51
|
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
52
|
Zabouri N, Bouchard JF, Casanova C. Cannabinoid receptor type 1 expression during postnatal development of the rat retina. J Comp Neurol 2011; 519:1258-80. [DOI: 10.1002/cne.22534] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Duquette PM, Zhou X, Yap NL, MacLaren EJ, Lu JJ, Wallace VA, Chen HH. Loss of LMO4 in the retina leads to reduction of GABAergic amacrine cells and functional deficits. PLoS One 2010; 5:e13232. [PMID: 20949055 PMCID: PMC2951357 DOI: 10.1371/journal.pone.0013232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/14/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND LMO4 is a transcription cofactor expressed during retinal development and in amacrine neurons at birth. A previous study in zebrafish reported that morpholino RNA ablation of one of two related genes, LMO4b, increases the size of eyes in embryos. However, the significance of LMO4 in mammalian eye development and function remained unknown since LMO4 null mice die prior to birth. METHODOLOGY/PRINCIPAL FINDINGS We observed the presence of a smaller eye and/or coloboma in ∼40% LMO4 null mouse embryos. To investigate the postnatal role of LMO4 in retinal development and function, LMO4 was conditionally ablated in retinal progenitor cells using the Pax6 alpha-enhancer Cre/LMO4flox mice. We found that these mice have fewer Bhlhb5-positive GABAergic amacrine and OFF-cone bipolar cells. The deficit appears to affect the postnatal wave of Bhlhb5+ neurons, suggesting a temporal requirement for LMO4 in retinal neuron development. In contrast, cholinergic and dopaminergic amacrine, rod bipolar and photoreceptor cell numbers were not affected. The selective reduction in these interneurons was accompanied by a functional deficit revealed by electroretinography, with reduced amplitude of b-waves, indicating deficits in the inner nuclear layer of the retina. CONCLUSIONS/SIGNIFICANCE Inhibitory GABAergic interneurons play a critical function in controlling retinal image processing, and are important for neural networks in the central nervous system. Our finding of an essential postnatal function of LMO4 in the differentiation of Bhlhb5-expressing inhibitory interneurons in the retina may be a general mechanism whereby LMO4 controls the production of inhibitory interneurons in the nervous system.
Collapse
Affiliation(s)
- Philippe M. Duquette
- Centre for Stroke Recovery, Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Xun Zhou
- Centre for Stroke Recovery, Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Nida Lerma Yap
- Centre for Stroke Recovery, Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Erik J. MacLaren
- Centre for Stroke Recovery, Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jesse J. Lu
- Centre for Stroke Recovery, Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Valerie A. Wallace
- Molecular Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Eye Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Hsiao-Huei Chen
- Centre for Stroke Recovery, Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
54
|
Jin K, Jiang H, Mo Z, Xiang M. Early B-cell factors are required for specifying multiple retinal cell types and subtypes from postmitotic precursors. J Neurosci 2010; 30:11902-16. [PMID: 20826655 PMCID: PMC2951389 DOI: 10.1523/jneurosci.2187-10.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/19/2010] [Accepted: 07/10/2010] [Indexed: 01/28/2023] Open
Abstract
The establishment of functional retinal circuits in the mammalian retina depends critically on the proper generation and assembly of six classes of neurons, five of which consist of two or more subtypes that differ in morphologies, physiological properties, and/or sublaminar positions. How these diverse neuronal types and subtypes arise during retinogenesis still remains largely to be defined at the molecular level. Here we show that all four family members of the early B-cell factor (Ebf) helix-loop-helix transcription factors are similarly expressed during mouse retinogenesis in several neuronal types and subtypes including ganglion, amacrine, bipolar, and horizontal cells, and that their expression in ganglion cells depends on the ganglion cell specification factor Brn3b. Misexpressed Ebfs bias retinal precursors toward the fates of non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas a dominant-negative Ebf suppresses the differentiation of these cells as well as ganglion cells. Reducing Ebf1 expression by RNA interference (RNAi) leads to an inhibitory effect similar to that of the dominant-negative Ebf, effectively neutralizes the promotive effect of wild-type Ebf1, but has no impact on the promotive effect of an RNAi-resistant Ebf1. These data indicate that Ebfs are both necessary and sufficient for specifying non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas they are only necessary but not sufficient for specifying ganglion cells; and further suggest that Ebfs may coordinate and cooperate with other retinogenic factors to ensure proper specification and differentiation of diverse retinal cell types and subtypes.
Collapse
Affiliation(s)
- Kangxin Jin
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics
- Graduate Program in Molecular Genetics, Microbiology and Immunology, and
| | - Haisong Jiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics
- Graduate Program in Molecular Genetics, Microbiology and Immunology, and
| | - Zeqian Mo
- Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics
- Graduate Program in Molecular Genetics, Microbiology and Immunology, and
| |
Collapse
|
55
|
Tang K, Xie X, Park JI, Jamrich M, Tsai S, Tsai MJ. COUP-TFs regulate eye development by controlling factors essential for optic vesicle morphogenesis. Development 2010; 137:725-34. [PMID: 20147377 DOI: 10.1242/dev.040568] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcriptional networks, which are initiated by secreted proteins, cooperate with each other to orchestrate eye development. The establishment of dorsal/ventral polarity, especially dorsal specification in the optic vesicle, is poorly understood at a molecular and cellular level. Here, we show that COUP-TFI (Nr2f1) and COUP-TFII (Nr2f2) are highly expressed in the progenitor cells in the developing murine eye. Phenotype analysis of COUP-TFI and COUP-TFII single-gene conditional knockout mouse models suggests that COUP-TFs compensate for each other to maintain morphogenesis of the eye. However, in eye-specific COUP-TFI/TFII double-knockout mice, progenitor cells at the dorso-distal optic vesicle fail to differentiate appropriately, causing the retinal pigmented epithelium cells to adopt a neural retina fate and abnormal differentiation of the dorsal optic stalk; the development of proximo-ventral identities, neural retina and ventral optic stalk is also compromised. These cellular defects in turn lead to congenital ocular colobomata and microphthalmia. Immunohistochemical and in situ hybridization assays reveal that the expression of several regulatory genes essential for early optic vesicle development, including Pax6, Otx2, Mitf, Pax2 and Vax1/2, is altered in the corresponding compartments of the mutant eye. Using ChIP assay, siRNA treatment and transient transfection in ARPE-19 cells in vitro, we demonstrate that Pax6 and Otx2 are directly regulated by COUP-TFs. Taken together, our findings reveal novel and distinct cell-intrinsic mechanisms mediated by COUP-TF genes to direct the specification and differentiation of progenitor cells, and that COUP-TFs are crucial for dorsalization of the eye.
Collapse
Affiliation(s)
- Ke Tang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | | | | | |
Collapse
|
56
|
Brzezinski JA, Lamba DA, Reh TA. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 2010; 137:619-29. [PMID: 20110327 DOI: 10.1242/dev.043968] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Photoreceptors, rods and cones are the most abundant cell type in the mammalian retina. However, the molecules that control their development are not fully understood. In studies of photoreceptor fate determination, we found that Blimp1 (Prdm1) is expressed transiently in developing photoreceptors. We analyzed the function of Blimp1 in the mouse retina using a conditional deletion approach. Developmental analysis of mutants showed that Otx2(+) photoreceptor precursors ectopically express the bipolar cell markers Chx10 (Vsx2) and Vsx1, adopting bipolar instead of photoreceptor fate. However, this fate shift did not occur until the time when bipolar cells are normally specified during development. Most of the excess bipolar cells died around the time of bipolar cell maturation. Our results suggest that Blimp1 expression stabilizes immature photoreceptors by preventing bipolar cell induction. We conclude that Blimp1 regulates the decision between photoreceptor and bipolar cell fates in the Otx2(+) cell population during retinal development.
Collapse
Affiliation(s)
- Joseph A Brzezinski
- University of Washington, Department of Biological Structure, Seattle, WA 98195, USA
| | | | | |
Collapse
|
57
|
Pang JJ, Gao F, Lem J, Bramblett DE, Paul DL, Wu SM. Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry. Proc Natl Acad Sci U S A 2010; 107:395-400. [PMID: 20018684 PMCID: PMC2806755 DOI: 10.1073/pnas.0907178107] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout [Tralpha(-/-)], connexin36 knockout [Cx36(-/-)], and transcription factor beta4 knockout [Bhlhb4(-/-)]), we show that a subpopulation of rod DBCs (DBC(R2)s) receives substantial input directly from cones and a subpopulation of cone DBCs (DBC(C1)s) receives substantial input directly from rods. These results provide evidence of the existence of functional rod-DBC(C) and cone-DBC(R) synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | - Fan Gao
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | - Janis Lem
- Department of Ophthalmology, Programs in Genetics, Neuroscience, Cell and Molecular and Developmental Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Debra E. Bramblett
- Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX 79905; and
| | - David L. Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA 02135
| | - Samuel M. Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
58
|
Abd-El-Barr MM, Pennesi ME, Saszik SM, Barrow AJ, Lem J, Bramblett DE, Paul DL, Frishman LJ, Wu SM. Genetic dissection of rod and cone pathways in the dark-adapted mouse retina. J Neurophysiol 2009; 102:1945-55. [PMID: 19587322 PMCID: PMC2746771 DOI: 10.1152/jn.00142.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/02/2009] [Indexed: 01/25/2023] Open
Abstract
A monumental task of the mammalian retina is to encode an enormous range (>10(9)-fold) of light intensities experienced by the animal in natural environments. Retinal neurons carry out this task by dividing labor into many parallel rod and cone synaptic pathways. Here we study the operational plan of various rod- and cone-mediated pathways by analyzing electroretinograms (ERGs), primarily b-wave responses, in dark-adapted wildtype, connexin36 knockout, depolarizing rod-bipolar cell (DBCR) knockout, and rod transducin alpha-subunit knockout mice [WT, Cx36(-/-), Bhlhb4(-/-), and Tralpha(-/-)]. To provide additional insight into the cellular origins of various components of the ERG, we compared dark-adapted ERG responses with response dynamic ranges of individual retinal cells recorded with patch electrodes from dark-adapted mouse retinas published from other studies. Our results suggest that the connexin36-mediated rod-cone coupling is weak when light stimulation is weak and becomes stronger as light stimulation increases in strength and that rod signals may be transmitted to some DBCCs via direct chemical synapses. Moreover, our analysis indicates that DBCR responses contribute about 80% of the overall DBC response to scotopic light and that rod and cone signals contribute almost equally to the overall DBC responses when stimuli are strong enough to saturate the rod bipolar cell response. Furthermore, our study demonstrates that analysis of ERG b-wave of dark-adapted, pathway-specific mutants can be used as an in vivo tool for dissecting rod and cone synaptic pathways and for studying the functions of pathway-specific gene products in the retina.
Collapse
Affiliation(s)
- Muhammad M Abd-El-Barr
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Andreazzoli M. Molecular regulation of vertebrate retina cell fate. ACTA ACUST UNITED AC 2009; 87:284-95. [DOI: 10.1002/bdrc.20161] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Wu SM. From retinal circuitry to eye diseases--in memory of Henk Spekreijse. Vision Res 2009; 49:992-5. [PMID: 18948133 PMCID: PMC2732406 DOI: 10.1016/j.visres.2008.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 08/27/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
This article summarizes our recent works on stratum-by-stratum structure-function rules for synaptic contacts between retinal bipolar cells and third-order retinal neurons in the inner plexiform layer. These rules were derived from large-scale voltage clamp recordings of various types of bipolar cells in the tiger salamander retina, and they appear applicable to bipolar cells in the mouse and other mammalian species. This review also gives a brief account of how we used pathway-specific knockout mouse models to dissect rod and cone signaling channels in the mammalian retina. Furthermore, studies on cellular and genetic mechanisms underlying several neurodegenerative retinal disorders are described.
Collapse
Affiliation(s)
- Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
61
|
Vitorino M, Jusuf PR, Maurus D, Kimura Y, Higashijima SI, Harris WA. Vsx2 in the zebrafish retina: restricted lineages through derepression. Neural Dev 2009; 4:14. [PMID: 19344499 PMCID: PMC2683830 DOI: 10.1186/1749-8104-4-14] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 04/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs). It is not clear, however, which progenitors are multipotent or why they are multipotent. RESULTS In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2. CONCLUSION Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential.
Collapse
Affiliation(s)
- Marta Vitorino
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | | | | | | | | | | |
Collapse
|
62
|
Ding Q, Chen H, Xie X, Libby RT, Tian N, Gan L. BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons. J Neurosci 2009; 29:3992-4003. [PMID: 19339595 PMCID: PMC2756297 DOI: 10.1523/jneurosci.5237-08.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/31/2009] [Accepted: 02/12/2009] [Indexed: 12/17/2022] Open
Abstract
Through transcriptional regulations, the BarH family of homeodomain proteins play essential roles in cell fate specification, cell differentiation, migration, and survival. Barhl2, a member of the Barh gene family, is expressed in retinal ganglion cells (RGCs), amacrine cells (ACs), and horizontal cells. Here, to investigate the role of Barhl2 in retinal development, Barhl2-deficient mice were generated. Analysis of AC subtypes in Barhl2-deficient retinas suggests that Barhl2 plays a critical role in AC subtype determination. A significant reduction of glycinergic and GABAergic ACs with a substantial increase in the number of cholinergic ACs was observed in Barhl2-null retinas. Barhl2 is also critical for the development of a normal complement of RGCs. Barhl2 deficiency resulted in a 35% increase in RGCs undergoing apoptosis during development. Genetic analysis revealed that Barhl2 functions downstream of the Atoh7-Pou4f3 regulatory pathway and regulates the maturation and/or survival of RGCs. Thus, BARHL2 appears to have numerous roles in retinal development, including regulating neuronal subtype specification, differentiation, and survival.
Collapse
Affiliation(s)
- Qian Ding
- University of Rochester Eye Institute
- Department of Biomedical Genetics
| | - Hui Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Richard T. Libby
- University of Rochester Eye Institute
- Department of Biomedical Genetics
| | - Ning Tian
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Lin Gan
- University of Rochester Eye Institute
- Center for Neural Development and Disease, and
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York 14642, and
| |
Collapse
|
63
|
Laguna A, Aranda S, Barallobre MJ, Barhoum R, Fernández E, Fotaki V, Delabar JM, de la Luna S, de la Villa P, Arbonés ML. The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 2008; 15:841-53. [PMID: 19081073 DOI: 10.1016/j.devcel.2008.10.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 10/23/2008] [Accepted: 10/31/2008] [Indexed: 11/29/2022]
Abstract
The precise regulation of programmed cell death is critical for the normal development of the nervous system. We show here that DYRK1A (minibrain), a protein kinase essential for normal growth, is a negative regulator of the intrinsic apoptotic pathway in the developing retina. We provide evidence that changes in Dyrk1A gene dosage in the mouse strongly alter the cellularity of inner retina layers and result in severe functional alterations. We show that DYRK1A does not affect the proliferation or specification of retina progenitor cells, but rather regulates the number of cells that die by apoptosis. We demonstrate that DYRK1A phosphorylates caspase-9 on threonine residue 125, and that this phosphorylation event is crucial to protect retina cells from apoptotic cell death. Our data suggest a model in which dysregulation of the apoptotic response in differentiating neurons participates in the neuropathology of diseases that display DYRK1A gene-dosage imbalance effects, such as Down's syndrome.
Collapse
Affiliation(s)
- Ariadna Laguna
- Center for Genomic Regulation, UPF, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kim DS, Matsuda T, Cepko CL. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci 2008; 28:7748-64. [PMID: 18667607 PMCID: PMC2714707 DOI: 10.1523/jneurosci.0397-08.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/28/2008] [Accepted: 06/16/2008] [Indexed: 11/21/2022] Open
Abstract
The diversity of cell types found within the vertebrate CNS arises in part from action of complex transcriptional programs. In the retina, the programs driving diversification of various cell types have not been completely elucidated. To investigate gene regulatory networks that underlie formation and function of one retinal circuit component, the bipolar cell, transcriptional regulation of three bipolar cell-enriched genes was analyzed. Using in vivo retinal DNA transfection and reporter gene constructs, a 200 bp Grm6 enhancer sequence, a 445 bp Cabp5 promoter sequence, and a 164 bp Chx10 enhancer sequence, were defined, each driving reporter expression specifically in distinct but overlapping bipolar cell subtypes. Bioinformatic analysis of sequences revealed the presence of potential paired-type and POU homeodomain-containing transcription factor binding sites, which were shown to be critical for reporter expression through deletion studies. The paired-type homeodomain transcription factors (TFs) Crx and Otx2 and the POU homeodomain factor Brn2 are expressed in bipolar cells and interacted with the predicted binding sequences as assessed by electrophoretic mobility shift assay. Grm6, Cabp5, and Chx10 reporter activity was reduced in Otx2 loss-of-function retinas. Endogenous gene expression of bipolar cell molecular markers was also dependent on paired-type homeodomain-containing TFs, as assessed by RNA in situ hybridization and reverse transcription-PCR in mutant retinas. Cabp5 and Chx10 reporter expression was reduced in dominant-negative Brn2-transfected retinas. The paired-type and POU homeodomain-containing TFs Otx2 and Brn2 together appear to play a common role in regulating gene expression in retinal bipolar cells.
Collapse
Affiliation(s)
| | | | - Constance L. Cepko
- Department of Genetics and
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
65
|
Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL. Identification of molecular markers of bipolar cells in the murine retina. J Comp Neurol 2008; 507:1795-810. [PMID: 18260140 PMCID: PMC2665264 DOI: 10.1002/cne.21639] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinal bipolar neurons serve as relay interneurons that connect rod and cone photoreceptor cells to amacrine and ganglion cells. They exhibit diverse morphologies essential for correct routing of photoreceptor cell signals to specific postsynaptic amacrine and ganglion cells. The development and physiology of these interneurons have not been completely defined molecularly. Despite previous identification of genes expressed in several bipolar cell subtypes, molecules that mark each bipolar cell type still await discovery. In this report, novel genetic markers of murine bipolar cells were found. Candidates were initially generated by using microarray analysis of single bipolar cells and mining of retinal serial analysis of gene expression (SAGE) data. These candidates were subsequently tested for expression in bipolar cells by RNA in situ hybridization. Ten new molecular markers were identified, five of which are highly enriched in their expression in bipolar cells within the adult retina. Double-labeling experiments using probes for previously characterized subsets of bipolar cells were performed to identify the subtypes of bipolar cells that express the novel markers. Additionally, the expression of bipolar cell genes was analyzed in Bhlhb4 knockout retinas, in which rod bipolar cells degenerate postnatally, to delineate further the identity of bipolar cells in which novel markers are found. From the analysis of Bhlhb4 mutant retinas, cone bipolar cell gene expression appears to be relatively unaffected by the degeneration of rod bipolar cells. Identification of molecular markers for the various subtypes of bipolar cells will lead to greater insights into the development and function of these diverse interneurons.
Collapse
Affiliation(s)
- Douglas S Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
66
|
Genetic control of circuit function: Vsx1 and Irx5 transcription factors regulate contrast adaptation in the mouse retina. J Neurosci 2008; 28:2342-52. [PMID: 18322081 DOI: 10.1523/jneurosci.4784-07.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transcriptional programs guide the specification of neural cell types in the developing nervous system. However, it is unclear whether such programs also control specific aspects of neural circuit function at maturity. In the mammalian retina, Vsx1 and Irx5 transcription factors are present in a subset of bipolar interneurons that convey signals from photoreceptors to ganglion cells. The biased expression of Vsx1 and Irx5 in hyperpolarizing OFF compared with depolarizing ON bipolar cells suggests that these transcription factors may selectively regulate signal processing in OFF circuits. To test this hypothesis, we generated mice lacking both Vsx1 and Irx5. Bipolar cells in these mice were morphologically normal, but the expression of cell-specific markers in some OFF but not ON bipolar cells was reduced or absent. To assess visual function in Vsx1(-/-)Irx5(-/-) retinas, we recorded light responses from ensembles of retinal ganglion cells (RGCs). We first identified functional RGC types in control mice and describe their response properties and adaptation to temporal contrast using a simple linear-nonlinear model. We found that space-time receptive fields of RGCs are unchanged in Vsx1(-/-)Irx5(-/-) mice compared with control retinas. In contrast, response threshold, gain, and range were lowered in a cell-type-specific manner in OFF but not ON RGCs in Vsx1(-/-)Irx5(-/-) retinas. Finally, we discovered that the ability to adapt to temporal contrast is greatly reduced in OFF RGCs in the double mutant, suggesting that Vsx1 and Irx5 control specific aspects of visual function in circuits of the mammalian retina.
Collapse
|
67
|
Ohsawa R, Kageyama R. Regulation of retinal cell fate specification by multiple transcription factors. Brain Res 2008; 1192:90-8. [PMID: 17488643 DOI: 10.1016/j.brainres.2007.04.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/26/2007] [Accepted: 04/03/2007] [Indexed: 01/22/2023]
Abstract
Retinal cell fate specification is strictly regulated by multiple transcription factors. Regarding regulation of cell proliferation and differentiation, basic helix-loop-helix (bHLH) type repressors and activators function in an antagonistic manner. Repressor-type bHLH factors maintain retinal progenitor cells, whereas activator-type bHLH factors promote neuronal cell fate determination. However, bHLH genes alone are not sufficient for acquiring proper neuronal subtype identity. Recent findings have shown that retinal cell fate specification is regulated by combinations of bHLH and homeobox genes. It is conceivable that homeobox genes confer positional identity whereas bHLH genes regulate neuronal determination and differentiation. Moreover, it has been shown that bHLH genes implicated in retinal cell fate determination regulate expression of other bHLH genes, implying that there is a complicated transcription network regulating retinal development.
Collapse
Affiliation(s)
- Ryosuke Ohsawa
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
68
|
Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L. Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci 2007; 27:12707-20. [PMID: 18003851 PMCID: PMC2972590 DOI: 10.1523/jneurosci.3951-07.2007] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 10/03/2007] [Accepted: 10/06/2007] [Indexed: 12/27/2022] Open
Abstract
Whereas the mammalian retina possesses a repertoire of factors known to establish general retinal cell types, these factors alone cannot explain the vast diversity of neuronal subtypes. In other CNS regions, the differentiation of diverse neuronal pools is governed by coordinately acting LIM-homeodomain proteins including the Islet-class factor Islet-1 (Isl1). We report that deletion of Isl1 profoundly disrupts retinal function as assessed by electroretinograms and vision as assessed by optomotor behavior. These deficits are coupled with marked reductions in mature ON- and OFF-bipolar (>76%), cholinergic amacrine (93%), and ganglion (71%) cells. Mosaic deletion of Isl1 permitted a chimeric analysis of "wild-type" cells in a predominantly Isl1-null environment, demonstrating a cell-autonomous role for Isl1 in rod bipolar and cholinergic amacrine development. Furthermore, the effects on bipolar cell development appear to be dissociable from the preceding retinal ganglion cell loss, because Pou4f2-null mice are devoid of similar defects in bipolar cell marker expression. Expression of the ON- and OFF-bipolar cell differentiation factors Bhlhb4 and Vsx1, respectively, requires the presence of Isl1, whereas the early bipolar cell marker Prox1 initially did not. Thus, Isl1 is required for engaging bipolar differentiation pathways but not for general bipolar cell specification. Spatiotemporal expression analysis of additional LIM-homeobox genes identifies a LIM-homeobox gene network during bipolar cell development that includes Lhx3 and Lhx4. We conclude that Isl1 has an indispensable role in retinal neuron differentiation within restricted cell populations and this function may reflect a broader role for other LIM-homeobox genes in retinal development, and perhaps in establishing neuronal subtypes.
Collapse
Affiliation(s)
- Yasser Elshatory
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642, and
| | - Drew Everhart
- Department of Ophthalmology, State University of New York Upstate Medical Center, Syracuse, New York 13210
| | - Min Deng
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642, and
| | - Xiaoling Xie
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642, and
| | - Robert B. Barlow
- Department of Ophthalmology, State University of New York Upstate Medical Center, Syracuse, New York 13210
| | - Lin Gan
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642, and
| |
Collapse
|
69
|
Dullin JP, Locker M, Robach M, Henningfeld KA, Parain K, Afelik S, Pieler T, Perron M. Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC DEVELOPMENTAL BIOLOGY 2007; 7:110. [PMID: 17910758 PMCID: PMC2212653 DOI: 10.1186/1471-213x-7-110] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/02/2007] [Indexed: 11/10/2022]
Abstract
Background In recent years, considerable knowledge has been gained on the molecular mechanisms underlying retinal cell fate specification. However, hitherto studies focused primarily on the six major retinal cell classes (five types of neurons of one type of glial cell), and paid little attention to the specification of different neuronal subtypes within the same cell class. In particular, the molecular machinery governing the specification of the two most abundant neurotransmitter phenotypes in the retina, GABAergic and glutamatergic, is largely unknown. In the spinal cord and cerebellum, the transcription factor Ptf1a is essential for GABAergic neuron production. In the mouse retina, Ptf1a has been shown to be involved in horizontal and most amacrine neurons differentiation. Results In this study, we examined the distribution of neurotransmitter subtypes following Ptf1a gain and loss of function in the Xenopus retina. We found cell-autonomous dramatic switches between GABAergic and glutamatergic neuron production, concomitant with profound defects in the genesis of amacrine and horizontal cells, which are mainly GABAergic. Therefore, we investigated whether Ptf1a promotes the fate of these two cell types or acts directly as a GABAergic subtype determination factor. In ectodermal explant assays, Ptf1a was found to be a potent inducer of the GABAergic subtype. Moreover, clonal analysis in the retina revealed that Ptf1a overexpression leads to an increased ratio of GABAergic subtypes among the whole amacrine and horizontal cell population, highlighting its instructive capacity to promote this specific subtype of inhibitory neurons. Finally, we also found that within bipolar cells, which are typically glutamatergic interneurons, Ptf1a is able to trigger a GABAergic fate. Conclusion Altogether, our results reveal for the first time in the retina a major player in the GABAergic versus glutamatergic cell specification genetic pathway.
Collapse
Affiliation(s)
| | - Morgane Locker
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| | - Mélodie Robach
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| | - Kristine A Henningfeld
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Karine Parain
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| | - Solomon Afelik
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Tomas Pieler
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Muriel Perron
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| |
Collapse
|
70
|
Koike C, Nishida A, Ueno S, Saito H, Sanuki R, Sato S, Furukawa A, Aizawa S, Matsuo I, Suzuki N, Kondo M, Furukawa T. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol 2007; 27:8318-29. [PMID: 17908793 PMCID: PMC2169187 DOI: 10.1128/mcb.01209-07] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that Otx2 is essential for photoreceptor cell fate determination; however, the functional role of Otx2 in postnatal retinal development is still unclear although it has been reported to be expressed in retinal bipolar cells and photoreceptors at postnatal stages. In this study, we first examined the roles of Otx2 in the terminal differentiation of photoreceptors by analyzing Otx2; Crx double-knockout mice. In Otx2+/-; Crx-/- retinas, photoreceptor degeneration and downregulation of photoreceptor-specific genes were much more prominent than in Crx-/- retinas, suggesting that Otx2 has a role in the terminal differentiation of the photoreceptors. Moreover, bipolar cells decreased in the Otx2+/-; Crx-/- retina, suggesting that Otx2 is also involved in retinal bipolar-cell development. To further investigate the role of Otx2 in bipolar-cell development, we generated a postnatal bipolar-cell-specific Otx2 conditional-knockout mouse line. Immunohistochemical analysis of this line showed that the expression of protein kinase C, a marker of mature bipolar cells, was significantly downregulated in the retina. Electroretinograms revealed that the electrophysiological function of retinal bipolar cells was impaired as a result of Otx2 ablation. These data suggest that Otx2 plays a functional role in the maturation of retinal photoreceptor and bipolar cells.
Collapse
Affiliation(s)
- Chieko Koike
- Department of Developmental Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wu ML, Chiao CC. Light deprivation delays morphological differentiation of bipolar cells in the rabbit retina. Brain Res 2007; 1170:13-9. [PMID: 17716634 DOI: 10.1016/j.brainres.2007.06.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 01/22/2023]
Abstract
Bipolar cells are responsible for transmitting light signals from the photoreceptors to the ganglion cells in the vertebrate retina. Their maturation process is not only important for establishing normal visual function, but may also underlie the dendritic remodeling of ganglion cells during development. It is known that light deprivation affects the synaptic connections of ganglion cells in the mammalian retina, but little is known about impact of visual experience on bipolar cell development. We used dye injection and gene gun labeling to identify bipolar cells, and characterized their morphological differentiation in normal-reared and dark-reared rabbits. Our results show that immature bipolar cells can be found as early as P1-3, and most characteristic bipolar cells can be identified during P4-6. More importantly, we found that light deprivation causes a delay rather than a permanent arrest of bipolar cell maturation in the rabbit retina. By eye opening at P10-11, both normal-reared and dark-reared rabbits possessed adult-like bipolar cells. This suggests that visual experience has a facilitating effect on the morphological differentiation of bipolar cells.
Collapse
Affiliation(s)
- Mu-Ling Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | |
Collapse
|
72
|
Elshatory Y, Deng M, Xie X, Gan L. Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol 2007; 503:182-97. [PMID: 17480014 PMCID: PMC2950632 DOI: 10.1002/cne.21390] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian retina is comprised of six major neuronal cell types and is subdivided into more morphological and physiological subtypes. The transcriptional machinery underlying these subtype fate choices is largely unknown. The LIM-homeodomain protein, Isl1, plays an essential role in central nervous system (CNS) differentiation but its relationship to retinal neurogenesis remains unknown. We report here its dynamic spatiotemporal expression in the mouse retina. Among bipolar interneurons, Isl1 expression commences at postnatal day (P)5 and is later restricted to ON-bipolar cells. The intensity of Isl1 expression is found to segregate the pool of ON-bipolar cells into rod and ON-cone bipolar cells with higher expression in rod bipolar cells. As bipolar cell development proceeds from P5-10 the colocalization of Isl1 and the pan-bipolar cell marker Chx10 reveals the organization of ON-center bipolar cell nuclei to the upper portion of the inner nuclear layer. Further, whereas Isl1 is predominantly a ganglion cell marker prior to embryonic day (E)15.5, at E15.5 and later its expression in nonganglion cells expands. We demonstrate that these Isl1-positive, nonganglion cells acquire the expression of amacrine cell markers embryonically, likely representing nascent cholinergic amacrine cells. Taken together, Isl1 is expressed during the maturation of and is later maintained in retinal ganglion cells and subtypes of amacrine and bipolar cells where it may function in the maintenance of these cells into adulthood.
Collapse
Affiliation(s)
- Yasser Elshatory
- Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642
| | - Min Deng
- Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642
| | - Xiaoling Xie
- Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642
| | - Lin Gan
- Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
73
|
Onorati M, Cremisi F, Liu Y, He RQ, Barsacchi G, Vignali R. A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina. Neural Dev 2007; 2:12. [PMID: 17597530 PMCID: PMC1929070 DOI: 10.1186/1749-8104-2-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 06/27/2007] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Otx genes, orthologues of the Drosophila orthodenticle gene (otd), play crucial roles in vertebrate brain development. In the Xenopus eye, Xotx2 and Xotx5b promote bipolar and photoreceptor cell fates, respectively. The molecular basis of their differential action is not completely understood, though the carboxyl termini of the two proteins seem to be crucial. To define the molecular domains that make the action of these proteins so different, and to determine whether their retinal abilities are shared by Drosophila OTD, we performed an in vivo molecular dissection of their activity by transfecting retinal progenitors with several wild-type, deletion and chimeric constructs of Xotx2, Xotx5b and otd. RESULTS We identified a small 8-10 amino acid divergent region, directly downstream of the homeodomain, that is crucial for the respective activities of XOTX2 and XOTX5b. In lipofection experiments, the exchange of this 'specificity box' completely switches the retinal activity of XOTX5b into that of XOTX2 and vice versa. Moreover, the insertion of this box into Drosophila OTD, which has no effect on retinal cell fate, endows it with the specific activity of either XOTX protein. Significantly, in cell transfection experiments, the diverse ability of XOTX2 and XOTX5b to synergize with NRL, a cofactor essential for vertebrate rod development, to transactivate the rhodopsin promoter is also switched depending on the box. We also show by GST-pull down that XOTX2 and XOTX5b differentially interact with NRL, though this property is not strictly dependent on the box. CONCLUSION Our data provide molecular evidence on how closely related homeodomain gene products can differentiate their functions to regulate distinct cell fates. A small 'specificity box' is both necessary and sufficient to confer on XOTX2 and XOTX5b their distinct activities in the developing frog retina and to convert the neutral orthologous OTD protein of Drosophila into a positive and specific XOTX-like retinal regulator. Relatively little is known of what gives developmental specificity to homeodomain regulators. We propose that this box is a major domain of XOTX proteins that provides them with the appropriate developmental specificity in retinal histogenesis.
Collapse
Affiliation(s)
- Marco Onorati
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy
| | - Federico Cremisi
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy
| | - Yang Liu
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Da Tun Road, Chao Yang District, Beijing 100101, China RP
- Dana-Farber Cancer Institute, Jimmy Fund Way, Boston, MA 02115, USA
| | - Rong-Qiao He
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Da Tun Road, Chao Yang District, Beijing 100101, China RP
| | - Giuseppina Barsacchi
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- AMBISEN Center, High Technology Center for the Study of the Environmental Damage of the Endocrine and Nervous System, Università di Pisa, Pisa, Italy
| | - Robert Vignali
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- AMBISEN Center, High Technology Center for the Study of the Environmental Damage of the Endocrine and Nervous System, Università di Pisa, Pisa, Italy
| |
Collapse
|
74
|
Abstract
The various cell types in the vertebrate retina arise from a pool of common progenitors. The way that the cell types are specified has been a long-standing issue. Decades of research have yielded a large body of information regarding the involvement of extrinsic factors, and only recently has the function of intrinsic factors begun to emerge. This article reviews recent studies addressing the role of basic helix-loop-helix (bHLH) factors in specifying retinal cell types, with an emphasis on bHLHhierarchies leading to photoreceptor production. Photoreceptor genesis appears to employ two transcriptional pathways: ngn2-->neuroD-->raxL and ath5-->neuroD-->raxL. ngn2 and ath5 function in progenitors, which can potentially develop into different cell types. neuroD represents one of the central steps in photoreceptor specification. Ath5 is also essential for ganglion cell development. It remains to be demonstrated whether a bHLH gene functions as a key player in specifying the other types of retinal cells. Genetic knockout studies have indicated intricate cross-regulation among bHLH genes. Future studies are expected to unveil the mechanism by which bHLH factors network with intrinsic factors and communicate with extrinsic factors to ensure a balanced production of the various types of retinal cells.
Collapse
Affiliation(s)
- Run-Tao Yan
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
75
|
Lakowski J, Majumder A, Lauderdale JD. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Dev Biol 2007; 307:498-520. [PMID: 17509554 DOI: 10.1016/j.ydbio.2007.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/16/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
The Pax6 gene plays several roles in retinal development, including control of cell proliferation, maintenance of the retinogenic potential of progenitor cells, and cell fate specification. Emerging evidence suggests that these different aspects of Pax6 gene function are mediated by different isoforms of the Pax6 protein; however, relatively little is known about the spatiotemporal expression of Pax6 isoforms in the vertebrate retina. Using bacterial artificial chromosome (BAC) technology, we modified a zebrafish Pax6a BAC such that we could distinguish paired-containing Pax6a transcripts from paired-less Pax6a transcripts. In the zebrafish, the spatial and temporal onset of expression of these transcripts suggests that the paired-less isoform is involved in the cell fate decision leading to the generation of amacrine cells; however, because of limitations associated with transient transgenic analysis, it was not feasible to establish whether this promoter was active in all amacrine cells or in a specific population of amacrine cells. By making mice transgenic for the zebrafish Pax6a BAC reporter transgene, we were able to show that paired-containing and paired-less Pax6a transcripts were differentially expressed in amacrine subpopulations. Our study also directly demonstrates the functional conservation of the regulatory mechanisms governing Pax6 transcription in teleosts and mammals.
Collapse
Affiliation(s)
- Jörn Lakowski
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
76
|
Pang JJ, Abd-El-Barr MM, Gao F, Bramblett DE, Paul DL, Wu SM. Relative contributions of rod and cone bipolar cell inputs to AII amacrine cell light responses in the mouse retina. J Physiol 2007; 580:397-410. [PMID: 17255172 PMCID: PMC2075551 DOI: 10.1113/jphysiol.2006.120790] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 01/22/2007] [Indexed: 01/04/2023] Open
Abstract
AII amacrine cells (AIIACs) are crucial relay stations for rod-mediated signals in the mammalian retina and they receive synaptic inputs from depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs) as well as from other amacrine cells. Using whole-cell voltage-clamp technique in conjunction with pharmacological tools, we found that the light-evoked current response of AIIACs in the mouse retina is almost completely mediated by two DBC synaptic inputs: a 6,7-dinitro-quinoxaline-2,3-dione (DNQX)-resistant component mediated by cone DBCs (DBC(C)s) through an electrical synapse, and a DNQX-sensitive component mediated by rod DBCs (DBC(R)s). This scheme is supported by AIIAC current responses recorded from two knockout mice. The dynamic range of the AIIAC light response in the Bhlhb4-/- mouse (which lacks DBC(R)s) resembles that of the DNQX-resistant component, and that of the connexin36 (Cx36)-/- mouse resembles the DNQX-sensitive component. By comparing the light responses of the DBC(C)s with the DNQX-resistant AIIAC component, and light responses of the DBC(R)s with the DNQX-sensitive AIIAC component, we obtained the input-output relations of the DBC(C)-->AIIAC electrical synapse and the DBC(R)-->AIIAC chemical synapse. Similar to other glutamatergic chemical synapses in the retina, the DBC(R)-->AIIAC synapse is non-linear. Its highest voltage gain (approximately 5) is found near the dark membrane potential, and it saturates for presynaptic signals larger than 5.5 mV. The DBC(C)-->AIIAC electrical synapse is approximately linear (voltage gain of 0.92), consistent with the linear junctional conductance found in retinal electrical synapses. Moreover, relative DBC(R) and DBC(C) contributions to the AIIAC response at various light intensity levels are determined.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
77
|
Liu B, Liu Z, Chen T, Li H, Qiang B, Yuan J, Peng X, Qiu M. Selective expression of Bhlhb5 in subsets of early-born interneurons and late-born association neurons in the spinal cord. Dev Dyn 2007; 236:829-35. [PMID: 17219401 DOI: 10.1002/dvdy.21061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence has suggested that the basic helix-loop-helix transcription factors play important roles in controlling neuronal fate specification and differentiation in the developing central nervous system. In this study, we report a detailed immunological study on the expression of Bhlhb5 in embryonic mouse spinal cord with a newly developed antibody. At the early stage of neural development, Bhlhb5 is specifically expressed in dI6 dorsal interneurons and in V1 and V2 ventral interneurons. At late stages of development, Bhlhb5 expression is detected in a subset of late-born dorsal association interneurons that migrate into the uppermost layer of the dorsal horn.
Collapse
Affiliation(s)
- Ben Liu
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K, Chow RL, Gan L. Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development 2006; 133:4815-25. [PMID: 17092954 PMCID: PMC2992969 DOI: 10.1242/dev.02664] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian retina comprises six major neuronal cell types and one glial type that are further classified into multiple subtypes based on their anatomical and functional differences. Nevertheless, how these subtypes arise remains largely unknown at the molecular level. Here, we demonstrate that the expression of Bhlhb5, a bHLH transcription factor of the Olig family, is tightly associated with the generation of selective GABAergic amacrine and Type 2 OFF-cone bipolar subtypes throughout retinogenesis. Targeted deletion of Bhlhb5 results in a significant reduction in the generation of these selective bipolar and amacrine subtypes. Furthermore, although a Bhlhb5-null mutation has no effect on the expression of bHLH-class retinogenic genes, Bhlhb5 expression overlaps with that of the pan-amacrine factor NeuroD and the expression of Bhlhb5 and NeuroD is negatively regulated by ganglion cell-competence factor Math5. Our results reveal that a bHLH transcription factor cascade is involved in regulating retinal cell differentiation and imply that Bhlhb5 functions downstream of retinogenic factors to specify bipolar and amacrine subtypes.
Collapse
Affiliation(s)
- Liang Feng
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Xiaoling Xie
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Pushkar S. Joshi
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Zhiyong Yang
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Koji Shibasaki
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Robert L. Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Lin Gan
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
79
|
Li J, Liu Q, Qiu M, Pan Y, Li Y, Shi T. Identification and analysis of the mouse basic/Helix-Loop-Helix transcription factor family. Biochem Biophys Res Commun 2006; 350:648-56. [PMID: 17027923 DOI: 10.1016/j.bbrc.2006.09.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
The basic/Helix-Loop-Helix (bHLH) proteins are a family of transcription factors that regulates a variety of biological processes. Based on a previously defined consensus motif, we identified the complete set of bHLH protein family from the mouse proteome databases and carried out a series of bioinformatics analysis. As results, 124 mouse bHLH proteins were identified in this study, and 28 of them were additional bHLH proteins beyond the previous report. These 124 mouse bHLH proteins were classified into groups from A to F by the nomenclature and phylogenetic analysis. Statistic analysis of the Gene Ontology annotation of these proteins showed that the bHLH proteins tend to perform functions related to cell differentiation and development. Gene function enrichment analysis among six groups illuminated that the proteins in certain group tend to have special biology functions, so that the molecular function of the uncharacterized proteins in groups could be inferred.
Collapse
Affiliation(s)
- Jing Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201101, China
| | | | | | | | | | | |
Collapse
|
80
|
Schroeter EH, Wong ROL, Gregg RG. In vivo development of retinal ON-bipolar cell axonal terminals visualized in nyx::MYFP transgenic zebrafish. Vis Neurosci 2006; 23:833-43. [PMID: 17020638 DOI: 10.1017/s0952523806230219] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/12/2006] [Indexed: 12/20/2022]
Abstract
Axonal differentiation of retinal bipolar cells has largely been studied by comparing the morphology of these interneurons in fixed tissue at different ages. To better understand how bipolar axonal terminals develop in vivo, we imaged fluorescently labeled cells in the zebrafish retina using time-lapse confocal and two photon microscopy. Using the upstream regulatory sequences from the nyx gene that encodes nyctalopin, we constructed a transgenic fish in which a subset of retinal bipolar cells express membrane targeted yellow fluorescent protein (MYFP). Axonal terminals of these YFP-labeled bipolar cells laminated primarily in the inner half of the inner plexiform layer, suggesting that they are likely to be ON-bipolar cells. Transient expression of MYFP in isolated bipolar cells indicates that two or more subsets of bipolar cells, with one or two terminal boutons, are labeled. Live imaging of YFP-expressing bipolar cells in the nyx::MYFP transgenic fish at different ages showed that initially, filopodial-like structures extend and retract from their primary axonal process throughout the inner plexiform layer (IPL). Over time, filopodial exploration becomes concentrated at discrete foci prior to the establishment of large terminal boutons, characteristic of the mature form. This sequence of axonal differentiation suggests that synaptic targeting by bipolar cell axons may involve an early process of trial and error, rather than a process of directed outgrowth and contact. Our observations represent the first in vivo visualization of axonal development of bipolar cells in a vertebrate retina.
Collapse
Affiliation(s)
- Eric H Schroeter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
81
|
Eichers ER, Abd-El-Barr MM, Paylor R, Lewis RA, Bi W, Lin X, Meehan TP, Stockton DW, Wu SM, Lindsay E, Justice MJ, Beales PL, Katsanis N, Lupski JR. Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Hum Genet 2006; 120:211-26. [PMID: 16794820 DOI: 10.1007/s00439-006-0197-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare oligogenic disorder exhibiting both clinical and genetic heterogeneity. Although the BBS phenotype is variable both between and within families, the syndrome is characterized by the hallmarks of developmental and learning difficulties, post-axial polydactylia, obesity, hypogenitalism, renal abnormalities, retinal dystrophy, and several less frequently observed features. Eleven genes mutated in BBS patients have been identified, and more are expected to exist, since about 20-30% of all families cannot be explained by the known loci. To investigate the etiopathogenesis of BBS, we created a mouse null for one of the murine homologues, Bbs4, to assess the contribution of one gene to the pleiotropic murine Bbs phenotype. Bbs4 null mice, although initially runted compared to their littermates, ultimately become obese in a gender-dependent manner, females earlier and with more severity than males. Blood chemistry tests indicated abnormal lipid profiles, signs of liver dysfunction, and elevated insulin and leptin levels reminiscent of metabolic syndrome. As in patients with BBS, we found age-dependent retinal dystrophy. Behavioral assessment revealed that mutant mice displayed more anxiety-related responses and reduced social dominance. We noted the rare occurrence of birth defects, including neural tube defects and hydrometrocolpos, in the null mice. Evaluations of these null mice have uncovered phenotypic features with age-dependent penetrance and variable expressivity, partially recapitulating the human BBS phenotype.
Collapse
Affiliation(s)
- Erica R Eichers
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza Room 604B, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Roger J, Brajeul V, Thomasseau S, Hienola A, Sahel JA, Guillonneau X, Goureau O. Involvement of Pleiotrophin in CNTF-mediated differentiation of the late retinal progenitor cells. Dev Biol 2006; 298:527-39. [PMID: 16914133 DOI: 10.1016/j.ydbio.2006.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/26/2006] [Accepted: 07/09/2006] [Indexed: 10/24/2022]
Abstract
Ciliary neurotrophic factor (CNTF) participates in retinal development by inhibiting rod differentiation and promoting bipolar and Müller cell differentiation. In order to identify genes which are regulated by CNTF in the developing retina, we carried out a subtractive hybridization study. By this approach, we identified the Pleiotrophin (Ptn) as an upregulated gene in postnatal day 0 (P0) retinal explants upon addition of CNTF. Correlation of overall expression patterns between different retinal cell markers and Ptn in situ hybridization suggest that Ptn transcripts are initially expressed in progenitor cells then in postmitotic precursors of the INL expressing the Chx10 gene, and later in some differentiated retinal Müller glial (RMG) cells and rod-bipolar cells. Overexpression of Ptn by in vitro electroporation of P0 rat retinal explants partially blocks rod differentiation and promotes bipolar cell production, similar to effects of exogenous CNTF and leukemia inhibitory factor (LIF). Furthermore, in P0 retinal explants from mice lacking Ptn, the inhibitory effect of CNTF and LIF on rod differentiation is partially reduced and the cytokine-induced bipolar cell differentiation is largely prevented. Together, these results demonstrate that influence of CNTF family of cytokines on the differentiation of late retinal progenitor cell population is partially mediated by the release of Ptn.
Collapse
Affiliation(s)
- Jérôme Roger
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, UMR S 592 INSERM, Université Pierre et Marie Curie-Paris6, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
83
|
Zhang CL, Zou Y, Yu RT, Gage FH, Evans RM. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1. Genes Dev 2006; 20:1308-20. [PMID: 16702404 PMCID: PMC1472905 DOI: 10.1101/gad.1413606] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx-/- mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx-/- mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration.
Collapse
Affiliation(s)
- Chun-Li Zhang
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
84
|
Pennesi ME, Bramblett DE, Cho JH, Tsai MJ, Wu SM. A role for bHLH transcription factors in retinal degeneration and dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 572:155-61. [PMID: 17249569 DOI: 10.1007/0-387-32442-9_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Mark E Pennesi
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
85
|
Cheng CW, Chow RL, Lebel M, Sakuma R, Cheung HOL, Thanabalasingham V, Zhang X, Bruneau BG, Birch DG, Hui CC, McInnes RR, Cheng SH. The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev Biol 2005; 287:48-60. [PMID: 16182275 DOI: 10.1016/j.ydbio.2005.08.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 12/14/2022]
Abstract
In the mouse retina, at least ten distinct types of bipolar interneurons are involved in the transmission of visual signals from photoreceptors to ganglion cells. How bipolar interneuron diversity is generated during retinal development is poorly understood. Here, we show that Irx5, a member of the Iroquois homeobox gene family, is expressed in developing bipolar cells starting at postnatal day 5 and is localized to a subset of cone bipolar cells in the mature mouse retina. In Irx5-deficient mice, defects were observed in the expression of some, but not all, immunohistological markers that define mature Type 2 and Type 3 OFF cone bipolar cells, indicating a role for Irx5 in bipolar cell differentiation. The differentiation of these two bipolar cell types has previously been shown to require the homeodomain-CVC transcription factor, Vsx1. However, the defects observed in Irx5-deficient retinas do not coincide with a reduction of Vsx1 expression, and conversely, the expression of Irx5 in cone bipolar cells does not require the presence of a functional Vsx1 allele. These results indicate that there are at least two distinct genetic pathways (Irx5-dependent and Vsx1-dependent) regulating the development of Type 2 and Type 3 cone bipolar cells.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Program in Developmental Biology, The Hospital for Sick Children, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Wan L, Almers W, Chen W. Two ribeye genes in teleosts: the role of Ribeye in ribbon formation and bipolar cell development. J Neurosci 2005; 25:941-9. [PMID: 15673675 PMCID: PMC6725632 DOI: 10.1523/jneurosci.4657-04.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribeye is the only known protein specific to synaptic ribbon, but its function is unclear. We show that the teleost fish, Fugu and zebrafish, have two ribeye genes, ribeye a and ribeye b. Whole-mount in situ hybridization revealed that ribeye a is expressed in tissues containing synaptic ribbons, including the pineal gland, inner ear, and retina. Ribeye b is absent in the pineal gland. In the retina, ribeye a is expressed in both photoreceptors and bipolar cells, whereas ribeye b is detected only in photoreceptors. To study the function of Ribeye a in retina, we depleted it by morpholino antisense oligos. Fish deficient in Ribeye a lack an optokinetic response and have shorter synaptic ribbons in photoreceptors and fewer synaptic ribbons in bipolar cells. Their bipolar cells still target Syntaxin-3 proteins to the inner plexiform layer and have abundant vsx1 mRNA. However, they lack large synaptic terminals and show increased apoptosis. Rod bipolar cells are fewer in number and/or deficient in PKCalpha. Recovery of Ribeye a levels rescues the optokinetic response, increases the number of PKCalpha-positive bipolar cells, and stops apoptosis. We conclude that Ribeye a is important for late steps in bipolar cell development.
Collapse
Affiliation(s)
- Lei Wan
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
87
|
Abstract
Progenitor cells in the mammalian retina generate at least 55 distinct kinds of neurons. Two reports in this issue of Neuron reveal two transcription factors (Foxn4 and Bhlhb4) that contribute to the development of this remarkable cellular diversity.
Collapse
Affiliation(s)
- Jeremy N Kay
- Department of Physiology and Programs in Neuroscience, Genetics, and Developmental Biology, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
88
|
|