51
|
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts. Nanotoxicology 2024; 18:565-581. [PMID: 39295432 PMCID: PMC11581909 DOI: 10.1080/17435390.2024.2404074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
We have previously demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused extensive interstitial fibrosis and inflammatory cell infiltration in mouse lungs. However, the underlying mechanisms of Nano-Co-induced pulmonary fibrosis remain unclear. In this study, we investigated the role of high-mobility group box 1 (HMGB1) in the epithelial cell-fibroblast crosstalk in Nano-Co-induced pulmonary fibrosis. Our results showed that Nano-Co exposure caused remarkable production and release of HMGB1, as well as nuclear accumulation of HIF-1α in human bronchial epithelial cells (BEAS-2B) in a dose- and a time-dependent manner. Pretreatment with CAY10585, an inhibitor against HIF-1α, significantly blocked the overexpression of HMGB1 in cell lysate and the release of HMGB1 in the supernatant of BEAS-2B cells induced by Nano-Co exposure, indicating that Nano-Co exposure induces HIF-1α-dependent HMGB1 overexpression and release. In addition, treatment of lung fibroblasts (MRC-5) with conditioned media from Nano-Co-exposed BEAS-2B cells caused increased RAGE expression, MAPK signaling activation, and enhanced expression of fibrosis-associated proteins, such as fibronectin, collagen 1, and α-SMA. However, conditioned media from Nano-Co-exposed BEAS-2B cells with HMGB1 knockdown had no effects on the activation of MRC-5 fibroblasts. Finally, inhibition of ERK1/2, p38, and JNK all abolished MRC-5 activation induced by conditioned media from Nano-Co-exposed BEAS-2B cells, suggesting that MAPK signaling might be a key downstream signal of HMGB1/RAGE to promote MRC-5 fibroblast activation. These findings have important implications for understanding the pro-fibrotic potential of Nano-Co.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
52
|
He RR, Yue GL, Dong ML, Wang JQ, Cheng C. Sepsis Biomarkers: Advancements and Clinical Applications-A Narrative Review. Int J Mol Sci 2024; 25:9010. [PMID: 39201697 PMCID: PMC11354379 DOI: 10.3390/ijms25169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Sepsis is now defined as a life-threatening syndrome of organ dysfunction triggered by a dysregulated host response to infection, posing significant challenges in critical care. The main objective of this review is to evaluate the potential of emerging biomarkers for early diagnosis and accurate prognosis in sepsis management, which are pivotal for enhancing patient outcomes. Despite advances in supportive care, traditional biomarkers like C-reactive protein and procalcitonin have limitations, and recent studies have identified novel biomarkers with increased sensitivity and specificity, including circular RNAs, HOXA distal transcript antisense RNA, microRNA-486-5p, protein C, triiodothyronine, and prokineticin 2. These emerging biomarkers hold promising potential for the early detection and prognostication of sepsis. They play a crucial role not only in diagnosis but also in guiding antibiotic therapy and evaluating treatment effectiveness. The introduction of point-of-care testing technologies has brought about a paradigm shift in biomarker application, enabling swift and real-time patient evaluation. Despite these advancements, challenges persist, notably concerning biomarker variability and the lack of standardized thresholds. This review summarizes the latest advancements in sepsis biomarker research, spotlighting the progress and clinical implications. It emphasizes the significance of multi-biomarker strategies and the feasibility of personalized medicine in sepsis management. Further verification of biomarkers on a large scale and their integration into clinical practice are advocated to maximize their efficacy in future sepsis treatment.
Collapse
Affiliation(s)
- Rong-Rong He
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Guo-Li Yue
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Mei-Ling Dong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jia-Qi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Chen Cheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| |
Collapse
|
53
|
Tian Y, Cao Y, Liu F, Xia L, Wang C, Su Z. Role of Histiocyte-Derived frHMGB1 as a Facilitator in Noncanonical Pyroptosis of Monocytes/Macrophages in Lethal Sepsis. J Infect Dis 2024; 230:298-308. [PMID: 38243905 DOI: 10.1093/infdis/jiae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
In this study, we investigated the role of the noncanonical pyroptosis pathway in the progression of lethal sepsis. Our findings emphasize the significance of noncanonical pyroptosis in monocytes/macrophages for the survival of septic mice. We observed that inhibiting pyroptosis alone significantly improved the survival rate of septic mice and that the HMGB1 A box effectively suppressed this noncanonical pyroptosis, thereby enhancing the survival of septic mice. Additionally, our cell in vitro experiments unveiled that frHMGB1, originating from lipopolysaccharide-carrying histiocytes, entered macrophages via RAGE, resulting in the direct activation of caspase 11 and the induction of noncanonical pyroptosis. Notably, A box's competitive binding with lipopolysaccharide impeded its entry into the cell cytosol. These findings reveal potential therapeutic strategies for slowing the progression of lethal sepsis by modulating the noncanonical pyroptosis pathway.
Collapse
Affiliation(s)
- Yu Tian
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Yuwen Cao
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Fang Liu
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Lin Xia
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Wang
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Zhaoliang Su
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| |
Collapse
|
54
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
55
|
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon 2024; 10:e34577. [PMID: 39149061 PMCID: PMC11325674 DOI: 10.1016/j.heliyon.2024.e34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Junguo Zhang
- Pulmonology Department, Fengdu General Hospital, Chongqing, 408200, China
| |
Collapse
|
56
|
Dai Q, Liu Y, Ding F, Guo R, Cheng G, Wang H. CircRNAs: A promising target for intervention regarding glycolysis in gastric cancer. Heliyon 2024; 10:e34658. [PMID: 39816354 PMCID: PMC11734058 DOI: 10.1016/j.heliyon.2024.e34658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer is characterized by a high incidence and mortality rate, with therapeutic efficacy currently constrained by substantial limitations. Aerobic glycolysis in cancer constitutes a pivotal aspect of the reprogramming of energy metabolism in tumor cells and profoundly influences the malignant progression of cancer. CircRNAs, serving as stable endogenous RNA, have been shown to regulate downstream targets by sponging miRNAs, which in turn are involved in the regulation of multiple malignant behaviors in a variety of cancers through the CircRNA-miRNA axis, suggesting that CircRNAs could be used as potential therapeutic targets for cancer. In recent years, it has been shown that some CircRNAs can be involved in the regulation of GC glycolysis, therefore, this paper summarizes the notable roles of some important CircRNAs in the regulation of GC glycolysis in recent years, which may be useful for our understanding of GC progression and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Qian Dai
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| | - Yulin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Fanghui Ding
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| | - Rong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Gang Cheng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Hua Wang
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| |
Collapse
|
57
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
58
|
Liu B, Liu Y, Li S, Chen P, Zhang J, Feng L. Depletion of placental brain-derived neurotrophic factor (BDNF) is attributed to premature ovarian insufficiency (POI) in mice offspring. J Ovarian Res 2024; 17:141. [PMID: 38982490 PMCID: PMC11232340 DOI: 10.1186/s13048-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Premature ovarian insufficiency (POI) is one of the causes of female infertility. Unexplained POI is increasingly affecting women in their reproductive years. However, the etiology of POI is diverse and remains elusive. We and others have shown that brain-derived neurotrophic factor (BDNF) plays an important role in adult ovarian function. Here, we report on a novel role of BDNF in the Developmental Origins of POI. METHODS Placental BDNF knockout mice were created using CRISPR/CAS9. Homozygous knockout (cKO(HO)) mice didn't survive, while heterozygous knockout (cKO(HE)) mice did. BDNF reduction in cKO(HE) mice was confirmed via immunohistochemistry and Western blots. Ovaries were collected from cKO(HE) mice at various ages, analyzing ovarian metrics, FSH expression, and litter sizes. In one-month-old mice, oocyte numbers were assessed using super-ovulation, and oocyte gene expression was analyzed with smart RNAseq. Ovaries of P7 mice were studied with SEM, and gene expression was confirmed with RT-qPCR. Alkaline phosphatase staining at E11.5 and immunofluorescence for cyclinD1 assessed germ cell number and cell proliferation. RESULTS cKO(HE) mice had decreased ovarian function and litter size in adulthood. They were insensitive to ovulation induction drugs manifested by lower oocyte release after superovulation in one-month-old cKO(HE) mice. The transcriptome and SEM results indicate that mitochondria-mediated cell death or aging might occur in cKO(HE) ovaries. Decreased placental BDNF led to diminished primordial germ cell proliferation at E11.5 and ovarian reserve which may underlie POI in adulthood. CONCLUSION The current results showed decreased placental BDNF diminished primordial germ cell proliferation in female fetuses during pregnancy and POI in adulthood. Our findings can provide insights into understanding the underlying mechanisms of POI.
Collapse
Affiliation(s)
- Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pingping Chen
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Feng
- Department of Obstetrics and Gynaecology, Duke University, Durham, NC, USA.
| |
Collapse
|
59
|
Kim MJ, Choi EJ, Choi EJ. Evolving Paradigms in Sepsis Management: A Narrative Review. Cells 2024; 13:1172. [PMID: 39056754 PMCID: PMC11274781 DOI: 10.3390/cells13141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis, a condition characterized by life-threatening organ dysfunction due to a dysregulated host response to infection, significantly impacts global health, with mortality rates varying widely across regions. Traditional therapeutic strategies that target hyperinflammation and immunosuppression have largely failed to improve outcomes, underscoring the need for innovative approaches. This review examines the development of therapeutic agents for sepsis, with a focus on clinical trials addressing hyperinflammation and immunosuppression. It highlights the frequent failures of these trials, explores the underlying reasons, and outlines current research efforts aimed at bridging the gap between theoretical advancements and clinical applications. Although personalized medicine and phenotypic categorization present promising directions, this review emphasizes the importance of understanding the complex pathogenesis of sepsis and developing targeted, effective therapies to enhance patient outcomes. By addressing the multifaceted nature of sepsis, future research can pave the way for more precise and individualized treatment strategies, ultimately improving the management and prognosis of sepsis patients.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea;
| | - Eun-Joo Choi
- Department of Anesthesiology and Pain Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Eun-Jung Choi
- Department of Anatomy, School of Medicine, Daegu Catholic University, Duryugongwon-ro 17gil, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
60
|
Hautala MK, Mikkonen KH, Pokka TML, Rannikko SK, Koskela UV, Rantala HMJ, Uhari MK, Glumoff V, Helander HM. Serum HMGB1 in febrile seizures. Epilepsy Res 2024; 203:107381. [PMID: 38772303 DOI: 10.1016/j.eplepsyres.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
The role of high-mobility group box 1 (HMGB1) in the pathogenesis of febrile seizures (FSs) is unclear. In our controlled follow-up study, we compared serum levels of HMGB1 (s-HMGB1) in the same individuals after the first FS, during febrile episodes without a FS, after recurrent FS, during healthy periods after FS, and between patients and controls. In all, 122 patients with FSs were included in the final analysis, including 18 with recurrent FSs with a complete follow-up protocol. We recruited 30 febrile children and 18 matched febrile children without seizures as controls. S-HMGB1 was lower in patients with recurrent FSs after the first FS than that in matched febrile control children (median 1.12 μg/L (0.14-2.95) vs 1.79 μg/L (0.33-47.90), P<0.04). We did not find any other differences in s-HMGB1 between the groups. S-HMGB1 did not differ in different types of FSs. We updated a meta-analysis of s-HMGB1 in patients with FSs and found that the differences were significant only in the studies conducted in East Asian populations. We conclude that S-HMGB1 does not seem to be a key factor in the pathogenesis of FSs but differences in HMGB1 concentrations could explain some of the ethnicity related susceptibility to FSs.
Collapse
Affiliation(s)
- Maria K Hautala
- Research Unit of Clinical Medicine, University of Oulu, Medical Research Center Oulu (MRC Oulu), University of Oulu, Oulu, Finland and Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, P.O. Box 23, Oulu 90029, Finland.
| | - Kirsi H Mikkonen
- Research Unit of Clinical Medicine, University of Oulu, Medical Research Center Oulu (MRC Oulu), University of Oulu, Oulu, Finland and Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, P.O. Box 23, Oulu 90029, Finland; Epilepsia Helsinki, Division of Child Neurology, Children's Hospital, and Pediatric Research Center, Helsinki University Hospital and University of Helsinki, P.O. Box 347, Helsinki 00029, Finland
| | - Tytti M L Pokka
- Research Service Unit, Oulu University Hospital, P.O. Box 10, 90029, Finland; Research Unit of Clinical Medicine, University of Oulu, P.O. Box 8000, Oulu 90014, Finland
| | - Sirpa K Rannikko
- Medical Research Laboratory Unit, University of Oulu, P.O. Box 8000, Oulu 90014, Finland
| | - Ulla V Koskela
- Research Unit of Clinical Medicine, University of Oulu, Medical Research Center Oulu (MRC Oulu), University of Oulu, Oulu, Finland and Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, P.O. Box 23, Oulu 90029, Finland
| | - Heikki M J Rantala
- Research Unit of Clinical Medicine, University of Oulu, Medical Research Center Oulu (MRC Oulu), University of Oulu, Oulu, Finland and Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, P.O. Box 23, Oulu 90029, Finland
| | - Matti K Uhari
- Research Unit of Clinical Medicine, University of Oulu, Medical Research Center Oulu (MRC Oulu), University of Oulu, Oulu, Finland and Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, P.O. Box 23, Oulu 90029, Finland
| | - Virpi Glumoff
- Medical Research Laboratory Unit, University of Oulu, P.O. Box 8000, Oulu 90014, Finland
| | - Heli M Helander
- Research Unit of Clinical Medicine, University of Oulu, Medical Research Center Oulu (MRC Oulu), University of Oulu, Oulu, Finland and Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, P.O. Box 23, Oulu 90029, Finland
| |
Collapse
|
61
|
Chen M, Shu W, Zhang J, Huang H, Liu J. Mechanisms and clinical application of Xuebijing injection, a traditional Chinese herbal medicine–a systematic review. ADVANCES IN TRADITIONAL MEDICINE 2024; 24:403-412. [DOI: 10.1007/s13596-023-00702-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 01/04/2025]
|
62
|
Baek W, Park S, Lee Y, Roh H, Yun CO, Roh TS, Lee WJ. Ethyl Pyruvate Decreases Collagen Synthesis and Upregulates MMP Activity in Keloid Fibroblasts and Keloid Spheroids. Int J Mol Sci 2024; 25:5844. [PMID: 38892032 PMCID: PMC11172307 DOI: 10.3390/ijms25115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-β1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-β1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-β, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.
Collapse
Affiliation(s)
- Wooyeol Baek
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seonghyuk Park
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Youngdae Lee
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Roh
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Tai Suk Roh
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won Jai Lee
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
63
|
Yu C, Xiang Y, Zhang M, Wen J, Duan X, Wang L, Deng G, Fang P. Glycyrrhizic Acid Alleviates Semen Strychni-Induced Neurotoxicity Through the Inhibition of HMGB1 Phosphorylation and Inflammatory Responses. J Neuroimmune Pharmacol 2024; 19:21. [PMID: 38771510 PMCID: PMC11108907 DOI: 10.1007/s11481-024-10128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1β), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.
Collapse
Affiliation(s)
- Changwei Yu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Yalan Xiang
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Min Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, 410015, China
| | - Xiaoyu Duan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Lu Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Gongying Deng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China.
| |
Collapse
|
64
|
Ma Q, Ye S, Liu H, Zhao Y, Zhang W. The emerging role and mechanism of HMGA2 in breast cancer. J Cancer Res Clin Oncol 2024; 150:259. [PMID: 38753081 PMCID: PMC11098884 DOI: 10.1007/s00432-024-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/β-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
65
|
Zou YX, Xiang TN, Xu LR, Zhang H, Ma YH, Zhang L, Zhou CX, Wu X, Huang QL, Lei B, Mu JW, Qin XY, Jiang X, Zheng YJ. Dehydrozaluzanin C- derivative protects septic mice by alleviating over-activated inflammatory response and promoting the phagocytosis of macrophages. Int Immunopharmacol 2024; 132:111889. [PMID: 38531202 DOI: 10.1016/j.intimp.2024.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Ying-Xiang Zou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Nan Xiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Chinese Medicine, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434020, China
| | - Li-Rong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-He Ma
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chun-Xian Zhou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi-Lin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Biao Lei
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing-Wen Mu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiang-Yang Qin
- Department of Chemistry, school of pharmacy, Fourth Military University, Xi'an, Shaanxi 710032, China.
| | - Xin Jiang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue-Juan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
66
|
Padron JG, Saito Reis CA, Ng PK, Norman Ing ND, Baker H, Davis K, Kurashima C, Kendal-Wright CE. Stretch Causes cffDNA and HMGB1-Mediated Inflammation and Cellular Stress in Human Fetal Membranes. Int J Mol Sci 2024; 25:5161. [PMID: 38791199 PMCID: PMC11121497 DOI: 10.3390/ijms25105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy.
Collapse
Affiliation(s)
- Justin Gary Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Chelsea A. Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Nainoa D. Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Hannah Baker
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Kamalei Davis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Courtney Kurashima
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Claire E. Kendal-Wright
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
- Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96826, USA
| |
Collapse
|
67
|
Cong F, Gu L, Lin J, Liu G, Wang Q, Zhang L, Chi M, Xu Q, Zhao G, Li C. Plumbagin inhibits fungal growth, HMGB1/LOX-1 pathway and inflammatory factors in A. fumigatus keratitis. Front Microbiol 2024; 15:1383509. [PMID: 38655086 PMCID: PMC11035880 DOI: 10.3389/fmicb.2024.1383509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1β, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1β levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
68
|
Alvarez Quintero GS, Lima A, Roig P, Meyer M, de Kloet ER, De Nicola AF, Garay LI. Effects of the mineralocorticoid receptor antagonist eplerenone in experimental autoimmune encephalomyelitis. J Steroid Biochem Mol Biol 2024; 238:106461. [PMID: 38219844 DOI: 10.1016/j.jsbmb.2024.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
There is growing evidence indicating that mineralocorticoid receptor (MR) expression influences a wide variety of functions in metabolic and immune response. The present study explored if antagonism of the MR reduces neuroinflammation in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). Eplerenone (EPLE) (100 mg/kg dissolved in 30% 2-hydroxypropyl-β-cyclodextrin) was administered intraperitoneally (i.p.) daily from EAE induction (day 0) until sacrificed on day 17 post-induction. The MR blocker (a) significantly decreased the inflammatory parameters TLR4, MYD88, IL-1β, and iNOS mRNAs; (b) attenuated HMGB1, NLRP3, TGF-β mRNAs, microglia, and aquaporin4 immunoreaction without modifying GFAP. Serum IL-1β was also decreased in the EAE+EPLE group. Moreover, EPLE treatment prevented demyelination and improved clinical signs of EAE mice. Interestingly, MR was decreased and GR remained unchanged in EAE mice while EPLE treatment restored MR expression, suggesting that a dysbalanced MR/GR was associated with the development of neuroinflammation. Our results indicated that MR blockage with EPLE attenuated inflammation-related spinal cord pathology in the EAE mouse model of Multiple Sclerosis, supporting a novel therapeutic approach for immune-related diseases.
Collapse
Affiliation(s)
- Guido S Alvarez Quintero
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - E R de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
69
|
Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, Jin W, Gong Q, Liu L, Guo J. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:331-344. [PMID: 38327187 PMCID: PMC10984869 DOI: 10.3724/abbs.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Chengyi Li
- School of MedicineYangtze UniversityJingzhou434020China
| | - Ran Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Zhenyu Xiong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Xue Bao
- School of MedicineYangtze UniversityJingzhou434020China
| | - Sijia Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat-Sen UniversityGuangzhou510120China
| | - Haotian Zeng
- Department of GastroenterologyShenzhen People’s HospitalThe Second Clinical Medical CollegeJinan UniversityShenzhen518000China
| | - Wei Jin
- Department of Second Ward of General PediatricsSuizhou Central HospitalHubei University of MedicineSuizhou441300China
| | - Quan Gong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Lian Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Jiawei Guo
- School of MedicineYangtze UniversityJingzhou434020China
| |
Collapse
|
70
|
Wulandari S, Nuryastuti T, Oktoviani FN, Daniwijaya MEW, Supriyati E, Arguni E, Hartono, Wibawa T. The association between high mobility group box 1 (HMGB1) and Interleukin-18 (IL-18) serum concentrations in COVID-19 inpatients. Heliyon 2024; 10:e26619. [PMID: 38434314 PMCID: PMC10907672 DOI: 10.1016/j.heliyon.2024.e26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background High mobility group box 1 (HMGB1) and interleukin-18 (IL-18) are involved in various non-coronavirus disease pathogenesis and are reported as potential biomarkers for coronavirus disease (COVID-19). However, their association with COVID-19 pathogenesis has not yet been explored. Aim This study aimed to investigate the association between HMGB1 and IL-18 concentrations in the sera of COVID-19 patients versus non-COVID-19 patients. Material and methods We used stored serum samples obtained from 30 COVID-19 patients and 30 non-COVID-19 patients. We collected data on age, gender, treatment status, principal diagnosis, and comorbidity from patient medical records. HMGB1 and IL-18 concentrations were analyzed in the serum by enzyme-linked immunosorbent assay (ELISA). The swab samples' RT-PCR cycle threshold (CT) values were obtained from the laboratory database. Results HMGB1 concentrations were increased in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 151.33 (90.27-192.38) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0316; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 152.66 (104.04-288.51) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0199). IL-18 concentrations were also higher in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 620.00 (461.50-849.6) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0376; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 835.70 (558.30-1602.00) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0026). Moreover, HMGB1 was associated with IL-18 concentrations in the sera of COVID-19 inpatients (p = 0.0337; r = 0.5500). Conclusion The association of HMGB1 and IL-18 in COVID-19 might indicate the potential for a dangerous cycle leading to a cytokine storm to occur.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Farida Nur Oktoviani
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hartono
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
71
|
Zhao P, Li Y, Xu X, Yang H, Li X, Fu S, Guo Z, Zhang J, Li H, Tian J. Neutrophil extracellular traps mediate cardiomyocyte ferroptosis via the Hippo-Yap pathway to exacerbate doxorubicin-induced cardiotoxicity. Cell Mol Life Sci 2024; 81:122. [PMID: 38456997 PMCID: PMC10923748 DOI: 10.1007/s00018-024-05169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Doxorubicin-induced cardiotoxicity (DIC), which is a cardiovascular complication, has become the foremost determinant of decreased quality of life and mortality among survivors of malignant tumors, in addition to recurrence and metastasis. The limited ability to accurately predict the occurrence and severity of doxorubicin-induced injury has greatly hindered the prevention of DIC, but reducing the dose to mitigate side effects may compromise the effective treatment of primary malignancies. This has posed a longstanding clinical challenge for oncologists and cardiologists. Ferroptosis in cardiomyocytes has been shown to be a pivotal mechanism underlying cardiac dysfunction in DIC. Ferroptosis is influenced by multiple factors. The innate immune response, as exemplified by neutrophil extracellular traps (NETs), may play a significant role in the regulation of ferroptosis. Therefore, the objective of this study was to investigate the involvement of NETs in doxorubicin-induced cardiomyocyte ferroptosis and elucidate their regulatory role. This study confirmed the presence of NETs in DIC in vivo. Furthermore, we demonstrated that depleting neutrophils effectively reduced the occurrence of doxorubicin-induced ferroptosis and myocardial injury in DIC. Additionally, our findings showed the pivotal role of high mobility group box 1 (HMGB1) as a critical molecule implicated in DIC and emphasized its involvement in the modulation of ferroptosis subsequent to NETs inhibition. Mechanistically, we obtained preliminary evidence suggesting that doxorubicin-induced NETs could modulate yes-associated protein (YAP) activity by releasing HMGB1, which subsequently bound to toll like receptor 4 (TLR4) on the cardiomyocyte membrane, thereby influencing cardiomyocyte ferroptosis in vitro. Our findings suggest that doxorubicin-induced NETs modulate cardiomyocyte ferroptosis via the HMGB1/TLR4/YAP axis, thereby contributing to myocardial injury. This study offers a novel approach for preventing and alleviating DIC by targeting alterations in the immune microenvironment.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin City, Harbin, 150001, China
| | - Haobo Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Xintong Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Zihong Guo
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jianing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hairu Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
72
|
Wang C, Leng M, Ding C, Zhu X, Zhang Y, Sun C, Lou P. Ferritinophagy-mediated ferroptosis facilitates methotrexate-induced hepatotoxicity by high-mobility group box 1 (HMGB1). Liver Int 2024; 44:691-705. [PMID: 38082504 DOI: 10.1111/liv.15811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIM Hepatotoxicity is a well-defined reaction to methotrexate (MTX), a drug commonly used for the treatment of rheumatoid arthritis and various tumours. We sought to elucidate the mechanism underlying MTX-induced hepatotoxicity and establish a potentially effective intervention strategy. METHODS We administered MTX to liver cells and mice and assessed hepatotoxicity by cell viability assay and hepatic pathological changes. We determined ferroptosis and ferritinophagy by detecting ferroptosis-related markers and autophagic degradation of ferritin heavy chain 1 (FTH1). RESULTS We have shown that hepatocytes treated with MTX undergo ferroptosis, and this process can be attenuated by ferroptosis inhibitors. Interestingly, NCOA4-mediated ferritinophagy was found to be involved in MTX-induced ferroptosis, which was demonstrated by the relief of ferroptosis through the inhibition of autophagy or knockdown of Ncoa4. Furthermore, MTX treatment resulted in the elevation of high-mobility group box 1 (HMGB1) expression. The depletion of Hmgb1 in hepatocytes considerably alleviated MTX-induced hepatotoxicity by limiting autophagy and the subsequent autophagy-dependent ferroptosis. It is noteworthy that glycyrrhizic acid (GA), a precise inhibitor of HMGB1, effectively suppressed autophagy, ferroptosis and hepatotoxicity caused by MTX. CONCLUSION Our study shows the significant roles of autophagy-dependent ferroptosis and HMGB1 in MTX-induced hepatotoxicity. It emphasizes that the inhibition of ferritinophagy and HMGB1 may have potential as a therapeutic approach for preventing and treating MTX-induced liver injury.
Collapse
Affiliation(s)
- Chengbo Wang
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Maodong Leng
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Cong Ding
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Xiangzhan Zhu
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Yaodong Zhang
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Chenchen Sun
- The Second Department of General Surgery, Anyang Tumor Hospital Affiliated to Henan University of Science and Technology, Anyang Tumor Hospital, Anyang, Henan, China
| | - Pu Lou
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
73
|
Sakata N. The anti-inflammatory effect of metformin: The molecular targets. Genes Cells 2024; 29:183-191. [PMID: 38311861 PMCID: PMC11448366 DOI: 10.1111/gtc.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Metformin is an anti-diabetic drug. Metformin mainly inhibits gluconeogenesis in the liver and reduces blood sugar. In addition to the anti-diabetic effects, many studies have revealed that metformin has anti-inflammatory effects. Various molecules were suggested to be the target of the metformin's anti-inflammatory effects. However, the conclusion is not clear. Metformin is related to a number of molecules and the identification of the main target in anti-inflammatory effects leads to the understanding of inflammation and metformin. In this article, I discuss each suggested molecule, involved mechanisms, and their relationship with various diseases.
Collapse
|
74
|
Wang J, Zheng Q, Zhao Y, Chen S, Chen L. HMGB1 enhances the migratory and invasive abilities of A2780/DDP cells by facilitating epithelial to mesenchymal transition via GSK‑3β. Exp Ther Med 2024; 27:102. [PMID: 38356665 PMCID: PMC10865443 DOI: 10.3892/etm.2024.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/25/2023] [Indexed: 02/16/2024] Open
Abstract
The aim of the present study was to investigate the impact and mechanism of high mobility group box 1 (HMGB1) on the regulation of cell migration and invasion in A2780/DDP cisplatin-resistant ovarian cancer cells. After transfecting small interfering (si)RNA-HMGB1 into A2780/DDP cells, Transwell migration and invasion assays were conducted to assess alterations in the cell migratory and invasive abilities. Additionally, western blotting analyses were performed to examine changes in HMGB1, phosphorylated (p)-GSK-3β, GSK-3β, E-cadherin and vimentin expression levels. The results of the present study demonstrated that the migratory and invasive abilities of A2780/DDP cells were significantly higher compared with those of A2780 cells. Additionally, the expression levels of HMGB1, p-GSK-3β and the mesenchymal phenotype marker, vimentin, in A2780/DDP cells were significantly elevated relative to the levels in A2780 cells. Conversely, the expression level of the epithelial phenotype marker, E-cadherin, was markedly decreased compared with that in A2780 cells. Following transfection of A2780/DDP cells with siRNA-HMGB1, there was a significant reduction in the rate of cell migration and invasion. Simultaneously, the expression levels of HMGB1, p-GSK-3β and vimentin were downregulated while the level of E-cadherin was upregulated. It was therefore concluded that the high expression of HMGB1 in A2780/DDP cells enhanced the cell migration and invasion abilities by facilitating epithelial to mesenchymal transition via GSK-3β.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanjing Zhao
- Department of Surgery, 92403 Military Hospital, Fuzhou, Fujian 350015, P.R. China
| | - Shaozhan Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
75
|
Fan A, Gao M, Tang X, Jiao M, Wang C, Wei Y, Gong Q, Zhong J. HMGB1/RAGE axis in tumor development: unraveling its significance. Front Oncol 2024; 14:1336191. [PMID: 38529373 PMCID: PMC10962444 DOI: 10.3389/fonc.2024.1336191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
High mobility group protein 1 (HMGB1) plays a complex role in tumor biology. When released into the extracellular space, it binds to the receptor for advanced glycation end products (RAGE) located on the cell membrane, playing an important role in tumor development by regulating a number of biological processes and signal pathways. In this review, we outline the multifaceted functions of the HMGB1/RAGE axis, which encompasses tumor cell proliferation, apoptosis, autophagy, metastasis, and angiogenesis. This axis is instrumental in tumor progression, promoting tumor cell proliferation, autophagy, metastasis, and angiogenesis while inhibiting apoptosis, through pivotal signaling pathways, including MAPK, NF-κB, PI3K/AKT, ERK, and STAT3. Notably, small molecules, such as miRNA-218, ethyl pyruvate (EP), and glycyrrhizin exhibit the ability to inhibit the HMGB1/RAGE axis, restraining tumor development. Therefore, a deeper understanding of the mechanisms of the HMGB1/RAGE axis in tumors is of great importance, and the development of inhibitors targeting this axis warrants further exploration.
Collapse
Affiliation(s)
- Anqi Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
76
|
De-Giorgio F, Bergamin E, Baldi A, Gatta R, Pascali VL. Immunohistochemical expression of HMGB1 and related proteins in the skin as a possible tool for determining post-mortem interval: a preclinical study. Forensic Sci Med Pathol 2024; 20:149-165. [PMID: 37490201 PMCID: PMC10944391 DOI: 10.1007/s12024-023-00634-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 07/26/2023]
Abstract
Determining the post-mortem interval (PMI) is one of forensic pathology's primary objectives and one of its most challenging tasks. Numerous studies have demonstrated the accuracy of histomorphology and immunohistochemical investigations in determining the time of death. Nevertheless, the skin, a robust and easy-to-remove tissue, has only been partially analyzed so far. By studying 20 adult male mice, we tried to determine whether post-mortem immunohistochemical detection in the skin of HMGB1 proteins and associated components (Beclin1 and RAGE) could be used for this purpose. We discovered that nuclear HMGB1 overexpression indicates that death occurred within the previous 12 h, nuclear HMGB1 negativization with high cytoplasmic HMGB1 intensity indicates that death occurred between 12 and 36 h earlier and cytoplasmic HMGB1 negativization indicates that more than 48 h have passed since death. RAGE and Beclin1 levels in the cytoplasm also decreased with time. The latter proteins' negativization might indicate that more than 24 and 36 h, respectively, have passed from the time of death. These indicators might potentially be helpful in forensic practice for determining the PMI using immunohistochemistry.
Collapse
Affiliation(s)
- Fabio De-Giorgio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Eva Bergamin
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfonso Baldi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Roberto Gatta
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Vincenzo L Pascali
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
77
|
Liu T, Zhao H, Wang Y, Qu P, Wang Y, Wu X, Zhao T, Yang L, Mao H, Peng L, Zhan Y, Li P. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol 2024; 15:1334109. [PMID: 38481996 PMCID: PMC10932975 DOI: 10.3389/fimmu.2024.1334109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background As a damage-associated molecular pattern protein, high mobility group box 1 (HMGB1) is associated with kidney and systemic inflammation. The predictive and therapeutic value of HMGB1 as a biomarker has been confirmed in various diseases. However, its value in diabetic kidney disease (DKD) remains unclear. Therefore, this study aimed to investigate the correlation between serum and urine HMGB1 levels and DKD progression. Methods We recruited 196 patients with type 2 diabetes mellitus (T2DM), including 109 with DKD and 87 T2DM patients without DKD. Additionally, 60 healthy participants without T2DM were also recruited as controls. Serum and urine samples were collected for HMGB1 analysis. Simultaneously, tumor necrosis factor receptor superfamily member 1A (TNFR-1) in serum and kidney injury molecule (KIM-1) in urine samples were evaluated for comparison. Results Serum and urine HMGB1 levels were significantly higher in patients with DKD than in patients with T2DM and healthy controls. Additionally, serum HMGB1 levels significantly and positively correlated with serum TNFR-1 (R 2 = 0.567, p<0.001) and urine KIM-1 levels (R 2 = 0.440, p<0.001), and urine HMGB1 has a similar correlation. In the population with T2DM, the risk of DKD progression increased with an increase in serum HMGB1 levels. Multivariate logistic regression analysis showed that elevated serum HMGB1 level was an independent risk factor for renal function progression in patients with DKD, and regression analysis did not change in the model corrected for multiple variables. The restricted cubic spline depicted a nonlinear relationship between serum HMGB1 and renal function progression in patients with DKD (p-nonlinear=0.007, p<0.001), and this positive effect remained consistent across subgroups. Conclusion Serum HMGB1 was significantly correlated with DKD and disease severity. When the HMGB1 level was ≥27 ng/ml, the risk of renal progression increased sharply, indicating that serum HMGB1 can be used as a potential biomarker for the diagnosis of DKD progression.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yanmei Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Xiai Wu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Tingting Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
78
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
79
|
Aljedaie MM, Alam P. In silico identification of human microRNAs pointing centrin genes in Leishmania donovani: Considering the RNAi-mediated gene control. Front Genet 2024; 14:1329339. [PMID: 38390455 PMCID: PMC10883313 DOI: 10.3389/fgene.2023.1329339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
Leishmaniasis, a parasitic disease caused by different species of the protozoa parasite Leishmania, is a neglected tropical human disease that is endemic in about a hundred countries worldwide. According to the World Health Organization (WHO), the annual incidence of cutaneous leishmaniasis (CL) is estimated to be 0.7-1.2 million cases globally, whereas the annual incidence of visceral leishmaniasis is estimated to be 0.2-0.4 million cases. In many eukaryotic organisms, including human beings and protozoan parasites, centrin genes encode proteins that play essential roles within the centrosome or basal body. Human microRNAs (miRNAs) have been linked to several infectious and non-infectious diseases associated with pathogen-host interactions, and they play the emphatic roles as gene expression regulators. In this study, we used the MirTarget bioinformatics tool, which is a machine learning-based approach implemented in miRDB, to predict the target of human miRNAs in Leishmania donovani centrin genes. For cross-validation, we utilized additional prediction algorithms, namely, RNA22 and RNAhybrid, targeting all five centrin isotypes. The centrin-3 (LDBPK_342160) and putative centrin-5 (NC_018236.1) genes in L. donovani were targeted by eight and twelve human miRNAs, respectively, among 2,635 known miRNAs (miRBase). hsa-miR-5193 consistently targeted both genes. Using TargetScan, TarBase, miRecords, and miRTarBase, we identified miRNA targets and off-targets in human homologs of centrin, inflammation, and immune-responsive genes. Significant targets were screened based on GO terminologies and KEGG pathway-enrichment analysis (Log10 p-value >0.0001). In silico tools that predict the biological roles of human miRNAs as primary gene regulators in pathogen-host interactions help unravel the regulatory patterns of these miRNAs, particularly in the early stages of inflammatory responses. It is also noted that these miRNAs played an important role in the late phase of adaptive immune response, inclusively their impacts on the immune system's response to L. donovani.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
80
|
Mantonico MV, De Leo F, Quilici G, Colley LS, De Marchis F, Crippa M, Mezzapelle R, Schulte T, Zucchelli C, Pastorello C, Carmeno C, Caprioglio F, Ricagno S, Giachin G, Ghitti M, Bianchi ME, Musco G. The acidic intrinsically disordered region of the inflammatory mediator HMGB1 mediates fuzzy interactions with CXCL12. Nat Commun 2024; 15:1201. [PMID: 38331917 PMCID: PMC10853541 DOI: 10.1038/s41467-024-45505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Chemokine heterodimers activate or dampen their cognate receptors during inflammation. The CXCL12 chemokine forms with the fully reduced (fr) alarmin HMGB1 a physiologically relevant heterocomplex (frHMGB1•CXCL12) that synergically promotes the inflammatory response elicited by the G-protein coupled receptor CXCR4. The molecular details of complex formation were still elusive. Here we show by an integrated structural approach that frHMGB1•CXCL12 is a fuzzy heterocomplex. Unlike previous assumptions, frHMGB1 and CXCL12 form a dynamic equimolar assembly, with structured and unstructured frHMGB1 regions recognizing the CXCL12 dimerization surface. We uncover an unexpected role of the acidic intrinsically disordered region (IDR) of HMGB1 in heterocomplex formation and its binding to CXCR4 on the cell surface. Our work shows that the interaction of frHMGB1 with CXCL12 diverges from the classical rigid heterophilic chemokines dimerization. Simultaneous interference with multiple interactions within frHMGB1•CXCL12 might offer pharmacological strategies against inflammatory conditions.
Collapse
Affiliation(s)
- Malisa Vittoria Mantonico
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Experimental Therapeutics Program, IFOM ETS - The AIRC Institute of Molecular Oncology and AIRC, Fondazione AIRC per la Ricerca sul Cancro ETS, Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Liam Sean Colley
- HMGBiotech S.r.l., 20133, Milan, Italy
- School of Medicine and Surgery, Università Milano-Bicocca, 20126, Milan, Italy
| | - Francesco De Marchis
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Crippa
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rosanna Mezzapelle
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Pastorello
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Camilla Carmeno
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Caprioglio
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131, Padova, Italy
| | - Michela Ghitti
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Marco Emilio Bianchi
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
81
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
82
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
83
|
Teng M, Wang J, Su X, Tian Y, Ye X, Zhang Y. Causal associations between circulating inflammatory cytokines and blinding eye diseases: a bidirectional Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1324651. [PMID: 38327497 PMCID: PMC10848324 DOI: 10.3389/fnagi.2024.1324651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background Previous studies have explored the associations between circulating inflammatory cytokines and blinding eye diseases, including glaucoma, cataract and macular degeneration. However, the causality of these associations remains controversial. This study employs a bidirectional Mendelian randomization (MR) study to investigate the causal relationships between 41 circulating inflammatory cytokines and these blinding eye diseases. Methods Summary data for glaucoma, cataract, macular degeneration and 41 circulating inflammatory cytokines were publicly available. The inverse variance weighted (IVW) method was employed as the main analysis method. Additionally, various sensitivity tests, including MR-Egger regression, weighted median, weight mode, Cochran's Q test, MR pleiotropy Residual Sum and Outlier test, and leave-one-out test, were conducted to evaluate sensitivity and stability of results. Results The IVW analysis identified six circulating inflammatory cytokines causally associated with the risk of blinding eye diseases: Monokine induced by interferon-gamma (MIG) for glaucoma, interleukin-1 receptor antagonist (IL-1ra), IL-6, IL-10, and platelet derived growth factor BB (PDGFbb) for cataract, and MIG and hepatocyte growth factor (HGF) for macular degeneration. However, it is noteworthy that none of these associations remained significant after Bonferroni correction (p < 0.0004). Reverse MR analyses indicated that cataract may lead to a decrease in vascular endothelial growth factor (VEGF) levels (OR: 3.326 × 10-04, 95% CI: 5.198 × 10-07 - 2.129 × 10-01, p = 0.0151). Conclusion This study highlights the potential roles of specific inflammatory cytokines in the development of glaucoma, cataract and macular degeneration. Moreover, it suggests that VEGF is likely to be involved in cataract development downstream. These findings offer insights for early prevention and novel therapeutic strategies for these blinding eye diseases.
Collapse
Affiliation(s)
- Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Tian
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Ye
- School of Electronic Information and Artiffcial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
84
|
Seol SI, Davaanyam D, Oh SA, Lee EH, Han PL, Kim SW, Lee JK. Age-Dependent and Aβ-Induced Dynamic Changes in the Subcellular Localization of HMGB1 in Neurons and Microglia in the Brains of an Animal Model of Alzheimer's Disease. Cells 2024; 13:189. [PMID: 38247880 PMCID: PMC10814163 DOI: 10.3390/cells13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
HMGB1 is a prototypical danger-associated molecular pattern (DAMP) molecule that co-localizes with amyloid beta (Aβ) in the brains of patients with Alzheimer's disease. HMGB1 levels are significantly higher in the cerebrospinal fluid of patients. However, the cellular and subcellular distribution of HMGB1 in relation to the pathology of Alzheimer's disease has not yet been studied in detail. Here, we investigated whether HMGB1 protein levels in brain tissue homogenates (frontal cortex and striatum) and sera from Tg-APP/PS1 mice, along with its cellular and subcellular localization in those regions, differed. Total HMGB1 levels were increased in the frontal cortices of aged wildtype (7.5 M) mice compared to young (3.5 M) mice, whereas total HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice (7.5 M) were significantly lower than those in age-matched wildtype mice. In contrast, total serum HMGB1 levels were enhanced in aged wildtype (7.5 M) mice and Tg-APP/PS1 mice (7.5 M). Further analysis indicated that nuclear HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice were significantly reduced compared to those in age-matched wildtype controls, and cytosolic HMGB1 levels were also significantly decreased. Triple-fluorescence immunohistochemical analysis indicated that HMGB1 appeared as a ring shape in the cytoplasm of most neurons and microglia in the frontal cortices of 9.5 M Tg-APP/PS1 mice, indicating that nuclear HMGB1 is reduced by aging and in Tg-APP/PS1 mice. Consistent with these observations, Aβ treatment of both primary cortical neuron and primary microglial cultures increased HMGB1 secretion in the media, in an Aβ-dose-dependent manner. Our results indicate that nuclear HMGB1 might be translocated from the nucleus to the cytoplasm in both neurons and microglia in the brains of Tg-APP/PS1 mice, and that it may subsequently be secreted extracellularly.
Collapse
Affiliation(s)
- Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| | - Dashdulam Davaanyam
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| | - Sang-A Oh
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea; (E.-H.L.); (P.-L.H.)
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea; (E.-H.L.); (P.-L.H.)
- Department of Chemistry and Nano Science, College of Natural Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon 22212, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| |
Collapse
|
85
|
Ye XG, She FZ, Yu DN, Wu LQ, Tang Y, Wu BZ, Dong SW, Dai JM, Zhou X, Liu ZG. Increased expression of NLRP3 associated with elevated levels of HMGB1 in children with febrile seizures: a case-control study. BMC Pediatr 2024; 24:44. [PMID: 38218765 PMCID: PMC10787487 DOI: 10.1186/s12887-024-04533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND High mobility group box-1 (HMGB1) is an endogenous danger signal that mediates activation of the innate immune response including NLR pyrin domain containing 3 (NLRP3) inflammasome activation and proinflammatory cytokine release. Although HMGB1 and NLRP3 have been implicated in the pathophysiology of seizures, the correlation between HMGB1 and NLRP3 expression has not been determined in children with febrile seizures (FS). To explore the relationship between extra-cellular HMGB1 and NLRP3 in children with FS, we analyzed serum HMGB1, NLRP3, caspase-1, and proinflammatory cytokines in patients with FS. METHODS Thirty children with FS and thirty age-matched febrile controls were included in this study. Blood was obtained from the children with FS within 1 h of the time of the seizure; subsequently, the serum contents of HMGB1, NLRP3, caspase-1, interleukin (IL)-1β, interleukin (IL)-6, and tumour necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay. The Mann‒Whitney U test was used to compare serum cytokine levels between FS patients and controls. Spearman's rank correlation coefficient was calculated to detect significant correlations between cytokine levels. RESULTS Serum levels of HMGB1, NLRP3, caspase-1, IL-1β, IL-6, and TNF-α were significantly higher in FS patients than in febrile controls (p < 0.05). Serum levels of HMGB1 were significantly correlated with levels of NLRP3 and caspase-1 (both, p < 0.05). Serum levels of caspase-1 were significantly correlated with levels of IL-1β (p < 0.05). Serum levels of IL-1β were significantly correlated with levels of IL-6 and TNF-α (p < 0.05). CONCLUSIONS HMGB1 is up-regulated in the peripheral serum of FS patients, which may be responsible, at least in part, for the increased expression of NLRP3 and Caspase-1. Increased expression of caspase-1 was significantly associated with elevated serum levels of IL-1β. Given that activated Caspase-1 directly regulates the expression of mature IL-1β and positively correlates with activation of the NLRP3 inflammasome, our data suggest that increased levels of peripheral HMGB1 possibly mediate IL-1β secretion through the activation of the NLRP3 inflammasome in children with FS. Thus, both HMGB1 and NLRP3 might be potential targets for preventing or limiting FS.
Collapse
Affiliation(s)
- Xing-Guang Ye
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Feng-Zhi She
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Dong-Ni Yu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Li-Qian Wu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Yan Tang
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Ben-Ze Wu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Shi-Wei Dong
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Jie-Min Dai
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Xing Zhou
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
86
|
Cui J, Chen C, Zhou X, Shan W, Jian Y, Feng L, Li P, Sun Y, Yi W. IFITM3 overexpression reverses insufficient healing benefits of small extracellular vesicles from high-fat-diet BMSCs in sepsis via the HMGB1 pathway. Int Immunopharmacol 2024; 126:111250. [PMID: 38006752 DOI: 10.1016/j.intimp.2023.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are a promising new therapy for sepsis, a common cause of death in hospitals. However, the global epidemic of metabolic syndromes, including obesity and pre-obesity, threatens the health of the human BMSC pool. The therapeutic effects of BMSCs are primarily due to the secretion of the small extracellular vesicles containing lipids, proteins, and RNA. Accordingly, studies on BMSCs, their small extracellular vesicles, and their modifications in obese individuals are becoming increasingly important. In this study, we investigated the therapeutic potential of small extracellular vesicles (sEVs) from high-fat diet BMSCs (sEVsHFD) in sepsis-induced liver-heart axis injury. We found that sEVsHFD yielded diminished therapeutic benefits compared to sEVs from chow diet BMSCs (sEVsCD). We subsequently verified that IFITM3 significantly differed in sEVsCD and sEVsHFD, alternating in septic liver tissue, and indicating its potential as a remodeling target of sEVs. IFITM3-overexpressed high-fat-diet BMSCs (HFD-BMSCs) showed that corresponding sEVs (sEVsHFD-IFITM3) markedly ameliorated liver-heart axis injury during sepsis. Lastly, we identified the protective action mechanisms of sEVsHFD-IFITM3 in sepsis-induced organ failure and HMGB1 expression and secretion was altered in septic liver and serum while HMGB1 has been demonstrated as a critical mediator of multi-organ failure in sepsis. These findings indicate that IFITM3 overexpression regenerates the therapeutic benefit of sEVs from HFD-BMSCs in sepsis via the HMGB1 pathway.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Linqi Feng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Panpan Li
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
87
|
Han X, Xu H, Weng Y, Chen R, Xu J, Cao T, Sun R, Shan Y, He F, Fang W, Li X. N pro of classical swine fever virus enhances HMGB1 acetylation and its degradation by lysosomes to evade from HMGB1-mediated antiviral immunity. Virus Res 2024; 339:199280. [PMID: 37995963 PMCID: PMC10709370 DOI: 10.1016/j.virusres.2023.199280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Classical swine fever virus (CSFV) can dampen the host innate immunity by destabilizing IRF3 upon its binding with viral Npro. High mobility group box 1 (HMGB1), a non-histone nuclear protein, has diverse functions, including inflammation, innate immunity, etc., which are closely related to its cellular localization. We investigated potential mutual interactions between CSFV and HMGB1 and their effects on virus replication. We found that HMGB1 at the protein level, but not at mRNA level, was markedly reduced in CSFV-infected or Npro-expressing IPEC-J2 cells. HMGB1 in the nuclear compartment is anti-CSFV by promoting IFN-mediated innate immune response, as evidenced by overexpression of nuclear or cytoplasmic dominant HMGB1 mutant in IPEC-J2 cells stimulated with poly(I:C). However, CSFV Npro upregulates HMGB1 acetylation, a modification that promotes HMGB1 translocation into the cytoplasmic compartment where it is degraded by lysosomes. Ethyl pyruvate could downregulate HMGB1 acetylation and prevent Npro-mediated HMGB1 reduction. Inhibition of deacetylase HDAC1 with MS275 or by RNA silencing could promote Npro-mediated HMGB1 degradation. Taken together, our study elucidates the mechanism with which HMGB1 in the nuclei initiates antiviral innate immune response to suppress CSFV replication and elaborates the pathway by which CSFV uses its Npro to evade from HMGB1-mediated antiviral immunity through upregulating HMGB1 acetylation with subsequent translocation into cytoplasm for lysosomal degradation.
Collapse
Affiliation(s)
- Xiao Han
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Hankun Xu
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Yifan Weng
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Rong Chen
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Jidong Xu
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Renjie Sun
- Zhejiang Provincial Center for Animal Disease Prevention & Control, Hangzhou, Zhejiang 311199, China
| | - Ying Shan
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Fang He
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China.
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
88
|
Andersson U, Tracey KJ. Vagus nerve SARS-CoV-2 infection and inflammatory reflex dysfunction: Is there a causal relationship? J Intern Med 2024; 295:91-102. [PMID: 38018736 DOI: 10.1111/joim.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Autonomic dysfunction is a clinical hallmark of infection caused by SARS-CoV-2, but the underlying mechanisms are unknown. The vagus nerve inflammatory reflex is an important, well-characterized mechanism for the reflexive suppression of cytokine storm, and its experimental or clinical impairment facilitates the onset and progression of hyperinflammation. Recent pathological evidence from COVID-19 victims reveals viral infection and inflammation in the vagus nerve and associated nuclei in the medulla oblongata. Although it has been suggested that vagus nerve inflammation in these patients mediates dysregulated respiration, whether it also contributes to dysfunction of the vagus nerve inflammatory reflex has not been addressed. Because lethality and tissue injury in acute COVID-19 are characterized by cytokine storm, it is plausible to consider evidence that impairment of the inflammatory reflex may contribute to overproduction of cytokines and resultant hyperinflammatory pathogenesis. Accordingly, here the authors discuss the inflammatory reflex, the consequences of its dysfunction in COVID-19, and whether there are opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| |
Collapse
|
89
|
Goyal A, Agrawal A, Dubey N, Verma A. High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson's Disease. Curr Pharm Biotechnol 2024; 25:937-943. [PMID: 37670710 DOI: 10.2174/1389201025666230905092218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people's health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
90
|
Oikonomou P, Nikolaou C, Papachristou F, Sovatzidis A, Lambropoulou M, Giouleka C, Kontaxis V, Linardoutsos D, Papalois A, Pitiakoudis M, Tsaroucha A. Eugenol Reduced ΜPO, CD45 and HMGB1 Expression and Attenuated the Expression of Leukocyte Infiltration Markers in the Intestinal Tissue in Biliopancreatic Duct Ligation-Induced Pancreatitis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:74. [PMID: 38256335 PMCID: PMC10820626 DOI: 10.3390/medicina60010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Inflammation and dysregulation in the intestinal barrier function in acute pancreatitis (AP) trigger pancreatic lesions, systemic inflammatory response, and multiple organ dysfunction. Eugenol, as the main component of clove (Syzygium aromaticum), is known for its antioxidant and anti-inflammatory properties. We studied the potentially beneficial effect of eugenol in a rodent model of biliopancreatic duct ligation-induced AP. Materials and Methods: Rats were randomly divided into three groups: Sham, AP, and AP + eugenol (15 mg/kg/day). Serum TNFα, IL-6, IL-18, and resistin levels, as well as IL-6, TNFα, MPO, HMGB1, and CD45 tissue expression, were determined at various timepoints after the induction of AP. Results: Eugenol attenuated hyperemia and inflammatory cell infiltration in the intestinal mucosal, submucosal, and muscular layers. IL-6 and resistin serum levels were significantly reduced in the AP + eugenol group, while serum TNFα and IL-18 levels remained unaffected overall. TNFα pancreatic and intestinal expression was attenuated by eugenol at 72 h, while IL-6 expression was affected only in the pancreas. MPO, CD45, and HMGB1 intestinal expression was significantly reduced in eugenol-treated rats. Conclusions: Eugenol managed to attenuate the inflammatory response in the intestine in duct ligation-induced AP in rats.
Collapse
Affiliation(s)
- Panagoula Oikonomou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Christina Nikolaou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Apostolos Sovatzidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Charikleia Giouleka
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Vasileios Kontaxis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Dimitrios Linardoutsos
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Apostolos Papalois
- Experimental Research Center, ELPEN Pharmaceuticals, Pikermi, 19009 Athens, Greece;
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Alexandra Tsaroucha
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| |
Collapse
|
91
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
92
|
Tang D, Kang R, Zeh HJ, Lotze MT. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol 2023; 23:824-841. [PMID: 37322174 DOI: 10.1038/s41577-023-00894-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Fifty years since the initial discovery of HMGB1 in 1973 as a structural protein of chromatin, HMGB1 is now known to regulate diverse biological processes depending on its subcellular or extracellular localization. These functions include promoting DNA damage repair in the nucleus, sensing nucleic acids and inducing innate immune responses and autophagy in the cytosol and binding protein partners in the extracellular environment and stimulating immunoreceptors. In addition, HMGB1 is a broad sensor of cellular stress that balances cell death and survival responses essential for cellular homeostasis and tissue maintenance. HMGB1 is also an important mediator secreted by immune cells that is involved in a range of pathological conditions, including infectious diseases, ischaemia-reperfusion injury, autoimmunity, cardiovascular and neurodegenerative diseases, metabolic disorders and cancer. In this Review, we discuss the signalling mechanisms, cellular functions and clinical relevance of HMGB1 and describe strategies to modify its release and biological activities in the setting of various diseases.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael T Lotze
- Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
93
|
Ishqi HM, Ali M, Dawra R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 2023; 23:4107-4122. [PMID: 37725239 DOI: 10.1007/s10238-023-01180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.
Collapse
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Misha Ali
- Department of Radiation Oncology and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
94
|
Zhang S, Liu C, Sun J, Li Y, Lu J, Xiong X, Hu L, Zhao H, Zhou H. Bridging the Gap: Investigating the Link between Inflammasomes and Postoperative Cognitive Dysfunction. Aging Dis 2023; 14:1981-2002. [PMID: 37450925 PMCID: PMC10676784 DOI: 10.14336/ad.2023.0501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a cluster of cognitive problems that may arise after surgery. POCD symptoms include memory loss, focus inattention, and communication difficulties. Inflammasomes, intracellular multiprotein complexes that control inflammation, may have a significant role in the development of POCD. It has been postulated that the NLRP3 inflammasome promotes cognitive impairment by triggering the inflammatory response in the brain. Nevertheless, there are many gaps in the current literature to understand the underlying pathophysiological mechanisms and develop future therapy. This review article underlines the limits of our current knowledge about the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome and POCD. We first discuss inflammasomes and their types, structures, and functions, then summarize recent evidence of the NLRP3 inflammasome's involvement in POCD. Next, we propose a hypothesis that suggests the involvement of inflammasomes in multiple organs, including local surgical sites, blood circulation, and other peripheral organs, leading to systemic inflammation and subsequent neuronal dysfunction in the brain, resulting in POCD. Research directions are then discussed, including analyses of inflammasomes in more clinical POCD animal models and clinical trials, studies of inflammasome types that are involved in POCD, and investigations into whether inflammasomes occur at the surgical site, in circulating blood, and in peripheral organs. Finally, we discuss the potential benefits of using new technologies and approaches to study inflammasomes in POCD. A thorough investigation of inflammasomes in POCD might substantially affect clinical practice.
Collapse
Affiliation(s)
- Siyu Zhang
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jintao Sun
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Yang Li
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Hongmei Zhou
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| |
Collapse
|
95
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
96
|
Idoudi S, Bedhiafi T, Pedersen S, Elahtem M, Alremawi I, Akhtar S, Dermime S, Merhi M, Uddin S. Role of HMGB1 and its associated signaling pathways in human malignancies. Cell Signal 2023; 112:110904. [PMID: 37757902 DOI: 10.1016/j.cellsig.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The High-Mobility Group Box-1 (HMGB1), a non-histone chromatin-associated protein, plays a crucial role in cancer growth and response to therapy as it retains a pivotal role in promoting both cell death and survival. HMGB1 has been reported to regulate several signaling pathways engaged in inflammation, genome stability, immune function, cell proliferation, cell autophagy, metabolism, and apoptosis. However, the association between HMGB1 and cancer is complex and its mechanism in tumorigenesis needs to be further elucidated. This review aims to understand the role of HMGB1 in human malignancies and discuss the signaling pathways linked to this process to provide a comprehensive understanding on the association of HMGB1 with carcinogenesis. Further, we will review the role of HMGB1 as a target/biomarker for cancer therapy, the therapeutic strategies used to target this protein, and its potential role in preventing or treating cancers. In light of the recent growing evidence linking HMGB1 to cancer progression, we think that it may be suggested as a novel and emergent therapeutic target for cancer therapy. Hence, HMGB1 warrants paramount investigation to comprehensively map its role in tumorigenesis.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed Elahtem
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Sabah Akhtar
- Department of Dermatology and venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
97
|
Ticconi C, Mardente S, Mari E, Barreca F, Montanaro M, Mauriello A, Rizzo G, Zicari A. High mobility group box 1 in women with unexplained recurrent pregnancy loss. J Perinat Med 2023; 51:1139-1146. [PMID: 37246521 DOI: 10.1515/jpm-2023-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVES To investigate whether high mobility group box 1 (HMGB1) is involved in unexplained recurrent pregnancy loss (uRPL). METHODS Plasma levels of HMGB1 were measured by ELISA in non-pregnant women with (n=44) and without (n=53 controls) uRPL. Their platelets and plasma-derived microvesicles (MVs) were also assayed for HMGB1. Endometrial biopsies were taken in selected uRPL (n=5) and control women (n=5) and the tissue expression of HMGB1 was determined by western blot and immunohistochemistry (IHC). RESULTS plasma levels of HMGB1 were significantly higher in women with uRPL than in control women. HMGB1 content in platelets and MVs obtained from women with uRPL was significantly higher than that obtained from control women. HMGB1 expression in endometrium was higher in tissues obtained from women with uRPL than in tissues obtained from control women. IHC analysis revealed that HMGB1 is expressed in endometrium with different patterns between uRPL and control women. CONCLUSIONS HMGB1 could be involved in uRPL.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University of Rome "Tor Vergata", Rome, Italy
| | - Stefania Mardente
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuela Mari
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Rizzo
- Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Zicari
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
98
|
Zhou L, Yuan X, Hu Y, Zhu S, Li J, Wang C, Jing M, Liu L, Xu Z, Zhao Z, Zhao J. Blockade of HMGB1 Reduces Inflammation and Pruritus in Atopic Dermatitis by Inhibiting Skin Fibroblasts Activation. Int Arch Allergy Immunol 2023; 185:170-181. [PMID: 37963429 PMCID: PMC10836909 DOI: 10.1159/000534568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by relapsed eczema and serious pruritus. High-mobility group box 1 protein (HMGB1) is a nuclear-binding protein and serves as an alarmin to promote inflammatory responses. METHODS In this study, we established an AD mouse model by topical use of MC903 on ears and then used a specific HMGB1-binding peptide cIY8 and a HMGB1 inhibitor of glycyrrhizin to investigate HMGB1 on fibroblast activation in the pathogenesis of AD-like symptoms. RESULTS Topical use of cIY8 and oral use of glycyrrhizin significantly improved the MC903-induced AD-like symptoms and pathological changes of the ears and scratching behavior in an AD mouse model; cIY8 treatment inhibited the higher mRNAs of IL-1α, IL-4, IL-5, IL-13, and IL-31 in the ears. In human fibroblasts, HMGB1 caused nuclear translocation of NF-kB, and the nuclear translocation could be inhibited by pre-treatment of HMGB1 with cIY8, suggesting that NF-κB signaling pathway participates in the HMGB1-induced inflammation of AD in fibroblasts and that cIY8 effectively impedes the function of HMGB1. Glycyrrhizin inhibited the Ca2+ signaling induced by ionomycin in mouse primary fibroblasts. The fibroblast-related proteins of α-SMA, Hsp47, and vimentin and the pruritus-related proteins of IL-33 and periostin were increased in the ears of the AD mouse model, the ratio of EdU incorporation became higher in mouse fibroblasts treated with MC903, and the higher proliferation and inflammatory responses of the fibroblasts could be reversed by glycyrrhizin treatment. CONCLUSIONS Fibroblast activation by HMGB1 is one of the critical processes in the development of inflammation and pruritus in the AD mouse model. The specific HMGB1-binding peptide cIY8 and the HMGB1 inhibitor glycyrrhizin inactivate skin fibroblasts to alleviate the inflammation and pruritus in the AD mouse model. Peptide cIY8 may be topically used to treat AD patients in the future.
Collapse
Affiliation(s)
- Lingxuan Zhou
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Xiaohui Yuan
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Siyu Zhu
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- Harvest Biotech (Zhejiang) Co., Ltd., Jiaxing, China
| | - Junxiang Li
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- Harvest Biotech (Zhejiang) Co., Ltd., Jiaxing, China
| | - Chenyu Wang
- Chinese Institute for Brain Research, Beijing, China
- Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China
| | - Lingling Liu
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Zhe Xu
- Department of Dermatology, Shunyi Maternal and Children’s Hospital of Beijing Children’s Hospital, Beijing, China
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University; National Center for Children’s Health, Beijing, China
| | - Zuotao Zhao
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Jiahui Zhao
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
99
|
Kou F, Wu L, Zheng Y, Yi Y, Ji Z, Huang Z, Guo S, Yang L. HMGB1/SET/HAT1 complex-mediated SASH1 repression drives glycolysis and metastasis in lung adenocarcinoma. Oncogene 2023; 42:3407-3421. [PMID: 37794134 DOI: 10.1038/s41388-023-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
High-mobility group box 1 (HMGB1) can enhance the stability and accessibility of nucleus binding sites to nucleosomes and transcription factors. Recently, HMGB1 has been recognized as a positive regulator of tumor glutamine, and its overexpression has been correlated with tumorigenesis and cancer progression. However, functions and mechanisms of HMGB1 in regulation of glycolysis during cancer progression in lung adenocarcinoma (LUAD) is still unclear. Here, we found that intracellular HMGB1 was consistently upregulated in LUAD specimens, and positively relevant to tumor grade and poor survival. HMGB1 facilitated glycolysis and promoted metastasis through physical interaction with SET and HAT1, forming HMGB1/SET/HAT1 complex that inhibited H3K9 and H3K27 acetylation in LUAD. The functional proteins complex coordinated histone modification to suppress the expression of SASH1, thus further facilitating glycolysis and inducing the metastasis in vitro and in vivo. Consistent with this, the expression of SASH1 was negatively correlated with HMGB1, SET and GLUT1, and positively correlated with HAT1 in human LUAD specimens. Clinically, LUAD patients with high expression of HMGB1 and low expression of SASH1 exhibited the worst clinical outcomes. Overall, the findings of this study revealed the critical role of HMGB1 in glycolysis and metastasis by attenuating H3K9ace and H3K27ace through physical interacted with SET and HAT1, which may facilitate future targeted therapies.
Collapse
Affiliation(s)
- Fan Kou
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Zheng
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yeran Yi
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Zhenyu Ji
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ziqi Huang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Shiwei Guo
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
100
|
Saeedan AS, Abdel-Rahman RF, Soliman GA, Ogaly HA, Abdel-Kader MS. Amentoflavone attenuates oxidative stress and neuroinflammation induced by cerebral ischemia/reperfusion in rats by targeting HMGB1-mediated TLR4/NF-κB signaling pathway. Saudi Pharm J 2023; 31:101798. [PMID: 37811125 PMCID: PMC10551888 DOI: 10.1016/j.jsps.2023.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Surveys indicated that stroke classified among the leading cause of death as well as combined death and disability worldwide resulting in a great loss for the global economy. The present study aims to evaluate the neuroprotective potential of the biflavonoid amentoflavone (AMNT) in alleviating cerebral ischemia/reperfusion (IR) injury in rats, and to elucidate the possible underlying mechanism of an experimental condition with similar circumstances to stroke. Cerebral ischemia was achieved through left common carotid artery occlusion for 60 min, followed by blood flow restoration. Sham-operated control rats subjected to the same surgical process except for brain IR. Rats were orally administered AMNT/ or vehicle for three days' prior surgical operation, and for another three days after left brain IR. Rats of all groups were assessed for neurological deficits 24 h following brain IR. Each group was divided into two subgroups one for the rotarod testing and biochemical assessment while the other subgroup to perform the activity cage testing, histopathological study, immunohistochemistry, and gene expression analysis. AMNT enhanced brain levels of GSH and CAT activities, suppressed neuroinflammation via reducing the inflammatory cytokines in the serum, and enhanced brain contents of TBK1 and IFNβ. AMNT downregulated TLR4-/NF-κB signaling pathway as a result of the HMGB1 suppression. Moreover, AMNT blocked apoptotic cell death by suppressing the NF-κB signaling pathway and reducing the activation of caspase-3. These findings revealed that AMNT attenuates I/R-induced cerebral injury possibly by regulating the HMGB1-mediated TLR4/NF-kB pathway. Thus, AMNT could provide potential preventive and therapeutic option for cerebral stroke.
Collapse
Affiliation(s)
- Abdulaziz S. Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|