51
|
Yuan G, Tan M, Chen X. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food Funct 2021; 12:7897-7908. [PMID: 34241611 DOI: 10.1039/d1fo01152a] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae, and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus, Faecalibaculim, Mucispirillum, and the decrease in the population of Lactobacillus, Roseburia, Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.
Collapse
Affiliation(s)
- Gaofeng Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China.
| | | | | |
Collapse
|
52
|
Effect of Mediterranean diet on liver enzymes: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2021; 128:1231-1239. [PMID: 34165054 DOI: 10.1017/s0007114521002270] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elevated levels of liver enzymes are the main markers of liver dysfunction. Liver enzymes are the important indicators of non-alcoholic fatty liver disease (NAFLD) in the general population. Previous randomised clinical trials (RCT) investigated the effects of Mediterranean diet (MedDiet) as a plant-based diet on features of NAFLD like liver enzymes, but their results are contradictory. This study aimed to systematically review and meta-analyse RCT investigating the effect of MedDiet on liver enzymes. PubMed, Web of Science, Scopus and Google Scholar were searched until December 2020. A total of ten RCT (n 705 participants) evaluating the effect of MedDiet on liver enzymes including aspartate aminotransferase (AST), alanine transaminase (ALT) and γ-glutamyltransferase (GGT) were included. A random effects model was used to estimate the pooled effect size. To evaluate the heterogeneity among the included studies, the Cochran's Q-test and I-squared test were used. The MedDiet significantly reduced AST (weighted mean difference (WMD) = -0·38 IU/l; 95 % CI - 0·73, -0·03 IU/l; P = 0·03) and GGT (WMD = -0·16 IU/l; 95 % CI - 0·32, -0·006 IU/l; P = 0·04) but had no significant effect on ALT (WMD = -0·55 IU/l; 95 % CI - 1·25, 0·13 IU/l; P = 0·11). However, sensitivity analysis revealed that the overall effects of MedDiet on AST, GGT and ALT were significantly influenced by removing some studies. There was no publication bias based on Begg's and Egger's tests. Generally, MedDiet can improve liver enzymes. To better conclusion, further RCT investigating the effect of MedDiet on liver enzymes, especially in patients with NAFLD, are still required.
Collapse
|
53
|
Dallio M, Romeo M, Gravina AG, Masarone M, Larussa T, Abenavoli L, Persico M, Loguercio C, Federico A. Nutrigenomics and Nutrigenetics in Metabolic- (Dysfunction) Associated Fatty Liver Disease: Novel Insights and Future Perspectives. Nutrients 2021; 13:1679. [PMID: 34063372 PMCID: PMC8156164 DOI: 10.3390/nu13051679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic- (dysfunction) associated fatty liver disease (MAFLD) represents the predominant hepatopathy and one of the most important systemic, metabolic-related disorders all over the world associated with severe medical and socio-economic repercussions due to its growing prevalence, clinical course (steatohepatitis and/or hepatocellular-carcinoma), and related extra-hepatic comorbidities. To date, no specific medications for the treatment of this condition exist, and the most valid recommendation for patients remains lifestyle change. MAFLD has been associated with metabolic syndrome; its development and progression are widely influenced by the interplay between genetic, environmental, and nutritional factors. Nutrigenetics and nutrigenomics findings suggest nutrition's capability, by acting on the individual genetic background and modifying the specific epigenetic expression as well, to influence patients' clinical outcome. Besides, immunity response is emerging as pivotal in this multifactorial scenario, suggesting the interaction between diet, genetics, and immunity as another tangled network that needs to be explored. The present review describes the genetic background contribution to MAFLD onset and worsening, its possibility to be influenced by nutritional habits, and the interplay between nutrients and immunity as one of the most promising research fields of the future in this context.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Tiziana Larussa
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| |
Collapse
|
54
|
Oviedo-Ojeda MF, Roque-Jiménez JA, Whalin M, Lee-Rangel HA, Relling AE. Effect of supplementation with different fatty acid profile to the dam in early gestation and to the offspring on the finishing diet on offspring growth and hypothalamus mRNA expression in sheep. J Anim Sci 2021; 99:6153448. [PMID: 33640974 DOI: 10.1093/jas/skab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation with omega-3 and omega-9 fatty acids (FA) during late gestation regulates offspring development; however, their effect in the first third of gestation is unknown in sheep. The objective of this experiment was to evaluate the effects of the maternal supplementation with an enriched source of monounsaturated FA (MUFA) or an enriched source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during the first third of gestation on productive performance on ewes and offspring, and hypothalamic neuropeptides on offspring. Seventy-nine post-weaning lambs, born of sheep supplemented in the first third of gestation with 1.61% Ca salts rich with MUFA or EPA+DHA (dam supplementation, DS), were distributed in a 2×2 factorial arrangement of treatments to finishing diets containing 1.48% of Ca salts of MUFA or EPA+DHA (lamb supplementation, LS). The finishing period of the offspring lasted for 56 d. During the finishing period dry matter intake (DMI, daily) and body weight (BW) were recorded. Plasma was collected for metabolites analysis. Twenty-four lambs were slaughtered, and hypothalamus was collected for mRNA expression of hormone receptors, neuropeptides, and lipid transport genes. The data were analyzed with a mixed model in SAS (9.4) using repeated measurements, when needed. There was a DS×LS interaction for BW (P = 0.10) where LS with EPA+DHA born from DS with MUFA were heavier than the other 3 treatments. Lambs born from DS with MUFA have a greater DMI (P < 0.01) than the offspring born from DS with EPA+DHA. Lambs born from MUFA supplemented dams had a greater (P ≤ 0.05) hypothalamus mRNA expression for cocaine and amphetamine regulated transcript, growth hormone receptor, metastasis suppressor 1, leptin receptor, pro-opiomelanocortin, and Neuropeptide Y. These results indicate that growth depends not on the type of FA during the finishing phase but the interaction of different sources of FA ad different stages. Also, supplementation with FA during early pregnancy changes productive performance and neuropeptides' mRNA expression of lambs independently of the finishing diet.
Collapse
Affiliation(s)
- Mario Francisco Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - José Alejandro Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor Aarón Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro Enrique Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
55
|
Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res 2021; 167:105484. [PMID: 33771699 DOI: 10.1016/j.phrs.2021.105484] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Recently non-alcoholic fatty liver disease (NAFLD) has grabbed considerable scientific attention, owing to its rapid increase in prevalence worldwide and growing burden on end-stage liver diseases. Metabolic syndrome including obesity, diabetes, and hypertension poses a grave risk to NAFLD etiology and progression. With no drugs available, the mainstay of NAFLD management remains lifestyle changes with exercise and dietary modifications. Nonselective drugs such as metformin, thiazolidinediones (TZDs), ursodeoxycholic acid (UDCA), silymarin, etc., are also being used to target the interrelated pathways for treating NAFLD. Considering the enormous disease burden and the unmet need for drugs, fresh insights into pathogenesis and drug discovery are required. The emergence of the field of epigenetics offers a convincing explanation for the basis of lifestyle, environmental, and other risk factors to influence NAFLD pathogenesis. Therefore, understanding these epigenetic modifications to target the primary cause of the disease might prove a rational strategy to prevent the disease and develop novel therapeutic interventions. Apart from describing the role of epigenetics in the pathogenesis of NAFLD as in other reviews, this review additionally provides an elaborate discussion on exploiting the high plasticity of epigenetic modifications in response to environmental cues, for developing novel therapeutics for NAFLD. Besides, this extensive review provides evidence for epigenetic mechanisms utilized by several potential drugs for NAFLD.
Collapse
|
56
|
Ji XW, Wang J, Shen QM, Li ZY, Jiang YF, Liu DK, Tan YT, Li HL, Xiang YB. Dietary fat intake and liver cancer incidence: A population-based cohort study in Chinese men. Int J Cancer 2021; 148:2982-2996. [PMID: 33559177 DOI: 10.1002/ijc.33507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
To date, limited studies have focused on the association between dietary fat and liver cancer risk, especially in China. Our study aims to evaluate the association between dietary fat intake and liver cancer incidence risk in men. Dietary fat intake was obtained through a validated food frequency questionnaire in a Chinese prospective cohort. The Cox regression model was utilized to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). After exclusion, 59 998 recruitments were finally analyzed with a total follow-up time of 714 339 person-years, 431 incident liver cancer cases were newly identified among them. The adjusted HRs (95% CIs) for the highest vs lowest quartile of total fat, saturated fat, monounsaturated fat (MUFA), and polyunsaturated fat (PUFA) were 1.33 (1.01-1.75), 1.50 (1.13-1.97), 1.26 (0.96-1.65), and 1.41 (1.07-1.86), and the corresponding P-trend values were .008, .005, .034, and .005, respectively. In the secondary analysis among participants tested for hepatitis B virus, we found that higher intakes of saturated fat and PUFA were also associated with increased liver cancer risks. Besides, high risks of per standard deviation alterations of the total fat, saturated fat and MUFA were detected in liver cancer, and these results were similar to those concluded from the full-cohort analysis. In conclusion, dietary intakes of total fat, saturated fat, PUFA, and probably MUFA might increase liver cancer risks. Our study provides suggestive advice to public administration on dietary suggestions, and related measures taken from managing dietary fat intake might reduce liver cancer incidence.
Collapse
Affiliation(s)
- Xiao-Wei Ji
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiu-Ming Shen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhuo-Ying Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Fei Jiang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Da-Ke Liu
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Ting Tan
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-Lan Li
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW To discuss the effect of fish oils on dyslipidemias and associated disorders. RECENT FINDINGS The most important lipid effect of fish oils is reducing plasma triglycerides and the main potential protection against cardiovascular events is very probably mediated also through other mechanisms including anti-inflammatory ones. The best results are available for omega-3 fatty acids, namely, eicosapentaenoic acid. Less evidence is available for the impact of ω-3 fatty acids on liver steatosis/steatohepatitis and acute pancreatitis. In addition, particular fish oils have variable content of saturated and unsaturated fatty acids with different anti- or pro-oxidative potential, and the suboptimal ratio of these compounds could attenuate or abolish their beneficial properties. Fish products with optimal proportion of fatty acids, particularly high content of eicosapentaenoic acid, could be recommended to patients with dyslipidemias, especially to those at high risk for cardiovascular disease; less evidence is available for liver disease and acute pancreatitis.
Collapse
|
58
|
Kalveram L, Schunck WH, Rothe M, Rudolph B, Loddenkemper C, Holzhütter HG, Henning S, Bufler P, Schulz M, Meierhofer D, Zhang IW, Weylandt KH, Wiegand S, Hudert CA. Regulation of the cytochrome P450 epoxyeicosanoid pathway is associated with distinct histologic features in pediatric non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102229. [PMID: 33388475 DOI: 10.1016/j.plefa.2020.102229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Laura Kalveram
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | - Birgit Rudolph
- Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | - Stephan Henning
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Marten Schulz
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany
| | - Ingrid W Zhang
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Karsten H Weylandt
- Department of Gastroenterology, Diabetes, Oncology and Rheumatology, Ruppiner Kliniken, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
59
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
60
|
Yuan G, Xu M, Tan M, Dong J, Chen X. Supplementation with Docosahexaenoic Acid and Vitamin E Improves Hepatic Triglyceride Accumulation Induced by High‐Fat Diet in Mice. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gaofeng Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Mengmeng Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Meijuan Tan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Jian Dong
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Xiaoe Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| |
Collapse
|
61
|
Sasson A, Kristoferson E, Batista R, McClung JA, Abraham NG, Peterson SJ. The pivotal role of heme Oxygenase-1 in reversing the pathophysiology and systemic complications of NAFLD. Arch Biochem Biophys 2020; 697:108679. [PMID: 33248947 DOI: 10.1016/j.abb.2020.108679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis and molecular pathways involved in non-alcoholic fatty liver disease (NAFLD) are reviewed, as well as what is known about mitochondrial dysfunction that leads to heart disease and the progression to steatohepatitis and hepatic fibrosis. We focused our discussion on the role of the antioxidant gene heme oxygenase-1 (HO-1) and its nuclear coactivator, peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α) in the regulation of mitochondrial biogenesis and function and potential therapeutic benefit for cardiac disease, NAFLD as well as the pharmacological effect they have on the chronic inflammatory state of obesity. The result is increased mitochondrial function and the conversion of white adipocyte tissue to beige adipose tissue ("browning of white adipose tissue") that leads to an improvement in signaling pathways and overall liver function. Improved mitochondrial biogenesis and function is essential to preventing the progression of hepatic steatosis to NASH and cirrhosis as well as preventing cardiovascular complications.
Collapse
Affiliation(s)
- Ariel Sasson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Eva Kristoferson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Rogerio Batista
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, 11215, USA.
| |
Collapse
|
62
|
Nutrients, Genetic Factors, and Their Interaction in Non-Alcoholic Fatty Liver Disease and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21228761. [PMID: 33228237 PMCID: PMC7699550 DOI: 10.3390/ijms21228761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries and expose patients to increased risk of hepatic and cardiovascular (CV) morbidity and mortality. Both environmental factors and genetic predisposition contribute to the risk. An inappropriate diet, rich in refined carbohydrates, especially fructose, and saturated fats, and poor in fibers, polyunsaturated fats, and vitamins is one of the main key factors, as well as the polymorphism of patatin-like phospholipase domain containing 3 (PNPLA3 gene) for NAFLD and the apolipoproteins and the peroxisome proliferator-activated receptor (PPAR) family for the cardiovascular damage. Beyond genetic influence, also epigenetics modifications are responsible for various clinical manifestations of both hepatic and CV disease. Interestingly, data are accumulating on the interplay between diet and genetic and epigenetic modifications, modulating pathogenetic pathways in NAFLD and CV disease. We report the main evidence from literature on the influence of both macro and micronutrients in NAFLD and CV damage and the role of genetics either alone or combined with diet in increasing the risk of developing both diseases. Understanding the interaction between metabolic alterations, genetics and diet are essential to treat the diseases and tailoring nutritional therapy to control NAFLD and CV risk.
Collapse
|
63
|
Marin-Alejandre BA, Abete I, Monreal JI, Elorz M, Benito-Boillos A, Herrero JI, Navarro-Blasco I, Tur JA, Bandarra NM, Zulet MA, Martinez JA. Effects of a 6-month dietary-induced weight loss on erythrocyte membrane omega-3 fatty acids and hepatic status of subjects with nonalcoholic fatty liver disease: The Fatty Liver in Obesity study. J Clin Lipidol 2020; 14:837-849.e2. [DOI: 10.1016/j.jacl.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
64
|
Mandala A, Janssen RC, Palle S, Short KR, Friedman JE. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020; 12:E3166. [PMID: 33081177 PMCID: PMC7602751 DOI: 10.3390/nu12103166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents. In the majority of pediatric NAFLD cases, the mechanisms driving the origin and rapid progression of NAFLD remain unknown. The progression from NAFLD to non-alcoholic steatohepatitis (NASH) in youth is associated with unique histological features and possible immune processes and metabolic pathways that may reflect different mechanisms compared with adults. Recent data suggest that circulating microRNAs (miRNAs) are important new biomarkers underlying pathways of liver injury. Several factors may contribute to pediatric NAFLD development, including high-sugar diets, in utero exposures via epigenetic alterations, changes in the neonatal microbiome, and altered immune system development and mitochondrial function. This review focuses on the unique aspects of pediatric NAFLD and how nutritional exposures impact the immune system, mitochondria, and liver/gastrointestinal metabolic health. These factors highlight the need for answers to how NAFLD develops in children and for early stage-specific interventions.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Sirish Palle
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kevin R. Short
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
65
|
Santos HO, Price JC, Bueno AA. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers-An Overview. Nutrients 2020; 12:E3159. [PMID: 33081119 PMCID: PMC7602731 DOI: 10.3390/nu12103159] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases remain a global challenge, and lipid-associated biomarkers can predict cardiovascular events. Extensive research on cardiovascular benefits of omega-3 polyunsaturated fatty acids (n3-PUFAs) is geared towards fish oil supplementation and fish-rich diets. Nevertheless, vegetarianism and veganism are becoming more popular across all segments of society, due to reasons as varied as personal, ethical and religious values, individual preferences and environment-related principles, amongst others. Due to the essentiality of PUFAs, plant sources of n3-PUFAs warrant further consideration. In this review, we have critically appraised the efficacy of plant-derived n3-PUFAs from foodstuffs and supplements upon lipid profile and selected cardiometabolic markers. Walnuts and flaxseed are the most common plant sources of n3-PUFAs, mainly alpha-linolenic acid (ALA), and feature the strongest scientific rationale for applicability into clinical practice. Furthermore, walnuts and flaxseed are sources of fibre, potassium, magnesium, and non-essential substances, including polyphenols and sterols, which in conjunction are known to ameliorate cardiovascular metabolism. ALA levels in rapeseed and soybean oils are only slight when compared to flaxseed oil. Spirulina and Chlorella, biomasses of cyanobacteria and green algae, are important sources of n3-PUFAs; however, their benefits upon cardiometabolic markers are plausibly driven by their antioxidant potential combined with their n3-PUFA content. In humans, ALA is not sufficiently bioconverted into eicosapentaenoic and docosahexaenoic acids. However, evidence suggests that plant sources of ALA are associated with favourable cardiometabolic status. ALA supplementation, or increased consumption of ALA-rich foodstuffs, combined with reduced omega-6 (n6) PUFAs intake, could improve the n3/n6 ratio and improve cardiometabolic and lipid profile.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - James C. Price
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| | - Allain A. Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| |
Collapse
|
66
|
Valenzuela R, Ortiz M, Hernández-Rodas MC, Echeverría F, Videla LA. Targeting n-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease. Curr Med Chem 2020; 27:5250-5272. [PMID: 30968772 DOI: 10.2174/0929867326666190410121716] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by abnormal hepatic accumulation of triacylglycerides in the absence of alcohol consumption, in association with Oxidative Stress (OS), a pro-inflammatory state and Insulin Resistance (IR), which are attenuated by n-3 long-chain polyunsaturated Fatty Acids (FAs) C20-C22 (LCPUFAs) supplementation. Main causes of NAFLD comprise high caloric intake and a sedentary lifestyle, with high intakes of saturated FAs. METHODS The review includes several searches considering the effects of n-3 LCPUFAs in NAFLD in vivo and in vitro models, using the PubMed database from the National Library of Medicine- National Institutes of Health. RESULT The LCPUFAs eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n- 3, DHA) have a positive effect in diminishing liver steatosis, OS, and the levels of aspartate aminotransferase, alanine aminotransferase and pro-inflammatory cytokines, with improvement of insulin sensitivity and adiponectin levels. The molecular pathways described for n-3 LCPUFAs in cellular and animal models and humans include peroxisome proliferator-activated receptor-α activation favouring FA oxidation, diminution of lipogenesis due to sterol responsive element binding protein-1c downregulation and inflammation resolution. Besides, nuclear factor erythroid-2-related factor-2 activation is elicited by n-3 LCPUFA-derived oxidation products producing direct and indirect antioxidant responses, with concomitant anti-fibrogenic action. CONCLUSION The discussed effects of n-3 LCPUFA supplementation support its use in NAFLD, although having a limited value in NASH, a contention that may involve n-3 LCPUFA oxygenated derivatives. Clinical trials establishing optimal dosages, intervention times, type of patients and possible synergies with other natural products are needed in future studies.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Merced 333, Curicó 3340000, Chile
| | - María Catalina Hernández-Rodas
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Francisca Echeverría
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| |
Collapse
|
67
|
Ayee MAA, Bunker BC, De Groot JL. Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions. CURRENT TOPICS IN MEMBRANES 2020; 86:57-81. [PMID: 33837698 DOI: 10.1016/bs.ctm.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive omega-3 polyunsaturated fatty acids have been shown to reduce the risk of death in patients with cardiovascular disease and alleviate the symptoms of other inflammatory diseases. However, the mechanisms of action of these effects remain unclear. It has been postulated that omega-3 polyunsaturated fatty acids modify cell membranes by incorporation into the membrane and altering the signaling properties of cellular receptors. In this chapter, we explore the effects of omega-3 polyunsaturated fatty acids on cell membrane structure and function. We present a review of the current evidence for the health benefits of these compounds and explore the molecular mechanisms through which omega-3 polyunsaturated fatty acids interact with membrane lipids and modulate bilayer structure. Using computational models of multicomponent phospholipid bilayers, we assess the consequences of incorporation of these fatty acids on membrane lipid packing, water permeation, and membrane structure.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, United States.
| | - Brendan C Bunker
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| | - Jordan L De Groot
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| |
Collapse
|
68
|
Godea Lupei S, Ciubotariu D, Danciu M, Lupușoru RV, Ghiciuc CM, Cernescu I, Gheţu N, Lupei M, Lupușoru CE. Improvement in serum lipids and liver morphology after supplementation of the diet with fish oil is more evident under regular feeding conditions than under high-fat or mixed diets in rats. Lipids Health Dis 2020; 19:162. [PMID: 32631338 PMCID: PMC7339424 DOI: 10.1186/s12944-020-01339-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary n- 3 polyunsaturated fatty acids (PUFAs) have a role in preventing cardiovascular and hepatic diseases. However, their effects might differ significantly depending on individual dietary patterns. The aim of the present study was to evaluate the effects of dietary supplementation with ω-3 fatty acids (FA), administered in different schedules, on hepatic and aortic histological structure, lipid profile, and body weight (BW) in male Wistar rats under standard (SD), high-fat diet (HFD) and mixed feeding conditions. METHODS PUFA treatment consisted of the administration of 50 mg/kg fish oil (FO) daily by oral gavage. HFD was obtained by adding a suspension of 4% cholesterol, thiouracil and cholic acid to the animals' drinking water. The rats were maintained on the diets for 6 weeks, and different schedules of PUFA administration were used. At 14, 28, and 42 days, the morphology of liver and aortic samples and the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and triglycerides (TG) were assessed. RESULTS The HFD groups exhibited significant hyperlipidemia and aortic inflammation, with progression to atherogenesis after 6 weeks. Administration of PUFAs slightly attenuated the aortic changes in these groups and reduced the liver's tendency to steatosis. FO-induced metabolic improvement was more evident in SD than in HFD rats. For instance, after the first 2 weeks, SD animals that received PUFAs had significantly increased HDL levels vs. controls (62.375 ± 4.10 vs. 52.625 ± 8.38 mg/dL, P < 0.05), but HFD rats did not, and decreased TG levels were observed exclusively in the SD rats (57.6 ± 4.09 vs. 66 ± 4.69 mg/dL, P < 0.05). After 6 weeks of n- 3 PUFA administration, LDL was significantly lower in the SD rats than in controls (13.67 ± 4.13 vs. 30.83 ± 2.86 mg/dL, P < 0.001), but the decrease in the HFD rats, although significant (49.17 ± 5.85 mg/dL vs. 57.17 ± 4.96 g/dL, P < 0.05), was not as marked. In the mixed-diet groups, administration of 50 mg/kg/day FO for 14 days under SD conditions following 4 weeks of HFD slightly decreased TG (86.625 ± 11.67 vs. 73 ± 4.52 mg/dL, P < 0.05) and increased HDL (45.875 ± 5.28 vs. 56 ± 3.16 mg/dL). However, in these animals, n-3 PUFA administration had no effect on LDL or TC. Administration of half of the above dose failed to improve any biochemical parameters. FO protected against excessive weight gain mainly under SD conditions. CONCLUSIONS The results show that FO confers more protection against cardiovascular risk factors (increased LDL and TG, decreased HDL) and liver lipid accumulation when given to rats consuming regular diets than when given to rats consuming a high-fat diet. This argues that priority should be given to consumption of a healthy diet rather than to the use of supplements. The effectiveness of n-3 PUFAs might be reduced in the case of hyperlipidic intake or after consumption of a high-fat diet.
Collapse
Affiliation(s)
- Silvia Godea Lupei
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Diana Ciubotariu
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.
| | - Mihai Danciu
- Department of Pathology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.
| | - Raoul Vasile Lupușoru
- Department of Pathophysiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Irina Cernescu
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Nicolae Gheţu
- Department of Plastic Surgery, Regional Oncology Institute, Iaşi, Romania
| | - Mihai Lupei
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environment Protection, Gheorghe Asachi Technical University, Iaşi, Romania
| | - Cătălina Elena Lupușoru
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
69
|
Schots PC, Pedersen AM, Eilertsen KE, Olsen RL, Larsen TS. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharmacol 2020; 11:961. [PMID: 32676029 PMCID: PMC7333527 DOI: 10.3389/fphar.2020.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The consumption of seafood and the use of fish oil for the production of nutraceuticals and fish feed have increased over the past decades due the high content of long-chain polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the marine food web. Calanus finmarchicus, feeding on phytoplankton, is a small copepod constituting a considerable biomass in the North Atlantic and is a novel source of omega-3 fatty acids. The oil is, however, different from other commercial marine oils in terms of chemistry and, possibly, bioactivity since it contains wax esters. Wax esters are fatty acids that are esterified with alcohols. In addition to the long-chain polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the oil is also rich in stearidonic acid (SDA), long-chain monounsaturated fatty acids, and the long-chain fatty alcohols eicosenol and docosenol. Recent animal studies have indicated anti-inflammatory and anti-obesogenic actions of this copepod oil beyond that provided by EPA and DHA. This review will discuss potential mechanisms behind these beneficial effects of the oil, focusing on the impact of the various components of the oil. The health effects of EPA and DHA are well recognized, whereas long-chain monounsaturated fatty acids and long-chain fatty alcohols have to a large degree been overlooked in relation to human health. Recently, however the fatty alcohols have received interest as potential targets for improved health via conversion to their corresponding fatty acids. Together, the different lipid components of the oil from C. finmarchicus may have potential as nutraceuticals for reducing obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Pauke Carlijn Schots
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Karl-Erik Eilertsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar Ludvig Olsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Steinar Larsen
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
70
|
Effect of Carotenoids from Phaeodactylum tricornutum on Palmitate-Treated HepG2 Cells. Molecules 2020; 25:molecules25122845. [PMID: 32575640 PMCID: PMC7356161 DOI: 10.3390/molecules25122845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease represents the most common liver disease and is characterized by an excess of lipid accumulation in hepatocytes, mainly stored as triglycerides. Phaeodactylum tricornutum is a marine microalga, which is rich in bioactive molecules known to be hepatoprotective, such as n-3 long-chain polyunsaturated fatty acids and fucoxanthin. The aim of this study was to investigate the effects of a carotenoid extract from P. tricornutum in a cellular model of non-alcoholic fatty liver disease induced by palmitate treatment. The combined effects of carotenoids and lipids, especially n-3 long-chain polyunsaturated fatty acids, were also investigated by using a total lipophilic extract. HepG2 cells were exposed for 24 h to 250 µM palmitate with or without the addition of carotenoid extract (6 μg/mL) or total lipophilic extract (100 μg/mL). The addition of carotenoid extract or total lipophilic extract prevented the accumulation of triglycerides, total cholesterol and cholesterol esters. The carotenoid extract and total lipophilic extract also decreased the mRNA expression levels of genes involved in lipogenesis (ACACA, FASN, SCD and DGAT1) and cholesterol esterification (ACAT1/SOAT1). In addition, the total lipophilic extract also downregulated the LXR/NR1H3 and SREBF1 genes, which are involved in lipogenesis regulation. By contrast, the carotenoid extract increased the mRNA level of CPT1A, a β-oxidation related gene, and reduced the lipid droplet accumulation. In conclusion, this study highlights the preventive effects against non-alcoholic fatty liver disease of the two microalga extracts.
Collapse
|
71
|
Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol Res 2020; 159:104984. [PMID: 32502637 DOI: 10.1016/j.phrs.2020.104984] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) in the general population is estimated at 25 %, and there is currently no effective treatment of NAFLD. Although insulin resistance (IR) is not the only factor causing the pathogenesis of NAFLD, hepatic IR has a cause-effective relationship with NAFLD. Improving hepatic IR is a potential therapeutic strategy to treat NAFLD. This review highlights the molecular mechanisms of hepatic IR in the development of NAFLD. Available data on potential drugs including glucagon-like peptide 1 receptor (GLP-1) agonists, peroxisome proliferator-activated receptor (PPAR-γ/α/δ) agonists, farnesoid X receptor (FXR) agonists, etc. are carefully discussed.
Collapse
|
72
|
Harari A, Leikin Frenkel A, Barshack I, Sagee A, Cohen H, Kamari Y, Harats D, Kandel Kfir M, Shaish A. Addition of fish oil to atherogenic high fat diet inhibited atherogenesis while olive oil did not, in LDL receptor KO mice. Nutr Metab Cardiovasc Dis 2020; 30:709-716. [PMID: 32007335 DOI: 10.1016/j.numecd.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/18/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Mediterranean diet has been associated with decreased cardiovascular morbidity and mortality. Both fish and olive oil are key components of this diet. Therefore, we compared their effects on nonalcoholic fatty liver disease (NAFLD) and atherogenesis in a mouse model, fed a high fat diet. METHODS AND RESULTS Forty nine, female LDL receptor knockout (LDLR KO) mice were allocated into 3 groups and fed an atherogenic high fat (HF) diet for 9 weeks. The HF group was fed a high fat diet alone. A HF + OO group was fed a HF diet with added olive oil (60 ml/kg feed), and the third group (HF + FO) was fed a HF diet with added fish oil (60 ml/kg feed). Both additions of fish and olive oil, significantly decreased plasma cholesterol elevation compared to HF diet. Nevertheless, only fish oil addition reduced significantly atherosclerotic lesion area by 51% compared to HF group. Liver levels of eicosapentenoic (EPA) and docosahexaenoic (DHA) acids were several folds higher in HF + FO group than in HF and HF + OO groups. Liver levels of oleic acid were higher in HF + OO compared to the other groups. Moreover, Fish oil addition significantly decreased NAFLD scores related to steatosis and inflammation and lowered the expression of the inflammatory genes interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP1). CONCLUSION These results suggest that fish oil addition on top of an atherogenic, HF diet, is beneficial, while olive oil is not, in its effect on plaque formation and NAFLD in LDLR KO mice.
Collapse
Affiliation(s)
- Ayelet Harari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel.
| | - Alicia Leikin Frenkel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Institute of Pathology, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat-Gan, Israel
| | - Aviv Sagee
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel
| | - Hofit Cohen
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Harats
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Michal Kandel Kfir
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Achva Academic College, Israel
| |
Collapse
|
73
|
Takeuchi E, Yamada D, Suzuki S, Saitoh A, Itoh M, Hayashi T, Yamada M, Wada K, Sekiguchi M. Participation of the nucleus accumbens dopaminergic system in the antidepressant-like actions of a diet rich in omega-3 polyunsaturated fatty acids. PLoS One 2020; 15:e0230647. [PMID: 32210469 PMCID: PMC7094879 DOI: 10.1371/journal.pone.0230647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
The beneficial effects of omega (ω)-3 polyunsaturated fatty acid (PUFA) supplementation on major depressive disorder have been actively studied, but the underlying mechanism remains unknown. The present study examined the involvement of the nucleus accumbens (NAc) dopaminergic systems in behavioral changes in mice fed a diet high in ω-3 PUFAs. Mice fed a diet containing about double the amount of ω-3 PUFAs (krill oil (KO) diet) exerted shorter immobility times in the forced swim test (FST) than mice fed a control diet, containing only α-linolenic acid (ALA) as ω-3 PUFAs. The shorter immobility times were observed in both male and female mice. A dopamine metabolite, 3,4-dihydroxyphenylacetic acid, increased in the NAc in male mice fed the KO diet when compared with those fed the control diet. In addition, dopamine, 3-methoxytyramine, and homovanillic acid increased in the NAc in female mice fed the KO diet. Notably, the effects of the KO diet on the immobility time in the FST were abolished by microinjection of sulpiride, an antagonist of D2-like receptors, into the NAc. A similar microinjection of an antagonist selective for D1-like receptors, SKF83566, also abolished the reduction in immobility in the FST. Moreover, we found that tyrosine hydroxylase-positive cells increased in the ventral tegmental area (VTA) in mice fed the KO diet. These results suggest that modulation of the VTA-NAc dopaminergic pathway is one of the mechanisms by which a KO diet rich in ω-3 PUFAs reduces the immobility behavior in the mouse FST.
Collapse
Affiliation(s)
- Eri Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Itoh
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hayashi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- * E-mail: ,
| |
Collapse
|
74
|
Delarue J. Are marine n-3 fatty acids protective towards insulin resistance? From cell to human. Proc Nutr Soc 2020; 79:1-11. [PMID: 32138806 DOI: 10.1017/s0029665120000087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Marine n-3 fatty acids improve most of the biochemical alterations associated with insulin resistance (IR). Experimental models of dietary-induced IR in rodents have shown their ability (often at a very high dose) to prevent IR, but with sometimes a tissue specific effect. However, in a high sucrose diet-induced IR rat model, they are unable to reverse IR once installed; in other rodent models (dexamethasone, Zucker rats), they are inefficacious perhaps because of the severity of IR. The very low incidence of type-2 diabetes (T2D) in Inuits in the 1960s, which largely increased over the following decades in parallel to the replacement of their traditional marine food for a western diet strongly suggests a protective effect of marine n-3 towards the risk of T2D; this was confirmed by reversal of its incidence in intervention studies reintroducing their traditional food. In healthy subjects and insulin-resistant non-diabetic patients, most trials and meta-analyses conclude to an insulin-sensitising effect and to a very probable preventive or alleviating effect towards IR. Concerning the risk of T2D, concordant data allow us to conclude the protective effect of marine n-3 in Asians while suspicion exists of an aggravation of risk in Westerners, but with the possibility that it could be explained by a high heterogeneity of studies performed in this population. Some longitudinal cohorts in US/European people showed no association or a decreased risk. Further studies using more homogeneous doses, sources of n-3 and assessment of insulin sensitivity methods are required to better delineate their effects in Westerners.
Collapse
Affiliation(s)
- Jacques Delarue
- Department of Nutritional Sciences & Laboratory of Human Nutrition, University Hospital/Faculty of Medicine/University of Brest, Brittany, France
| |
Collapse
|
75
|
Zhang W, An R, Li Q, Sun L, Lai X, Chen R, Li D, Sun S. Theaflavin TF3 Relieves Hepatocyte Lipid Deposition through Activating an AMPK Signaling Pathway by targeting Plasma Kallikrein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2673-2683. [PMID: 32050765 DOI: 10.1021/acs.jafc.0c00148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the leading cause of chronic liver diseases throughout the world. The deficit of pharmacotherapy for NAFLD calls for an urgent need for a new drug discovery and lifestyle management. Black tea is the most popular and functional drink consumed worldwide. Its main bioactive constituent theaflavin helps to prevent obesity-a major risk factor for NAFLD. To find new targets for the development of effective and safe therapeutic drugs from natural plants for NAFLD, we found a theaflavin monomer theaflavin-3,3'-digallate (TF3), which significantly reduced lipid droplet accumulation in hepatocytes, and directly bound and inhibited the activation of plasma kallikrein (PK), which was further proved to stimulate adenosine monophosphate activated protein kinase (AMPK) and its downstream targets. Taken together, we proposed that the TF3-PK-AMPK regulatory axis is a novel mechanism of lipid deposition mitigation, and PK could be a new target for NAFLD treatment.
Collapse
Affiliation(s)
- Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, P. R. China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
76
|
Méndez-Sánchez N, Valencia-Rodríguez A, Coronel-Castillo C, Vera-Barajas A, Contreras-Carmona J, Ponciano-Rodríguez G, Zamora-Valdés D. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:400. [PMID: 32355844 PMCID: PMC7186641 DOI: 10.21037/atm.2020.02.184] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is considered the advanced stage of non-alcoholic fatty liver disease (NAFLD). It is characterized by liver steatosis, inflammation and different degrees of fibrosis. Although the exact mechanisms by which fatty liver progresses to NASH are still not well understood, innate and adaptive immune responses seem to be essential key regulators in the establishment, progression, and chronicity of these disease. Diet-induced lipid overload of parenchymal and non-parenchymal liver cells is considered the first step for the development of fatty liver with the consequent organelle dysfunction, cellular stress and liver injury. These will generate the production of pro-inflammatory cytokines, chemokines and damage-associated molecular patterns (DAMPs) that will upregulate the activation of Kupffer cells (KCs) and monocyte-derived macrophages (MMs) favoring the polarization of the tolerogenic environment of the liver to an immunogenic phenotype with the resulting transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts developing fibrosis. In the long run, dendritic cells (DCs) will activate CD4+ T cells polarizing into the pro-inflammatory lymphocytes Th1 and Th17 worsening the liver damage and inflammation. Therefore, the objective of this review is to discuss in a systematic way the mechanisms known so far of the immune and non-proper immune liver cells in the development and progression of NASH.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
77
|
Moreira RJ, Castro É, Oliveira TE, Belchior T, Peixoto AS, Chaves-Filho AB, Moreno MF, Lima JD, Yoshinaga M, Miyamoto S, Morais MRPT, Zorn TMT, Cogliati B, Iwai LK, Palmisano G, Cabral FJ, Festuccia W. Lipoatrophy-Associated Insulin Resistance and Hepatic Steatosis are Attenuated by Intake of Diet Rich in Omega 3 Fatty Acids. Mol Nutr Food Res 2020; 64:e1900833. [PMID: 31978277 DOI: 10.1002/mnfr.201900833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Indexed: 02/06/2023]
Abstract
SCOPE Glucose homeostasis and progression of nonalcoholic fatty liver disease (NAFLD) and hepatomegaly in severe lipoatrophic mice and their modulation by intake of a diet rich in omega 3 (n-3) fatty acids (HFO) are evaluated. METHODS AND RESULTS Severe lipoatrophic mice induced by PPAR-γ deletion exclusively in adipocytes (A-PPARγ KO) and littermate controls (A-PPARγ WT) are evaluated for glucose homeostasis and liver mass, proteomics, lipidomics, inflammation, and fibrosis. Lipoatrophic mice are heavier than controls, severely glucose intolerant, and hyperinsulinemic, and develop NAFLD characterized by increased liver glycogen, triacylglycerol, and diacylglycerol contents, mitotic index, apoptosis, inflammation, steatosis score, fibrosis, and fatty acid synthase (FAS) content and activity. Lipoatrophic mice also display liver enrichment with monounsaturated in detriment of polyunsaturated fatty acids including n-3 fatty acids, and increased content of cardiolipin, a tetracyl phospholipid exclusively found at the mitochondria inner membrane. Administration of a high-fat diet rich in n-3 fatty acids (HFO) to lipoatrophic mice enriches liver with n-3 fatty acids, reduces hepatic steatosis, FAS content and activity, apoptosis, inflammation, and improves glucose homeostasis. CONCLUSION Diet enrichment with n-3 fatty acids improves glucose homeostasis and reduces liver steatosis and inflammation without affecting hepatomegaly in severe lipoatrophic mice.
Collapse
Affiliation(s)
- Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Marcos Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mychel R P T Morais
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Telma M T Zorn
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508010, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxicology, Center of Toxins, Immune-response and Cell Signaling (LETA/ CeTICS), Butantan Institute, São Paulo, 05503400, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | | | - William Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| |
Collapse
|
78
|
Pinheiro-Machado E, Gurgul-Convey E, Marzec MT. Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. Arch Med Sci 2020; 19:895-911. [PMID: 37560741 PMCID: PMC10408029 DOI: 10.5114/aoms.2020.92674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 08/11/2023] Open
Abstract
The immune system is frequently described in the context of its protective function against infections and its role in the development of autoimmunity. For more than a decade, the interactions between the immune system and metabolic processes have been reported, in effect creating a new research field, termed immunometabolism. Accumulating evidence supports the hypothesis that the development of metabolic diseases may be linked to inflammation, and reflects, in some cases, the activation of immune responses. As such, immunometabolism is defined by 1) inflammation as a driver of disease development and/or 2) metabolic processes stimulating cellular differentiation of the immune components. In this review, the main factors capable of altering the immuno-metabolic communication leading to the development and establishment of obesity and diabetes are comprehensively presented. Tissue-specific immune responses suggested to impair metabolic processes are described, with an emphasis on the adipose tissue, gut, muscle, liver, and pancreas.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Michal T. Marzec
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
79
|
Pan G, Cavalli M, Carlsson B, Skrtic S, Kumar C, Wadelius C. rs953413 Regulates Polyunsaturated Fatty Acid Metabolism by Modulating ELOVL2 Expression. iScience 2020; 23:100808. [PMID: 31928966 PMCID: PMC7033636 DOI: 10.1016/j.isci.2019.100808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) influence human health in several areas, including cardiovascular disease, diabetes, fatty liver disease, and cancer. ELOVL2 encodes one of the key enzymes in the in vivo synthesis of LC-PUFAs from their precursors. Variants near ELOVL2 have repeatedly been associated with levels of LC-PUFA-derived metabolites in genome-wide association studies (GWAS), but the mechanisms behind these observations remain poorly defined. In this study, we found that rs953413, located in the first intron of ELOVL2, lies within a functional FOXA and HNF4α cooperative binding site. The G allele of rs953413 increases binding of FOXA1/FOXA2 and HNF4α to an evolutionarily conserved enhancer element, conferring allele-specific upregulation of the rs953413-associated gene ELOVL2. The expression of ELOVL2 was significantly downregulated by both FOXA1 and HNF4α knockdown and CRISPR/Cas9-mediated direct mutation to the enhancer element. Our results suggest that rs953413 regulates LC-PUFAs metabolism by altering ELOVL2 expression through FOXA1/FOXA2 and HNF4α cooperation. rs953413 resides in an evolutionarily conserved enhancer region rs953413 mediates the cooperative binding of FOXA and HNF4α to the enhancer region The rs953413 locus plays a key role in regulating ELOVL2 expression rs953413 is implicated in PUFA metabolism by regulating ELOVL2 expression
Collapse
Affiliation(s)
- Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Björn Carlsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stanko Skrtic
- Pharmaceutical Technology & Development, AstraZeneca AB, Gothenburg, Sweden; Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
80
|
van den Hoek AM, Pieterman EJ, van der Hoorn JW, Iruarrizaga-Lejarreta M, Alonso C, Verschuren L, Skjæret T, Princen HMG, Fraser DA. Icosabutate Exerts Beneficial Effects Upon Insulin Sensitivity, Hepatic Inflammation, Lipotoxicity, and Fibrosis in Mice. Hepatol Commun 2019; 4:193-207. [PMID: 32025605 PMCID: PMC6996349 DOI: 10.1002/hep4.1453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Icosabutate is a structurally engineered eicosapentaenoic acid derivative under development for nonalcoholic steatohepatitis (NASH). In this study, we investigated the absorption and distribution properties of icosabutate in relation to liver targeting and used rodents to evaluate the effects of icosabutate on glucose metabolism, insulin resistance, as well as hepatic steatosis, inflammation, lipotoxicity, and fibrosis. The absorption, tissue distribution, and excretion of icosabutate was investigated in rats along with its effects in mouse models of insulin resistance (ob/ob) and metabolic inflammation/NASH (high‐fat/cholesterol‐fed APOE*3Leiden.CETP mice) and efficacy was compared with synthetic peroxisome proliferator‐activated receptor α (PPAR‐α) (fenofibrate) and/or PPAR‐γ/(α) (pioglitazone and rosiglitazone) agonists. Icosabutate was absorbed almost entirely through the portal vein, resulting in rapid hepatic accumulation. Icosabutate demonstrated potent insulin‐sensitizing effects in ob/ob mice, and unlike fenofibrate or pioglitazone, it significantly reduced plasma alanine aminotransferase. In high‐fat/cholesterol‐fed APOE*3Leiden.CETP mice, icosabutate, but not rosiglitazone, reduced microvesicular steatosis and hepatocellular hypertrophy. Although both rosiglitazone and icosabutate reduced hepatic inflammation, only icosabutate elicited antifibrotic effects in association with decreased hepatic concentrations of multiple lipotoxic lipid species and an oxidative stress marker. Hepatic gene‐expression analysis confirmed the changes in lipid metabolism, inflammatory and fibrogenic response, and energy metabolism, and revealed the involved upstream regulators. In conclusion, icosabutate selectively targets the liver through the portal vein and demonstrates broad beneficial effects following insulin sensitivity, hepatic microvesicular steatosis, inflammation, lipotoxicity, oxidative stress, and fibrosis. Icosabutate therefore offers a promising approach to the treatment of both dysregulated glucose/lipid metabolism and inflammatory disorders of the liver, including NASH.
Collapse
Affiliation(s)
- Anita M van den Hoek
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | - Elsbet J Pieterman
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | - José W van der Hoorn
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | | | | | - Lars Verschuren
- Department of Microbiology and Systems Biology The Netherlands Organization for Applied Scientific Research Zeist the Netherlands
| | - Tore Skjæret
- NorthSea Therapeutics BV Naarden the Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | | |
Collapse
|
81
|
García-Jaramillo M, Lytle KA, Spooner MH, Jump DB. A Lipidomic Analysis of Docosahexaenoic Acid (22:6, ω3) Mediated Attenuation of Western Diet Induced Nonalcoholic Steatohepatitis in Male Ldlr -/- Mice. Metabolites 2019; 9:E252. [PMID: 31661783 PMCID: PMC6918288 DOI: 10.3390/metabo9110252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major public health problem worldwide. NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and primary hepatocellular cancer (HCC). Obesity and type 2 diabetes mellitus (T2DM) are strongly associated with NAFLD, and the western diet (WD) is a major contributor to the onset and progression of these chronic diseases. Our aim was to use a lipidomic approach to identify potential lipid mediators of diet-induced NASH. We previously used a preclinical mouse (low density lipoprotein receptor null mouse, Ldlr -/-) model to assess transcriptomic mechanisms linked to WD-induced NASH and docosahexaenoic acid (DHA, 22:6, ω3)-mediated remission of NASH. This report used livers from the previous study to carry out ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography coupled with dynamic multi-reaction monitoring (HPLC-dMRM) to assess the impact of the WD and DHA on hepatic membrane lipid and oxylipin composition, respectively. Feeding mice the WD increased hepatic saturated and monounsaturated fatty acids and arachidonic acid (ARA, 20:4, ω6) in membrane lipids and suppressed ω3 polyunsaturated fatty acids (PUFA) in membrane lipids and ω3 PUFA-derived anti-inflammatory oxylipins. Supplementing the WD with DHA lowered hepatic ARA in membrane lipids and ARA-derived oxylipins and significantly increased hepatic DHA and its metabolites in membrane lipids, as well as C20-22 ω3 PUFA-derived oxylipins. NASH markers of inflammation and fibrosis were inversely associated with hepatic C20-22 ω3 PUFA-derived Cyp2C- and Cyp2J-generated anti-inflammatory oxylipins (false discovery rate adjusted p-value; q ≤ 0.026). Our findings suggest that dietary DHA promoted partial remission of WD-induced NASH, at least in part, by lowering hepatic pro-inflammatory oxylipins derived from ARA and increasing hepatic anti-inflammatory oxylipins derived from C20-22 ω3 PUFA.
Collapse
Affiliation(s)
- Manuel García-Jaramillo
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Kelli A Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Melinda H Spooner
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
82
|
Tang Y, Huang J, Zhang WY, Qin S, Yang YX, Ren H, Yang QB, Hu H. Effects of probiotics on nonalcoholic fatty liver disease: a systematic review and meta-analysis. Therap Adv Gastroenterol 2019; 12:1756284819878046. [PMID: 31598135 PMCID: PMC6764034 DOI: 10.1177/1756284819878046] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become prevalent in recent decades, especially in developed countries, and approaches for the prevention and treatment of NAFLD are not clear. The aim of this research was to analyze and summarize randomized controlled trials that investigated the effects of probiotics on NAFLD. METHODS Seven databases (PubMed, Embase, the Web of Science, the Cochrane Library, China National Knowledge Infrastructure, Wan Fang Data, and VIP Database) were searched. Then, eligible studies were identified. Finally, proper data extraction, synthesis and analysis were performed by trained researchers. RESULTS Anthropometric parameters: with use of probiotics weight was reduced by 2.31 kg, and body mass index (BMI) was reduced by 1.08 kg/m2. Liver function: probiotic treatment reduced the alanine aminotransferase level by 7.22 U/l, the aspartate aminotransferase level by 7.22 U/l, the alkaline phosphatase level by 25.87 U/l, and the glutamyl transpeptidase level by -5.76 U/l. Lipid profiles: total cholesterol, low-density lipoprotein cholesterol, and triglycerides were significantly decreased after probiotic treatment. Their overall effects (shown as standard mean difference) were -0.73, -0.54, and -0.36, respectively. Plasma glucose: probiotics reduced the plasma glucose level by 4.45 mg/dl and the insulin level by 0.63. Cytokines: probiotic treatment decreased tumor necrosis factor alpha by 0.62 and leptin by 1.14. Degree of liver fat infiltration (DFI): the related risk of probiotics for restoring DFI was 2.47 (95% confidence interval, 1.61-3.81, p < 0.001). CONCLUSION Probiotic treatment or supplementation is a promising therapeutic method for NAFLD.
Collapse
Affiliation(s)
- Yao Tang
- Department of Clinical Nutrition, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing, China,Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Department of Clinical Nutrition, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing, China,Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Wen yue Zhang
- Department of Clinical Nutrition, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing, China,Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Si Qin
- Center for Endocrine Diseases, The Third
Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi xuan Yang
- Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Qin-bing Yang
- Department of Clinical Nutrition, Tsinghua
University, Beijing, China
| | | |
Collapse
|
83
|
Fernández-Martínez E, Lira-Islas IG, Cariño-Cortés R, Soria-Jasso LE, Pérez-Hernández E, Pérez-Hernández N. Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J Food Biochem 2019; 43:e12986. [PMID: 31489674 DOI: 10.1111/jfbc.12986] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023]
Abstract
Chia seeds (Salvia hispanica L.) are rich in omega fatty acids. Dyslipidemia and steatohepatitis are diseases that require effective treatments in obese and non-obese patients. The aim was to evaluate the effect of chia intake on acute tyloxapol (TI)-induced dyslipidemia, on acute carbon tetrachloride (TC)-induced steatohepatitis, and on mixed damage (TC+TI) in non-obese rats. Four experimental groups were fed for 4 weeks a diet with established rodent food (DE), and four groups were fed a diet with 15% added chia (DC). Plasma samples were analyzed for total cholesterol, triglycerides, glucose, biochemical liver damage markers, and tumor necrosis factor-α (TNF-α). Liver samples were used to quantify glycogen, catalase, lipid peroxidation, and TNF-α. A histopathological analysis was performed. DC intake partially or totally prevented steatohepatitis, and reduced lipids in the dyslipidemic groups. The hypolipidemic and hepatoprotective effects of chia may be correlated to its high content of α-linolenic acid (omega-3) and phenolics. PRACTICAL APPLICATIONS: Metabolic syndrome is associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which are currently the most common causes of chronic liver disease, cirrhosis, and hepatocellular carcinoma (HCC) worldwide. Dyslipidemia is a significant risk factor for NAFLD and NASH. Non-obese patients may have NAFLD or NASH. Metabolic syndrome and dyslipidemia are more strongly associated with NAFLD in non-obese than in obese patients. This is the first study evaluating the hypolipidemic and hepatoprotective effects of chia seed intake on acute dyslipidemia and/or steatohepatitis caused by the individual or combined administration of the inducers tyloxapol and carbon tetrachloride, respectively, in non-obese rats. The pharmacological effects of dietary chia are correlated to its high content of omega-3 and omega-6 (1:1), protein, dietary fiber, and phenolics. The results suggest that inclusion of chia in diets of non-obese patients with dyslipidemia and/or NAFLD/NASH may improve their health state and preventing cirrhosis or HCC.
Collapse
Affiliation(s)
- Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Ivet G Lira-Islas
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Raquel Cariño-Cortés
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Luis E Soria-Jasso
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | | | - Nury Pérez-Hernández
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
84
|
Orang Z, Mozaffari-Khosravi H, Sivandzadeh G, Pantovic A. The effect of omega-3 supplementation on glycemic indices and lipid profile in type 2 diabetic patients with non-alcoholic fatty liver disease: A double-blind, randomized, clinical trial. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zahra Orang
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - GholamReza Sivandzadeh
- Department of Internal Medicine, Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ana Pantovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Serbia
| |
Collapse
|
85
|
Pedersen KB, Pulliam CF, Patel A, Del Piero F, Watanabe TTN, Wankhade UD, Shankar K, Hicks C, Ronis MJ. Liver tumorigenesis is promoted by a high saturated fat diet specifically in male mice and is associated with hepatic expression of the proto-oncogene Agap2 and enrichment of the intestinal microbiome with Coprococcus. Carcinogenesis 2019; 40:349-359. [PMID: 30325408 PMCID: PMC6487682 DOI: 10.1093/carcin/bgy141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Liver cancer results in a high degree of mortality, especially among men. As fatty liver disease is a risk factor for development of hepatocellular carcinoma, we investigated the role of dietary fat type in tumor promotion by high-fat diets in mice after initiation with the chemical carcinogen diethyl nitrosamine. Tumor incidence and multiplicity were significantly greater in males than those in females. In males, fat type had complex effects on tumorigenesis. Preneoplastic foci were most prevalent in mice fed a polyunsaturated fat diet enriched in docosahexaenoic acid, whereas carcinomas and large visible liver tumors were significantly greater in mice fed a saturated fat diet made with cocoa butter relative to mice fed mono- or polyunsaturated fats. Different mechanisms thus seemed involved in early and late tumor promotion. The hepatic transcriptome and gut microbiome were assessed for traits associated with tumorigenesis. Hepatic expression of more than 20% of all genes was affected by sex, whereas fat type affected fewer genes. In males, the saturated fat diet induced expression of the proto-oncogene Agap2 and affected the expression of several cytochrome P450 genes, and genes involved in lipid, bile acid and fatty acid metabolism. The gut microbiome had a higher level of genus Akkermansia and a lower level of Firmicutes in females than in males. Males fed saturated fat had an altered microbiome, including an enrichment of the genus Coprococcus. In conclusion, sex and the dietary fat type affect the gut microbiome, the hepatic transcriptome and ultimately hepatic tumor growth.
Collapse
Affiliation(s)
- Kim B Pedersen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Casey F Pulliam
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Aarshvi Patel
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Tatiane T N Watanabe
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Umesh D Wankhade
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kartik Shankar
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Martin J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| |
Collapse
|
86
|
Yang J, Fernández-Galilea M, Martínez-Fernández L, González-Muniesa P, Pérez-Chávez A, Martínez JA, Moreno-Aliaga MJ. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients 2019; 11:E872. [PMID: 31003450 PMCID: PMC6521137 DOI: 10.3390/nu11040872] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex phenomenon characterized by the progressive loss of tissue and organ function. The oxidative-stress theory of aging postulates that age-associated functional losses are due to the accumulation of ROS-induced damage. Liver function impairment and non-alcoholic fatty liver disease (NAFLD) are common among the elderly. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and evolve to hepatic cirrhosis or hepatic carcinoma. Oxidative stress, lipotoxicity, and inflammation play a key role in the progression of NAFLD. A growing body of evidence supports the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFA), mainly docosahaexenoic (DHA) and eicosapentaenoic acid (EPA), on metabolic diseases based on their antioxidant and anti-inflammatory properties. Here, we performed a systematic review of clinical trials analyzing the efficacy of n-3 PUFA on both systemic oxidative stress and on NAFLD/NASH features in adults. As a matter of fact, it remains controversial whether n-3 PUFA are effective to counteract oxidative stress. On the other hand, data suggest that n-3 PUFA supplementation may be effective in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH. Future perspectives and relevant aspects that should be considered when planning new randomized controlled trials are also discussed.
Collapse
Affiliation(s)
- Jinchunzi Yang
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Marta Fernández-Galilea
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
| | - Leyre Martínez-Fernández
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Pedro González-Muniesa
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Adriana Pérez-Chávez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Maria J Moreno-Aliaga
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
87
|
Four Weeks of Preoperative Omega-3 Fatty Acids Reduce Liver Volume: a Randomised Controlled Trial. Obes Surg 2019; 29:2037-2044. [DOI: 10.1007/s11695-019-03814-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
88
|
Spooner MH, Jump DB. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? Curr Opin Clin Nutr Metab Care 2019; 22:103-110. [PMID: 30601174 PMCID: PMC6355343 DOI: 10.1097/mco.0000000000000539] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide. The incidence of NAFLD parallels the prevalence of obesity. Moreover, NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis and primary hepatocellular cancer (HCC). As such, NAFLD has become a major public health concern. We discuss recent clinical trials and meta-analyses evaluating the efficacy of C20-22 ω3 polyunsaturated fatty acids (PUFA) to attenuate preexisting NAFLD in adults and children. RECENT FINDINGS Humans with NAFLD and NASH; and preclinical mouse models of NASH, have a high abundance of hepatic saturated (SFA) and monounsaturated (MUFA) fat, but a low abundance of hepatic C20-22 ω3 PUFA. This change in hepatic fat type and abundance is associated with hepatic lipotoxicity, inflammation, oxidative stress and fibrosis. Recent meta-analyses and clinical trials evaluated the capacity of C20-22 ω3 PUFA dietary supplementation to improve health outcomes in adults and children with preexisting NAFLD. Diets supplemented with docosahexaenoic acid (DHA, 22 : 6,ω3) alone or with eicosapentaenoic acid (EPA, 20 : 5,ω3) are tolerated and effective at lowering liver fat in NAFLD patients. However, outcomes are mixed with respect to C20-22 ω3 PUFA attenuation of more severe NAFLD markers, such as hepatic injury, inflammation and fibrosis. SUMMARY These studies suggest that dietary supplementation with C20-22 ω3 PUFA should be considered as a viable and effective option to lower liver fat in obese adults and children with NAFLD.
Collapse
Affiliation(s)
| | - Donald B. Jump
- Address correspondence to: Donald B. Jump, Ph.D., School of Biological and Population Health Sciences, 107A Milam Hall, Oregon State University, Corvallis, OR 97331-5109, Phone: 541-737-4007; FAX: 541-737-6914,
| |
Collapse
|
89
|
Macronutrients and the Adipose-Liver Axis in Obesity and Fatty Liver. Cell Mol Gastroenterol Hepatol 2019; 7:749-761. [PMID: 30763771 PMCID: PMC6463203 DOI: 10.1016/j.jcmgh.2019.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Macronutrient metabolism is a highly orchestrated process, with adipose tissue and liver each playing central roles in nutrient uptake, processing, transport, and storage. These 2 tissues form an important metabolic circuit, particularly as it relates to lipids as the primary storage form of excess energy. The function of the circuit is influenced by many factors, including the quantity and type of nutrients consumed and their impact on the overall health of the tissues. In this review we begin with a brief summary of the homeostatic disposition of lipids between adipose tissue and liver and how these processes can become dysregulated in obesity. We then explore how specific dietary nutrients and nutrient combinations can exert unique influences on the liver-adipose tissue axis.
Collapse
|
90
|
Wang M, Ma LJ, Yang Y, Xiao Z, Wan JB. n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review. Crit Rev Food Sci Nutr 2018; 59:S116-S129. [PMID: 30580553 DOI: 10.1080/10408398.2018.1544542] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess alcohol exposure leads to alcoholic liver disease (ALD), a predominant cause of liver-related morbidity and mortality worldwide. In the past decade, increasing attention has been paid to understand the association between n-3 polyunsaturated fatty acids (n-3 PUFAs) and ALD. In this review, we summarize the metabolism of n-3 PUFAs, animal model of ALD, and the findings from recent studies determining the role of n-3 PUFAs in ALD as a possible treatment. The animal models of acute ethanol exposure, chronic ethanol exposure and chronic-plus-single binge ethanol feeding have been widely used to explore the impact of n-3 PUFAs. Although the results of studies regarding the role of n-3 PUFAs in ALD have been inconsistent or controversial, increasing evidence has demonstrated that n-3 PUFAs may be useful in alleviating alcoholic steatosis and alcohol-induced liver injury through multiple mechanisms, including decreased de novo lipogenesis and lipid mobilization from adipose tissue, enhanced mitochondrial fatty acid β-oxidation, reduced hepatic inflammation and oxidative stress, and promoted intestinal homeostasis, positively suggesting that n-3 PUFAs might be promising for the management of ALD. The oxidation of n-3 PUFAs ex vivo in an experimental diet was rarely considered in most n-3 PUFA-related studies, likely contributing to the inconsistent results. Thus, the role of n-3 PUFAs in ALD deserves greater research efforts and remains to be evaluated in randomized, placebo-controlled clinic trial. ABBREVIATION AA arachidonic acid ACC acetyl-CoA carboxylase ACLY ATP-citrate lyase ACO acyl-CoA oxidase ALA α-linolenic acid ALD alcoholic liver disease ALP alkaline phosphatase ALT alanine aminotransferase AMPK AMP-activated protein kinase AST aspartate aminotransferase ATGL adipose triglyceride lipase cAMP cyclic adenosine 3',5'-monophosphate COX cyclooxygenases CPT1 carnitine palmitoyltransferase 1 CYP2E1 cytochrome P450 2E1 DGAT2 diacylglycerol acyltransferase 2 DGLA dihomo-γ-linolenic acid DHA docosahexaenoic acid DPA docosapentaenoic acid DTA docosatetraenoic acid EPA eicosapentaenoic acid ER endoplasmic reticulum ETA eicosatetraenoic acid FAS fatty acid synthase FATPs fatty acid transporter proteins GLA,γ linolenic acid GPR120 G protein-coupled receptor 120 GSH glutathione; H&E haematoxylin-eosin; HO-1 heme oxygenase-1; HSL hormone-sensitive lipase; IL-6 interleukin-6 iNOS nitric oxide synthase LA linoleic acid LBP lipopolysaccharide binding protein LOX lipoxygenases LXR liver X receptor LXREs LXR response elements MCP-1 monocyte chemotactic protein-1 MTP microsomal triglyceride transfer protein MUFA monounsaturated fatty acids MyD88 myeloid differentiation factor 88 n-3 PUFAs omega-3 polyunsaturated fatty acid NAFLD nonalcoholic fatty liver disease NASH nonalcoholic steatohepatitis NF-κB transcription factor nuclear factor κB PDE3B phosphodiesterase 3B PPAR peroxisome proliferator-activated receptor ROS reactive oxygen species RXR retinoid X receptor SCD-1 stearyl CoA desaturase-1 SDA stearidonic acid SFA saturated fatty acids SIRT1 sirtuin 1 SOD superoxide dismutase SREBP sterol regulatory element-binding protein TB total bilirubin TC total cholesterol TG triacylglycerol TLR4 Toll-like receptor-4 TNF-α tumor necrosis factor-α VLDLR very low-density lipoprotein receptor WT wild type; ZO-1 zonula occludens-1.
Collapse
Affiliation(s)
- Meng Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China.,b Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University , Shijiazhuang , Hebei , China
| | - Li-Juan Ma
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yan Yang
- c Department of Nutrition, School of Public Health , Sun Yat-Sen University , Guangzhou , China
| | - Zeyu Xiao
- d Collaborative Translational Medicine Collaborative Innovation Center, Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Bo Wan
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
91
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
92
|
Itsiopoulos C, Marx W, Mayr H, Tatucu-Babet O, Dash S, George E, Trakman G, Kelly J, Thomas C, Brazionis L. The role of omega-3 polyunsaturated fatty acid supplementation in the management of type 2 diabetes mellitus: A narrative review. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018. [DOI: 10.1016/j.jnim.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
93
|
Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, Kyriienko D, Komisarenko I, Dynnyk O. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clinical study. Minerva Med 2018; 109:418-428. [PMID: 30221912 DOI: 10.23736/s0026-4806.18.05845-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The manipulation of gut microbiota via administration of probiotics has been proposed as a potential strategy for the treatment of non-alcoholic fatty liver disease (NAFLD). Hence, we performed a double-blind single center randomized placebo-controlled trial (RCT) to evaluate the efficacy of coadministration of probiotics with omega-3 vs. placebo in type-2 diabetic patients with NAFLD. METHODS A total of 48 patients met the criteria for inclusion. They were randomly assigned to receive "Symbiter Omega" combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or placebo for 8-weeks. The primary main outcomes were the change in fatty liver index (FLI) and liver stiffness (LS) measured by Shear Wave Elastography (SWE). Secondary outcomes were the changes in transaminases level, serum lipids and cytokines levels. RESULTS In probiotic-omega group, FLI significantly decreased from 83.53±2.60 to 76.26±2.96 (P<0.001) while no significant changes were observed in the placebo group (82.86±2.45 to 81.09±2.84; P=0.156). Changes of LS in both groups were insignificant. Analysis of secondary outcomes showed that the coadministration of probiotics with omega-3 lead to significant reduction of serum gamma-glutamyl transpeptidase, triglycerides, and total cholesterol. Chronic systemic inflammatory markers after intervention decrease significantly only in Symbiter Omega group: IL-1β (P=0.029), TNF-α (P<0.001), IL-8 (P=0.029), IL-6 (P=0.003), and INF-γ (P=0.016). CONCLUSIONS Coadministration of a live multi-strain probiotic mixture with omega-3 fatty acids once daily for 8 weeks to patients with NAFLD can reduce liver fat, improve serum lipids, metabolic profile, and reduce chronic systemic inflammatory state.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Galyna Mykhalchyshyn
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Luigi Boccuto
- Research Department, Greenwood Genetic Center, Greenwood School of Health Research, Clemson University, Clemson, SC, USA
| | - Liudmyla Kononenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Kyriienko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
- Kyiv City Clinical Endocrinology Center, Kyiv, Ukraine
| | - Iuliia Komisarenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleg Dynnyk
- Bogomolets Institute of Physiology of the Ukrainian National Academy of Science, Kyiv, Ukraine
| |
Collapse
|
94
|
Liu L, Hu Q, Wu H, Wang X, Gao C, Chen G, Yao P, Gong Z. Dietary DHA/EPA Ratio Changes Fatty Acid Composition and Attenuates Diet-Induced Accumulation of Lipid in the Liver of ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6256802. [PMID: 30538803 PMCID: PMC6261399 DOI: 10.1155/2018/6256802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
Diets containing various docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratios protect against liver damage in mice fed with a high-fat diet (HFD). However, it is unclear whether these beneficial roles of DHA and EPA are associated with alterations of fatty acid (FA) composition in the liver. This study evaluated the positive impacts of n-6/n-3 polyunsaturated fatty acids (PUFAs) containing different DHA/EPA ratios on HFD-induced liver disease and alterations of the hepatic FA composition. ApoE-/- mice were fed with HFDs with various ratios of DHA/EPA (2 : 1, 1 : 1, and 1 : 2) and an n-6/n-3 ratio of 4 : 1 for 12 weeks. After treatment, the serum and hepatic FA compositions, serum biochemical parameters, liver injury, and hepatic lipid metabolism-related gene expression were determined. Our results demonstrated that dietary DHA/EPA changed serum and hepatic FA composition by increasing contents of n-6 and n-3 PUFAs and decreasing amounts of monounsaturated fatty acids (MUFAs) and the n-6/n-3 ratio. Among the three DHA/EPA groups, the DHA/EPA 2 : 1 group tended to raise n-3 PUFAs concentration and lower the n-6/n-3 ratio in the liver, whereas DHA/EPA 1 : 2 tended to raise n-6 PUFAs concentration and improve the n-6/n-3 ratio. DHA/EPA supplementation reduced the hepatic impairment of lipid homeostasis, oxidative stress, and the inflammatory responses in HFD-fed mice. The DHA/EPA 2 : 1 group had lower serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol and higher levels of adiponectin than HFD group. The DHA/EPA 1 : 2 group had elevated serum levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, without significant change the expression of genes for inflammation or hepatic lipid metabolism among the three DHA/EPA groups. The results suggest that DHA/EPA-enriched diet with an n-6/n-3 ratio of 4 : 1 may reverse HFD-induced nonalcoholic fatty liver disease to some extent by increasing n-6 and n-3 PUFAs and decreasing the amount of MUFAs and the n-6/n-3 ratio.
Collapse
Affiliation(s)
- Liang Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Qinling Hu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huihui Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiujing Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Gao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville 37996, USA
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| |
Collapse
|
95
|
Silva Figueiredo P, Inada AC, Ribeiro Fernandes M, Granja Arakaki D, Freitas KDC, Avellaneda Guimarães RDC, Aragão do Nascimento V, Aiko Hiane P. An Overview of Novel Dietary Supplements and Food Ingredients in Patients with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease. Molecules 2018; 23:molecules23040877. [PMID: 29641459 PMCID: PMC6017470 DOI: 10.3390/molecules23040877] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is characterized by interconnected factors related to metabolic disturbances, and is directly related to the occurrence of some diseases such as cardiovascular diseases and type 2 diabetes. MetS is described as one or both of insulin resistance and visceral adiposity, considered the initial causes of abnormalities that include hyperglycemia, elevated blood pressure, dyslipidemia, elevated inflammatory markers, and prothrombotic state, as well as polycystic ovarian syndrome in women. Other than in MetS, visceral adiposity and the pro-inflammatory state are also key in the development of non-alcoholic fatty liver disease (NAFLD), which is the most prevalent chronic liver disease in modern society. Both MetS and NAFLD are related to diet and lifestyle, and their treatment may be influenced by dietary pattern changes and the use of certain dietary supplements. This study aimed to review the role of food ingredients and supplements in the management of MetS and NAFLD specifically in human clinical trials. Moreover, bioactive compounds and polyunsaturated fatty acids (PUFAs) may be used as strategies for preventing the onset of and treatment of metabolic disorders, such as MetS and NAFLD, improving the inflammatory state and other comorbidities, such as obesity, dyslipidemias, and cardiovascular diseases (CVD).
Collapse
Affiliation(s)
- Priscila Silva Figueiredo
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
| | - Aline Carla Inada
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
| | - Melina Ribeiro Fernandes
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
| | - Daniela Granja Arakaki
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
| | - Karine de Cássia Freitas
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, 549, Campo Grande 79070900, Brazil.
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, 549, Campo Grande 79070900, Brazil.
| | - Priscila Aiko Hiane
- Post Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
| |
Collapse
|
96
|
Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol Aspects Med 2018; 64:135-146. [PMID: 29544992 DOI: 10.1016/j.mam.2018.03.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
For many years it has been known that high doses of long chain omega-3 fatty acids are beneficial in the treatment of hypertriglyceridaemia. Over the last three decades, there has also been a wealth of in vitro and in vivo data that has accumulated to suggest that long chain omega-3 fatty acid treatment might be beneficial to decrease liver triacylglycerol. Several biological mechanisms have been identified that support this hypothesis; notably, it has been shown that long chain omega-3 fatty acids have a beneficial effect: a) on bioactive metabolites involved in inflammatory pathways, and b) on alteration of nuclear transcription factor activities such as peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP), involved in inflammatory pathways and liver lipid metabolism. Since the pathogenesis of non alcoholic fatty liver disease (NAFLD) begins with the accumulation of liver lipid and progresses with inflammation and then several years later with development of fibrosis; it has been thought in patients with NAFLD omega-3 fatty acid treatment would be beneficial in treating liver lipid and possibly also in ameliorating inflammation. Meta-analyses (of predominantly dietary studies and small trials) have tended to support the assertion that omega-3 fatty acids are beneficial in decreasing liver lipid, but recent randomised controlled trials have produced conflicting data. These trials have suggested that omega-3 fatty acid might be beneficial in decreasing liver triglyceride (docosahexanoic acid also possibly being more effective than eicosapentanoic acid) but not in decreasing other features of steatohepatitis (or liver fibrosis). The purpose of this review is to discuss recent evidence regarding biological mechanisms by which long chain omega-3 fatty acids might act to ameliorate liver disease in NAFLD; to consider the recent evidence from randomised trials in both adults and children with NAFLD; and finally to discuss key 'known unknowns' that need to be considered, before planning future studies that are focussed on testing the effects of omega-3 fatty acid treatment in patients with NAFLD.
Collapse
Affiliation(s)
- Eleonora Scorletti
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Christopher D Byrne
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|