51
|
Abstract
Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to gonadotropin-releasing hormone (GnRH) neurons for the coordinated release of gonadotropins, estrous cyclicity, and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are 2 distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1AVPV/PeN neurons but decreases its expression in Kiss1ARH neurons. Also, Kiss1ARH neurons coexpress glutamate and Kiss1AVPV/PeN neurons coexpress gamma aminobutyric acid (GABA), both of which are upregulated by E2 in females. Also, Kiss1ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1ARH neurons project to and excite the anorexigenic proopiomelanocortin neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide neurons, highlighting their role in regulating feeding behavior. Kiss1ARH and Kiss1AVPV/PeN neurons also project to the preautonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
52
|
Gołyszny M, Obuchowicz E, Zieliński M. Neuropeptides as regulators of the hypothalamus-pituitary-gonadal (HPG) axis activity and their putative roles in stress-induced fertility disorders. Neuropeptides 2022; 91:102216. [PMID: 34974357 DOI: 10.1016/j.npep.2021.102216] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Neuropeptides being regulators of the hypothalamus-pituitary-adrenal (HPA) axis activity, also affect the function of the hypothalamus-pituitary-gonadal (HPG) axis by regulating gonadotrophin-releasing hormone (GnRH) secretion from hypothalamic neurons. Here, we review the available data on how neuropeptides affect HPG axis activity directly or indirectly via their influence on the HPA axis. The putative role of neuropeptides in stress-induced infertility, such as polycystic ovary syndrome, is also described. This review discusses both well-known neuropeptides (i.e., kisspeptin, Kp; oxytocin, OT; arginine-vasopressin, AVP) and more recently discovered peptides (i.e., relaxin-3, RLN-3; nesfatin-1, NEFA; phoenixin, PNX; spexin, SPX). For the first time, we present an up-to-date review of all published data regarding interactions between the aforementioned neuropeptide systems. The reviewed literature suggest new pathophysiological mechanisms leading to fertility disturbances that are induced by stress.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| |
Collapse
|
53
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
54
|
Hypothalamic kisspeptin and kisspeptin receptors: Species variation in reproduction and reproductive behaviours. Front Neuroendocrinol 2022; 64:100951. [PMID: 34757093 DOI: 10.1016/j.yfrne.2021.100951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.
Collapse
|
55
|
Ozawa H. Kisspeptin neurons as an integration center of reproductive regulation: Observation of reproductive function based on a new concept of reproductive regulatory nervous system. Reprod Med Biol 2021; 21:e12419. [PMID: 34934400 PMCID: PMC8656200 DOI: 10.1002/rmb2.12419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background Regulation of the reproductive system has been explained by the actions and feedback of gonadotropin releasing hormone‐luteinizing hormone/follicle stimulating hormone (GnRH‐LH/FSH) ‐sex steroids; however, the discovery of kisspeptin neurons and a kisspeptin‐GnRH‐LH/FSH axis has prompted this regulation to be reviewed. Methods We investigated changes in kisspeptin neurons and associated changes in the hypothalamic‐pituitary‐gonadal (HPG) axis under various situations and experimental conditions using histochemical methods. Main findings (Results) Kisspeptin neurons play an important role in receiving and integrating information from internal and external environmental factors and communicating it to the conventional HPG axis. Conclusion The recently described Kisspeptin‐GnRH‐LH/FSH‐gonad system regulates reproductive function via mechanisms that until recently were not completely understood.
Collapse
Affiliation(s)
- Hitoshi Ozawa
- Department of Anatomy and Neurobiology Graduate School of Medicine Nippon Medical School Tokyo Japan
| |
Collapse
|
56
|
Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome. Endocrinology 2021; 162:bqab158. [PMID: 34346492 PMCID: PMC8402932 DOI: 10.1210/endocr/bqab158] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 02/08/2023]
Abstract
Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Dayanara B Lohr
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Lique M Coolen
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
57
|
Harlow K, Renwick AN, Shuping SL, Sommer JR, Lents CA, Knauer MT, Nestor CC. Evidence that pubertal status impacts KNDy neurons in the gilt. Biol Reprod 2021; 105:1533-1544. [PMID: 34643223 DOI: 10.1093/biolre/ioab189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Puberty onset is a complex physiological process which enables the capacity for reproduction through increased gonadotropin-releasing hormone (GnRH), and subsequently luteinizing hormone (LH), secretion. While cells that coexpress kisspeptin, neurokinin B (NKB), and dynorphin in the hypothalamic arcuate nucleus (ARC) are believed to govern the timing of puberty, the degree to which KNDy neurons exist and are regulated by pubertal status remains to be determined in the gilt. Hypothalamic tissue from prepubertal and postpubertal, early follicular phase gilts was used to determine the expression of kisspeptin, NKB, and dynorphin within the ARC. Fluorescent in situ hybridization revealed that the majority (> 74%) of ARC neurons that express mRNA for kisspeptin coexpressed mRNA for NKB and dynorphin. There were fewer ARC cells that expressed mRNA for dynorphin in postpubertal gilts compared to prepubertal gilts (P < 0.05), but the number of ARC cells expressing mRNA for kisspeptin or NKB was not different between groups. Within KNDy neurons, mRNA abundance for kisspeptin, NKB, and dynorphin of postpubertal gilts was the same as, less than, and greater than, respectively, prepubertal gilts. Immunostaining for kisspeptin did not differ between prepubertal and postpubertal gilts, but there were fewer NKB immunoreactive fibers in postpubertal gilts compared to prepubertal gilts (P < 0.05). Together, these data reveal novel information about KNDy neurons in gilts and supports the idea that NKB and dynorphin play a role in puberty onset in the female pig.
Collapse
Affiliation(s)
- KaLynn Harlow
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Allison N Renwick
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Sydney L Shuping
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Jeffrey R Sommer
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Livestock Biosystems Research Unit, Clay Center, NE 68966-0166, USA
| | - Mark T Knauer
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
58
|
Poissenot K, Chorfa A, Moussu C, Trouillet AC, Brachet M, Chesneau D, Chemineau P, Ramadier E, Pinot A, Benoit E, Lattard V, Dardente H, Drevet J, Saez F, Keller M. Photoperiod is involved in the regulation of seasonal breeding in male water voles (Arvicola terrestris). J Exp Biol 2021; 224:272112. [PMID: 34494651 DOI: 10.1242/jeb.242792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.
Collapse
Affiliation(s)
- Kevin Poissenot
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Areski Chorfa
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001, Clermont-Ferrand Cedex, France
| | - Chantal Moussu
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Anne-Charlotte Trouillet
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Morgane Brachet
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Didier Chesneau
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Philippe Chemineau
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Etienne Ramadier
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Adrien Pinot
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Etienne Benoit
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Hugues Dardente
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Joël Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001, Clermont-Ferrand Cedex, France
| | - Fabrice Saez
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001, Clermont-Ferrand Cedex, France
| | - Matthieu Keller
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| |
Collapse
|
59
|
Aerts EG, Harlow K, Griesgraber MJ, Bowdridge EC, Hardy SL, Nestor CC, Hileman SM. Kisspeptin, Neurokinin B, and Dynorphin Expression during Pubertal Development in Female Sheep. BIOLOGY 2021; 10:biology10100988. [PMID: 34681086 PMCID: PMC8533601 DOI: 10.3390/biology10100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
The neural mechanisms underlying increases in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion that drive puberty onset are unknown. Neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin, i.e., KNDy neurons, are important as kisspeptin and NKB are stimulatory, and dynorphin inhibitory, to GnRH secretion. Given this, we hypothesized that kisspeptin and NKB expression would increase, but that dynorphin expression would decrease, with puberty. We collected blood and hypothalamic tissue from ovariectomized lambs implanted with estradiol at five, six, seven, eight (puberty), and ten months of age. Mean LH values and LH pulse frequency were the lowest at five to seven months, intermediate at eight months, and highest at ten months. Kisspeptin and NKB immunopositive cell numbers did not change with age. Numbers of cells expressing mRNA for kisspeptin, NKB, or dynorphin were similar at five, eight, and ten months of age. Age did not affect mRNA expression per cell for kisspeptin or NKB, but dynorphin mRNA expression per cell was elevated at ten months versus five months. Thus, neither KNDy protein nor mRNA expression changed in a predictable manner during pubertal development. These data raise the possibility that KNDy neurons, while critical, may await other inputs for the initiation of puberty.
Collapse
Affiliation(s)
- Eliana G. Aerts
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - KaLynn Harlow
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (K.H.); (C.C.N.)
| | - Max J. Griesgraber
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - Elizabeth C. Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - Steven L. Hardy
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (K.H.); (C.C.N.)
| | - Stanley M. Hileman
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-1502; Fax: +1-304-293-3850
| |
Collapse
|
60
|
Poissenot K, Moussu C, Chesneau D, Ramadier E, Abi Khalil R, Chorfa A, Chemineau P, Michelin Y, Saez F, Drevet J, Benoit E, Lattard V, Pinot A, Dardente H, Keller M. Field study reveals morphological and neuroendocrine correlates of seasonal breeding in female water voles, Arvicola terrestris. Gen Comp Endocrinol 2021; 311:113853. [PMID: 34265346 DOI: 10.1016/j.ygcen.2021.113853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022]
Abstract
Seasonally breeding mammals display timely physiological switches between reproductive activity and sexual rest, which ensure synchronisation of births at the most favourable time of the year. These switches correlate with seasonal changes along the hypothalamo-pituitary-gonadal axis, but they are primarily orchestrated at the hypothalamic level through environmental control of KISS1-dependent GnRH release. Our field study shows that births of fossorial water voles, Arvicola terrestris, are concentrated between March and October, which indicates the existence of an annual reproductive cycle in this species. Monthly field monitoring for over a year further reveals dramatic seasonal changes in the morphology of the ovary, uterus and lateral scent glands, which correlate with the reproductive status. Finally, we demonstrate seasonal variation in kisspeptin expression within the hypothalamic arcuate nucleus. Altogether, this study demonstrates a marked rhythm of seasonal breeding in the water vole and we speculate that this is governed by seasonal changes in photoperiod.
Collapse
Affiliation(s)
- Kévin Poissenot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Chantal Moussu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Didier Chesneau
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Etienne Ramadier
- UMR 0874 UREP, VetAgro Sup, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rami Abi Khalil
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Areski Chorfa
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand Cedex, France
| | | | - Yves Michelin
- UMR Territoires, VetagroSup, INRAE, AgroParisTech, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Fabrice Saez
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand Cedex, France
| | - Joël Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand Cedex, France
| | - Etienne Benoit
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Adrien Pinot
- UMR 0874 UREP, VetAgro Sup, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France; USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France.
| |
Collapse
|
61
|
Carrasco RA, Leonardi CE, Hutt K, Singh J, Adams GP. Kisspeptin induces LH release and ovulation in an induced ovulator†. Biol Reprod 2021; 103:49-59. [PMID: 32307518 DOI: 10.1093/biolre/ioaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/14/2022] Open
Abstract
Kisspeptin has been implicated in the ovulatory process of several species of spontaneous ovulators but in only one induced ovulator. In contrast, NGF in semen is the principal trigger of ovulation in other species of induced ovulators-camelids. We tested the hypotheses that kisspeptin induces luteinizing hormone (LH) secretion in llamas through a hypothalamic mechanism, and kisspeptin neurons are the target of NGF in its ovulation-inducing pathway. In Experiment 1, llamas were given either NGF, kisspeptin, or saline intravenously, and LH secretion and ovulation were compared among groups. All llamas treated with NGF (5/5) or kisspeptin (5/5) had an elevation of LH blood concentrations after treatment and ovulated, whereas none of the saline group did (0/5). In Experiment 2, llamas were either pretreated with a gonadotropin-releasing hormone (GnRH) receptor antagonist or saline and treated 2 h later with kisspeptin. Llamas pretreated with saline had elevated plasma LH concentrations and ovulated (6/6) whereas llamas pretreated with cetrorelix did not (0/6). In Experiment 3, we evaluated the hypothalamic kisspeptin-GnRH neuronal network by immunohistochemistry. Kisspeptin neurons were detected in the arcuate nucleus, the preoptic area, and the anterior hypothalamus, establishing synaptic contacts with GnRH neurons. We found no colocalization between kisspeptin and NGF receptors by double immunofluorescence. Functional and morphological findings support the concept that kisspeptin is a mediator of the LH secretory pathway in llamas; however, the role of kisspeptins in the NGF ovulation-inducing pathway in camelids remains unclear since NGF receptors were not detected in kisspeptin neurons in the hypothalamus.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Carlos E Leonardi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kylie Hutt
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
62
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Kisspeptin Neurons and Estrogen-Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. Int J Mol Sci 2021; 22:ijms22179229. [PMID: 34502135 PMCID: PMC8430864 DOI: 10.3390/ijms22179229] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
- Correspondence:
| |
Collapse
|
63
|
Rodríguez Gabilondo A, Hernández Pérez L, Martínez Rodríguez R. Hormonal and neuroendocrine control of reproductive function in teleost fish. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction is one of the important physiological events for the maintenance of the species. Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) regulates the synthesis and release of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in the different regulatory mechanisms of these species' growth, metabolism, and reproduction. However, especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and success of aquaculture.
Collapse
Affiliation(s)
- Adrian Rodríguez Gabilondo
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernández Pérez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rebeca Martínez Rodríguez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
64
|
Arcuate and Preoptic Kisspeptin Neurons Exhibit Differential Projections to Hypothalamic Nuclei and Exert Opposite Postsynaptic Effects on Hypothalamic Paraventricular and Dorsomedial Nuclei in the Female Mouse. eNeuro 2021; 8:ENEURO.0093-21.2021. [PMID: 34281980 PMCID: PMC8354717 DOI: 10.1523/eneuro.0093-21.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 01/24/2023] Open
Abstract
Kisspeptin (Kiss1) neurons provide indispensable excitatory input to gonadotropin-releasing hormone (GnRH) neurons, which is important for the coordinated release of gonadotropins, estrous cyclicity and ovulation. However, Kiss1 neurons also send projections to many other brain regions within and outside the hypothalamus. Two different populations of Kiss1 neurons, one in the arcuate nucleus (Kiss1ARH) and another in the anteroventral periventricular nucleus (AVPV) and periventricular nucleus (PeN; Kiss1AVPV/PeN) of the hypothalamus are differentially regulated by ovarian steroids, and are believed to form direct contacts with GnRH neurons as well as other neurons. To investigate the projection fields from Kiss1AVPV/PeN and Kiss1ARH neurons in female mice, we used anterograde projection analysis, and channelrhodopsin-assisted circuit mapping (CRACM) to explore their functional input to select target neurons within the paraventricular (PVH) and dorsomedial (DMH) hypothalamus, key preautonomic nuclei. Cre-dependent viral (AAV1-DIO-ChR2 mCherry) vectors were injected into the brain to label the two Kiss1 neuronal populations. Immunocytochemistry (ICC) for mCherry and neuropeptides combined with confocal microscopy was used to determine the projection-fields of both Kiss1 neuronal groups. Whole-cell electrophysiology and optogenetics were used to elucidate the functional input to the PVH and DMH. Our analysis revealed many common but also several clearly separate projection fields between the two different populations of Kiss1 neurons. In addition, optogenetic stimulation of Kiss1 projections to PVH prodynorphin, Vglut2 and DMH CART-expressing neurons, revealed excitatory glutamatergic input from Kiss1ARH neurons and inhibitory GABAergic input from Kiss1AVPV/PeN neurons. Therefore, these steroid-sensitive Kiss1 neuronal groups can differentially control the excitability of target neurons to coordinate autonomic functions with reproduction.
Collapse
|
65
|
Delli V, Silva MSB, Prévot V, Chachlaki K. The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Mol Cell Endocrinol 2021; 532:111302. [PMID: 33964320 DOI: 10.1016/j.mce.2021.111302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
66
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
67
|
Lindo AN, Thorson JF, Bedenbaugh MN, McCosh RB, Lopez JA, Young SA, Meadows LJ, Bowdridge EC, Fergani C, Freking BA, Lehman MN, Hileman SM, Lents CA. Localization of kisspeptin, NKB, and NK3R in the hypothalamus of gilts treated with the progestin altrenogest. Biol Reprod 2021; 105:1056-1067. [PMID: 34037695 DOI: 10.1093/biolre/ioab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/12/2022] Open
Abstract
Mechanisms in the brain controlling secretion of gonadotropin hormones in pigs, particularly luteinizing hormone (LH), are poorly understood. Kisspeptin is a potent LH stimulant that is essential for fertility in many species, including pigs. Neurokinin B (NKB) acting through neurokinin 3 receptor (NK3R) is involved in kisspeptin-stimulated LH release, but organization of NKB and NK3R within the porcine hypothalamus is unknown. Hypothalamic tissue from ovariectomized (OVX) gilts was used to determine the distribution of immunoreactive kisspeptin, NKB, and NK3R cells in the arcuate nucleus (ARC). Almost all kisspeptin neurons coexpressed NKB in the porcine ARC. Immunostaining for NK3R was distributed throughout the preoptic area (POA) and in several hypothalamic areas including the periventricular and retrochiasmatic areas but was not detected within the ARC. There was no colocalization of NK3R with gonadotropin-releasing hormone (GnRH), but NK3R-positive fibers in the POA were in close apposition to GnRH neurons. Treating OVX gilts with the progestin altrenogest decreased LH pulse frequency and reduced mean circulating concentrations of LH compared with OVX control gilts (P < 0.01), but the number of kisspeptin and NKB cells in the ARC did not differ between treatments. The neuroanatomical arrangement of kisspeptin, NKB, and NK3R within the porcine hypothalamus confirm they are positioned to stimulate GnRH and LH secretion in gilts, though differences with other species exist. Altrenogest suppression of LH secretion in the OVX gilt does not appear to involve decreased peptide expression of kisspeptin or NKB.
Collapse
Affiliation(s)
- Ashley N Lindo
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | | | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Richard B McCosh
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Justin A Lopez
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Samantha A Young
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Lanny J Meadows
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Chrysanthi Fergani
- Department of Neurobiology and Anatomical Sciences, The University of Mississippi Medical Center, Jackson, Miss., USA
| | | | - Michael N Lehman
- Department of Biological Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Stanley M Hileman
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
68
|
Porter DT, Goodman RL, Hileman SM, Lehman MN. Evidence that synaptic plasticity of glutamatergic inputs onto KNDy neurones during the ovine follicular phase is dependent on increasing levels of oestradiol. J Neuroendocrinol 2021; 33:e12945. [PMID: 33713519 PMCID: PMC7959185 DOI: 10.1111/jne.12945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023]
Abstract
Neurones in the arcuate nucleus co-expressing kisspeptin, neurokinin B (NKB) and dynorphin (KNDy) play a critical role in the control of gonadotrophin-releasing hormone (GnRH) and luteinising hormone (LH) secretion. In sheep, KNDy neurones mediate both steroid-negative- and -positive-feedback during pulsatile and preovulatory surge secretions of GnRH/LH, respectively. In addition, KNDy neurones receive glutamatergic inputs expressing vGlut2, a glutamate transporter that serves as a marker for those terminals, from both KNDy neurones and other populations of glutamatergic neurones. Previous work reported higher numbers of vGlut2-positive axonal inputs onto KNDy neurones during the LH surge than in luteal phase ewes. In the present study, we further examined the effects of the ovarian steroids progesterone (P) and oestradiol (E2 ) on glutamatergic inputs to KNDy neurones. Ovariectomised (OVX) ewes received either no further treatment (OVX) or steroid treatments that mimicked the luteal phase (low E2 + P), and early (low E2 ) or late follicular (high E2 ) phases of the oestrous cycle (n = 4 or 5 per group). Brain sections were processed for triple-label immunofluorescent detection of NKB/vGlut2/synaptophysin and analysed using confocal microscopy. We found higher numbers of vGlut2 inputs onto KNDy neurones in high E2 compared to the other three treatment groups. These results suggest that synaptic plasticity of glutamatergic inputs onto KNDy neurones during the ovine follicular phase depend on increasing levels of E2 required for the preovulatory GnRH/surge. These synaptic changes likely contribute to the positive-feedback action of oestrogen on GnRH/LH secretion and thus the generation of the preovulatory surge in the sheep.
Collapse
Affiliation(s)
- Danielle T. Porter
- Neuroscience Graduate Program, Dept. of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center
| | | | | | - Michael N. Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University
- Corresponding author and reprint requests to: Michael N. Lehman, Brain Health Research Institute, Kent State University, 251K Integrated Sciences Building, Kent, Ohio, 44242-0001 USA, Phone: 330-672-2732;
| |
Collapse
|
69
|
Merkley CM, Shuping SL, Sommer JR, Nestor CC. Evidence That Agouti-Related Peptide May Directly Regulate Kisspeptin Neurons in Male Sheep. Metabolites 2021; 11:138. [PMID: 33652696 PMCID: PMC7996775 DOI: 10.3390/metabo11030138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Agouti-related peptide (AgRP) neurons, which relay information from peripheral metabolic signals, may constitute a key central regulator of reproduction. Given that AgRP inhibits luteinizing hormone (LH) secretion and that nutritional suppression of LH elicits an increase in AgRP while suppressing kisspeptin expression in the arcuate nucleus (ARC) of the hypothalamus, we sought to examine the degree to which AgRP could directly regulate ARC kisspeptin neurons. Hypothalamic tissue was collected from four castrated male sheep (10 months of age) and processed for the detection of protein (AgRP input to kisspeptin neurons) using immunohistochemistry and mRNA for melanocortin 3 and 4 receptors (MC3R; MC4R) in kisspeptin neurons using RNAscope. Immunohistochemical analysis revealed that the majority of ARC kisspeptin neurons are contacted by presumptive AgRP terminals. RNAscope analysis revealed that nearly two thirds of the ARC kisspeptin neurons express mRNA for MC3R, while a small percentage (<10%) colocalize MC4R. Taken together, this data provides neuroanatomical evidence for a direct link between orexigenic AgRP neurons and reproductively critical kisspeptin neurons in the sheep, and builds upon our current understanding of the central link between energy balance and reproduction.
Collapse
Affiliation(s)
| | | | | | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (C.M.M.); (S.L.S.); (J.R.S.)
| |
Collapse
|
70
|
Li Q, Smith JT, Henry B, Rao A, Pereira A, Clarke IJ. Expression of genes for Kisspeptin (KISS1), Neurokinin B (TAC3), Prodynorphin (PDYN), and gonadotropin inhibitory hormone (RFRP) across natural puberty in ewes. Physiol Rep 2021; 8:e14399. [PMID: 32170819 PMCID: PMC7070159 DOI: 10.14814/phy2.14399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Expression of particular genes in hypothami of ewes was measured across the natural pubertal transition by in situ hybridization. The ewes were allocated to three groups (n = 4); prepubertal, postpubertal and postpubertally gonadectomized (GDX). Prepubertal sheep were euthanized at 20 weeks of age and postpubertal animals at 32 weeks. GDX sheep were also euthanized at 32 weeks, 1 week after surgery. Expression of KISS1, TAC3, PDYN in the arcuate nucleus (ARC), RFRP in the dorsomedial hypothalamus and GNRH1 in the preoptic area was quantified on a cellular basis. KISS1R expression by GNRH1 cells was quantified by double-label in situ hybridization. Across puberty, detectable KISS1 cell number increased in the caudal ARC and whilst PDYN cell numbers were low, numbers increased in the rostral ARC. TAC3 expression did not change but RFRP expression/cell was reduced across puberty. There was no change across puberty in the number of GNRH1 cells that expressed the kisspeptin receptor (KISS1R). GDX shortly after puberty did not increase expression of any of the genes of interest. We conclude that KISS1 expression in the ARC increases during puberty in ewes and this may be a causative factor in the pubertal activation of the reproductive axis. A reduction in expression of RFRP may be a factor in the onset of puberty, removing negative tone on GNRH1 cells. The lack of changes in expression of genes following GDX suggest that the effects of gonadal hormones may differ in young and mature animals.
Collapse
Affiliation(s)
- Qun Li
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jeremy T Smith
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Belinda Henry
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alexandra Rao
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alda Pereira
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Iain J Clarke
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
71
|
Uenoyama Y, Nagae M, Tsuchida H, Inoue N, Tsukamura H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front Endocrinol (Lausanne) 2021; 12:724632. [PMID: 34566891 PMCID: PMC8458932 DOI: 10.3389/fendo.2021.724632] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.
Collapse
|
72
|
Rumpler É, Skrapits K, Takács S, Göcz B, Trinh SH, Rácz G, Matolcsy A, Kozma Z, Ciofi P, Dhillo WS, Hrabovszky E. Characterization of Kisspeptin Neurons in the Human Rostral Hypothalamus. Neuroendocrinology 2021; 111:249-262. [PMID: 32299085 DOI: 10.1159/000507891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS Immunohistochemical techniques were used. RESULTS The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sarolta H Trinh
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Kozma
- Department of Forensic Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary,
| |
Collapse
|
73
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
74
|
Coen CW, Bennett NC, Holmes MM, Faulkes CG. Neuropeptidergic and Neuroendocrine Systems Underlying Eusociality and the Concomitant Social Regulation of Reproduction in Naked Mole-Rats: A Comparative Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:59-103. [PMID: 34424513 DOI: 10.1007/978-3-030-65943-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The African mole-rat family (Bathyergidae) includes the first mammalian species identified as eusocial: naked mole-rats. Comparative studies of eusocial and solitary mole-rat species have identified differences in neuropeptidergic systems that may underlie the phenomenon of eusociality. These differences are found in the oxytocin, vasopressin and corticotrophin-releasing factor (CRF) systems within the nucleus accumbens, amygdala, bed nucleus of the stria terminalis and lateral septal nucleus. As a corollary of their eusociality, most naked mole-rats remain pre-pubertal throughout life because of the presence of the colony's only reproductive female, the queen. To elucidate the neuroendocrine mechanisms that mediate this social regulation of reproduction, research on the hypothalamo-pituitary-gonadal axis in naked mole-rats has identified differences between the many individuals that are reproductively suppressed and the few that are reproductively mature: the queen and her male consorts. These differences involve gonadal steroids, gonadotrophin-releasing hormone-1 (GnRH-1), kisspeptin, gonadotrophin-inhibitory hormone/RFamide-related peptide-3 (GnIH/RFRP-3) and prolactin. The comparative findings in eusocial and solitary mole-rat species are assessed with reference to a broad range of studies on other mammals.
Collapse
Affiliation(s)
- Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
75
|
Watanabe Y, Ikegami K, Nakamura S, Uenoyama Y, Ozawa H, Maeda KI, Tsukamura H, Inoue N. Mating-induced increase in Kiss1 mRNA expression in the anteroventral periventricular nucleus prior to an increase in LH and testosterone release in male rats. J Reprod Dev 2020; 66:579-586. [PMID: 32968033 PMCID: PMC7768167 DOI: 10.1262/jrd.2020-067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Kisspeptin has an indispensable role in gonadotropin-releasing hormone/gonadotropin secretion in mammals. In rodents, kisspeptin neurons are located in distinct brain regions, namely the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), arcuate nucleus (ARC), and medial amygdala (MeA). Among them, the physiological role of AVPV/PeN kisspeptin neurons in males has not been clarified yet. The present study aims to investigate the acute effects of the olfactory and/or mating stimulus with a female rat on hypothalamic and MeA Kiss1 mRNA expression, plasma luteinizing hormone (LH) and testosterone levels in male rats. Intact male rats were exposed to the following stimuli: exposure to clean bedding; exposure to female-soiled bedding as a female-olfactory stimulus; exposure to female-soiled bedding and mating stimulus with a female rat. The mating stimulus significantly increased the number of the AVPV/PeN Kiss1 mRNA-expressing cells in males within 5 minutes after the exposure, and significantly increased LH and testosterone levels, followed by an increase in male sexual behavior. Whereas, the males exposed to female-soiled bedding showed a moderate increase in LH levels and no significant change in testosterone levels and the number of the AVPV/PeN Kiss1 mRNA-expressing cells. Importantly, none of the stimuli affected the number of Kiss1 mRNA-expressing cells in the ARC and MeA. These results suggest that the mating-induced increase in AVPV/PeN Kiss1 mRNA expression may be, at least partly, involved in stimulating LH and testosterone release, and might consequently ensure male mating behavior. This study would be the first report suggesting that the AVPV/PeN kisspeptin neurons in males may play a physiological role in ensuring male reproductive performance.
Collapse
Affiliation(s)
- Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Sho Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
76
|
Rumpler É, Takács S, Göcz B, Baska F, Szenci O, Horváth A, Ciofi P, Hrabovszky E, Skrapits K. Kisspeptin Neurons in the Infundibular Nucleus of Ovariectomized Cats and Dogs Exhibit Unique Anatomical and Neurochemical Characteristics. Front Neurosci 2020; 14:598707. [PMID: 33343288 PMCID: PMC7738562 DOI: 10.3389/fnins.2020.598707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons co-synthesizing kisspeptin (KP), neurokinin B (NKB), and dynorphin (“KNDy neurons”) in the hypothalamic arcuate/infundibular nucleus (INF) form a crucial component of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) “pulse generator.” The goal of our study was to characterize KP neuron distribution, neuropeptide phenotype and connectivity to GnRH cells in ovariectomized (OVX) dogs and cats with immunohistochemistry on formalin-fixed hypothalamic tissue sections. In both species, KP and NKB neurons occurred in the INF and the two cell populations overlapped substantially. Dynorphin was detected in large subsets of canine KP (56%) and NKB (37%) cells and feline KP (64%) and NKB (57%) cells; triple-labeled (“KNDy”) somata formed ∼25% of all immunolabeled neurons. Substance P (SP) was present in 20% of KP and 29% of NKB neurons in OVX cats but not dogs, although 26% of KP and 24% of NKB neurons in a gonadally intact male dog also contained SP signal. Only in cats, cocaine- and amphetamine regulated transcript was also colocalized with KP (23%) and NKB (7%). In contrast with reports from mice, KP neurons did not express galanin in either carnivore. KP neurons innervated virtually all GnRH neurons in both species. Results of this anatomical study on OVX animals reveal species-specific features of canine and feline mediobasal hypothalamic KP neurons. Anatomical and neurochemical similarities to and differences from the homologous KP cells of more extensively studied rodent, domestic and primate species will enhance our understanding of obligate and facultative players in the molecular mechanisms underlying pulsatile GnRH/LH secretion.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Baska
- Department of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Ottó Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary.,MTA-SZIE Large Animal Clinical Research Group, University of Veterinary Medicine, Üllõ, Hungary
| | - András Horváth
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary
| | - Philippe Ciofi
- INSERM U1215, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
77
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
78
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
79
|
Cardoso RC, West SM, Maia TS, Alves BRC, Williams GL. Nutritional control of puberty in the bovine female: prenatal and early postnatal regulation of the neuroendocrine system. Domest Anim Endocrinol 2020; 73:106434. [PMID: 32115309 DOI: 10.1016/j.domaniend.2020.106434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/25/2023]
Abstract
Puberty is a complex biological event that requires maturation of the reproductive neuroendocrine axis and subsequent initiation of high-frequency, episodic release of GnRH and LH. Nutrition is a critical factor affecting the neuroendocrine control of puberty. Although nutrient restriction during juvenile development delays puberty, elevated rates of body weight gain during this period facilitate pubertal maturation by programming hypothalamic centers that underlie the pubertal process. Recent findings suggest that maternal nutrition during gestation can also modulate the development of the fetal neuroendocrine axis, thus influencing puberty and subsequent reproductive function. Among the several metabolic signals, leptin plays a critical role in conveying metabolic information to the brain and, consequently, controlling puberty. The effects of leptin on GnRH secretion are mediated via an upstream neuronal network because GnRH neurons do not express the leptin receptor. Two neuronal populations located in the arcuate nucleus that express the orexigenic peptide neuropeptide Y (NPY), and the anorexigenic peptide alpha melanocyte-stimulating hormone (αMSH), are key components of the neurocircuitry that conveys inhibitory (NPY) and excitatory (αMSH) inputs to GnRH neurons. In addition, neurons in the arcuate nucleus that coexpress kisspeptin, neurokinin B, and dynorphin (termed KNDy neurons) are also involved in the metabolic control of puberty. Our studies in the bovine female demonstrate that increased planes of nutrition during juvenile development lead to organizational and functional changes in hypothalamic pathways comprising NPY, proopiomelanocortin (POMC, the precursor of αMSH), and kisspeptin neurons. Changes include alterations in the abundance of NPY, POMC, and Kiss1 mRNA and in plasticity of the neuronal projections to GnRH neurons. Our studies also indicate that epigenetic mechanisms, such as modifications in the DNA methylation pattern, are involved in this process. Finally, our most recent data demonstrate that maternal nutrition during gestation can also induce morphological and functional changes in the hypothalamic NPY system in the heifer offspring that are likely to persist long after birth. These organizational changes occurring during fetal development have the potential to not only impact puberty but also influence reproductive performance throughout adulthood in the bovine female.
Collapse
Affiliation(s)
- R C Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | - S M West
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - T S Maia
- Department of Animal Science, Texas A&M University, College Station, TX, USA; Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
| | - B R C Alves
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - G L Williams
- Department of Animal Science, Texas A&M University, College Station, TX, USA; Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
| |
Collapse
|
80
|
Lehman MN, Coolen LM, Goodman RL. Importance of neuroanatomical data from domestic animals to the development and testing of the KNDy hypothesis for GnRH pulse generation. Domest Anim Endocrinol 2020; 73:106441. [PMID: 32113801 PMCID: PMC7377956 DOI: 10.1016/j.domaniend.2020.106441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Work during the last decade has led to a novel hypothesis for a question that is half a century old: how is the secretory activity of GnRH neurons synchronized to produce episodic GnRH secretion. This hypothesis posits that a group of neurons in the arcuate nucleus (ARC) that contain kisspeptin, neurokinin B (NKB), and dynorphin (known as KNDy neurons) fire simultaneously to drive each GnRH pulse. Kisspeptin is proposed to be the output signal to GnRH neurons with NKB and dynorphin acting within the KNDy network to initiate and terminate each pulse, respectively. This review will focus on the importance of neuroanatomical studies in general and, more specifically, on the work of Dr Marcel Amstalden during his postdoctoral fellowship with the authors, to the development and testing of this hypothesis. Critical studies in sheep that laid the foundation for much of the KNDy hypothesis included the report that a group of neurons in the ARC contain both NKB and dynorphin and appear to form an interconnected network capable of firing synchronously, and Marcel's observations that the NKB receptor is found in most KNDy neurons, but not in any GnRH neurons. Moreover, reports that almost all dynorphin-NKB neurons and kisspeptin neurons in the ARC contained steroid receptors led directly to their common identification as "KNDy" neurons. Subsequent anatomical work demonstrating that KNDy neurons project to GnRH somas and terminals, and that kisspeptin receptors are found in GnRH, but not KNDy neurons, provided important tests of this hypothesis. Recent work has explored the time course of dynorphin release onto KNDy neurons and has begun to apply new approaches to the issue, such as RNAscope in situ hybridization and the use of whole tissue optical clearing with light-sheet microscopy. Together with other approaches, these anatomical techniques will allow continued exploration of the functions of the KNDy population and the possible role of other ARC neurons in generation of GnRH pulses.
Collapse
Affiliation(s)
- M N Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - L M Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - R L Goodman
- Departments of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
81
|
Młotkowska P, Marciniak E, Roszkowicz-Ostrowska K, Misztal T. Effects of allopregnanolone on central reproductive functions in sheep under natural and stressful conditions. Theriogenology 2020; 158:138-147. [PMID: 32956862 DOI: 10.1016/j.theriogenology.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Reproductive functions may be affected by internal and external factors that are integrated in the central nervous system (CNS). Stressful stimuli induce the neuroendocrine response of the hypothalamic-pituitary-adrenal axis, as well as the synthesis of the neurosteroid allopregnanolone (AL) in the brain. This study tested the hypothesis that centrally administered AL could affect the expression of certain genes involved in reproductive functions at the hypothalamus and pituitary levels, as well as pulsatile gonadotropin secretion in sheep under both natural and stressful conditions. Luteal-phase sheep (n = 24) were subjected to a three-day (day 12-14 of the estrous cycle) series of control or AL (4 × 15 μg/60 μL/30 min, at 30 min intervals) infusions into the third ventricle. Acute stressful stimuli (isolation from other sheep and partial movement restriction) were used in the third day of infusion. Stressful stimuli reduced kisspeptin-1 mRNA levels in both the mediobasal hypothalamus (MBH) and the preoptic area (POA), while pro-dynorphin (PDYN) mRNA level only in the MBH. AL alone decreased the abundances of these transcripts in both structures. Stress increased the expression of gonadotropin-releasing hormone (GnRH) mRNA in the MBH and POA, luteinizing hormone (LH) β subunit (LHβ) mRNA in the anterior pituitary (AP) and pulsatile LH secretion. In contrast, mRNA level of follicle stimulating hormone (FSH) β subunit (FSHβ) was decreased in the AP, with no effect of stress on pulsatile FSH secretion. In stressed sheep, AL counteracted the increase in GnRH mRNA expression only in the POA, but it decreased the level of this transcript in both hypothalamic tissues when infused alone. AL prevented the stress-induced increase in LHβ mRNA expression in the AP and pulsatile LH secretion, as well as inhibited almost all aspects of FSH secretion when administered alone. The suppressive effect of AL on GnRH receptor mRNA expression was also observed in both MBH and AP. We concluded that acute stress and AL exerted multidirectional effects on hypothalamic centers that regulate reproductive functions and secretory activity of AP gonadotrophs in sheep. However, we indicated the dominant inhibitory effect of AL under natural and stressful conditions.
Collapse
Affiliation(s)
- Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Katarzyna Roszkowicz-Ostrowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| |
Collapse
|
82
|
Rietema SE, Hawken PAR, Scott CJ, Lehman MN, Martin GB, Smith JT. Arcuate nucleus kisspeptin response to increased nutrition in rams. Reprod Fertil Dev 2020; 31:1682-1691. [PMID: 31511141 DOI: 10.1071/rd19063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/16/2019] [Indexed: 11/23/2022] Open
Abstract
Rams respond to acute nutritional supplementation by increasing the frequency of gonadotrophin-releasing hormone (GnRH) pulses. Kisspeptin neurons may mediate the effect of environmental cues on GnRH secretion, so we tested whether the ram response to nutrition involves activation of kisspeptin neurons in the arcuate nucleus (ARC), namely kisspeptin, neurokin B, dynorphin (KNDy) neurons. Rams were given extra lupin grain with their normal ration. Blood was sampled before feeding, and continued until animals were killed for collection of brain tissue at 2 or 11h after supplementation. In supplemented rams, LH pulse frequency increased after feeding, whereas control animals showed no change. Within the caudal ARC, there were more kisspeptin neurons in supplemented rams than in controls and a higher proportion of kisspeptin cells coexpressed Fos, regardless of the time the rams were killed. There were more Fos cells in the mid-ARC and mid-dorsomedial hypothalamus of the supplemented compared with control rams. No effect of nutrition was found on kisspeptin expression in the rostral or mid-ARC, or on GnRH expression in the preoptic area. Kisspeptin neurons in the caudal ARC appear to mediate the increase in GnRH and LH production due to acute nutritional supplementation, supporting the hypothesised role of the KNDy neurons as the pulse generator for GnRH.
Collapse
Affiliation(s)
- S E Rietema
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - P A R Hawken
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - C J Scott
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - M N Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, PO Box 5190, Kent, OH 44242-0001, USA
| | - G B Martin
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - J T Smith
- The School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; and Corresponding author.
| |
Collapse
|
83
|
Lomet D, Druart X, Hazlerigg D, Beltramo M, Dardente H. Circuit-level analysis identifies target genes of sex steroids in ewe seasonal breeding. Mol Cell Endocrinol 2020; 512:110825. [PMID: 32422398 DOI: 10.1016/j.mce.2020.110825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
Thyroid hormone (TH) and estradiol (E2) direct seasonal switches in ovine reproductive physiology. In sheep, as in other mammals and birds, control of thyrotropin (TSH) production by the pars tuberalis (PT) links photoperiod responsiveness to seasonal breeding. PT-derived TSH governs opposite seasonal patterns of the TH deiodinases Dio2/Dio3 expression in tanycytes of the neighboring medio-basal hypothalamus (MBH), which explain the key role of TH. We recently used RNA-Seq to identify seasonal markers in the MBH and define the impact of TH. This impact was found to be quite limited, in terms of number of target genes, and very restricted with regards to neuroanatomical location, as TH specifically impacts genes expressed in tanycytes and hypothalamus, not in the PT. Here we address the impact of E2 on these seasonal markers, which are specifically expressed in either PT, tanycytes or hypothalamus. We also investigate if progesterone (P4) may be involved in timing the seasonal transition to anestrus. Our analysis provides circuit-level insights into the impact of sex steroids on the ewe seasonal breeding cycle. First, seasonal gene expression in the PT is independent of the sex steroid status. The fact that seasonal gene expression in the PT is also TH-independent strengthens the view that the PT is a circannual timer. Second, select tanycytic markers display some level of responsiveness to E2 and P4, which indicates another potential level of feedback control by sex steroids. Third, Kiss1 neurons of the arcuate nucleus are responsive to both TH and E2, which places them at the crossroads of photoperiodic transduction pathway and sex steroid feedback. This provides strong support to the concept that these Kiss1 neurons are pivotal to the long-recognized "seasonal switch in the ability of E2 to exert negative feedback", which drives seasonal breeding.
Collapse
Affiliation(s)
- Didier Lomet
- Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - David Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, 9037, Tromsø, Norway
| | - Massimiliano Beltramo
- Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
84
|
Lopez JA, Bowdridge EC, McCosh RB, Bedenbaugh MN, Lindo AN, Metzger M, Haller M, Lehman MN, Hileman SM, Goodman RL. Morphological and functional evidence for sexual dimorphism in neurokinin B signalling in the retrochiasmatic area of sheep. J Neuroendocrinol 2020; 32:e12877. [PMID: 32572994 PMCID: PMC7449597 DOI: 10.1111/jne.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
Abstract
Neurokinin B (NKB) is critical for fertility in humans and stimulates gonadotrophin-releasing hormone/luteinising hormone (LH) secretion in several species, including sheep. There is increasing evidence that the actions of NKB in the retrochiasmatic area (RCh) contribute to the induction of the preovulatory LH surge in sheep. In the present study, we determined whether there are sex differences in the response to RCh administration of senktide, an agonist to the NKB receptor (neurokinin receptor-3 [NK3R]), and in NKB and NK3R expression in the RCh of sheep. To normalise endogenous hormone concentrations, animals were gonadectomised and given implants to mimic the pattern of ovarian steroids seen in the oestrous cycle. In females, senktide microimplants in the RCh produced an increase in LH concentrations that lasted for at least 8 hours after the start of treatment, whereas a much shorter increment (approximately 2 hours) was seen in males. We next collected tissue from gonadectomised lambs 18 hours after the insertion of oestradiol implants that produce an LH surge in female, but not male, sheep for immunohistochemical analysis of NKB and NK3R expression. As expected, there were more NKB-containing neurones in the arcuate nucleus of females than males. Interestingly, there was a similar sexual dimorphism in NK3R-containing neurones in the RCh, NKB-containing close contacts onto these RCh NK3R neurones, and overall NKB-positive fibres in this region. These data demonstrate that there are both functional and morphological sex differences in NKB-NK3R signalling in the RCh and raise the possibility that this dimorphism contributes to the sex-dependent ability of oestradiol to induce an LH surge in female sheep.
Collapse
Affiliation(s)
- Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Ashley N Lindo
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Makayla Metzger
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Megan Haller
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Michael N Lehman
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
85
|
Merkley CM, Renwick AN, Shuping SL, Harlow K, Sommer JR, Nestor CC. Undernutrition reduces kisspeptin and neurokinin B expression in castrated male sheep. REPRODUCTION AND FERTILITY 2020; 1:1-13. [PMID: 35128420 PMCID: PMC8812452 DOI: 10.1530/raf-20-0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Undernutrition impairs reproductive success through suppression of gonadotropin-releasing hormone (GnRH), and subsequently luteinizing hormone (LH), secretion. Given that kisspeptin and neurokinin B (NKB) neurons in the arcuate nucleus (ARC) of the hypothalamus are thought to play key stimulatory roles in the generation of GnRH/LH pulses, we hypothesized that feed restriction would reduce the ARC mRNA abundance and protein expression of kisspeptin and NKB in young, male sheep. Fourteen wethers (castrated male sheep five months of age) were either fed to maintain (FM; n = 6) pre-study body weight or feed-restricted (FR; n = 8) to lose 20% of pre-study body weight over 13 weeks. Throughout the study, weekly blood samples were collected and assessed for LH concentration using RIA. At Week 13 of the experiment, animals were killed, heads were perfused with 4% paraformaldehyde, and brain tissue containing the hypothalamus was collected, sectioned, and processed for detection of mRNA (RNAscope) and protein (immunohistochemistry) for kisspeptin and NKB. Mean LH was significantly lower and LH inter-pulse interval was significantly higher in FR wethers compared to FM wethers at the end of the experiment (Week 13). RNAscope analysis revealed significantly fewer cells expressing mRNA for kisspeptin and NKB in FR wethers compared to FM controls, and immunohistochemical analysis revealed significantly fewer immunopositive kisspeptin and NKB cells in FR wethers compared to FM wethers. Taken together, this data supports the idea that long-term feed restriction regulates GnRH/LH secretion through central suppression of kisspeptin and NKB in male sheep. LAY SUMMARY While undernutrition is known to impair reproduction at the level of the brain, the components responsible for this in the brain remain to be fully understood. Using male sheep we examined the effect of undernutrition on two stimulatory molecules in the brain critical for reproduction: kisspeptin and neurokinin B. Feed restriction for several weeks resulted in decreased luteinizing hormone in the blood indicating reproductive function was suppressed. In addition, undernutrition also reduced both kisspeptin and neurokinin B levels within a region of the brain involved in reproduction, the hypothalamus. Given that they have stimulatory roles in reproduction, we believe that undernutrition acts in the brain to reduce kisspeptin and neurokinin B levels leading to the reduction in luteinizing hormone secretion. In summary, long-term undernutrition inhibits reproductive function in sheep through suppression of kisspeptin and neurokinin B within the brain.
Collapse
Affiliation(s)
- Christina M Merkley
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Allison N Renwick
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Sydney L Shuping
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - KaLynn Harlow
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey R Sommer
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
86
|
Suetomi Y, Tatebayashi R, Sonoda S, Munetomo A, Matsuyama S, Inoue N, Uenoyama Y, Takeuchi Y, Tsukamura H, Ohkura S, Matsuda F. Establishment of immortalised cell lines derived from female Shiba goat KNDy and GnRH neurones. J Neuroendocrinol 2020; 32:e12857. [PMID: 32432378 DOI: 10.1111/jne.12857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
Kisspeptin plays a critical role in governing gonadotrophin-releasing hormone (GnRH)/gonadotrophin secretion and subsequent reproductive function in mammals. The hypothalamic arcuate nucleus (ARC) kisspeptin neurones, which co-express neurokinin B (NKB) and dynorphin A (Dyn) and are referred to as KNDy neurones, are considered to be involved in GnRH generation. The present study aimed to establish cell lines derived from goat KNDy and GnRH neurones. Primary-cultured cells of female Shiba goat foetal hypothalamic ARC and preoptic area (POA) tissues were immortalised with the infection of lentivirus containing the simian virus 40 large T-antigen gene. Clones of the immortalised cells were selected by the gene expression of a neuronal marker, and then the neurone-derived cell clones were further selected by the gene expression of KNDy or GnRH neurone markers. As a result, we obtained a KNDy neurone cell line (GA28) from the ARC, as well as two GnRH neurone cell lines (GP11 and GP31) from the POA. Immunocytochemistry revealed the expression of kisspeptin, NKB and Dyn in GA28 cells, as well as GnRH in GP11 and GP31 cells. GnRH secretion from GP11 and GP31 cells into the media was confirmed by an enzyme immunoassay. Moreover, kisspeptin challenge increased intracellular Ca2+ levels in subsets of both GP11 and GP31 cells. Kisspeptin mRNA expression in GA28 cells, which expressed the oestrogen receptor alpha gene, was significantly reduced by 17β-oestradiol treatment. Furthermore, the transcriptional core promoter and repressive regions of the goat NKB gene were detected using GA28 cells. In conclusion, we have established goat KNDy and GnRH neurone cell lines that could be used to analyse molecular and cellular mechanisms regulating KNDy and GnRH neurones in vitro, facilitating the clarification of reproductive neuroendocrine mechanisms in ruminants.
Collapse
Affiliation(s)
- Yuta Suetomi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryoki Tatebayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shuhei Sonoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Matsuyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yukari Takeuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoshi Ohkura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fuko Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
87
|
Martins Trevisan C, Naslavsky MS, Monfardini F, Wang J, Zatz M, Peluso C, Pellegrino R, Mafra F, Hakonarson H, Ferreira FM, Nakaya H, Christofolini DM, Montagna E, Crandall KA, Barbosa CP, Bianco B. Variants in the Kisspeptin-GnRH Pathway Modulate the Hormonal Profile and Reproductive Outcomes. DNA Cell Biol 2020; 39:1012-1022. [PMID: 32352843 DOI: 10.1089/dna.2019.5165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kisspeptin has been identified as a key regulatory protein in the release of gonadotropin-releasing hormone (GnRH), which subsequently increases gonadotropin secretion during puberty to establish reproductive function and regulate the hypothalamic-pituitary-gonadal axis. The effects of variants in the KISS1, KISS1R, and GNRHR genes and their possible association with assisted reproduction outcomes remain to be elucidated. In this study, we used next-generation sequencing to investigate the associations of the genetic diversity at the candidate loci for KISS1, KISS1R, and GNRHR with the hormonal profiles and reproductive outcomes in 86 women who underwent in vitro fertilization treatments. Variants in the KISS1 and KISS1R genes were associated with luteinizing hormone (rs35431622:T>C), anti-Mullerian hormone (rs71745629delT), follicle-stimulating hormone (rs73507529:C>A), and estradiol (rs73507527:G>A, rs350130:A>G, and rs73507529:C>A) levels, as well as with reproductive outcomes such as the number of oocytes retrieved (s35431622:T>C), metaphasis II oocytes (rs35431622:T>C), and embryos (rs1132506:G>C). Additionally, variants in the GNRHR UTR3' (rs1038426:C>A, rs12508464:A>C, rs13150734:C>A, rs17635850:A>G, rs35683646:G>A, rs35610027:C>G, rs35845954:T>C, rs17635749:C>T, and rs7666201:C>T) were associated with low prolactin levels. A conjoint analysis of clinical, hormonal, and genetic variables using a generalized linear model identified two variants of the KISS1 gene (rs71745629delT and rs1132506:G>C) that were significantly associated with hormonal variations and reproductive outcomes. The findings suggest that variants in KISS1, KISS1R, and GNRHR genes can modulate hormone levels and reproductive outcomes.
Collapse
Affiliation(s)
- Camila Martins Trevisan
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Frederico Monfardini
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Jaqueline Wang
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Peluso
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Fernanda Mafra
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frederico Moraes Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Helder Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Denise Maria Christofolini
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Erik Montagna
- Postgraduation Program in Health Sciences, Research and Innovation, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Caio Parente Barbosa
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| | - Bianca Bianco
- Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Centro Universitário Saúde ABC, FMABC, Santo André, São Paulo, Brazil
| |
Collapse
|
88
|
Amodei R, Gribbin K, He W, Lindgren I, Corder KR, Jonker SS, Estill CT, Coolen LM, Lehman MN, Whitler W, Stormshak F, Roselli CE. Role for Kisspeptin and Neurokinin B in Regulation of Luteinizing Hormone and Testosterone Secretion in the Fetal Sheep. Endocrinology 2020; 161:bqaa013. [PMID: 32005991 PMCID: PMC7079722 DOI: 10.1210/endocr/bqaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
Evidence suggests that the hypothalamic-pituitary-gonadal (HPG) axis is active during the critical period for sexual differentiation of the ovine sexually dimorphic nucleus, which occurs between gestational day (GD) 60 and 90. Two possible neuropeptides that could activate the fetal HPG axis are kisspeptin and neurokinin B (NKB). We used GD85 fetal lambs to determine whether intravenous administration of kisspeptin-10 (KP-10) or senktide (NKB agonist) could elicit luteinizing hormone (LH) release. Immunohistochemistry and fluorescent in situ hybridization (FISH) were employed to localize these peptides in brains of GD60 and GD85 lamb fetuses. In anesthetized fetuses, KP-10 elicited robust release of LH that was accompanied by a delayed rise in serum testosterone in males. Pretreatment with the GnRH receptor antagonist (acyline) abolished the LH response to KP-10, confirming a hypothalamic site of action. In unanesthetized fetuses, senktide, as well as KP-10, elicited LH release. The senktide response of females was greater than that of males, indicating a difference in NKB sensitivity between sexes. Gonadotropin-releasing hormone also induced a greater LH discharge in females than in males, indicating that testosterone negative feedback is mediated through pituitary gonadotrophs. Kisspeptin and NKB immunoreactive cells in the arcuate nucleus were more abundant in females than in males. Greater than 85% of arcuate kisspeptin cells costained for NKB. FISH revealed that the majority of these were kisspeptin/NKB/dynorphin (KNDy) neurons. These results support the hypothesis that kisspeptin-GnRH signaling regulates the reproductive axis of the ovine fetus during the prenatal critical period acting to maintain a stable androgen milieu necessary for brain masculinization.
Collapse
Affiliation(s)
- Rebecka Amodei
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Kyle Gribbin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Wen He
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Isa Lindgren
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Keely R Corder
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - William Whitler
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Fred Stormshak
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
89
|
Köves K, Szabó E, Kántor O, Heinzlmann A, Szabó F, Csáki Á. Current State of Understanding of the Role of PACAP in the Hypothalamo-Hypophyseal Gonadotropin Functions of Mammals. Front Endocrinol (Lausanne) 2020; 11:88. [PMID: 32210912 PMCID: PMC7067695 DOI: 10.3389/fendo.2020.00088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 01/25/2023] Open
Abstract
PACAP was discovered 30 years ago in Dr. Akira Arimura's laboratory. In the past three decades since then, it has become evident that this peptide plays numerous crucial roles in mammalian organisms. The most important functions of PACAP are the following: 1. neurotransmitter, 2. neuromodulator, 3. hypophysiotropic hormone, 4. neuroprotector. This paper reviews the accumulated data regarding the distribution of PACAP and its receptors in the mammalian hypothalamus and pituitary gland, the role of PACAP in the gonadotropin hormone secretion of females and males. The review also summarizes the interaction between PACAP, GnRH, and sex steroids as well as hypothalamic peptides including kisspeptin. The possible role of PACAP in reproductive functions through the biological clock is also discussed. Finally, the significance of PACAP in the hypothalamo-hypophysial system is considered and the facts missing, that would help better understand the function of PACAP in this system, are also highlighted.
Collapse
Affiliation(s)
- Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Enikő Szabó
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Orsolya Kántor
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Andrea Heinzlmann
- Department of Anatomy and Histology, University of Veterinary Sciences, Budapest, Hungary
| | - Flóra Szabó
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Ágnes Csáki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
90
|
McCosh RB, Lopez JA, Szeligo BM, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Evidence that Nitric Oxide Is Critical for LH Surge Generation in Female Sheep. Endocrinology 2020; 161:bqaa010. [PMID: 32067028 PMCID: PMC7060766 DOI: 10.1210/endocr/bqaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Elevated and sustained estradiol concentrations cause a gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) surge that is necessary for ovulation. In sheep, several different neural systems have been implicated in this stimulatory action of estradiol and this study focused on somatostatin (SST) neurons in the ventral lateral region of the ventral medial nucleus (vlVMN) which express c-Fos during the surge. First, we determined if increased activity of SST neurons could be related to elevated GnRH secretion by assessing SST synapses onto GnRH neurons and neurons coexpressing kisspeptin, neurokinin B, dynorphin (KNDy). We found that the percentage of preoptic area GnRH neurons that receive SST input increased during the surge compared with other phases of the cycle. However, since SST is generally inhibitory, and pharmacological manipulation of SST signaling did not alter the LH surge in sheep, we hypothesized that nitric oxide (NO) was also produced by these neurons to account for their activation during the surge. In support of this hypothesis we found that (1) the majority of SST cells in the vlVMN (>80%) contained neuronal nitric oxide synthase (nNOS); (2) the expression of c-Fos in dual-labeled SST-nNOS cells, but not in single-labeled cells, increased during the surge compared with other phases of the cycle; and (3) intracerebroventricular (ICV) infusion of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, completely blocked the estrogen-induced LH surge. These data support the hypothesis that the population of SST-nNOS cells in the vlVMN are a source of NO that is critical for the LH surge, and we propose that they are an important site of estradiol positive feedback in sheep.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Brett M Szeligo
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| |
Collapse
|
91
|
Horihata K, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Retinoblastoma binding protein 7 is involved in Kiss1 mRNA upregulation in rodents. J Reprod Dev 2020; 66:125-133. [PMID: 31956172 PMCID: PMC7175387 DOI: 10.1262/jrd.2019-149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kisspeptin, encoded by Kiss1, is essential for reproduction in mammals. Kiss1 expression is regulated by estrogen via histone acetylation in the
Kiss1 promotor region. Thus, elucidation of histone modification factor(s) involved in the regulation of Kiss1 expression is required to gain further
understanding of the mechanisms of its control. The RNA-seq analysis of isolated kisspeptin neurons, obtained from the arcuate nucleus (ARC) of female rats, revealed that
Rbbp7, encoding retinoblastoma binding protein 7 (RBBP7), a member of histone modification and chromatin remodeling complexes, is highly expressed in the ARC kisspeptin
neurons. Thus, the present study aimed to investigate whether RBBP7 is involved in Kiss1 expression. Histological analysis using in situ hybridization (ISH)
revealed that Rbbp7 expression was located in several hypothalamic nuclei, including the ARC and the anteroventral periventricular nucleus (AVPV), where kisspeptin neurons
are located. Double ISH for Rbbp7 and Kiss1 showed that a majority of kisspeptin neurons (more than 85%) expressed Rbbp7 mRNA in both the
ARC and the AVPV of female rats. Further, Rbbp7 mRNA knockdown significantly decreased in vitro expression of Kiss1 in a mouse immortalized
kisspeptin neuronal cell line (mHypoA-55). Estrogen treatment significantly decreased and increased Kiss1 mRNA levels in the ARC and AVPV of ovariectomized female rats,
respectively, but failed to affect Rbbp7 mRNA levels in both the nuclei. Taken together, these findings suggest that RBBP7 is involved in the upregulation of
Kiss1 expression in kisspeptin neurons of rodents in an estrogen-independent manner.
Collapse
Affiliation(s)
- Kei Horihata
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
92
|
Kreisman MJ, McCosh RB, Tian K, Song CI, Breen KM. Estradiol Enables Chronic Corticosterone to Inhibit Pulsatile Luteinizing Hormone Secretion and Suppress Kiss1 Neuronal Activation in Female Mice. Neuroendocrinology 2020; 110:501-516. [PMID: 31461711 PMCID: PMC7048652 DOI: 10.1159/000502978] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Two common responses to stress include elevated circulating glucocorticoids and impaired luteinizing hormone (LH) secretion. We have previously shown that a chronic stress level of corticosterone can impair ovarian cyclicity in intact mice by preventing follicular-phase endocrine events. OBJECTIVE This study is aimed at investigating if corticosterone can disrupt LH pulses and whether estradiol is necessary for this inhibition. METHODS Our approach was to measure LH pulses prior to and following the administration of chronic corticosterone or cholesterol in ovariectomized (OVX) mice treated with or without estradiol, as well as assess changes in arcuate kisspeptin (Kiss1) neuronal activation, as determined by co-expression with c-Fos. RESULTS In OVX mice, a chronic 48 h elevation in corticosterone did not alter the pulsatile pattern of LH. In contrast, corticosterone induced a robust suppression of pulsatile LH secretion in mice treated with estradiol. This suppression represented a decrease in pulse frequency without a change in amplitude. We show that the majority of arcuate Kiss1 neurons contain glucocorticoid receptor, revealing a potential site of corticosterone action. Although arcuate Kiss1 and Tac2 gene expression did not change in response to corticosterone, arcuate Kiss1 neuronal activation was significantly reduced by chronic corticosterone, but only in mice treated with estradiol. CONCLUSIONS Collectively, these data demonstrate that chronic corticosterone inhibits LH pulse frequency and reduces Kiss1 neuronal activation in female mice, both in an estradiol-dependent manner. Our findings support the possibility that enhanced sensitivity to glucocorticoids, due to ovarian steroid milieu, may contribute to reproductive impairment associated with stress or pathophysiologic conditions of elevated glucocorticoids.
Collapse
Affiliation(s)
- Michael J Kreisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, California, USA
| | - Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, California, USA
| | - Katherine Tian
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, California, USA
| | - Christopher I Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, California, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, California, USA,
| |
Collapse
|
93
|
Kim D, Jang S, Kim J, Park I, Ku K, Choi M, Lee S, Heo WD, Son GH, Choe HK, Kim K. Kisspeptin Neuron-Specific and Self-Sustained Calcium Oscillation in the Hypothalamic Arcuate Nucleus of Neonatal Mice: Regulatory Factors of its Synchronization. Neuroendocrinology 2020; 110:1010-1027. [PMID: 31935735 PMCID: PMC7592953 DOI: 10.1159/000505922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/11/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Synchronous and pulsatile neural activation of kisspeptin neurons in the arcuate nucleus (ARN) are important components of the gonadotropin-releasing hormone pulse generator, the final common pathway for central regulation of mammalian reproduction. However, whether ARN kisspeptin neurons can intrinsically generate self-sustained synchronous oscillations from the early neonatal period and how they are regulated remain unclear. OBJECTIVE This study aimed to examine the endogenous rhythmicity of ARN kisspeptin neurons and its neural regulation using a neonatal organotypic slice culture model. METHODS We monitored calcium (Ca2+) dynamics in real-time from individual ARN kisspeptin neurons in neonatal organotypic explant cultures of Kiss1-IRES-Cre mice transduced with genetically encoded Ca2+ indicators. Pharmacological approaches were employed to determine the regulations of kisspeptin neuron-specific Ca2+ oscillations. A chemogenetic approach was utilized to assess the contribution of ARN kisspeptin neurons to the population dynamics. RESULTS ARN kisspeptin neurons in neonatal organotypic cultures exhibited a robust synchronized Ca2+ oscillation with a period of approximately 3 min. Kisspeptin neuron-specific Ca2+ oscillations were dependent on voltage-gated sodium channels and regulated by endoplasmic reticulum-dependent Ca2+ homeostasis. Chemogenetic inhibition of kisspeptin neurons abolished synchronous Ca2+ oscillations, but the autocrine actions of the neuropeptides were marginally effective. Finally, neonatal ARN kisspeptin neurons were regulated by N-methyl-D-aspartate and gamma-aminobutyric acid receptor-mediated neurotransmission. CONCLUSION These data demonstrate that ARN kisspeptin neurons in organotypic cultures can generate synchronized and self-sustained Ca2+ oscillations. These oscillations controlled by multiple regulators within the ARN are a novel ultradian rhythm generator that is active during the early neonatal period.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangwon Jang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeongah Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Inah Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyojin Ku
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Mijung Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sukwon Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea,
| |
Collapse
|
94
|
Porter DT, Moore AM, Cobern JA, Padmanabhan V, Goodman RL, Coolen LM, Lehman MN. Prenatal Testosterone Exposure Alters GABAergic Synaptic Inputs to GnRH and KNDy Neurons in a Sheep Model of Polycystic Ovarian Syndrome. Endocrinology 2019; 160:2529-2542. [PMID: 31415088 PMCID: PMC6779074 DOI: 10.1210/en.2019-00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022]
Abstract
Prenatal testosterone (T)-treated female sheep display reproductive deficits similar to women with polycystic ovarian syndrome (PCOS), including an increase in LH pulse frequency due to actions of the central GnRH pulse generator. In this study, we used multiple-label immunocytochemistry to investigate the possibility of changes in the γ-aminobutyric acid (GABA) neurotransmitter system at two key components of the GnRH pulse generator in prenatal T-treated sheep: kisspeptin/neurokinin B/dynorphin (KNDy) neurons of the arcuate nucleus, and GnRH neurons in the preoptic area (POA) and mediobasal hypothalamus (MBH). We observed a significant decrease and increase, respectively, in the number of GABAergic synapses onto POA and MBH GnRH neurons in prenatal T-treated ewes; additionally, there was a significant increase in the number of GABAergic inputs onto KNDy neurons. To determine the actions of GABA on GnRH and KNDy neurons, we examined colocalization with the chloride transporters NKCC1 and KCC2, which indicate stimulatory or inhibitory activation of neurons by GABA, respectively. Most GnRH neurons in both POA and MBH colocalized NKCC1 cotransporter whereas none contained the KCC2 cotransporter. Most KNDy neurons colocalized either NKCC1 or KCC2, and 28% of the KNDy population contained NKCC1 alone. Therefore, we suggest that, as in the mouse, GABA in the sheep is stimulatory to GnRH neurons, as well as to a subset of KNDy neurons. Increased numbers of stimulatory GABAergic inputs to both MBH GnRH and KNDy neurons in prenatal T-treated animals may contribute to alterations in steroid feedback control and increased GnRH/LH pulse frequency seen in this animal model of PCOS.
Collapse
Affiliation(s)
- Danielle T Porter
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Aleisha M Moore
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Jade A Cobern
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Lique M Coolen
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
95
|
Moore AM, Coolen LM, Lehman MN. Kisspeptin/Neurokinin B/Dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Sci Rep 2019; 9:14768. [PMID: 31611573 PMCID: PMC6791851 DOI: 10.1038/s41598-019-51201-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/25/2019] [Indexed: 02/01/2023] Open
Abstract
Neurons in the hypothalamic arcuate nucleus (ARC) that co-express kisspeptin, neurokinin B and dynorphin (KNDy cells) are essential for mammalian reproduction as key regulators of gonadotropin-releasing hormone (GnRH) secretion. Although multiple endogenous and exogenous signals act indirectly via KNDy neurons to regulate GnRH, the identity of upstream neurons that provide synaptic input to this subpopulation is unclear. We used rabies-mediated tract-tracing in transgenic Kiss1-Cre mice combined with whole-brain optical clearing and multiple-label immunofluorescence to create a comprehensive and quantitative brain-wide map of neurons providing monosynaptic input to KNDy cells, as well as identify the estrogen receptor content and peptidergic phenotype of afferents. Over 90% of monosynaptic input to KNDy neurons originated from hypothalamic nuclei in both male and female mice. The greatest input arose from non-KNDy ARC neurons, including proopiomelanocortin-expressing cells. Significant female-dominant sex differences in afferent input were detected from estrogen-sensitive hypothalamic nuclei critical for reproductive endocrine function and sexual behavior in mice, indicating KNDy cells may provide a unique site for the coordination of sex-specific behavior and gonadotropin release. These data provide key insight into the structural framework underlying the ability of KNDy neurons to integrate endogenous and environmental signals important for the regulation of reproductive function.
Collapse
Affiliation(s)
- Aleisha M Moore
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA.
| | - Lique M Coolen
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| | - Michael N Lehman
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
96
|
Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res 2019; 45:2318-2329. [PMID: 31608564 DOI: 10.1111/jog.14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023]
Abstract
Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jing Chen
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
97
|
Ruiz-Pino F, Miceli D, Franssen D, Vazquez MJ, Farinetti A, Castellano JM, Panzica G, Tena-Sempere M. Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107011. [PMID: 31652106 PMCID: PMC6867420 DOI: 10.1289/ehp5570] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The timing of puberty is highly sensitive to environmental factors, including endocrine disruptors. Among them, bisphenol A (BPA) has been previously analyzed as potential modifier of puberty. Yet, disparate results have been reported, with BPA advancing, delaying, or being neutral in its effects on puberty onset. Likewise, mechanistic analyses addressing the central and peripheral actions/targets of BPA at puberty remain incomplete and conflictive. OBJECTIVE We aimed to provide a comprehensive characterization of the impact of early BPA exposures, especially at low, real-life doses, on the postnatal development of hypothalamic Kiss1/NKB neurons, and its functional consequences on female pubertal maturation. METHODS Pregnant CD1 female mice were orally administered BPA at 5, 10, or 40μg/kg body weight (BW)/d from gestational day 11 to postnatal day 8 (PND8). Vaginal opening, as an external marker of puberty onset, was monitored daily from PND19 to PND30 in the female offspring. Blood and brain samples were collected at PND12, 15, 18, 21, and 30 for measuring circulating levels of gonadotropins and analyzing the hypothalamic expression of Kiss1/kisspeptin and NKB. RESULTS Perinatal exposure to BPA, in a range of doses largely below the no observed adverse effect level (NOAEL; 5mg/kg BW/d, according to the FDA), was associated with pubertal differences in the female progeny compared with those exposed to vehicle alone, with an earlier age of vaginal opening but consistently lower levels of circulating luteinizing hormone. Mice treated with BPA exhibited a persistent, but divergent, impairment of Kiss1 neuronal maturation, with more kisspeptin cells in the rostral (RP3V) hypothalamus but consistently fewer kisspeptin neurons in the arcuate nucleus (ARC). Detailed quantitative analysis of the ARC population, essential for pubertal development, revealed that mice treated with BPA had persistently lower Kiss1 expression during (pre)pubertal maturation, which was associated with lower Tac2 (encoding NKB) levels, even at low doses (5μg/kg BW/d), in the range of the tolerable daily intake (TDI), recently updated by the European Food Safety Authority. CONCLUSIONS Our data attest to the consistent, but divergent, effects of gestational exposures to low concentrations of BPA, via the oral route, on phenotypic and neuroendocrine markers of puberty in female mice, with an unambiguous impact on the developmental maturation not only of Kiss1, but also of the NKB system, both essential regulators of puberty onset. https://doi.org/10.1289/EHP5570.
Collapse
Affiliation(s)
- Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Desiree Miceli
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Alice Farinetti
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Juan Manuel Castellano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - GianCarlo Panzica
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
98
|
Polkowska J, Wójcik-G Adysz A, Chmielewska N, Wa Kowska M. Expression of kisspeptin protein in hypothalamus and LH profile of growing female lambs. Reprod Fertil Dev 2019; 30:609-618. [PMID: 28917264 DOI: 10.1071/rd17018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Kisspeptin (kp) is considered to be one of the major regulators of the induction of pubertal events via the activation of the gonadotrophin-releasing hormone-LH system. The aim of the present study was to analyse expression of immunoreactive (ir) kp in the hypothalamic neurons of female lambs from the neonatal to the peripubertal period (5 days to 32 weeks) in relation to the plasma LH pattern using immunohistochemistry and image analysis. Hypothalami were collected from female lambs (n=33) from the infantile, juvenile, prepubertal and peripubertal periods. The population of kp-ir perikarya was detected mainly in the arcuate nucleus and their number increased gradually from 5 to 16 weeks of age and was maintained at a high level up to the peripubertal stage. This was reflected by the significant (P<0.05) gradual increase in the percentage of hypothalamic area occupied by kp-ir neurons and increase in the number of kp-ir perikarya within the arcuate nucleus. The same pattern of kp immunoreactivity was observed in the median eminence. Plasma LH concentration increased from Week 5 to Weeks 12-16 and further increased at Week 32. LH pulse frequency increased from Week 5 to 32 (P<0.05). Thus, changes in kp expression reflected changes in the LH pattern during lamb growth. The data obtained provide evidence about the participation of kp in the mechanisms of ontogenic development of ovine reproductive processes.
Collapse
Affiliation(s)
- Jolanta Polkowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Anna Wójcik-G Adysz
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Marta Wa Kowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| |
Collapse
|
99
|
Mishra GK, Patra MK, Singh LK, Sheikh PA, Upmanyu V, Chakravarti S, Karikalan M, Sonwane A, Singh SK, Das GK, Kumar H, Krishnaswamy N. Expression of Kisspeptin and its receptor in the hypothalamus of cyclic and acyclic buffalo (Bubalus bubalis). Theriogenology 2019; 139:167-177. [PMID: 31419703 DOI: 10.1016/j.theriogenology.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 11/26/2022]
Abstract
Kisspeptin (Kiss1), neurokinin-B (NKB) and dynorphin (Dyn) neurons regulate the surge and pulsatile centres of gonadotropin releasing hormone (GnRH) in the hypothalamus and are modulated by the ovarian steroids. Accordingly, we studied the temporospatial expression of Kiss1, its receptor and other genes that regulate GnRH in the preoptic area (POA) and arcuate (ARC) regions of hypothalamus at different phases of bubaline estrous cycle. Brain of buffalo (n = 32) was collected immediately after exsanguination and categorized into early luteal (EL), mid luteal (ML), follicular (FL) stages and acyclic (n = 8/group). Total RNA was extracted from the POA and ARC of each stage and real time PCR amplification of Kiss1, Kiss1r, NKB, NKB receptor (NKBR), Dyn, Dyn receptor (OPRK1), GnRH1, ERα, PR, LEPR and GHSR was done using GAPDH as endogenous control and acyclic stage as calibrator group. Further, immunolocalization of Kiss1 and Kiss1r was done on the hypothalamus. In the POA, significant up-regulation of Kiss1 and NKB with a concomitant down-regulation of Dyn transcripts was recorded at FL stage. There was, however, down-regulation of Kiss1 and Kiss1r during the EL perhaps due to the loss of estradiol as a consequence of ovulation. On the other hand, in the ARC, there was a significant up-regulation of Kiss1 and Dyn at FL and ML, while NKB transcript was consistently down-regulated at any stage of estrous cycle. In the POA, expression of ERα was not modulated; however, PR was down-regulated in the EL. In the ARC, the ERα expression was significantly up-regulated in the EL, whereas, PR was moderately expressed irrespective of the stage of estrous cycle. The immunolocalization study revealed the presence of Kiss1 and Kiss1r in the POA and ARC in the cyclic buffalo with relative abundance at FL. The transcriptional profile of the genes suggests that there is estrous cycle stage specific expression of Kiss1, Kiss1r and other GnRH regulating genes in the POA and ARC regions of hypothalamus in the buffalo. Up-regulation of Kiss1r in the POA during ML and ARC during EL indicates the involvement of kisspeptinergic system in the regulation of low LH pulse frequencies during the early and mid luteal phases in the cyclic buffalo.
Collapse
Affiliation(s)
- G K Mishra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M K Patra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India.
| | - L K Singh
- Division of Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, 132 001, Haryana, India
| | - P A Sheikh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - V Upmanyu
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S Chakravarti
- Biological Products Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - A Sonwane
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S K Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - G K Das
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - H Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - N Krishnaswamy
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| |
Collapse
|
100
|
Di Giorgio NP, Bizzozzero Hiriart M, Surkin PN, López PV, Bourguignon NS, Dorfman VB, Bettler B, Libertun C, Lux-Lantos V. Multiple failures in the lutenising hormone surge generating system in GABAB1KO female mice. J Neuroendocrinol 2019; 31:e12765. [PMID: 31269532 DOI: 10.1111/jne.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and β and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERβ was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Pablo N Surkin
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula V López
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|