoxal (MG), a ubiquitous toxic metabolite that disrupts redox homeostasis. In the glyoxalase pathway, glyoxalase II (GlyII) can completely detoxify MG. Increasing the activity of the glyoxalase system can enhance the resistance of plants or organisms to abiotic stress, but the relevant mechanism remains largely unknown. In this study, we investigated the physiological functions of GlyII genes (sll1019 and slr1259) in Synechocystis sp. PCC 6803 under MG or ethanol stress based on transcriptome and metabolome data. High-performance liquid chromatography (HPLC) results showed that proteins Sll1019 and Slr1259 had GlyII activity. Under stress conditions, sll1019 and slr1259 protected the strain against oxidative stress by enhancing the activity of the glyoxalase pathway and raising the contents of antioxidants such as glutathione and superoxide dismutase. In the photosynthetic system, sll1019 and slr1259 indirectly affected the light energy absorption by strains, synthesis of photosynthetic pigments, and activities of photosystem I and photosystem II, which was crucial for the growth of the strain under stress conditions. In addition, sll1019 and slr1259 enhanced the tolerance of strain to oxidative stress by indirectly regulating metabolic networks, including ensuring energy acquisition, NADH and NADPH production, and phosphate and nitrate transport. This study reveals the mechanism by which sll1019 and slr1259 improve oxidative stress tolerance of strains by glyoxalase pathway. Our findings provide theoretical basis for breeding, seedling, and field production of abiotic stress tolerance-enhanced variety.IMPORTANCEThe glyoxalase system is present in most organisms, and it is the primary pathway for eliminating the toxic metabolite methylglyoxal. Increasing the activity of the glyoxalase system can enhance plant resistance to environmental stress, but the relevant mechanism is poorly understood. This study revealed the physiological functions of glyoxalase II genes sll1019 and slr1259 in Synechocystis sp. PCC 6803 under abiotic stress conditions and their regulatory effects on oxidative stress tolerance of strains. Under stress conditions, sll1019 and slr1259 enhanced the activity of the glyoxalase pathway and the antioxidant system, maintained photosynthesis, ensured energy acquisition, NADH and NADPH production, and phosphate and nitrate transport, thereby protecting the strain against oxidative stress. This study lays a foundation for further deciphering the mechanism by which the glyoxalase system enhances the tolerance of cells to abiotic stress, providing important information for breeding, seedling, and selection of plants with strong stress resistance.
Collapse
Affiliation(s)
- Kai Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yihang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tianyuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daixi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuan Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
70
|
Owumi SE, Oluwawibe BJ, Chimezie J, Babalola JJ, Ogunyemi OM, Gyebi GA, Otunla MT, Altayyar A, Arunsi UO, Irozuru CE, Owoeye OO. An in vivo and in silico probing of the protective potential of betaine against sodium fluoride-induced neurotoxicity. BMC Pharmacol Toxicol 2024; 25:87. [PMID: 39548593 PMCID: PMC11568634 DOI: 10.1186/s40360-024-00812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Excessive fluoride exposure beyond the tolerable limit may adversely impacts brain functionality. Betaine (BET), a trimethyl glycine, possesses antioxidant, anti-inflammatory and anti-apoptotic functions, although the underlying mechanisms of the role of BET on fluoride-induced neurotoxicity remain unelucidated. To assess the mechanism involved in the neuro-restorative role of BET on behavioural, neurochemical, and histological changes, we employed a rat model of sodium fluoride (NaF) exposure. Animals were treated with NaF (9 mg/kg) body weight (bw) only or co-treated with BET (50 and 100 mg/kg bw) orally uninterrupted for 28 days. We obtained behavioural phenotypes in an open field, performed negative geotaxis, and a forelimb grip test, followed by oxido-inflammatory, apoptotic, and histological assessment. Behavioural endpoints indicated lessened locomotive and motor and heightened anxiety-like performance and upregulated oxidative, inflammatory, and apoptotic biomarkers in NaF-exposed rats. Co-treatment with BET significantly enhanced locomotive, motor, and anxiolytic performance, increased the antioxidant signalling mechanisms and demurred oxidative, inflammatory, and apoptotic biomarkers and histoarchitectural damage in the cerebrum and cerebellum cortices mediated by NaF. The in-silico analysis suggests that multiple hydrogen bonds and hydrophobic interactions of BET with critical amino acid residues, including arginine (ARG380 and ARG415) in the Keap1 Kelch domain, which may disrupt Keap1-Nrf2 complex and activate Nrf2. This may account for the observed increased in the Nrf2 levels, elevated antioxidant response and enhanced anti-inflammatory response. The BET-Keap1 complex was also observed to exhibit structural stability and conformational flexibility in solvated biomolecular systems, as indicated by the thermodynamic parameters computed from the trajectories obtained from a 100 ns full atomistic molecular dynamics simulation. Therefore, BET mediates neuroprotection against NaF-induced cerebro-cerebellar damage through rats' antioxidant, anti-inflammatory, and anti-apoptotic activity, which molecular interactions with Keap1-Nrf2 may drive.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria.
| | - Bayode J Oluwawibe
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Joseph Chimezie
- Endocrine and Metabolic Research Laboratory, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Jesutosin J Babalola
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Gideon A Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Nasarawa, Nigeria
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-Rl), Bingham University, Nasarawa, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Ahmad Altayyar
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Uche O Arunsi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Chioma E Irozuru
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Olatunde O Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
71
|
Duong LD, West JD, Morano KA. Redox regulation of proteostasis. J Biol Chem 2024; 300:107977. [PMID: 39522946 DOI: 10.1016/j.jbc.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead to their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out the reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes the degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.
Collapse
Affiliation(s)
- Long Duy Duong
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio, USA.
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
72
|
Xu M, Zhong S, Zhu N, Wang S, Wang J, Li X, Ren X, Kong H. Oxidative and endoplasmic reticulum stress in diabetes-related hearing loss: Protective effects of thioredoxin. Life Sci 2024; 359:123223. [PMID: 39515416 DOI: 10.1016/j.lfs.2024.123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus (DM) induces complex physiological changes in the inner ear environment. This study investigates the roles of oxidative stress (OS) and endoplasmic reticulum stress (ERS) in diabetes-related hearing loss (DRHL) and explores the potential of thioredoxin (Trx) in regulating OS, ERS, and apoptosis-related factors to mitigate the progression of hearing impairment. We conducted auditory and serological assessments in 63 patients with type 2 diabetes and 30 healthy controls. Type 2 diabetes models were induced in wild-type and Trx transgenic (Tg) mice, with auditory brainstem response (ABR) used to evaluate hearing changes. Cochlear tissues were isolated to analyse markers of apoptosis, OS, and ERS. Both patients with diabetes and mouse models exhibited hearing loss, alongside increased serum levels of Trx1, TXNIP, and AOPP, indicating oxidative damage. H&E and succinate dehydrogenase (SDH) staining revealed varying degrees of hair cell loss from the base to the apex of the cochlea in diabetic mice, with decreased expression of the hair cell protein prestin gene. Notably, Tg mice showed significant delay in hearing loss progression. In vitro, advanced glycation end-products (AGEs) induced OS and ERS in cochlear-like HEI-OC1 cells, while Trx overexpression enhanced Nrf2 activity, alleviating AGE-induced cellular stress. In conclusion, Trx exhibits protective effects against DRHL, potentially by enhancing Nrf2/HO-1/SOD2 function to reduce OS and ERS.
Collapse
Affiliation(s)
- Meng Xu
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Shiwen Zhong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Na Zhu
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Sifan Wang
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Jingyi Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Xiang Li
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| | - Hui Kong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| |
Collapse
|
73
|
Quadros Barsé L, Ulfig A, Varatnitskaya M, Vázquez-Hernández M, Yoo J, Imann AM, Lupilov N, Fischer M, Becker K, Bandow JE, Leichert LI. Comparison of the mechanism of antimicrobial action of the gold(I) compound auranofin in Gram-positive and Gram-negative bacteria. Microbiol Spectr 2024; 12:e0013824. [PMID: 39377597 PMCID: PMC11537011 DOI: 10.1128/spectrum.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/13/2024] [Indexed: 10/09/2024] Open
Abstract
While highly effective at killing Gram-positive bacteria, auranofin lacks significant activity against Gram-negative species for reasons that largely remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the low susceptibility of the Gram-negative model organism Escherichia coli to auranofin when compared to the Gram-positive model organism Bacillus subtilis. The proteome response of E. coli exposed to auranofin suggests a combination of inactivation of thiol-containing enzymes and the induction of systemic oxidative stress. Susceptibility tests in E. coli mutants lacking proteins upregulated upon auranofin treatment suggested that none of them are directly involved in E. coli's high tolerance to auranofin. E. coli cells lacking the efflux pump component TolC were more sensitive to auranofin treatment, but not to an extent that would fully explain the observed difference in susceptibility of Gram-positive and Gram-negative organisms. We thus tested whether E. coli's thioredoxin reductase (TrxB) is inherently less sensitive to auranofin than TrxB from B. subtilis, which was not the case. However, E. coli strains lacking the low-molecular-weight thiol glutathione, but not glutathione reductase, showed a high susceptibility to auranofin. Bacterial cells expressing the genetically encoded redox probe roGFP2 allowed us to observe the oxidation of cellular protein thiols in situ. Based on our findings, we hypothesize that auranofin leads to a global disturbance in the cellular thiol redox homeostasis in bacteria, but Gram-negative bacteria are inherently more resistant due to the presence of drug export systems and high cellular concentrations of glutathione.IMPORTANCEAuranofin is an FDA-approved drug for the treatment of rheumatoid arthritis. However, it has also high antibacterial activity, in particular against Gram-positive organisms. In the current antibiotics crisis, this would make it an ideal candidate for drug repurposing. However, its much lower activity against Gram-negative organisms prevents its broad-spectrum application. Here we show that, on the level of the presumed target, there is no difference in susceptibility between Gram-negative and Gram-positive species: thioredoxin reductases from both Escherichia coli and Bacillus subtilis are equally inhibited by auranofin. In both species, auranofin treatment leads to oxidative protein modification on a systemic level, as monitored by proteomics and the genetically encoded redox probe roGFP2. The single largest contributor to E. coli's relative resistance to auranofin seems to be the low-molecular-weight thiol glutathione, which is absent in B. subtilis and other Gram-positive species.
Collapse
Affiliation(s)
- Laísa Quadros Barsé
- Medical Faculty, Institute of Biochemistry and Pathobiochemistry–Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Agnes Ulfig
- Medical Faculty, Institute of Biochemistry and Pathobiochemistry–Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Marharyta Varatnitskaya
- Medical Faculty, Institute of Biochemistry and Pathobiochemistry–Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | | | - Jihyun Yoo
- Medical Faculty, Institute of Biochemistry and Pathobiochemistry–Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Astrid M. Imann
- Medical Faculty, Institute of Biochemistry and Pathobiochemistry–Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
- Institute of Electrical Engineering and Applied Sciences–Molecular Biology, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Natalie Lupilov
- Medical Faculty, Institute of Biochemistry and Pathobiochemistry–Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Marina Fischer
- Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Katja Becker
- Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Julia E. Bandow
- Faculty of Biology and Biotechnology, Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Lars I. Leichert
- Medical Faculty, Institute of Biochemistry and Pathobiochemistry–Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
74
|
Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci 2024; 31:101. [PMID: 39497143 PMCID: PMC11533606 DOI: 10.1186/s12929-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
75
|
Ji C, Pan Y, Liu B, Liu J, Zhao C, Nie Z, Liao S, Kuang G, Wu X, Liu Q, Ning J, Tang Y, Fang L. Thioredoxin C of Streptococcus suis serotype 2 contributes to virulence by inducing antioxidative stress and inhibiting autophagy via the MSR1/PI3K-Akt-mTOR pathway in macrophages. Vet Microbiol 2024; 298:110263. [PMID: 39332163 DOI: 10.1016/j.vetmic.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The thioredoxin (Trx) system plays a vital role in protecting against oxidative stress and ensures correct disulfide bonding to maintain protein function. Our previous research demonstrated that TrxA of Streptococcus suis Serotype 2 (SS2), a clinical strain from the lung of a diseased pig, contributes to virulence but is not involved in antioxidative stress. In this study, we identified another gene in the Trx family, TrxC, which encodes a protein of 104 amino acids with a CGDC active motif and 22.4 % amino acid sequence homology with TrxA. Unlike the TrxA, TrxC mutant strains were more susceptible to oxidative stresses induced by hydrogen peroxide and paraquat. In vitro experiments, the survival rate of the TrxC deletion mutant in RAW264.7 macrophages was only one-eighth of that of TrxA mutant strains. Transcriptome analysis revealed that autophagy-related genes were significantly upregulated in the TrxC mutant compared to those in the wild-type or TrxA mutant strains. Co-localization of LC3 puncta with TrxC was confirmed using laser confocal microscopy, and autophagy-related indicators were quantified using western blotting. Autophagy deficiency induced by ATG5 knockout significantly increased SS2 survival rate, especially in TrxC mutant strains. For the upstream signal regulation pathways, we found ΔTrxC strains regulate autophagy by activation of PI3K/Akt/mTOR signaling in RAW264.7 macrophages. In the Akt1-overexpressing cell line, ΔTrxC infection significantly decreased the autophagic response and promoted ΔTrxC mutant strain survival, while inhibition of Akt with MK2206 resulted in reduced ΔTrxC mutant strain survival and enhance the autophagic response. Furthermore, loss of TrxC increased the activity of MSR1, thereby inducing cellular autophagy and phagocytosis. Our data demonstrate that TrxC of SS2 contributes to virulence by inducing antioxidative stress and inhibits autophagy via the PI3K-Akt-mTOR pathway in macrophages, with MSR1 acting as a key factor in controlling infection.
Collapse
Affiliation(s)
- Chunxiao Ji
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Yanying Pan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Bocheng Liu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Jianying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Chijun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Zhuyuan Nie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Simeng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guangwei Kuang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xin Wu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Liu
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Yulong Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Lihua Fang
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China; School of Life Science and Engineering, Foshan University, Guangdong 528225, China.
| |
Collapse
|
76
|
Sun Y, Chen S, Grin IR, Zharkov DO, Yu B, Li H. The dual role of methylglyoxal in plant stress response and regulation of DJ-1 protein. PHYSIOLOGIA PLANTARUM 2024; 176:e14608. [PMID: 39508129 DOI: 10.1111/ppl.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Methylglyoxal (MG) is a highly reactive metabolic intermediate that plays important roles in plant salt stress response. This review explores the sources of MG in plants, how salt stress promotes MG production, and the dual role of MG under salt stress conditions. Both the positive role of low concentrations of MG as a signalling molecule and the toxic effects of high concentrations of MG in plant response to salt stress are discussed. The MG detoxification pathways, especially the glyoxalase system, are described in detail. Special attention is given to the novel role of the DJ-1 protein in the glyoxalase system as glyoxalase III to remove MG, and as a deglycase to decrease glycation damage caused by MG on DNA, proteins, and other biomolecules. This review aims to provide readers with comprehensive perspectives on the functions of MG in plant salt stress response, the roles of the DJ-1 protein in MG detoxification and repair of glycation-damaged molecules, as well as the broader functional implications of MG in plant salt stress tolerance. New perspectives on maintaining plant genome stability, breeding for salt-tolerant crop varieties, and improving crop quality are discussed.
Collapse
Affiliation(s)
- Yutong Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, USA
| | - Inga R Grin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
77
|
Al Amaz S, Shahid MAH, Jha R, Mishra B. Prehatch thermal manipulation of embryos and posthatch baicalein supplementation increased liver metabolism, and muscle proliferation in broiler chickens. Poult Sci 2024; 103:104155. [PMID: 39216265 PMCID: PMC11402044 DOI: 10.1016/j.psj.2024.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The exposure of broiler chickens to high ambient temperatures causes heat stress (HS), negatively affecting their health and production performance. To mitigate heat stress in broilers, various strategies, including dietary, managerial, and genetic interventions, have been extensively tested with varying degrees of efficacy. For sustainable broiler production, it is imperative to develop an innovative approach that effectively mitigates the adverse effects of HS. Our previous studies have provided valuable insights into the effects of prehatch embryonic thermal manipulation (TM) and posthatch baicalein supplementation on embryonic thermotolerance, metabolism, and posthatch growth performance. This follow-up study investigated the effect of these interventions on gluconeogenesis and lipid metabolism in the liver, as well as muscle proliferation and regeneration capacity in heat-stressed broiler chickens. A total of six-hundred fertile Cobb 500 eggs were incubated for 21 d. After candling, 238 eggs were subjected to TM at 38.5°C with 55% relative humidity (RH) from embryonic day (ED) 12 to 18. These eggs were transferred to the hatcher and kept at a standard temperature (37.5°C) from ED 19 to 21, while 236 eggs were incubated at a controlled temperature (37.5°C) till hatch. After hatching, 180 day-old chicks from both groups were raised in 36 pens treatment (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) Control heat stress (CHS), 4) Thermal manipulation heat stress (TMHS), 5) Control heat stress supplement (CHSS), and 6) Thermal manipulation heat stress supplement (TMHSS). Baicalein was added to the treatment group diets starting from d 1. All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 ⁰C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24⁰C) environment was maintained in the Control and TM groups. RH was constant (50 ± 5%) throughout the trial. In the liver, TM significantly increased (P < 0.05) IGF2 expression. Baicalein supplementation significantly increased (P < 0.05) HSF3, HSP70, SOD1, SOD2, TXN, PRARα, and GHR expression. Moreover, the combination of TM and baicalein supplementation significantly increased (P < 0.05) the expression of HSPH1, HSPB1, HSP90, LPL, and GHR. In the muscle, TM significantly increased (P < 0.05) HSF3 and Myf5 gene expression. TM and baicalein supplementation significantly increased (P < 0.05) the expression of MyoG and significantly (P < 0.05) decreased mTOR and PAX7. In conclusion, the prehatch TM of embryos and posthatch baicalein supplementation mitigated the deleterious effects of HS on broiler chickens by upregulating genes related to liver gluconeogenesis, lipid metabolism, and muscle proliferation.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Md Ahosanul Haque Shahid
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822.
| |
Collapse
|
78
|
Hilgers RH, Das KC. Redox Regulation of K + Channel: Role of Thioredoxin. Antioxid Redox Signal 2024; 41:818-844. [PMID: 39099341 PMCID: PMC11631806 DOI: 10.1089/ars.2023.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 08/06/2024]
Abstract
Significance: Potassium channels regulate the influx and efflux of K+ ions in various cell types that generate and propagate action potential associated with excitation, contraction, and relaxation of various cell types. Although redox active cysteines are critically important for channel activity, the redox regulation of K+ channels by thioredoxin (Trx) has not been systematically reviewed. Recent Advances: Redox regulation of K+ channel is now increasingly recognized as drug targets in the pathological condition of several cardiovascular disease processes. The role of Trx in regulation of these channels and its implication in pathological conditions have not been adequately reviewed. This review specifically focuses on the redox-regulatory role of Trx on K+ channel structure and function in physiological and pathophysiological conditions. Critical Issues: Ion channels, including K+ channel, have been implicated in the functioning of cardiomyocyte excitation-contraction coupling, vascular hyperpolarization, cellular proliferation, and neuronal stimulation in physiological and pathophysiological conditions. Although oxidation-reduction of ion channels is critically important in their function, the role of Trx, redox regulatory protein in regulation of these channels, and its implication in pathological conditions need to be studied to gain further insight into channel function. Future Directions: Future studies need to map all redox regulatory pathways in channel structure and function using novel mouse models and redox proteomic and signal transduction studies, which modulate various currents and altered excitability of relevant cells implicated in a pathological condition. We are yet at infancy of studies related to redox control of various K+ channels and structured and focused studies with novel animal models. Antioxid. Redox Signal. 41, 818-844.
Collapse
Affiliation(s)
- Rob H.P. Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kumuda C. Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
79
|
Zhang W, Yu W, Zhu Y, Gu J, Gu X. Alda-1 Ameliorates Oxidative Stress-Induced Cardiomyocyte Damage by Inhibiting the Mitochondrial ROS/TXNIP/NLRP3 Pathway. J Biochem Mol Toxicol 2024; 38:e70032. [PMID: 39467157 DOI: 10.1002/jbt.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Alda-1 functions as an agonist of aldehyde dehydrogenase (ALDH2) within the mitochondria, contributing to the preservation of mitochondrial structure and function. This study aimed to determine whether Alda-1 inhibited the accumulation of mitochondrial reactive oxygen species (mtROS) and improved cardiomyocyte damage under oxidative stress. Cardiomyocytes derived from human induced pluripotent embryonic stem cells (iPSC-CMs) and human AC16 cardiomyocytes were chosen for the experiments. Oxidative stress was induced in both cardiomyocyte types using hydrogen peroxide (H2O2), a commonly employed agent. The mtROS accumulation and mitochondrial functional status were assessed by measuring the ROS content, mitochondrial membrane potential, and mitochondrial respiratory chain function. Co-IP experiments were used to analyze whether mtROS promoted protein interactions between TXNIP and NLRP3 and induced NLRP3 inflammasome activation. The results showed that Alda-1 mitigated damage to mitochondrial structure and function under oxidative stress, concurrently reducing the accumulation of mtROS. Co-IP experiments revealed that elevated mtROS levels attenuated the protein interaction between TXNIP and TRX while intensifying the interaction between TXNIP and NLRP3. Consequently, this triggers activation of the NLRP3 inflammasome, leading to cardiomyocyte damage. In contrast, TXNIP knockdown inhibited H2O2-induced myocardial injury and enhanced the therapeutic effects of Alda-1. Collectively, the results show that, in an H2O2 environment, Alda-1 increased the production of ALDH2 activity in cardiomyocytes, hindered the production of mtROS, disrupted the interaction between TXNIP and NLRP3, and alleviated myocardial damage during oxidative stress.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Medicine College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Yu
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Ye Zhu
- Medicine College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Gu
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Medicine College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
80
|
Chakraborty S, Choudhuri A, Mishra A, Sengupta R. The hunt for transnitrosylase. Nitric Oxide 2024; 152:31-47. [PMID: 39299646 DOI: 10.1016/j.niox.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The biochemical interplay between antioxidants and pro-oxidants maintains the redox homeostatic balance of the cell, which, when perturbed to moderate or high extents, has been implicated in the onset and/or progression of chronic diseases such as diabetes mellitus, cancer, and neurodegenerative diseases. Thioredoxin, glutaredoxin, and lipoic acid-like thiol oxidoreductase systems constitute a unique ensemble of robust cellular antioxidant defenses, owing to their indispensable roles as S-denitrosylases, S-deglutathionylases, and disulfide reductants in maintaining a reduced free thiol state with biological relevance. Thus, in cells subjected to nitrosative stress, cellular antioxidants will S-denitrosylate their cognate S-nitrosoprotein substrates, rather than participate in trans-S-nitrosylation via protein-protein interactions. Researchers have been at the forefront of vaguely establishing the concept of 'transnitrosylation' and its influence on pathophysiology with experimental evidence from in vitro studies that lack proper biochemical logic. The suggestive and reiterative use of antioxidants as transnitrosylases in the scientific literature leaves us on a cliffhanger with several open-ended questions that prompted us to 'hunt' for scientific logic behind the trans-S-nitrosylation chemistry. Given the gravity of the situation and to look at the bigger picture of 'trans-S-nitrosylation', we aim to present a novel attempt at justifying the hesitance in accepting antioxidants as capable of transnitrosylating their cognate protein partners and reflecting on the need to resolve the controversy that would be crucial from the perspective of understanding therapeutic outcomes involving such cellular antioxidants in disease pathogenesis. Further characterization is required to identify the regulatory mechanisms or conditions where an antioxidant like Trx, Grx, or DJ-1 can act as a cellular transnitrosylase.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
81
|
Shukla M, Mali G, Sharma S, Maji S, Yadav V, Mishra A, Erande RD, Bhattacharyya S. One-Pot Green Synthesis and Biological Evaluation of Dimedone-Coupled 2,3-Dihydrofuran Derivatives to Divulge Their Inhibition Potential against Staphylococcal Thioredoxin Reductase Enzyme. ACS OMEGA 2024; 9:43414-43425. [PMID: 39494007 PMCID: PMC11525517 DOI: 10.1021/acsomega.4c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024]
Abstract
New therapeutic leads are in global demand against multiple drug-resistant Staphylococcus aureus, as presently there is no drug of choice left to treat this pathogen. In the present work, we have designed, synthesized, and in vitro validated dimedone-coupled 2,3-dihydrofuran (DDHF)-based inhibitor scaffolds against Staphylococcal thioredoxin reductase (SaTR), a pivotal drug target enzyme of Gram-positive pathogens. Accordingly, a green multicomponent method that is both efficient and one pot has been optimized to synthesize DDHF derivatives. The synthesized DDHF derivatives were found to inhibit a purified SaTR enzyme. The best inhibitor derivative, DDHF20, inhibits SaTR as a competitive inhibitor for the NADPH binding site at low micromolar concentrations. DDHF20-capped silver nanoparticles are synthesized and characterized, and their bactericidal property has been checked in vitro. Furthermore, detailed in silico-based structure-guided functional studies have been carried out to uncover the plausible mode of action of DDHF20 as a potential anti-Staphylococcal therapeutic lead.
Collapse
Affiliation(s)
- Manjari Shukla
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Supriya Sharma
- Department
of Chemistry, Indian Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Sushobhan Maji
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Vinay
Kumar Yadav
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Amit Mishra
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| |
Collapse
|
82
|
Correia SP, Moedas MF, Taylor LS, Naess K, Lim AZ, McFarland R, Kazior Z, Rumyantseva A, Wibom R, Engvall M, Bruhn H, Lesko N, Végvári Á, Käll L, Trost M, Alston CL, Freyer C, Taylor RW, Wedell A, Wredenberg A. Quantitative proteomics of patient fibroblasts reveal biomarkers and diagnostic signatures of mitochondrial disease. JCI Insight 2024; 9:e178645. [PMID: 39288270 PMCID: PMC11530135 DOI: 10.1172/jci.insight.178645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDMitochondrial diseases belong to the group of inborn errors of metabolism (IEM), with a prevalence of 1 in 2,000-5,000 individuals. They are the most common form of IEM, but, despite advances in next-generation sequencing technologies, almost half of the patients are left genetically undiagnosed.METHODSWe investigated a cohort of 61 patients with defined mitochondrial disease to improve diagnostics, identify biomarkers, and correlate metabolic pathways to specific disease groups. Clinical presentations were structured using human phenotype ontology terms, and mass spectrometry-based proteomics was performed on primary fibroblasts. Additionally, we integrated 6 patients carrying variants of uncertain significance (VUS) to test proteomics as a diagnostic expansion.RESULTSProteomic profiles from patient samples could be classified according to their biochemical and genetic characteristics, with the expression of 5 proteins (GPX4, MORF4L1, MOXD1, MSRA, and TMED9) correlating with the disease cohort, thus acting as putative biomarkers. Pathway analysis showed a deregulation of inflammatory and mitochondrial stress responses. This included the upregulation of glycosphingolipid metabolism and mitochondrial protein import, as well as the downregulation of arachidonic acid metabolism. Furthermore, we could assign pathogenicity to a VUS in MRPS23 by demonstrating the loss of associated mitochondrial ribosome subunits.CONCLUSIONWe established mass spectrometry-based proteomics on patient fibroblasts as a viable and versatile tool for diagnosing patients with mitochondrial disease.FUNDINGThe NovoNordisk Foundation, Knut and Alice Wallenberg Foundation, Wellcome Centre for Mitochondrial Research, UK Medical Research Council, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children.
Collapse
Affiliation(s)
- Sandrina P. Correia
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marco F. Moedas
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucie S. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Albert Z. Lim
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Kazior
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasia Rumyantseva
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden
| | - Matthias Trost
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte L. Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Christoph Freyer
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
83
|
Saez J, Quero J, Rodriguez-Yoldi MJ, Gimeno MC, Cerrada E. Gold(I) Complexes Based on Nonsteroidal Anti-Inflammatory Derivatives as Multi-Target Drugs against Colon Cancer. Inorg Chem 2024; 63:19769-19782. [PMID: 39389034 PMCID: PMC11497205 DOI: 10.1021/acs.inorgchem.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Targeting inflammation and the molecules involved in the inflammatory process could be an effective cancer prevention and therapy strategy. Therefore, the use of anti-inflammatory strategies, such as NSAIDs and metal-based drugs, has become a promising approach for preventing and treating cancer by targeting multiple pathways involved in tumor progression. The present work describes new phosphane gold(I) complexes derived from nonsteroidal anti-inflammatory drugs as multitarget drugs against colon cancer. The antiproliferative effect of the most active complexes, [Au(L3)(JohnPhos)] (3b), [Au(L4)(CyJohnPhos)] (4a) and [Au(L4)(JohnPhos)] (4b) against colon cancer cells (Caco2-/TC7) seems to be mediated by the inhibition of the enzyme cyclooxygenase-1/2, modulation of reactive oxygen species levels by targeting thioredoxin reductase (TrxR) activity, and induction of apoptosis in cancer cells. Additionally, the three complexes exhibit high selectivity index values toward noncancerous cells. The research highlights the importance of maintaining cellular redox balance and the role of TrxR in cancer cell survival.
Collapse
Affiliation(s)
- Javier Saez
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Javier Quero
- Departamento
de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de
Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición
(CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
- Instituto
de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - María Jesús Rodriguez-Yoldi
- Departamento
de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de
Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición
(CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
- Instituto
de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Elena Cerrada
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
84
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
85
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
86
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
87
|
Huang B, Zhang J, Tian H, Ren S, Chen K, Feng J, Fan S, Tuo Y, Wang X, Yu L, Ma C, Peng Q, Chen X, He R, Li G. Metformin modulates the TXNIP-NLRP3-GSDMD pathway to improve diabetic bladder dysfunction. Sci Rep 2024; 14:23868. [PMID: 39396086 PMCID: PMC11470931 DOI: 10.1038/s41598-024-72129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/04/2024] [Indexed: 10/14/2024] Open
Abstract
To validate the therapeutic efficacy of metformin on diabetic bladder dysfunction (DBD) and further elucidate whether the TXNIP-NLRP3-GSDMD axis serves as a target for metformin in ameliorating DBD. C57BL/6J mice were induced with diet-induced obesity by being fed a high-fat diet (HFD) for 16 weeks. After establishing the model, the mice were treated with metformin for 4 weeks, and their glucose metabolism-related parameters were assessed. Urine spot assays and urodynamic measurements were conducted to reflect the bladder function and urinary behavior in mice, while histological examination was performed to observe morphological changes. Western blot analysis was employed to measure the expression levels of pyroptotic factors such as TXNIP, NLRP3, GSDMD, and tight junction proteins. Metformin treatment significantly improved glucose tolerance and insulin sensitivity in mice. Moreover, it showed promise in decreasing urinary spot occurrence, reducing urination frequency, alleviating non-voiding contractions, and stabilizing peak urinary pressure. Following metformin therapy, mice displayed restored epithelial fold structure, increased thickness of the muscular layer, substantial decrease in muscle fiber content, notably reduced levels of TXNIP and GSDMD proteins in the metformin-treated group compared to the DBD group, and restored expression of tight junction proteins Zo-1, Claudin-1, and Occludin. Metformin ameliorates urothelial cells damage in DBD mice by inhibiting TXNIP generation and reducing NLRP3 and GSDMD production.
Collapse
Affiliation(s)
- Bincheng Huang
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jin Zhang
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Haifu Tian
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai Ren
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Keming Chen
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jiajin Feng
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuzhe Fan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Yunshang Tuo
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xuehao Wang
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Leyi Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Cunling Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Qingjie Peng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiaojiang Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.
| | - Guangyong Li
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
88
|
Liu QH, Yuan L, Li ZH, Leung KMY, Sheng GP. Natural Organic Matter Enhances Natural Transformation of Extracellular Antibiotic Resistance Genes in Sunlit Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17990-17998. [PMID: 39324609 DOI: 10.1021/acs.est.4c08211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Antibiotic resistance genes (ARGs) as emerging environmental contaminants exacerbate the risk of spreading antibiotic resistance. Natural organic matter (NOM) is ubiquitous in aquatic environments and plays a crucial role in biogeochemical cycles. However, its impact on the dissemination of extracellular antibiotic resistance genes (eARGs) under sunlight exposure remains elusive. This study reveals that environmentally relevant levels of NOM (0.1-20 mg/L) can significantly enhance the natural transformation frequency of the model bacterium Acinetobacter baylyi ADP1 by up to 7.6-fold under simulated sunlight. Similarly, this enhancement was consistently observed in natural water and wastewater systems. Further mechanism analysis revealed that reactive oxygen species (ROS) generated by NOM under sunlight irradiation, primarily singlet oxygen and hydroxyl radicals, play a crucial role in this process. These ROS induce intracellular oxidative stress and elevated cellular membrane permeability, thereby indirectly boosting ATP production and enhancing cell competence of extracellular DNA uptake and integration. Our findings highlight a previously underestimated role of natural factors in the dissemination of eARGs within aquatic ecosystems and deepen our understanding of the complex interplay between NOM, sunlight, and microbes in environmental water bodies. This underscores the importance of developing comprehensive strategies to mitigate the spread of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Qian-He Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
89
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
90
|
Zhu H, Wang H, Wang D, Liu S, Sun X, Qu Z, Zhang A, Ye C, Li R, Wu B, Liu M, Gao J. Nme8 is essential for protection against chemotherapy drug cisplatin-induced male reproductive toxicity in mice. Cell Death Dis 2024; 15:730. [PMID: 39368984 PMCID: PMC11457495 DOI: 10.1038/s41419-024-07118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cisplatin (CP), a chemotherapy drug commonly used in cancers treatment, causes serious reproductive toxicity. With younger cancer patients and increasing survival rates, it is important to preserve their reproductive capacity. NME8 is highly expressed in testis and contains thioredoxin and NDPK domains, suggesting it may be a target against the CP-induced reproductive toxicity. We deleted exons 6-7 of the Nme8 in mice based on human mutation sites and observed impaired transcript splicing. In mice, Nme8 was not essential for spermatogenesis, possibly due to functional compensation by its paralog, Nme5. Nme8 expression was elevated and translocated to the nucleus in response to two weeks of CP treatment. Under CP treatment, Nme8 deficiency further impaired antioxidant capacity, induced lipid peroxidation and increased ROS level, and failed to activate autophagy, resulting in aggravated DNA damage in testes and sperm. Consequently, the proliferation and differentiation of spermatogonia and the meiosis of spermatocyte were almost completely halted, and sperm motility was impaired. Our research indicates that NME8 protects against CP-induced testis and sperm damage. This may provide new insights into the physiological functions of the Nme family and potential targets for preserving fertility in young male cancer patients.
Collapse
Affiliation(s)
- Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China
| | - Dan Wang
- Obstetrics department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Shuqiao Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China
| | - Xiaoli Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China
| | - Zhengjiang Qu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China
| | - Chao Ye
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China
| | - Runze Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, China.
| |
Collapse
|
91
|
Sudhadevi T, Harijith A. Thioredoxin: an antioxidant, a therapeutic target and a possible biomarker. Pediatr Res 2024; 96:1117-1119. [PMID: 38942889 PMCID: PMC11521983 DOI: 10.1038/s41390-024-03370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
92
|
He P, Hu S, Zhang Y, Xiang Z, Zhu A, Chen S. Transcription factor AbrB regulates ROS generation and clearance in Bacillus licheniformis. Microbiol Res 2024; 287:127843. [PMID: 39024796 DOI: 10.1016/j.micres.2024.127843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Oxidative damage caused by the accumulation of reactive oxygen species (ROS) is one of the main obstacles to the improvement of microbial cell growth and fermentation characteristics under adverse environments. And the antioxidant capacity of cells will increase with the cell growth. Here, we found that a transition state transcription factor AbrB related to changes in cell growth status could regulate the accumulation of ROS and antioxidant capacity in Bacillus licheniformis. The results showed that the accumulation of intracellular ROS was reduced by 23.91 % and the cell survival rates were increased by 1.77-fold under 0.5 mM H2O2 when AbrB was knocked out. We further mapped regulatory target genes of AbrB related to ROS generation or clearance based on our previously analyzed transcriptome sequencing. It proved that AbrB could promote ROS generation via upregulating the synthesis of oxidase and siderophores, and negatively regulating the synthesis of iron chelators (pulcherriminic acid, and H2S). Additionally, AbrB could inhibit ROS clearance by negatively regulating the synthesis of antioxidase (superoxide dismutase, catalase, peroxidase, thioredoxin, thioredoxin reductase) and cysteine. Those results illustrated that the inactivation of AbrB during the stationary phase, along with its control over ROS generation and clearance, might represent a vital self-protection mechanism during cell evolution. Overall, the systematic investigation of the multi-pathway regulation network of ROS generation and clearance highlights the important function of AbrB in maintaining intracellular redox balance.
Collapse
Affiliation(s)
- Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhengwei Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Anting Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
93
|
Peng S, Chen Y, Wang R, Zhang J. Z-ligustilide provides a neuroprotective effect by regulating the phenotypic polarization of microglia via activating Nrf2-TrxR axis in the Parkinson's disease mouse model. Redox Biol 2024; 76:103324. [PMID: 39180982 PMCID: PMC11388202 DOI: 10.1016/j.redox.2024.103324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
The polarization phenotype of microglia is critical in the progression of Parkinson's disease (PD). Molecules that can polarize microglia toward the M2 phenotype represent a promising class of compounds for anti-PD medications. Z-ligustilide (ZLG) is a naturally occurring enol ester with diverse pharmacological properties, especially in neuroprotection. For the first time, we investigated the effect of ZLG on anti-PD and elucidated its underlying mechanism. The results primarily showed that ZLG attenuated motor deficits in mice and prevented the loss of dopaminergic neurons in the substantia nigra. Mechanistically, ZLG alleviates oxidative stress-induced apoptosis of microglia by triggering the endogenous antioxidant system. Besides, ZLG modulated phenotypic polarization of the microglia through the activation of the Nrf2-TrxR axis, leading to microglia polarization towards the M2 phenotype. Taken together, our research showed that ZLG is a prospective therapy candidate for PD by altering microglia polarization and restoring redox equilibrium through the Nrf2-TrxR axis.
Collapse
Affiliation(s)
- Shoujiao Peng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Chen
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ran Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
94
|
Bazbaz W, Kartawy M, Hamoudi W, Ojha SK, Khaliulin I, Amal H. The Role of Thioredoxin System in Shank3 Mouse Model of Autism. J Mol Neurosci 2024; 74:90. [PMID: 39347996 PMCID: PMC11457715 DOI: 10.1007/s12031-024-02270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by difficulties in social interaction and communication, repetitive behaviors, and restricted interests. Unfortunately, the underlying molecular mechanism behind ASD remains unknown. It has been reported that oxidative and nitrosative stress are strongly linked to ASD. We have recently found that nitric oxide (NO•) and its products play an important role in this disorder. One of the key proteins associated with NO• is thioredoxin (Trx). We hypothesize that the Trx system is altered in the Shank3 KO mouse model of autism, which may lead to a decreased activity of the nuclear factor erythroid 2-related factor 2 (Nrf2), resulting in oxidative stress, and thus, contributing to ASD-related phenotypes. To test this hypothesis, we conducted in vivo behavioral studies and used primary cortical neurons derived from the Shank3 KO mice and human SH-SY5Y cells with SHANK3 mutation. We showed significant changes in the levels and activity of Trx redox proteins in the Shank3 KO mice. A Trx1 inhibitor PX-12 decreased Trx1 and Nrf2 expression in wild-type mice, causing abnormal alterations in the levels of synaptic proteins and neurotransmission markers, and an elevation of nitrosative stress. Trx inhibition resulted in an ASD-like behavioral phenotype, similar to that of Shank3 KO mice. Taken together, our findings confirm the strong link between the Trx system and ASD pathology, including the increased oxidative/nitrosative stress, and synaptic and behavioral deficits. The results of this study may pave the way for identifying novel drug targets for ASD.
Collapse
Affiliation(s)
- Wisam Bazbaz
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shashank Kumar Ojha
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Khaliulin
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
95
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
96
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
97
|
Wang Y, Yuan H, Fang R, Zhang R, Wang WJ. Unveiling the cytotoxicity of a new gold(I) complex towards hepatocellular carcinoma by inhibiting TrxR activity. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1537-1548. [PMID: 39314165 PMCID: PMC11532207 DOI: 10.3724/abbs.2024155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/06/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is an aggressive malignancy with limited therapeutic options. In this study, we assess a collection of newly designed gold(I) phosphine complexes. Remarkably, the compound GC002 exhibits the greatest toxicity to HCC cells and outperforms established medications, such as sorafenib and auranofin, in terms of antitumor efficacy. GC002 triggers irreversible necroptosis in HCC cells by increasing the intracellular accumulation of reactive oxygen species (ROS). Mechanistically, GC002 significantly suppresses the activity of thioredoxin reductase (TrxR), which plays a crucial role in regulating redox homeostasis and is often overexpressed in HCC by binding directly to the enzyme. Our in vivo xenograft study confirms that GC002 possesses remarkable antitumor activity against HCC without severe side effects. These findings not only highlight the novel mechanism of controlling necroptosis via TrxR and ROS but also identify GC002 as a promising candidate for the further development of antitumor agents targeting HCC.
Collapse
Affiliation(s)
- Yuan Wang
- Fujian Provincial Key Laboratory of Translational Cancer MedicineClinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhou350014China
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
| | - Haokun Yuan
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
| | - Ruiqin Fang
- The School of Life ScienceUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Ran Zhang
- Faculty of Science and EngineeringUniversity of GroningenGroningen9713AVtheNetherlands
| | - Wei-jia Wang
- Fujian Provincial Key Laboratory of Translational Cancer MedicineClinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhou350014China
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| |
Collapse
|
98
|
Ceccherini V, Giorgi E, Mannelli M, Cirri D, Gamberi T, Gabbiani C, Pratesi A. Synthesis, Chemical Characterization, and Biological Evaluation of Hydrophilic Gold(I) and Silver(I) N-Heterocyclic Carbenes as Potential Anticancer Agents. Inorg Chem 2024; 63:16949-16963. [PMID: 39226133 DOI: 10.1021/acs.inorgchem.4c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-β-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.
Collapse
Affiliation(s)
- Valentina Ceccherini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Ester Giorgi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
99
|
Giraldo-Osorno PM, Wirsig K, Asa'ad F, Omar O, Trobos M, Bernhardt A, Palmquist A. Macrophage-to-osteocyte communication: Impact in a 3D in vitro implant-associated infection model. Acta Biomater 2024; 186:141-155. [PMID: 39142531 DOI: 10.1016/j.actbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1β and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.
Collapse
Affiliation(s)
- Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Wirsig
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Bernhardt
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany.
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
100
|
Teijeira A, Garasa S, Ochoa MC, Sanchez-Gregorio S, Gomis G, Luri-Rey C, Martinez-Monge R, Pinci B, Valencia K, Palencia B, Barbés B, Bolaños E, Azpilikueta A, García-Cardosa M, Burguete J, Eguren-Santamaría I, Garate-Soraluze E, Berraondo P, Perez-Gracia JL, de Andrea CE, Rodriguez-Ruiz ME, Melero I. Low-Dose Ionizing γ-Radiation Elicits the Extrusion of Neutrophil Extracellular Traps. Clin Cancer Res 2024; 30:4131-4142. [PMID: 38630754 PMCID: PMC11393545 DOI: 10.1158/1078-0432.ccr-23-3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Patients with cancer frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NET), we have investigated the mechanisms, consequences, and occurrence of such phenomena in patients undergoing radiotherapy. EXPERIMENTAL DESIGN NETosis was analyzed in cultures of neutrophils isolated from healthy donors, patients with cancer, and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes, and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice for assessing their effects on metastasis. Circulating NETs in irradiated patients with cancer were measured using ELISA methods for detecting MPO-DNA complexes and citrullinated histone 3. RESULTS Irradiation of neutrophils with very low γ-radiation doses (0.5-1 Gy) elicits NET formation in a manner dependent on oxidative stress, NADPH oxidase activity, and autocrine IL8. Radiation-induced NETs interfere with NK cell and T-cell cytotoxicity. As a consequence, preinjection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses. CONCLUSIONS NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion, and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments. See related commentary by Mowery and Luke, p. 3965.
Collapse
Affiliation(s)
- Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Rafael Martinez-Monge
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Beatrice Pinci
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Karmele Valencia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Solid Tumors Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Belen Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Benigno Barbés
- Department of Radiation Physics and Radiation Protection, Clínica Universidad de Navarra, Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marina García-Cardosa
- Department of Physics and Applied Mathematics, Universidad de Navarra, Pamplona, Spain
| | - Javier Burguete
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Physics and Applied Mathematics, Universidad de Navarra, Pamplona, Spain
| | - Iñaki Eguren-Santamaría
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Medical Oncology, Universidad de Navarra, Pamplona, Spain
| | - Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose L Perez-Gracia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Medical Oncology, Universidad de Navarra, Pamplona, Spain
| | - Carlos E de Andrea
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Anatomy, Physiology and Pathology, Universidad de Navarra, Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|