51
|
Behera A, Pradhan SP, Ahmed FK, Abd-Elsalam KA. Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:699-756. [DOI: 10.1016/b978-0-12-824508-8.00030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
52
|
Hajian MH, Ghorbanpour M, Abtahi F, Hadian J. Differential effects of biogenic and chemically synthesized silver-nanoparticles application on physiological traits, antioxidative status and californidine content in California poppy (Eschscholzia californica Cham). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118300. [PMID: 34627966 DOI: 10.1016/j.envpol.2021.118300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 05/15/2023]
Abstract
Silver nanoparticles (AgNPs) of both biologically and chemically origins trigger various physiological and metabolic processes through interaction with plant cells, exerting positive, negative and inconsequential effects. However, their impacts on plant systems must be critically investigated to guarantee their safe application in food chain. In this study, the effects of chemically synthesized (synthetic) AgNPs (sAgNPs) and biologically synthesized (biogenic) AgNPs (bAgNPs) on physiological and biochemical features of Eschscholzia californica Cham were evaluated at different concentrations (0, 10, 25, 50 and 100 mg L-1). Plants exposed to bAgNPs (at 10 and 25 mg L-1) and sAgNPs (at 10 mg L-1) displayed relatively uniform deposition of AgNPs on leaf surface, however, the higher concentration (100 mg L-1) was accompanied by aggregation of AgNPs, resulting in anatomical and physiological disorders. Foliar application of both AgNPs at lower concentrations resulted in significant (P < 0.01) improve in the content of photosynthetic pigments (chlorophylls a, b, a+b, and carotenoids) and total phenolics over the control in a dose-related manner. Leaf relative water content decreased steadily with increasing both sAgNPs and bAgNPs concentrations-with sAgNPs being more inhibitive. Both types of AgNPs at 100 mg L-1 significantly (P < 0.05) increased electrolyte leakage index, level of lipid peroxidation product (malondialdehyde), and leaf soluble sugar content when compared to controls. No significant difference was found on cell membrane stability index among the plants exposed to bAgNPs and sAgNPs at the lowest concentration over the control. Californidine content was significantly (P < 0.01, by 45.1%) increased upon all the bAgNPs treatments (with a peak at 25 mg L-1) relative to control. The obtained extracts from plants treated with bAgNPs at lower concentrations revealed a significant induction of antioxidant capacity (based on DPPH˙ free radical scavenging and ferrous ions-chelating activities) with lower IC50 values compared to the other treatments. Conclusively, bAgNPs at lower concentrations are potent elicitors of pharmaceutically active compounds biosynthesis, which enhance physiological efficiency of E. californica, but at higher concentrations bAgNPs are equally toxic as sAgNPs.
Collapse
Affiliation(s)
- Mohammad Hossein Hajian
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Faezehossadat Abtahi
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Javad Hadian
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
53
|
Ramzan M, Ayub F, Shah AA, Naz G, Shah AN, Malik A, Sardar R, Telesiński A, Kalaji HM, Dessoky ES, Elgawad HA. Synergistic Effect of Zinc Oxide Nanoparticles and Moringa oleifera Leaf Extract Alleviates Cadmium Toxicity in Linum usitatissimum: Antioxidants and Physiochemical Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:900347. [PMID: 35982701 PMCID: PMC9380429 DOI: 10.3389/fpls.2022.900347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 05/06/2023]
Abstract
Among heavy metals, cadmium (Cd) is one of the toxic metals, which significantly reduce the growth of plants even at a low concentration. Cd interacts with various plant mechanisms at the physiological and antioxidant levels, resulting in decreased plant growth. This research was conducted to exploit the potential of synergistic application of zinc oxide nanoparticles (ZnO NPs) and Moringa oleifera leaf extract in mitigation of Cd stress in linseed (Linum usitatissimum L.) plants. The main aim of this study was to exploit the role of M. oleifera leaf extract and ZnO NPs on Cd-exposed linseed plants. Cd concentrations in the root and shoot of linseed plants decreased after administration of MZnO NPs. Growth parameters of plants, antioxidant system, and physiochemical parameters decreased as the external Cd level increased. The administration of MZnO NPs to the Cd-stressed linseed plant resulted in a significant increase in growth and antioxidant enzymes. Furthermore, the antioxidative enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) exhibited a considerable increase in the activity when MZnO NPs were applied to Cd-stressed seedlings. The introduction of MZnO NPs lowered the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the linseed plant grown in Cd-toxic conditions. The NPs decreased electrolyte leakage (EL) in Cd-stressed linseed leaves and roots. It was concluded that synergistic application of ZnO NPs and M. oleifera leaf extract alleviated Cd stress in linseed plants through enhanced activity of antioxidant enzymes. It is proposed that role of MZnO NPs may be evaluated for mitigation of numerous abiotic stresses.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Musarrat Ramzan
| | - Fazila Ayub
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Anis Ali Shah
| | - Gul Naz
- Faculty of Science, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Gul Naz
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Punjab, Pakistan
- Adnan Noor Shah
| | - Aqsa Malik
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Arkadiusz Telesiński
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, West Pomeranian University of Technology, Szczecin, Poland
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Science, Warsaw, Poland
- Institute of Technology and Life Sciences - National Research Institute, Raszyn, Poland
| | | | - Hamada Abd Elgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
54
|
Mobaraki F, Momeni M, Taghavizadeh Yazdi ME, Meshkat Z, Silanian Toosi M, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
55
|
Guzmán-Báez GA, Trejo-Téllez LI, Ramírez-Olvera SM, Salinas-Ruíz J, Bello-Bello JJ, Alcántar-González G, Hidalgo-Contreras JV, Gómez-Merino FC. Silver Nanoparticles Increase Nitrogen, Phosphorus, and Potassium Concentrations in Leaves and Stimulate Root Length and Number of Roots in Tomato Seedlings in a Hormetic Manner. Dose Response 2021; 19:15593258211044576. [PMID: 34840539 PMCID: PMC8619790 DOI: 10.1177/15593258211044576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) display unique biological activities and may serve as novel biostimulators. Nonetheless, their biostimulant effects on germination, early growth, and major nutrient concentrations (N, P, and K) in tomato (Solanum lycopersicum) have been little explored. Methods Tomato seeds of the Vengador and Rio Grande cultivars were germinated on filter paper inside plastic containers in the presence of 0, 5, 10, and 20 mg/L AgNPs. Germination parameters were recorded daily, while early growth traits of seedlings were determined 20 days after applying the treatments (dat). To determine nutrient concentrations in leaves, a hydroponic experiment was established, adding AgNPs to the nutrient solution. Thirty-day-old plants were established in the hydroponic system and kept there for 7 days, and subsequently, leaves were harvested and nutrient concentrations were determined. Results The AgNPs applied did not affect germination parameters, whereas their application stimulated length and number of roots in a hormetic manner. In 37-day-old plants, low AgNP applications increased the concentrations of N, P, and K in leaves. Conclusion As novel biostimulants, AgNPs promoted root development, especially when applied at 5 mg/L. Furthermore, they increased N, P, and K concentration in leaves, which is advantageous for seedling performance during the early developmental stages.
Collapse
Affiliation(s)
| | | | | | - Josafhat Salinas-Ruíz
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | - Jericó J Bello-Bello
- CONACYT-College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | | | | | - Fernando C Gómez-Merino
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| |
Collapse
|
56
|
Yu H, Qi W, Cao X, Hu J, Li Y, Peng J, Hu C, Qu J. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? ENVIRONMENT INTERNATIONAL 2021; 156:106708. [PMID: 34153891 DOI: 10.1016/j.envint.2021.106708] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
The ecological stress of microplastic contamination to ecosystem functioning and biota raises concerns worldwide, but the impacts of microplastics on wetland ecosystems (e.g., plants, microbes, and soil) have not been fully elucidated. In this study, we used a controlled pot experiment to determine the effects of different types (PS, PVC, PP and PE) of microplastics on the growth performance of wetland plants, soil chemical properties, enzyme systems and microbial communities. Microplastics can change the germination strategies of seeds, and there was also a reduction in fresh weight and plant height in Bacopa sp. Chlorophyllb synthesiswas significantly reduced in mixed microplastic treatments compared with controls. Microplastic addition in soil caused higher concentrations of reactive oxygen species in plants, which led to increased lipid peroxidation and activation of the antioxidant defence system. The organic matter, potassium, total nitrogen and phosphorus changed significantly in the presence of the four forms of microplastics, while soil pH was not substantially affected. Microplastics had a negative effect on soil enzyme activity, for example, PS MP particles significantly decreased sucrase activities in the soil after 40 days. The results of this study showed that microplastic addition decreased the richness and diversity of bacterial. When soil was exposed to polystyrene microplastics, the richness and diversity of algae significantly increased on the soil surface. Thus, microplastics can alters the structure of soil microbial communities, resulting in the enrichment of some special soil microbial taxa involved in nitrogen cycling. These results indicate both the direct and indirect effects of plastic residues on the plant-microbe-soil system, which has implications for potential further impacts on wetland ecosystem functioning.
Collapse
Affiliation(s)
- Hongwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingwen Hu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Lala S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnol 2021; 15:28-57. [PMID: 34694730 PMCID: PMC8675826 DOI: 10.1049/nbt2.12005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Nanoparticles possess some unique properties which improve their biochemical reactivity. Plants, due to their stationary nature, are constantly exposed to nanoparticles present in the environment, which act as abiotic stress agents at sub-toxic concentrations and phytotoxic agents at higher concentrations. In general, nanoparticles exert their toxicological effect by the generation of reactive oxygen species to which plants respond by activating both enzymatic and non-enzymatic anti-oxidant defence mechanisms. One important manifestation of the defence response is the increased or de novo biosynthesis of secondary metabolites, many of which have commercial application. The present review extensively summarizes current knowledge about the application of different metallic, non-metallic and carbon-based nanoparticles as elicitors of economically important secondary metabolites in different plants, both in vivo and in vitro. Elicitation of secondary metabolites with nanoparticles in plant cultures, including hairy root cultures, is discussed. Another emergent technology is the ligand-harvesting of secondary metabolites using surface-functionalized nanoparticles, which is also mentioned. A brief explanation of the mechanism of action of nanoparticles on plant secondary metabolism is included. Optimum conditions and parameters to be evaluated and standardized for the successful commercial exploitation of this technology are also mentioned.
Collapse
Affiliation(s)
- Sanchaita Lala
- Department of Botany, Sarsuna College, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
58
|
S. R, H. NSM, A. RS, S. H. Phytotoxicity assessment of synthesized green nanosuspension on germination and growth in Vigna radiata. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1993916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ranjani S.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Vandalur, Chennai
| | - Noorul Samsoon Maharifa H.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Vandalur, Chennai
- Department of Microbiology, Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram District
| | - Raihanathus Sahdhiyya A.
- Department of Microbiology, Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram District
| | - Hemalatha S.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Vandalur, Chennai
| |
Collapse
|
59
|
Faizan M, Bhat JA, Hessini K, Yu F, Ahmad P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112401. [PMID: 34118747 DOI: 10.1016/j.ecoenv.2021.112401] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is a trace element causing severe toxicity symptoms in plants, besides posing hazardous fitness issue due to its buildup in the human body through food chain. Nanoparticles (NPs) are recently employed as a novel strategy to directly ameliorate the Cd stress and acted as nano-fertilizers. The intend of the current study was to explore the effects of zinc oxide nanoparticles (ZnO-NPs; 50 mg/L) on plant growth, photosynthetic activity, elemental status and antioxidant activity in Oryza sativa (rice) under Cd (0.8 mM) stress. To this end, the rice plants are treated by Cd stress at 15 days after sowing (DAS), and the treatment was given directly into the soil. Supply of ZnO-NPs as foliar spray was given for five consecutive days from 30 to 35 DAS, and sampling was done at 45 DAS. However, rice plants supplemented with ZnO-NPs under the Cd toxicity revealed significantly increased shoot length (SL; 34.0%), root fresh weight (RFW; 30.0%), shoot dry weight (SDW; 23.07%), and root dry weight (RDW; 12.24%). Moreover, the ZnO-NPs supplement has also positive effects on photosynthesis related parameters, SPAD value (40%), chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy even under Cd stress. ZnO-NPs also substantially prevented the increases of hydrogen peroxide (H2O2) and malondialdehyde (MDA) triggered by Cd. Physiological and biochemical analysis showed that ZnO-NPs increased enzymatic activities of superoxide dismutase (SOD; 59%), catalase (CAT; 52%), and proline (17%) that metabolize reactive oxygen species (ROS); these increases coincided with the changes observed in the H2O2 and MDA accumulation after ZnO-NPs application. In conclusion, ZnO-NPs application to foliage has great efficiency to improve biomass, photosynthesis, protein, antioxidant enzymes activity, mineral nutrient contents and reducing Cd levels in rice. This can be attributed mainly from reduced oxidative damage resulted due to the ZnO-NPs application.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
60
|
Abstract
Within the framework of this study, the effect of nanoparticles of the essential trace element selenium stabilized by Polyvinylpirrolidone (PVP) C15 (8 ± 2 kDa) and ascorbic acid on the germination of barley seeds has been studied. Selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid, characterized by a spherical shape, monodisperse size distribution, and a diameter of about 70 ± 5 nm, were obtained by the chemical reduction method. The experiment compared the effect of selenium nanoparticles and selenous acid on seed germination. The positive effect of preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid on the length of roots and shoots, the number of roots, and the percentage of seed germination has been revealed. It was determined that the highest percentage of Hordeum vulgare L. culture seed germination was achieved using a preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid at a concentration of of 4.65 µg/mL. Analysis of the results showed that selenium in the form of nanoparticles has an order of magnitude that is less toxic than in the form of selenous acid. The study of morphological and functional parameters during the germination of Hordeum vulgare L. seeds allowed us to conclude that selenium nanoparticles can be successfully used in agronomy and agriculture to provide plants with the essential microelement selenium, which is necessary for the normal growth and development of crops.
Collapse
|
61
|
Salehi H, De Diego N, Chehregani Rad A, Benjamin JJ, Trevisan M, Lucini L. Exogenous application of ZnO nanoparticles and ZnSO 4 distinctly influence the metabolic response in Phaseolus vulgaris L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146331. [PMID: 33725605 DOI: 10.1016/j.scitotenv.2021.146331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials-mediated contamination (including the highly reactive metal oxides ZnO nanoparticles) is becoming one of the most concerning issues worldwide. In this study, the toxic effects of two chemical species of Zn (ZnO nanoparticles and bulk ZnSO4) were investigated in bean plants, following either foliar or soil application, at concentrations from 250 to 2000 mg L-1 using biochemical assays, proteomics and metabolomics. The accumulation of Zn in plant tissues depended on the application type, zinc chemical form and concentration, in turn triggering distinctive morphological, physiological, and redox responses. Bean plants were more sensitive to the foliar than to the soil application, and high concentrations of ZnO NP and bulk ZnSO4 determined the highest plant growth inhibition and stress symptoms. However, low dosages of ZnSO4 induced a slight plant growth promotion and better physiological and antioxidative response. Low concentration of Zn leaded to increased activity of stress-related proteins and secondary metabolites with antioxidant capacity, while increasing concentration reached the exhausted phase of the plant stress response, reducing the antioxidant defense system. Such high concentrations increased lipids peroxidation, protein degradation and membranes integrity. Oxidative damage occurred at high concentrations of both chemical species of Zn. Foliar spraying impaired photosynthetic efficiency, while soil applications (especially ZnSO4) elicited antioxidant metabolites and proteins, and impaired chloroplast-related proteins involved in the electron transport chain and ATP production. Taken together, the results highlighted distinctive and nanoparticles-related toxic effects of ZnO in bean, compared to ionic forms of Zn.
Collapse
Affiliation(s)
- Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu Ali Sina University, Hamedan, Iran; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Jenifer Joseph Benjamin
- Department of Plant Molecular Biology, MS Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Taramani, Chennai 600113, India
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
62
|
Khalofah A, Kilany M, Migdadi H. Assessment of Morpho-Physiological and Biochemical Responses of Mercury-Stressed Trigonella foenum-gracum L. to Silver Nanoparticles and Sphingobacterium ginsenosidiumtans Applications. PLANTS 2021; 10:plants10071349. [PMID: 34371552 PMCID: PMC8309213 DOI: 10.3390/plants10071349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022]
Abstract
Heavy metals are primarily generated and deposited in the environment, causing phytotoxicity. This work evaluated fenugreek plants’ morpho-physiological and biochemical responses under mercury stress conditions toward Ag nanoparticles and Sphingobacterium ginsenosidiumtans applications. The fabrication of Ag nanoparticles by Thymus vulgaris was monitored and described by UV/Vis analysis, FTIR, and SEM. The effect of mercury on vegetative growth was determined by measuring the root and shoots length, the number and area of leaves, the relative water content, and the weight of the green and dried plants; appraisal of photosynthetic pigments, proline, hydrogen peroxide, and total phenols content were also performed. In addition, the manipulation of Ag nanoparticles, S. ginsenosidiumtans, and their combination were tested for mercury stress. Here, Ag nanoparticles were formed at 420 nm with a uniform cuboid form and size of 85 nm. Interestingly, the gradual suppression of vegetal growth and photosynthetic pigments by mercury, Ag nanoparticles, and S. ginsenosidiumtans were detected; however, carotenoids and anthocyanins were significantly increased. In addition, proline, hydrogen peroxide, and total phenols content were significantly increased because mercury and S. ginsenosidiumtans enhance this increase. Ag nanoparticles achieve higher levels by the combination. Thus, S. ginsenosidiumtans and Ag nanoparticles could have the plausible ability to relieve and combat mercury’s dangerous effects in fenugreek.
Collapse
Affiliation(s)
- Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia;
| | - Mona Kilany
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia;
- Department of Microbiology, National Organization for Drug Control and Research (NODCAR), Giza 12561, Egypt
| | - Hussein Migdadi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11461, Saudi Arabia
- National Agricultural Research Center, Baqa 19381, Jordan
- Correspondence: ; Tel.: +966-535871345
| |
Collapse
|
63
|
Soraki RK, Gerami M, Ramezani M. Effect of graphene / metal nanocomposites on the key genes involved in rosmarinic acid biosynthesis pathway and its accumulation in Melissa officinalis. BMC PLANT BIOLOGY 2021; 21:260. [PMID: 34090329 PMCID: PMC8178888 DOI: 10.1186/s12870-021-03052-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recently, numerous investigations have been done to study graphene and silver nanoparticle in the fields of agriculture and medicine. In the present study, the green synthesis of nanoparticles with two concentrations (0, 40, 60 mM) and their effect on the molecular and biochemical biosynthesis pathway of rosmarinic acid in a new method, low cost, and safe for the environment has been investigated. The transcript levels of key genes in the rosmarinic acid biosynthesis pathway (Tyrosine aminotransferase, rosmarinic acid synthase, and phenylalanine-ammonia lyase) were studied using real-time quantitative polymerase chain reaction. Then, the rosmarinic acid content was evaluated using HPLC. RESULTS The results showed that a concentration-dependent manner was observed in treated plants. At the biochemical level, the use of nanocomposites at concentration of 40 mM showed higher soluble carbohydrate (37%), flavonoids (21%), total phenol (35%) as well as total protein (47%) compared to the control plants. HPLC results showed that rosmarinic acid content in the treated plants with a low concentration of nanocomposite (40 mM) was more affected than plants treated with a high concentration of nanocomposite (60 mM) (26%) and also compared to other treatments. At the molecular level, the result showed that Tyrosine aminotransferase and rosmarinic acid synthase gene expression was positively correlated with both silver nanoparticle concentrations and nanocomposite treatments, but phenylalanine-ammonia lyase gene expression was positively correlated only with nanocomposite at 40 mM concentration. CONCLUDE It can conclude that the nanocomposite at low concentration is more likely to induce molecular and biochemical parameters. And also, in the rosmarinic acid biosynthesis pathway, the Tyrosine aminotransferase -derived pathway is more efficient than the phenylalanine-ammonia lyase -derived pathway by causing a nano-elicitor. Therefore, it was concluded that studied elicitor at low concentration, can create plants with higher production capacity.
Collapse
Affiliation(s)
- Roya Karimi Soraki
- Medicinal Plants Department, Sana Institute of Higher Education, Sari, Iran
| | - Mahyar Gerami
- Plant Physiology Department, Faculty of Sana Institute of Higher Education, Sari, Iran.
| | | |
Collapse
|
64
|
Noori A, Bharath LP, White JC. Type-specific impacts of silver on the protein profile of tomato ( Lycopersicon esculentum L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:12-24. [PMID: 34000928 DOI: 10.1080/15226514.2021.1919052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are particularly among the widely used nanomaterials in medicine, industry, and agriculture. The small size and large surface area of AgNPs and other nanomaterials result in their high reactivity in biological systems. To better understand the effects of AgNPs on plants at the molecular level, tomato (Lycopersicon esculentum L.) seedlings were exposed to 30 mg/L silver in the form of nanoparticle (AgNPs), ionic (AgNO3), or bulk (Ag0) in 50% Hoagland media for 7 days. The effects of silver on the expression of plant membrane transporters H+-ATPase, vacuolar type H+-ATPase (V-ATPase), and enzymes isocitrate dehydrogenase (IDH), and catalase in roots was assessed using RT-qPCR and immunofluorescence-confocal microscopy. We observed significantly higher expression of catalase in plants exposed to AgNPs (Fold of expression 1.1) and AgNO3 (Fold of expression 1.2) than the control group. The immunofluorescence imaging of the proteins confirmed the gene expression data; the expression of the enzyme catalase was upregulated 41, 216, and 770% higher than the control group in plants exposed to AgNPs, Ag0, and AgNO3, respectively. Exposure to AgnO3 resulted in the upregulation (fold of expression 1.2) of H+-ATPase and downregulation (fold of expression 0.7) of V-ATPase. A significant reduction in the expression of the redox-sensitive tricarboxylic cycle (TCA) enzyme mitochondrial IDH was observed in plants exposed to AgNPs (38%), AgNO3 (48%), or Ag0 (77%) compared to the control. This study shows that exposure to silver affects the expression of genes and protein involved in membrane transportation and oxidative response. The ionic form of silver had the most significant effect on the expression of genes and proteins compared to other forms of silver. The results from this study improve our understanding about the molecular effects of different forms of silver on important crop species. Novelty statementSilver nanoparticles released into the environment can be oxidized and be transformed into ionic form. Both the particulate and ionic forms of silver can be taken by plants and affect plants physiological and molecular responses. Despite the extensive research in this area, there is a scarce of information about the effects of silver nanoparticles on the expression of membrane transporters especially H+-ATPase involved in regulating cells' electrochemical charge, and the activity of enzymes involved in oxidative stress responses. This is a unique study that evaluates the expression of cellular proton transporters and enzymes of redox balance and energy metabolisms such as membrane transporters, H+-ATPase, and V-ATPases, and enzymes catalase and IDH. The results provide us valuable information about the impact of silver on plants at the molecular level by evaluating the expression of genes and proteins. Key MessageThe exposure of plants to silver as an environmental stressor affects the expression of genes and proteins involved in maintaining cell's electrochemical gradient (H+-ATPase, V-ATPase) and redox potential (IDH, catalase).
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
65
|
Mosa WFA, El-Shehawi AM, Mackled MI, Salem MZM, Ghareeb RY, Hafez EE, Behiry SI, Abdelsalam NR. Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application. Sci Rep 2021; 11:10205. [PMID: 33986453 PMCID: PMC8119490 DOI: 10.1038/s41598-021-89885-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The current study was performed on eight years old peach (Prunus persica L. Batsch) trees cv. Florida prince to study the influence of spraying of commercial nano fertilizer on vegetative growth, pollen grain viability, yield, and fruit quality of the "Florida prince" peach cultivar. Furthermore, extracts from the nanofertilizer treated leaves were studied for their bioactivity as insecticidal or bactericidal activities against some stored grain insects and plant bacterial pathogens. Seventy uniform peach trees were sprayed three time as follow: before flowering; during full bloom, and one month later in addition using the water as a control. Commercial silver particales (Ag NPs) at 10, 12.5, and 15 mL/L and zinc particales (Zn NPs) at 2.5, 5 and 7.5 mL/L as recommended level in a randomized complete block design in ten replicates/trees. Spraying Ag NP at 15 mL/L increased shoot diameter, leaf area, total chlorophyll, flower percentage, fruit yield and fruit physical and chemical characteristics, followed by Ag NPs at 12.5 mL/L and Zn NPs at 7.5 mL/L. Moreover, Zn and Ag NPs caused a highly significant effect on pollen viability. Different type of pollen aberrations were detected by Zn NPs treatment. The commercial Ag NPs showed a high increase in pollen viability without any aberrations. The Ag NPs significantly increased the pollen size, and the spores also increased and separated in different localities, searching about the egg for pollination and fertilization. Peach leaves extract was examined for their insecticidal activity against rice weevil (Sitophilus oryzea L.) and the lesser grain borer (Rhyzopertha dominica, Fabricius) by fumigation method. The antibacterial activity of all treatments was also performed against molecularly identified bacteria. Ag NPs treated leaves extract at concentration 3000 µg/mL were moderate sufficient to inhibit all the bacterial isolates with inhibition zone (IZ) ranged 6-8.67 mm with high efficiency of acetone extracts from leaves treated with Ag NPs compared with Zn NPs. Also, S. oryzae was more susceptible to acetone extracts from leaves treated with both nanomaterials than R. dominica.
Collapse
Affiliation(s)
- Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Marwa I Mackled
- Department of Stored Product Pests, Plant Protection Institute, Agriculture Research Center (ARC), Sabahia, Alexandria, Egypt
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|
66
|
Faizan M, Bhat JA, Noureldeen A, Ahmad P, Yu F. Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112293. [PMID: 33957422 DOI: 10.1016/j.ecoenv.2021.112293] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) have recently emerged as potential agents for plants to ameliorate abiotic stresses by acting as nano-fertilizers. In this regard, the influence of the zinc oxide nanoparticles (ZnO-NPs) on plant responses to copper (Cu) stress has been poorly understood. Hence, the present study was executed to explore the role of ZnO-NPs (foliar) and 24-epibrassinolide (EBL; root dipping) individually or in combined form in the resilience of tomato (Solanum lycopersicum) plant to Cu stress. Tomato seeds were sown to make the nursery; and at 20 days after sowing (DAS) the plantlets were submerged in 10-8 M of EBL solution for 2 h, and subsequently transplanted in the soil-filled earthen pots. Cu concentration (100 mg kg-1) was applied to the soil at 30 DAS, whereas at 35 DAS plants were sprinkled with double distilled water (DDW; control), 50 mg/L of Zinc (Zn) and 50 mg/L of ZnO-NPs; and plant performance were evaluated at 45 DAS. It was evident that Cu-stress reduced photosynthesis (17.3%), stomatal conductance (18.1%), plant height (19.7%), and nitrate reductase (NR) activity (19.2%), but increased malondialdehyde (MDA; 29.4%), superoxide radical (O2-; 22.3%) and hydrogen peroxide (H2O2; 26.2%) content in S. lycopersicum. Moreover, ZnO-NPs and/or EBL implemented via different modes improved photosynthetic activity, stomatal aperture, growth, cell viability and activity of antioxidant enzymes and proline that augmented resilience of tomato plants to Cu stress. These observations depicted that application of ZnO-NPs and EBL could be a useful approach to assist Cu confiscation and stress tolerance against Cu in tomato plants grown in Cu contaminated sites.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| | - Fangyuan Yu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
67
|
Liang Z, Pan X, Li W, Kou E, Kang Y, Lei B, Song S. Dose-Dependent Effect of ZnO Quantum Dots for Lettuce Growth. ACS OMEGA 2021; 6:10141-10149. [PMID: 34056168 PMCID: PMC8153660 DOI: 10.1021/acsomega.1c00205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
As the cadmium-free semiconductor quantum dots, ZnO quantum dots (ZnO QDs) have wide potential applications in agriculture. However, the effects of ZnO quantum dots on crop growth and nutritional quality have not been fully studied. In this work, the lettuce was sprayed with different concentrations of ZnO QDs from 50 to 500 mg·L-1 to evaluate their influence on lettuce antioxidant, biomass, and nutritional quality. The results showed that ZnO QDs existed in the lettuce in the form of Zn2+. Lettuce treated with 500 mg·L-1 ZnO QDs would produce a large amount of reactive oxygen species (ROS), which adversely affected the absorption of nutrients, soluble protein content, and chlorophyll content, thus reducing plant biomass. When the concentrations range from 50 to 200 mg·L-1, the antioxidant enzyme systems of lettuce were triggered to counteract the damage caused by excessive ROS. Moreover, ZnO QDs at this level promoted Ca, Mg, Fe, Mn, Zn, and B absorption and accumulation; increased soluble sugar content; and improved the lettuce biomass and nutritional quality.
Collapse
Affiliation(s)
- Zhihao Liang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Xiaoqin Pan
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Erfeng Kou
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Yunyan Kang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
- Maoming
Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P. R. China
| | - Shiwei Song
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| |
Collapse
|
68
|
Ghosh R, Sarkhel S, Saha K, Parua P, Chatterjee U, Mana K. Synthesis, characterization & evaluation of venom neutralization potential of silver nanoparticles mediated Alstonia scholaris Linn bark extract. Toxicol Rep 2021; 8:888-895. [PMID: 33996502 PMCID: PMC8091482 DOI: 10.1016/j.toxrep.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The venom neutralization potential of silver nanoparticle(AgNP-AS) mediated bark extract of Alstonia scholaris Linn R.Br was investigated in the study. METHODS & MATERIALS AgNP-AS was synthesized with respect to optimal temperature, pH of extract. UV-vis, FT-IR, XRD, TEM, SEM studies were used to characterize silver nanoparticles of Alstonia scholaris Linn(AgNP-AS). The potential of AgNP-AS in neutralization of venom lethality, rise in myotoxicity markers(LDH) and proinflammatory cytokines(IL6, TNFα) were evaluated in animal models. RESULTS AgNP-AS was synthesized optimally with AgNO3 (2 mM); extract concentration, 0.2 gm/l (1% w/v); extract (pH 9) and optimal temperature (40 °C). The colour change and synthesis of AgNP-AS was validated by UV-vis analysis at 432 nm. Transmission electron microscopy of AgNP-AS showed that the particle size for AgNP-AS was 14 nm-20 nm. FT-IR revealed peaks at 3445 cm-1, 1646 cm-1, 1346 cm-1 and 1108 cm-1. From the dynamic light scattering studies the hydrodynamic diameter (115.87 nm) and zeta potential(-29.8 mV) were estimated. The EDAX exhibited a peak for silver validating that the synthesized silver was pure. The biosynthesized (AgNP-AS) could significantly neutralize Viper russelli venom(VRV) induced rise in serum lactate dehydrogenase(LDH) and proinflammatory cytokines(IL6, TNFα) in animal models. CONCLUSION The culmination of nanotechnology with herbal medicine might endow with a really constructive tool in coming up with future drugs with fewer toxicity.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Human Physiology, Vidyasagar University, Paschim Midnapore, 721102, West Bengal, India
| | - Sumana Sarkhel
- Department of Human Physiology, Vidyasagar University, Paschim Midnapore, 721102, West Bengal, India
| | - Kanchan Saha
- Department of Human Physiology, Vidyasagar University, Paschim Midnapore, 721102, West Bengal, India
| | - Poulami Parua
- Department of Human Physiology, Vidyasagar University, Paschim Midnapore, 721102, West Bengal, India
| | - Upasana Chatterjee
- Department of Microbiology, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Koushik Mana
- Department of Human Physiology with Community Health, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| |
Collapse
|
69
|
Singh N, Bhuker A, Jeevanadam J. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1067-1089. [PMID: 33660031 DOI: 10.1007/s00210-021-02057-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The increasing population of the world requires novel techniques to feed everyone, which can replace or work along with traditional methods to increase production of agricultural crops. In recent times, nanotechnology is considered as a promising and emerging approach to be incorporated in agriculture to improve productivity of different crops by the administration of nanoparticles through seed treatment, foliar spray on plants, nano-fertilizers for balanced crop nutrition, nano-herbicides for effective weed control, nanoinsecticides for plant protection, early detection of plant diseases and nutrient deficiencies using diagnostics kits, and nano-pheromones for effective monitoring of pests. Further, distinct nanoparticles with unique physicochemical and biological properties are used in agriculture to increase the percentage of seed germination, which is the initial step to increase the crop yield. In the context of agricultural crops, nanoparticles have both positive effects on seed quality parameters, such as germination percentage, seedling length, seedling dry weight and vigor indices, as well as negative impacts of causing toxicity toward the environment. Thus, the aim of this review article is to provide a comprehensive overview on the effects of super-dispersive metal powders, such as zinc, silver, and titanium nanoparticles on the seed quality parameters of different crops. In addition, the drawback of conventional seed growth enhancers, impact of metal nanoparticles toward seeds, and mechanism of nanoparticles to increase seed germination were also discussed.
Collapse
Affiliation(s)
- Nirmal Singh
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Axay Bhuker
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.
| | - Jaison Jeevanadam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
70
|
Amna, Mahmood T, Khan UN, Amin B, Javed MT, Mehmood S, Farooq MA, Sultan T, Munis MFH, Chaudhary HJ. Characterization of bio-fabricated silver nanoparticles for distinct anti-fungal activity against sugarcane phytopathogens. Microsc Res Tech 2021; 84:1522-1530. [PMID: 33608993 DOI: 10.1002/jemt.23708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022]
Abstract
Advanced research, development, and application of silver nanoparticles is proceeding in recent times due to their incredible utilization in various fields. Present study was focused on the production, characterization, and antifungal activities of silver nanoparticles (AgNPs). An environment friendly extracellular biosynthetic approach was adopted to produce the AgNPs by using bacteria, fungi, and sugarcane husk. Agents used for reduction of silver to nanoparticles were taken from culture filtrate of plant growth promoting bacteria, Fusarium oxysporum and supernatant extract of sugarcane husk. Nanoparticles were also characterized by scanning electron microscopy (SEM). Synthesis of colloidal AgNPs was observed by UV-Visible diffused reflectance spectroscopy (UV-Vis DRS). Primary peak of surface plasmon resonance band was noticed around 339.782, 336.735, and 338.258 nm for bacterial, fungal, and sugarcane husk produced AgNPs. Structure of all biologically produced nanoparticles were crystalline cubic with nano size of 45.41, 49.06, and 42.75 nm for bacterial, fungal, and sugarcane husk-based nanoparticles, respectively as calculated by Debye-Scherrer equation using XRD. Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of various compounds that aid in the reduction, capping, and stability of AgNPs. The antifungal activity of AgNPs was also investigated for sugarcane fungal pathogens Colletotricum falcatum and Fusarium moniliforme. All nanoparticles exhibit prominent antifungal activities. Maximum zone of fungal inhibition was noticed about 18, 19, and 21 mm for C. falcatum while 21, 20, and 24 mm for F. moniliforme in case of bacterial, fungal, and plant-based nanoparticles (15 ppm), respectively. Best fungal inhibition was observed under application of sugarcane husk based AgNPs. Moreover, biologically produced AgNPs responded better towards the suppression of F. moniliforme in comparison to C. falcatum. Mentioned sources in present study can be ecofriendly nano-factories for biosynthesis of AgNPs and mankind should benefit from their commercial application.
Collapse
Affiliation(s)
- Amna
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nano Science and Catalysis Division, National Centre for Physics, Islamabad, Pakistan
| | - Tariq Mahmood
- Nano Science and Catalysis Division, National Centre for Physics, Islamabad, Pakistan
| | | | - Babar Amin
- Nano Science and Catalysis Division, National Centre for Physics, Islamabad, Pakistan.,Department of Chemistry, Hazara University, Mansehra, Pakistan
| | | | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asad Farooq
- Crop Disease Research Institute, Department of Plant and Environmental Protection, NARC, Islamabad, Pakistan
| | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | | | |
Collapse
|
71
|
Sreelekshmi R, Siril EA. Effective reversal of hyperhydricity leading to efficient micropropagation of Dianthus chinensis L. 3 Biotech 2021; 11:95. [PMID: 33520581 PMCID: PMC7840827 DOI: 10.1007/s13205-021-02645-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
The effective reversion of hyperhydricity (HH) in Dianthus chinensis L. facilitated efficient in vitro production of hyperhydricity-free plantlets. Under routine sub-culture practice, the problem of HH arises after third sub-culture in agar (0.85%) gelled Murashige and Skoog (MS) medium containing 2.5 µM 6-benzyladenine (BA). To confirm the role of ethylene on hyperhydricity induction, an ethylene releasing compound ethephon (5 µM) was used in combination with 2.5 µM BA and demonstrated 100% HH with reduced stomatal aperture. Supplementation of 10 µM silver nitrate (AgNO3) to 2.5 µM BA containing medium resulted HH reversion with reduced shoot number (19.0); however, addition of 5 µM cobalt chloride (CoCl2) produced highest microshoots (202.0). The combination effect of AgNO3 (10 µM), CoCl2 (5 µM), and BA (2.5 µM) showed complete HH reversion and upheld normal microshoots (55.0) with reduced relative water content (78.3%). The Ag and Co salts regulate ethylene biosynthesis and thereby 50% reductions in H2O2 content characterized by formation of green healthy shoots with proper stomatal morphology. The gene expression profile of 1-Amminocyclopropane-1-carboxylase synthase (ACS1) and 1-Amminocyclopropane-1-carboxylic acid oxidase (ACO1) showed reduced expression after the retroversion of microshoots in anti-ethylene reversion medium compared to hyperhydric shoot. In vitro raised shoots were rooted (93.3%) ex vitro by 10 mM IBA treatment and 92.2% plants were survived. The genetic stability of micropropagated plants were analyzed and proved that addition of low levels of heavy metal salt in the medium does not cause any variation in banding pattern. The protocol forwards a novel method to revert HH of in vitro cultures by adopting intermittent exposure of anti-ethylene compounds added in the medium and the procedure can be applied to many other plants facing similar HH problems. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02645-7.
Collapse
Affiliation(s)
- R. Sreelekshmi
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram 695581 India
| | - E. A. Siril
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram 695581 India
| |
Collapse
|
72
|
Biosynthesis of Zinc Oxide Nanoparticles Using Hertia intermedia and Evaluation of its Cytotoxic and Antimicrobial Activities. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-020-00816-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
73
|
Youssef K, Roberto SR. Chitosan/silica nanocomposite-based formulation alleviated gray mold through stimulation of the antioxidant system in table grapes. Int J Biol Macromol 2020; 168:242-250. [PMID: 33309667 DOI: 10.1016/j.ijbiomac.2020.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
The main purpose of this study was to explore the ability of a novel silica/polysaccharide polymer-based formulation, namely, chitosan/silica nanocomposites (CSNs), to directly affect Botrytis cinerea in vitro and in inoculated berries, and indirectly to induce natural host resistance via enzymatic and nonenzymatic antioxidants against gray mold of table grapes. The results indicated a positive correlation in in vitro tests in terms of radial growth, spore germination and germ tube elongation, where those parameters were completely inhibited by CSN at 1%. SEM and TEM investigations showed that morphological and internal structural damage was observed in B. cinerea-hyphae/spores treated with CSN. Additionally, most of the treated spores were affected, and cellular vacuolization and cytoplasmic disorganization were observed. The results revealed that CSN reduced gray mold incidence and severity on inoculated berries directly and indirectly. In direct activity, CSN (1%) reduced mold incidence and severity by 100% compared to the control. In indirect activity, mold incidence and severity was reduced by 51% and 64%, respectively. CSN significantly increased superoxide dismutase, ascorbate peroxidase, peroxidase, total phenol and flavonoid at 48 h post-treatment by 1.2-, 1.6-, 1.3-, 1.3- and 1.6-fold, respectively, in grape-treated tissues. It could be concluded that CSN, as a promising alternative control method against gray mold of table grapes, can directly affect the pathogen and indirectly enhance the natural host resistance of the antioxidant system.
Collapse
Affiliation(s)
- Khamis Youssef
- Agricultural Research Center, Plant Pathology Research Institute, 9 Gamaa St., Giza 12619, Egypt.
| | - Sergio Ruffo Roberto
- Department of Agronomy, Agricultural Research Center, Londrina State University, Londrina, PR 86057-970, Brazil
| |
Collapse
|
74
|
Peng Y, Zhang Z, Wang M, Shi X, Zhou Y, Zhou Y, Kong Y. Inactivation of harmful Anabaena flos-aquae by ultrasound irradiation: Cell disruption mechanism and enhanced coagulation. ULTRASONICS SONOCHEMISTRY 2020; 69:105254. [PMID: 32707459 DOI: 10.1016/j.ultsonch.2020.105254] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms pose a potential threat to the safety of drinking water sources. Ultrasound is an effective method for algae removal. However, this method can lead to the release of algal organic matter and the effects and toxic mechanisms of ultrasound on Anabaena are still poorly understood. The destruction mechanism of Anabaena flos-aquae cells under different ultrasonic conditions, the safety of intracellular organic matter (IOM) release to water and the enhanced coagulation efficiency of ultrasound were studied. Results showed that high-frequency ultrasound was effective in breaking down algae cells. After 10 min ultrasonication at 20 kHz, 5 min at 740 kHz and 1 min at 1120 kHz, the algae cells were inactivated and algae growth was halted. Ultrasound radiation can lead to the release of IOM, primarily chlorophyll a and phycocyanin, followed by some tryptophan and humic substances, polysaccharides, and proteins. The sonicated ribosomes were considerably reduced, and the antioxidant system of cells was also damaged to some extent. The coagulation effect of algae cells was substantially improved after ultrasonication. Thus, the safety of algae cell removal could be improved by controlling the changes in physiological structure and IOM release of algae cells by adjusting the ultrasound parameters.
Collapse
Affiliation(s)
- Yazhou Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Min Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xueping Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuan Kong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
75
|
Effect of AuNPs and AgNPs on the Antioxidant System and Antioxidant Activity of Lavender ( Lavandula angustifolia Mill.) from In Vitro Cultures. Molecules 2020; 25:molecules25235511. [PMID: 33255548 PMCID: PMC7728155 DOI: 10.3390/molecules25235511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to determine the effect of gold and silver nanoparticles on the activity of antioxidant enzymes (ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (POX), and catalase (CAT)), the free radical scavenging capacity, and the total polyphenol capacity of lavender (Lavandula angustifolia Mill.) cultivar “Munstead” propagated in vitro. In the experiment, fragments of lavender plants were cultivated in vitro on medium with the addition of 1, 2, 5, 10, 20, and 50 mg∙dm−3 of AgNPs or AuNPs (particle sizes 24.2 ± 2.4 and 27.5 ± 4.8 nm, respectively). It was found that the nanoparticles increase the activity of the antioxidant enzymes APX and SOD; however, the reaction depends on the NP concentration. The highest APX activity is found in plants propagated on media with 2 and 5 mg∙dm−3 of AgNPs. AuNPs significantly increase the APX activity when added to media with a concentration of 10 mg∙dm−3. The highest SOD activity is recorded at 2 and 5 mg∙dm−3 AgNP and AuNP concentrations. The addition of higher concentrations of nanoparticles to culture media results in a decrease in the APX and SOD activity. The addition of AuNPs to culture media at concentrations from 2 to 50 mg∙dm−3 increases the POX activity in comparison to its activity when AgNPs are added to the culture media. No significant influence of NPs on the increase in CAT activity was demonstrated. AgNPs and AuNPs increased the free radical scavenging capacity (ABTS•+). The addition of NPs at concentrations of 2 and 5 mg∙dm−3 increased the production of polyphenols; however, in lower concentrations it decreased their content in lavender tissues.
Collapse
|
76
|
Saad-Allah KM, Ragab GA. Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2209-2223. [PMID: 33268924 PMCID: PMC7688864 DOI: 10.1007/s12298-020-00899-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 06/01/2023]
Abstract
Salinity is a critical issue impairing the growth and productivity of most crop species through the mediated ionic and osmotic imbalances. As a way forward, the current study was tailored to elucidate the capacity of sulfur nanoparticles (SNPs) to amend salinity consequences on growth and physio-biochemical attributes of wheat. In a controlled experiment, wheat seeds were primed for 12 h with either 100 μM SNPs or deionized water then sown in plastic pots containing 5 kg clay-sand mixture (2:1 w/w). A week later, pots received NaCl (100 or 200 mM) as a sole treatment or in combination with SNPs and after three weeks the data of morph-bio-physiological traits were recorded. Salinity decreased growth rate, pigmentation, protein, amino acids, cysteine, ascorbate, flavonoids and phenolics content in wheat leaves. Plants pre-treated with 100 μM SNPs showed improved growth rate, pigmentation, nitrogen metabolism as well as non-enzymatic antioxidant contents as compared with salinized treatments. Neither salt nor SNP treatments affected photosynthetic performance rate (Fv/fm), however both treatments induced glutathione content. SNP treatment retrieved the undue excessive activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) besides the increased level of proline caused by salt stress. Likewise, 100 μM SNPs rebalanced the declined nitrogen, phosphorus and potassium contents and decreased sodium uptake caused by salinity. On the whole, priming with 100 μM SNPs improved photosynthetic pigments, nitrogen metabolism, antioxidant status and ionic relations contributing to the enhancement of growth attributes in wheat under salinity.
Collapse
Affiliation(s)
| | - Gehad A. Ragab
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
77
|
Aggarwal A, Mathur A. Nexus between light and culture media on morphogenesis in Bacopa monnieri and saponin yield thereof. Heliyon 2020; 6:e05245. [PMID: 33102860 PMCID: PMC7569223 DOI: 10.1016/j.heliyon.2020.e05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022] Open
Abstract
Bacopa monnieri, a well-documented nootropic plant of high commercial global demand had been explored for its effect in alleviating other diseases and symptoms. This is primarily attributed to different phytocompounds present in the plant. One of the major constituents among them are saponins. However, variation in agro-climatic conditions and choice of germplasm often affect the growth rate and yield of phytocompounds that significantly impact the efficacy of the plant and its extract. Tissue culture has been attempted to improve the yield of phytocompounds but is often restricted by higher cost and scalability. Current study explores the role of commercial hydroponic media ‘Leafy 200’ vis-à-vis Murashige and Skoog (MS) media, under different color and intensity of lights, on plant morphogenesis, biomass and saponin yield. Blue light induced more shoot differentiation than normal white light. Statistical studies performed using fractional factorial design showed no significant variations in the yield of saponins among the extracts. The study suggests that hydroponic culture to be a sustainable solution and possible substitute to tissue culture that may be exploited for scalable cultivation of the plant.
Collapse
Affiliation(s)
- Akanksha Aggarwal
- Department of Biotechnology, Jaypee Institute of Information Technology Noida, A-10, Sector-62, Noida, 201309, Uttar Pradesh, India
| | - Ashwani Mathur
- Department of Biotechnology, Jaypee Institute of Information Technology Noida, A-10, Sector-62, Noida, 201309, Uttar Pradesh, India
| |
Collapse
|
78
|
Zhang R, Bai X, Shao J, Chen A, Wu H, Luo S. Effects of zero-valent iron nanoparticles and quinclorac coexposure on the growth and antioxidant system of rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111054. [PMID: 32888616 DOI: 10.1016/j.ecoenv.2020.111054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Quinclorac (3,7-dichloroquinoline-8-carboxylic acid, QNC) is a highly selective auxin herbicide that is typically applied to paddy rice fields. Its residue is a serious problem in crop rotations. In this study, Oryza sativa L. seedlings was used as a model plant to explore its biochemical response to abiotic stress caused by QNC and nZVI coexposure, as well as the interactions between QNC and nZVI treatments. Exposure to 5 and 10 mg/L QNC reduced the fresh biomass by 26.6% and 33.9%, respectively, compared to the control. The presence of 50 and 250 mg/L nZVI alleviated the QNC toxicity, but the nZVI toxicity was aggravated by the coexist of QNC. Root length was enhanced upon exposure to low or medium doses of both QNC and nZVI, whereas root length was inhibited under high-dose coexposure. Both nZVI and QNC, either alone or in combination, significantly inhibited the biosynthesis of chlorophyll, and the inhibition rate increased with elevated nZVI and QNC concentration. It was indicated that nZVI or QNC can affect the plant photosynthesis, and there was a significant interaction between the two treatments. Effects of QNC on the antioxidant response of Oryza sativa L. differed in the shoots and roots; generally, the introduction of 50 and 250 mg/L nZVI alleviated the oxidative stress (POD in shoots, SOD and MDA in roots) induced by QNC. However, 750 mg/kg nZVI seriously damaged Oryza sativa L. seedlings, which likely resulted from active iron deficiency. QNC could be removed from the culture solution by nZVI; as a result, nZVI suppressed QNC uptake by 20%-30%.
Collapse
Affiliation(s)
- Ruyang Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Xiaohan Bai
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Haiyong Wu
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China.
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
79
|
Influence of nanosilicon dioxide along with bioinoculants on Zea mays and its rhizospheric soil. 3 Biotech 2020; 10:345. [PMID: 32728512 DOI: 10.1007/s13205-020-02329-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022] Open
Abstract
Application of nanocompounds along with plant growth promoting rhizobacteria is gaining attention to improve agriculture productivity. In the present study, attempts have been made to observe the impact of nanosilicon dioxide (10 mg L-1) and two plant growth promotory bacteria (PC1-MK106029) and (PC4-MK106024) on the growth of Zea mays and its rhizosphere in a pot experiment. Combined treatment of bacterial consortium and nanosilicon dioxide enhanced average plant height and number of leaves over control in maize after 30 days of sowing. Similarly, percent enhancement of total chlorophyll, carotenoid, sugar, soluble protein, phenol and flavonoid content was 106, 307, 116, 57, 159 and 132 respectively over control in maize leaves in the same treatment. Treated plants showed significant increase of 29.4 and 73.9% in catalase and peroxidase activities respectively over control. Physicochemical and biochemical parameters of soil health were also improved in the soil treated with PGPR and nanosilicon dioxide. An increase of 1.5-2 fold in the activities of fluorescein diacetate, dehydrogenase and alkaline phosphatase was observed in the treated soil as compared to control. Our results revealed that inoculation of beneficial microorganisms in combination with nanosilicon dioxide is an effective method for enhancing physicochemical and biochemical parameters of the soil which are responsible for increased plant growth and soil fertility by increasing enzyme activities of microbes. This approach presents an alternative to pesticides, fertilizers and GM crops to enhance crop productivity.
Collapse
|
80
|
Mustafa G, Hasan M, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings. J Proteomics 2020; 224:103833. [PMID: 32450145 DOI: 10.1016/j.jprot.2020.103833] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) are synthesized by different methods and response mechanism of plants varied towards NPs based on their origin. To study the effects of bio synthesized (BS) and chemically synthesized (CS) silver NPs on soybean, a gel-free/ label-free proteomic technique was used. Length of root and hypocotyl was enhanced by BS compared to CS silver NPs. 10 ppm BS silver NPs enhanced the length of root and hypocotyl compared to 1 and 50 ppm. A total of 190 and 173 differentially changed proteins were identified in BS and CS silver NPs treated soybean, respectively. Twenty proteins commonly changed between BS and CS silver NPs treated soybean. Differentially-changed proteins were associated with protein-degradation and stress according to functional categorization. From proteomics, abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both BS and CS silver NPs. ATP content decreased under CS silver NPs compared to BS silver NPs. ADH activity increased in CS silver NPs treated soybean. These results suggest that BS silver NPs enhanced the growth of soybean by regulating proteins related to protein-degradation and ATP contents, which are negatively affected by CS silver NPs. BIOLOGICAL SIGNIFICANCE: This study highlighted the response mechanism of soybean towards bio synthesized (BS) and chemically synthesized (CS) silver nanoparticles (NPs) using a gel-free/ label-free proteomics technique. Length of root and hypocotyl was enhanced by BS silver NPs compared to CS silver NPs. 10 ppm BS silver NPs enhanced the length of root and hypocotyl compared to other concentrations. Differentially changed proteins were associated with protein degradation and stress. From the proteomics, the abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both BS and CS silver NPs. ATP content decreased under CS silver NPs compared to BS silver NPs. ADH activity increased in CS silver NPs compared to BS silver NPs treated soybean. These results suggest that the BS silver NPs enhanced the growth of soybean by regulating the proteins related to protein degradation and ATP contents, which are negatively affected by the CS silver NPs.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| | - Murtaza Hasan
- Department of Biochemistry and Biotechnology, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
81
|
Effects of PEG-Coated Silver and Gold Nanoparticles on Spirulina platensis Biomass during Its Growth in a Closed System. COATINGS 2020. [DOI: 10.3390/coatings10080717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silver and gold nanoparticles are promising tools for medical and industrial applications; therefore, their ecotoxicity should be carefully examined. There are many publications that discuss their effects at high concentrations on various organisms, while the effects of low doses have not been sufficiently investigated. In this paper, the effects of low concentrations of silver (12 nm) and gold (4.7 nm) nanoparticles coated with polyethylene glycol on Spirulina platensis biomass growth, biochemical composition, and antioxidant activity were investigated. The spirulina cultivation medium was supplemented with nanoparticles in the concentration range of 0.025–0.5 µM. The given concentrations stimulated spirulina biomass, but the content of proteins, carbohydrates, and auxiliary pigments was insignificantly affected by the presence of nanoparticles in the cultivation medium. Gold nanoparticles at a concentration of 0.5 µM produced a pronounced effect on the lipid content. Transmission electron microscope images demonstrated that the nanoparticles penetrate inside the cells and cause ultrastructural changes. The nanoparticles were characterized using several well-known techniques. The results confirmed a negative effect of low concentrations of metal nanoparticles on spirulina. This effect could be indiscernible when studying the biomass viability, but determination of the ultrastructure of the cell and the biochemical composition of the biomass could reveal it.
Collapse
|
82
|
Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of as and Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System. PLANTS 2020; 9:plants9070825. [PMID: 32630094 PMCID: PMC7411960 DOI: 10.3390/plants9070825] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/24/2023]
Abstract
Accumulation of arsenic (As) in soils is increasing consistently day-by-day, which has resulted in increased toxicity of this element in various crop plants. Arsenic interferes with several plant metabolic processes at molecular, biochemical and physiological levels, which result in reduced plant productivity. Hence, the introduction of novel ameliorating agents to combat this situation is the need of the hour. The present study was designed to examine the effect of zinc oxide nanoparticles (ZnO-NPs) in As-stressed soybean plants. Various plant growth factors and enzymes were studied at varying concentrations of As and ZnO-NPs. Our results showed that with the application of ZnO-NPs, As concentration declined in both root and shoot of soybean plants. The lengths of shoot and root, net photosynthetic rate, transpiration, stomatal conductance, photochemical yield and other factors declined with an increase in external As level. However, the application of ZnO-NPs to the As-stressed soybean plants resulted in a considerable increase in these factors. Moreover, the enzymes involved in the ascorbate-glutathione cycle including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) showed a significant increase in their activity with the application of ZnO-NPs to the As-stressed plants. Hence, our study confirms the significance of ZnO-NPs in alleviating the toxicity of As in soybean plants.
Collapse
|
83
|
Jurkow R, Pokluda R, Sękara A, Kalisz A. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC PLANT BIOLOGY 2020; 20:290. [PMID: 32576147 PMCID: PMC7313224 DOI: 10.1186/s12870-020-02490-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/12/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Nanoparticles (NPs) serve various industrial and household purposes, and their increasing use creates an environmental hazard because of their uncontrolled release into ecosystems. An important aspect of the risk assessment of NPs is to understand their interactions with plants. The aim of this study was to examine the effect of Au (10 and 20 ppm), Ag, and Pt (20 and 40 ppm) NPs on oakleaf lettuce, with particular emphasis on plant antioxidative mechanisms. Nanoparticles were applied once on the leaves of 2-week-old lettuce seedlings, after next week laboratory analyses were performed. RESULTS The antioxidant potential of oakleaf lettuce seedlings sprayed with metal NPs at different concentrations was investigated. Chlorophylls, fresh and dry weight were also determined. Foliar exposure of the seedlings to metal NPs did not affect ascorbate peroxidase activity, total peroxidase activity increased after Au-NPs treatment, but decreased after applying Ag-NPs and Pt-NPs. Both concentrations of Au-NPs and Pt-NPs tested caused an increase in glutathione (GSH) content, while no NPs affected L-ascorbic acid content in the plants. Ag-NPs and Pt-NPs applied as 40 ppm solution increased total phenolics content by 17 and 15%, respectively, compared to the control. Carotenoids content increased when Ag-NPs and Au-NPs (20 and 40 ppm) and Pt-NPs (20 ppm) were applied. Plants treated with 40 ppm of Ag-NPs and Pt-NPs showed significantly higher total antioxidant capacity and higher concentration of chlorophyll a (only for Ag-NPs) than control. Pt-NPs applied as 40 ppm increased fresh weight and total dry weight of lettuce shoot. CONCLUSIONS Results showed that the concentrations of NPs applied and various types of metal NPs had varying impact on the antioxidant status of oakleaf lettuce. Alteration of POX activity and in biosynthesis of glutathione, total phenolics, and carotenoids due to metal NPs showed that tested nanoparticles can act as stress stimuli. However, judging by the slight changes in chlorophyll concentrations and in the fresh and dry weight of the plants, and even based on the some increases in these traits after M-NPs treatment, the stress intensity was relatively low, and the plants were able to cope with its negative effects.
Collapse
Affiliation(s)
- Rita Jurkow
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland.
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Brno, Czech Republic
| | - Agnieszka Sękara
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland
| | - Andrzej Kalisz
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
84
|
Modarresi M, Chahardoli A, Karimi N, Chahardoli S. Variations of glaucine, quercetin and kaempferol contents in Nigella arvensis against Al 2O 3, NiO, and TiO 2 nanoparticles. Heliyon 2020; 6:e04265. [PMID: 32613127 PMCID: PMC7317232 DOI: 10.1016/j.heliyon.2020.e04265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/19/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022] Open
Abstract
The present study was designed to determine the glaucine, quercetin and kaempferol contents in the root and shoot parts of Nigella arvensis, treated for 21 days with different concentrations of the nanoparticles (NPs), including titanium dioxide (TiO2), alumina (Al2O3) and nickel oxide (NiO) by high-performance liquid chromatography (HPLC). Results showed a significant increase in the total flavonoid and total alkaloid content in treated plants. Glaucine content in shoot parts was significantly higher than the root parts. The highest amount of glaucine was obtained in shoots and roots exposed to NiONPs at concentrations of 1000 and 2500 mg/L with up to 3.2 and 2.6 fold increase compared to the control group, respectively. The maximum content of quercetin was observed in the shoot and root parts under 50 mg/L NiONPs with 2.2 and 1.8 fold increase compared to the control group, respectively. The kaempferol content was significantly decreased in all treatment, except for 1000 mg/L NiONPs treatment in the root parts, which was 2.9 fold higher than the control group. Apart from the toxic effects of some NPs, our findings suggest that the NPs at specific levels can be considered as new and appropriate elicitors for in vitro production and increasing the biosynthesis of secondary metabolites to use in pharmaceutical applications.
Collapse
Affiliation(s)
- Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Chahardoli
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Sima Chahardoli
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| |
Collapse
|
85
|
Dash SR, Kundu CN. Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol 2020; 14:253-260. [PMID: 32463015 PMCID: PMC8676294 DOI: 10.1049/iet-nbt.2019.0303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 09/29/2023] Open
Abstract
The ever-promising opportunities and the uses of NP in our life are increasing but their present and future potential risks on the animals, plants and microorganisms are not well discussed elsewhere. In this review, the authors have systematically discussed the toxic effect of the uses of NP on animals, plants and microorganisms including human health. They have also discussed about the bioaccumulation of these NP in the food chain. Finally, they have provided some possible suggestions for the uses of NP to reduce the detrimental effect on the environment.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India.
| |
Collapse
|
86
|
Hu J, Wu X, Wu F, Chen W, White JC, Yang Y, Wang B, Xing B, Tao S, Wang X. Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121837. [PMID: 31848091 DOI: 10.1016/j.jhazmat.2019.121837] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/01/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
TiO2 nanoparticles (nTiO2) have been widely used in many disciplines. However, whether they can be used to improve crops growth and nutritional quality is unknown. In this study, coriander (Coriandrum sativum L.) was treated with 0, 50, 100, 200, and 400 mg/L nTiO2 to evaluate their possible benefit to plant growth and nutritional quality under hydroponic conditions. Our observations showed that 50 mg/L nTiO2 only slightly but insignificantly increased the root and shoot fresh biomass by 13.2 % and 4.1 %, respectively, relative to the control. nTiO2 at this level promoted shoot K, Ca, Mg, Fe, Mn, Zn, and B accumulation, while spatial distribution of K, Ca, Fe, Mn, Cu and Zn in coriander leaves was not affected. No nTiO2 internalization or translocation to shoots occurred. 400 mg/L nTiO2 significantly reduced root fresh biomass by 15.8 % and water content by 6.7 %. Moreover, this high dose induced root cell membrane wrinkling, attributable to their aggregation and adsorption on root surfaces. At 100-400 mg/L, antioxidant defense systems (SOD, CAT and APX) in plant were triggered to alleviate oxidative stress. At an appropriate dose (50 mg/L), nTiO2 can improve nutrient quality of edible tissues without exerting toxicity to plant or posing health risk to consumers.
Collapse
Affiliation(s)
- Jing Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinyi Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fan Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Weixiao Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
87
|
Kumari M, Pandey S, Mishra SK, Giri VP, Agarwal L, Dwivedi S, Pandey AK, Nautiyal CS, Mishra A. Omics-Based Mechanistic Insight Into the Role of Bioengineered Nanoparticles for Biotic Stress Amelioration by Modulating Plant Metabolic Pathways. Front Bioeng Biotechnol 2020; 8:242. [PMID: 32363178 PMCID: PMC7180193 DOI: 10.3389/fbioe.2020.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
Bioengineered silver nanoparticles can emerge as a facile approach to combat plant pathogen, reducing the use of pesticides in an eco-friendly manner. The plants' response during tripartite interaction of plant, pathogen, and nanoparticles remains largely unknown. This study demonstrated the use of bioengineered silver nanoparticles in combating black spot disease caused by necrotrophic fungus Alternaria brassicicola in Arabidopsis thaliana via foliar spray. The particles reduced disease severity by 70-80% at 5 μg/ml without showing phytotoxicity. It elicited plant immunity by a significant reduction in reactive oxygen species (ROS), decreases in stress enzymes by 0.6-19.8-fold, and emergence of autophagy. Comparative plant proteomics revealed 599 proteins expressed during the interaction, where 117 differential proteins were identified. Among different categories, proteins involved in bioenergy and metabolism were most abundant (44%), followed by proteins involved in plant defense (20%). Metabolic profiling by gas chromatography-mass spectroscopy yielded 39 metabolite derivatives in non-polar fraction and 25 in the polar fraction of plant extracts. It was observed that proteins involved in protein biogenesis and early plant defense were overexpressed to produce abundant antimicrobial metabolites and minimize ROS production. Bioengineered silver nanoparticles performed dual functions to combat pathogen attack by killing plant pathogen and eliciting immunity by altering plant defense proteome and metabolome.
Collapse
Affiliation(s)
- Madhuree Kumari
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shipra Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shashank Kumar Mishra
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ved Prakash Giri
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Botany, Lucknow University, Lucknow, India
| | - Lalit Agarwal
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Agriculture and Allied Sciences, Doon Business School, Dehradun, India
| | - Sanjay Dwivedi
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Aradhana Mishra
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
88
|
Chahardoli A, Karimi N, Ma X, Qalekhani F. Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci Rep 2020; 10:3847. [PMID: 32123269 PMCID: PMC7052163 DOI: 10.1038/s41598-020-60841-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/18/2020] [Indexed: 01/24/2023] Open
Abstract
The effects of different concentrations (0, 50,100, 1000 and 2500 mg/L) of engineered aluminum and nickel oxide nanoparticles (Al2O3 and NiO NPs) on plant growth, oxidative stress and antioxidant activities in the hydroponically grown tissues of Nigella arvensis L. were investigated. The plant biomass was significantly increased under 50 and 100 mg/L of Al2O3 NPs or 50 mg/L of NiO NPs treatment, but was significantly decreased at higher concentrations of these nanoparticles. Assays of several enzymatic antioxidants such as ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) in roots and shoots indicate a general increase of activities after exposure to 50-2,500 mg/L of Al2O3 NPs and NiO NPs. The results are corroborated by an increased 2,2-diphenyl-1-picryl hydrazyl (DPPH) scavenging activity, total antioxidant capacity, total reducing power, total iridoids content, total saponin content, and total phenolic content in treated plants by Al2O3 NPs compared to the control plants. By contrast, the antioxidant activities, formation of secondary metabolites, and other related physiological parameters such as the total antioxidant capacity, DPPH scavenging activity and total saponin content were inhibited after the concentration of NiO NPs was increased to 100 mg/L. Total phenols, saponins, iridoids and total antioxidant content and DPPH scavenging activity were increased in plants treated with 100-2,500 mg/L Al2O3 NPs. Overall, these two nanoparticles displayed different effects in the shoots and roots of plants at different concentrations, which may be due to their physico-chemical properties.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, TAMU 3136, College Station, TX, 77843-3136, USA
| | - Farshad Qalekhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
89
|
Nawaz S, Bano A. Effects of PGPR ( Pseudomonas sp.) and Ag-nanoparticles on Enzymatic Activity and Physiology of Cucumber. Recent Pat Food Nutr Agric 2020; 11:124-136. [PMID: 31322080 DOI: 10.2174/2212798410666190716162340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND The present investigation aimed to evaluate the role of Plant Growth- Promoting Rhizobacteria (PGPR) and Ag-nanoparticles on two varieties (American variety, Poinsett 76 and Desi variety, Sialkot selection) of cucumber plants. METHODS Cucumber seeds prior to sowing, were inoculated with two strains of PGPR, Pseudomonas putida (KX574857) and Pseudomonas stutzeri (KX574858) at the rate of 106 cells/ml. Agnanoparticles (5ppm) were sprayed on the plant at early vegetative phase 27 d after sowing. RESULTS The proline, sugar, protein, phenolics, flavonoids, chlorophyll and carotenoids contents of leaves of plants and the activities of Phenylalanine Ammonia-Lyase (PAL), Superoxide Dismutase (SOD) and Catalase (CAT) were determined from leaves of plants at early vegetative phase. After 3 months of seeds sowing, Ag-nanoparticles enhanced the length of root but decreased the length of shoot and fresh weight of root and shoot as compared to control whereas, the leaf protein, proline, phenolics, flavonoids, chlorophyll b, total chlorophyll, sugar and Phenylalanine Ammonia-Lyase (PAL) activity of plants were increased significantly over control. Ag-nanoparticles also suppressed the effect of PGPR for root, shoot length but augmented the protein and phenolics contents of leaves of both the varieties. CONCLUSION The combined treatment of Ag-nanoparticles and PGPR enhanced flavonoids content of leaves and the activities of PAL, SOD and CAT in leaves of plants over control. Agnanoparticles effectively increased the Phenylalanine Ammonia-Lyase (PAL), Catalase (CAT) and superoxide dismutase (SOD) activities in leaves of both the varieties. Pseudomonas putida may be used either alone or in combination with Ag-nanoparticles to enhance the antioxidant and defense enzyme activities. Hence, the plant can tolerate the diseases and stresses in a much better way with higher protein and phenolics content.
Collapse
Affiliation(s)
- Sehrish Nawaz
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| |
Collapse
|
90
|
Hadi Soltanabad M, Bagherieh-Najjar MB, Mianabadi M. Carnosic Acid Content Increased by Silver Nanoparticle Treatment in Rosemary (Rosmarinus officinalis L.). Appl Biochem Biotechnol 2019; 191:482-495. [PMID: 31797151 DOI: 10.1007/s12010-019-03193-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
Biosynthesis of carnosic acid (CA), one of the most industrially valuable medicinal compounds present in rosemary (Rosmarinus officinalis L.) leaves, is affected by various plant stressors. In this study, effects of silver nanoparticle (AgNP) treatment on the secondary metabolism and CA production of rosemary plants were investigated. AgNP of 0, 25, 50, 100, and 200 ppm were utilized on hydroponically grown plants using foliar spray. Efficient absorbance and translocation of AgNPs to the plant roots were confirmed by XRF (X-ray fluorescence) analysis. The fluctuations of important antioxidant compounds such as CA content, phenolics, flavonoids, and acid ascorbic were analyzed and their correlations evaluated. Results revealed that application of 200 ppm AgNPs for 12 days increased CA level more than 11%, as compared to the control plants. Furthermore, significant positive correlations were observed between total flavonoids and CA content under AgNP treatment, suggesting that AgNP acted as an elicitor and triggered the enhancement of CA accumulation effectively. These data suggest that concentration-dependent AgNP may be used to boost antioxidant activity and phytochemical contents of other medicinal plants.
Collapse
Affiliation(s)
- Mojtaba Hadi Soltanabad
- Department of Biology, Golestan University, Shahid Beheshti Ave., Gorgan, IR, Iran.,AryaTinaGene Bio-pharmaceutical Company, Gorgan, IR, Iran
| | | | - Manijeh Mianabadi
- Department of Biology, Golestan University, Shahid Beheshti Ave., Gorgan, IR, Iran
| |
Collapse
|
91
|
Anjum S, Anjum I, Hano C, Kousar S. Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: current status and future outlooks. RSC Adv 2019; 9:40404-40423. [PMID: 35542657 PMCID: PMC9076378 DOI: 10.1039/c9ra08457f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/30/2019] [Indexed: 11/21/2022] Open
Abstract
During the last few decades major advances have shed light on nanotechnology. Nanomaterials have been widely used in various fields such as medicine, energy, cosmetics, electronics, biotechnology and pharmaceuticals. Owing to their unique physicochemical characteristics and nanoscale structures, nanoparticles (NPs) have the capacity to enter into plant cells and interact with intracellular organelles and various metabolites. The effects of NPs on plant growth, development, physiology and biochemistry have been reported, but their impact on plant specialized metabolism (aka as secondary metabolism) still remains obscure. In reaction to environmental stress and elicitors, a common response in plants results in the production or activation of different types of specialized metabolites (e.g., alkaloids, terpenoids, phenolics and flavonoids). These plant specialized metabolites (SMs) are important for plant adaptation to an adverse environment, but also a huge number of them are biologically active and used in various commercially-valued products (pharmacy, cosmetic, agriculture, food/feed). Due to their wide array of applications, SMs have attracted much attention to explore and develop new strategies to enhance their production in plants. In this context, NPs emerged as a novel class of effective elicitors to enhance the production of various plant SMs. In recent years, many reports have been published regarding the elicitation of SMs by different types of NPs. However, in order to achieve an enhanced and sustainable production of these SMs, in-depth studies are required to figure out the most suitable NP in terms of type, size and/or effective concentration, along with a more complete understanding about their uptake, translocation, internalization and elicitation mechanisms. Herein, we are presenting a comprehensive and critical account of the plant SMs elicitation capacities of the three main classes of nanomaterials (i.e., metallic NPs (MNPs), metal oxide NPs (MONPs) and carbon related nanomaterials). Their different proposed uptake, translocation and internalization pathways as well as elicitation mechanism along with their possible deleterious effect on plant SMs and/or phytotoxic effects are summarized. We also identified and critically discussed the current research gaps existing in this field and requiring future investigation to further improve the use of these nanomaterials for an efficient production of plant SMs.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women Lahore Pakistan +92-300-6957038
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women Lahore Pakistan +92-300-6957038
| | - Christopher Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans 28000 Chartres France
| | - Sidra Kousar
- Department of Chemistry, University of Agriculture Faisalabad Pakistan
| |
Collapse
|
92
|
Iqbal M, Raja NI, Ali A, Rashid H, Hussain M, Ejaz M, Iqbal R, Khan UA, Shaheen N, Rauf A, Satti SH, Saira H. Silver nanoparticles and silver salt (AgNO 3) elicits morphogenic and biochemical variations in callus cultures of sugarcane. IET Nanobiotechnol 2019; 13:896-904. [PMID: 31811757 PMCID: PMC8676125 DOI: 10.1049/iet-nbt.2018.5122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022] Open
Abstract
The research work was arranged to check the role of AgNPs and silver ions on callus cells of sugarcane (Saccharum spp. cv CP-77,400). AgNPs were synthesized chemically and characterized by UV-Vis spectra, XRD and SEM. AgNPs and silver ions were applied in various concentrations (0, 20, 40, 60 ppm) to sugarcane calli and the induced stress was characterized by studying various morphological and biochemical parameters. AgNPs and silver ions treatments produced high levels of malondialdehyde, proline, proteins, TP and TF contents. Similarly, CAT, SOD and POX activity was also significant in both treatments. The lower concentration of AgNPs and silver ions (20 ppm) provided maximum intracellular GSH level. This work mainly showed effects of AgNPs and silver ions on sugarcane calli in terms of morphological aberrations and cell membrane damage due to severe oxidative stress and production of enhanced levels of enzymatic and non-enzymatic antioxidants as self-defence to tolerate oxidative stress by scavenging reactive oxygen species. These preliminary findings will provide the way to study ecotoxicity mechanism of the metal ions and NPs in medicine industry and in vitro toxicity research. Furthermore, silver ions alone and their chemically synthesised AgNPs can be used for various biomedical applications in future.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Hamid Rashid
- Department of Biosciences, COMSATS Institute of Information Technology Sahiwal, Sahiwal, Pakistan
| | - Mubashir Hussain
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Ejaz
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Rashid Iqbal
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Umair A Khan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha Campus, Pakistan
| | - Najma Shaheen
- Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha Campus, Pakistan
| | - Abdul Rauf
- Department of Biology, AIOU, Islamabad, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Hafiza Saira
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
93
|
Bahador E, Einali A, Azizian-Shermeh O, Sangtarash MH. Metabolic responses of the green microalga Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105356. [PMID: 31733504 DOI: 10.1016/j.aquatox.2019.105356] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the biochemical responses and antioxidant enzymes activity of the Dunaliella salina, a green microalga, to the interaction of silver nanoparticles (AgNPs) and salicylic acid (SA) were investigated. Algal suspensions in the phase of logarithmic growth were subjected to the concentrations of 0, 5, 15, and 25 pM AgNPs with or without 1 mM SA. AgNPs level of 25 pM declined cell division but highly accumulated levels of chlorophyll, β-carotene, proteins, free amino acid, carbohydrates, and hydrogen peroxide, which was associated with enhanced the activity of proteolysis, lipid peroxidation, and antioxidant enzymes. SA-treated cells at 25 pM AgNPs improved cell growth but declined the activities of antioxidant enzymes and proteolytic along with a lower accumulation of metabolites except β-carotene relative to untreated controls. These results suggest that AgNPs treatment induce oxidative stress in D. salina cells, which tolerated by alga through the metabolic modifications and accumulating β-carotene, while SA induces AgNPs tolerance by the mechanisms that direct carbon flux to growth and β-carotene biosynthesis rather than the antioxidant enzymes or osmoprotectant metabolites.
Collapse
Affiliation(s)
- Elham Bahador
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Omid Azizian-Shermeh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
94
|
Dresler S, Hawrylak-Nowak B, Strzemski M, Wójciak-Kosior M, Sowa I, Hanaka A, Gołoś I, Skalska-Kamińska A, Cieślak M, Kováčik J. Metabolic Changes Induced by Silver Ions in Carlina acaulis. PLANTS 2019; 8:plants8110517. [PMID: 31744231 PMCID: PMC6918347 DOI: 10.3390/plants8110517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/30/2023]
Abstract
Silver is one of the most toxic heavy metals for plants, inducing various toxic symptoms and metabolic changes. Here, the impact of Ag(I) on Carlina acaulis physiology and selected metabolites was studied using two Ag concentrations (1 or 10 µM) after 14 days of exposure. The higher concentration of Ag(I) evoked reduction of growth, while 1 µM Ag had a growth-promoting effect on root biomass. The translocation factor (<0.04) showed that Ag was mainly retained in the roots. The 1 µM Ag concentration increased the level of low-molecular-weight organic acids (LMWOAs), while 10 µM Ag depleted these compounds in the roots. The increased concentration of Ag(I) elevated the accumulation of phytochelatins (PCs) in the roots and reduced glutathione (GSH) in the shoots (but not in the roots). At 1 µM, Ag(I) elevated the level of phenolic and triterpene acids, while the 10 µM Ag treatment increased the carlina oxide content in the roots. The obtained results indicate an alteration of metabolic pathways of C. acaulis to cope with different levels of Ag(I) stress. Our data imply that the intracellular binding of Ag(I) and nonenzymatic antioxidants contribute to the protection against low concentrations of Ag ions.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
- Correspondence: (S.D.); (B.H.-N.); Tel.: +48-81-537-5078 (S.D.); +48-81-445-60-96 (B.H.-N.)
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
- Correspondence: (S.D.); (B.H.-N.); Tel.: +48-81-537-5078 (S.D.); +48-81-445-60-96 (B.H.-N.)
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
| | - Iwona Gołoś
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
| | - Agnieszka Skalska-Kamińska
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Małgorzata Cieślak
- Łukasiewicz—Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, Brzezińska 5/15, 92-103 Łódź, Poland;
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic;
| |
Collapse
|
95
|
An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves ( Salvia officinalis L.) on Germinated Plants of Maize ( Zea mays L.). NANOMATERIALS 2019; 9:nano9111550. [PMID: 31683686 PMCID: PMC6915364 DOI: 10.3390/nano9111550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.
Collapse
|
96
|
Stimulatory Effect of Silver Nanoparticles on the Growth and Flowering of Potted Oriental Lilies. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles exhibit unique biological activities and may serve as novel plant growth stimulators. This research consisted of a two-year pot experiment designed to find out if silver nanoparticles (AgNPs) might be used in the cultivation of Oriental lilies. In the first year, we evaluated the effects of various concentrations of AgNPs (0, 25, 50, 100, and 150 ppm) and their application methods (pre-planting bulb soaks, foliar sprays, and substrate drenches) on the growth and flowering of Lilium cv. Mona Lisa. In the second year, we evaluated the effects of soaking the bulbs of cv. Little John in the same concentration of AgNP solution on plant morphological features, leaf content of photosynthetic pigments, basic macronutrients, and complex biomolecules with the use of the Fourier-transform infrared spectroscopy (FTIR). Soaking the bulbs in a nanoparticle solution turned out to be the most effective strategy for growth and flowering promotion. AgNPs stimulated plant growth, as manifested by enhanced accumulation of leaf and bulb biomass and accelerated flowering. Moreover, plants treated with silver nanoparticles showed higher leaf greenness index, formed more flowers, and flowered longer. At 100 ppm AgNPs, the leaves accumulated the highest content of chlorophyll a, chlorophyll b, and carotenoids, and were the richest in potassium, calcium, and sulfur. The FTIR spectra did not show any changes in absorbance intensity and chemical composition in the leaves from AgNP-treated bulbs.
Collapse
|
97
|
Ejaz M, Raja NI, Mashwani ZUR, Ahmad MS, Hussain M, Iqbal M. Effect of silver nanoparticles and silver nitrate on growth of rice under biotic stress. IET Nanobiotechnol 2019; 12:927-932. [PMID: 30247132 DOI: 10.1049/iet-nbt.2018.0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study was organised to check the effect of silver nanoparticles and silver nitrate on rice growth against biotic stress. Silver nanoparticles were synthesised by using plant extract as reducing agent, followed by characterisation through UV Vis spectroscopy, XRD, EDS and SEM. Aspergillus application significantly reduced rice plant fresh mass (0.9%), dry mass (0.21%), root length (2.3%), shoot length (5.2%) and root number (1%) in comparison to control. Similarly, leaf area, leaf fresh mass, dry mass and leaf number were also reduced by 23.1, 0.02, 0.11 and 0.9%, respectively. AgNPs and AgNO3 treatments increased the root length (16.2 & 12.8%), shoot length (21 & 20%), root number (8.1 & 6.8%), plant fresh weight (6.4 & 5%) and plant dry weight (4.6 & 3.5%) in 75mg/l treatment of AgNPs and AgNO3 respectively. Similarly, AgNPs and AgNO3 treatment (75 mg/l concentrations) reflected remarkable increase in leaf area (58.8 & 57.2 %), leaf number (4.3 & 3.7 %), leaf fresh weight (1.7 & 1.4 %) and leaf dry weight (0.9 & 0.8 %). Overall AgNPs showed more significant results as compared to AgNO3. The quantity of aflatoxins ranged from 3.1 to 7.7 μg/kg against tolerable limit (4 µg/kg). Overall AgNPs and AgNO3 treatments showed significant results and it could be considered as a strategy for aflatoxin management in rice plants.
Collapse
Affiliation(s)
- Muhammad Ejaz
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | | | - Muhammad Sheeraz Ahmad
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Mubashir Hussain
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Iqbal
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
98
|
Kannaujia R, Srivastava CM, Prasad V, Singh BN, Pandey V. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:460-471. [PMID: 31425972 DOI: 10.1016/j.plaphy.2019.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 05/02/2023]
Abstract
The present study is focused on the biogenic synthesis of AgNPs (B-AgNPs) using fruit extract of Phyllanthus emblica L. and its effect (0, 5, 10, 25, 50 mg/L concentrations) on early seedling growth of two wheat varieties (HD-2967 and DBW-17). The prepared silver nanoparticles were characterized with several techniques such as UV-Vis spectroscopy, powder X-ray diffraction as well as high-resolution transmission electron microscopy. The capping of AgNPs by phytochemicals was confirmed by Fourier transforms infrared (FT-IR) spectroscopy. B-AgNPs, chemically synthesized AgNPs, chemically synthesized AgNPs+10% fruit extract and AgNO3 salt were compared for phytotoxicity, based on growth parameters, ROS production, cytotoxicity assay and silver accumulation in two wheat varieties (HD-2967 and DBW-17). These effects were more pronounced in the variety HD-2967 over DBW-17 variety at 10 mg/L B-AgNPs exposure. Root cells viability of treated radicles was studied using Evans blue dye assay which suggest that 10 mg/L B-AgNPs was effective in promoting early seedling growth by decreasing ROS toxicity. Lower accumulation of Ag resulting in higher root cell viability than those of chemically synthesized AgNPs treated seedlings. The findings of the present study clearly indicate that phytochemicals capped AgNPs act as a growth promoter at lower concentrations by delivering a potent antioxidant during early seedling growth as compared to chemically synthesized AgNPs treated wheat seedlings.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India; Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Chandra Mohan Srivastava
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, 122413, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Brahma N Singh
- Pharmacognosy & Ethnopharmacology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India.
| |
Collapse
|
99
|
Wu D, Yang Y, Xu P, Xu D, Liu Y, Castillo R, Yan R, Ren J, Zhou G, Liu C, Qin M, Du J, Hou L, Chen I, Kang C, Jin L, Wen J, Chen W, Lu Y. Real-Time Quantification of Cell Internalization Kinetics by Functionalized Bioluminescent Nanoprobes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902469. [PMID: 31402525 DOI: 10.1002/adma.201902469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Cells transport mass dynamically, crossing cell membranes to maintain metabolism and systemic homeostasis, through which biomolecules are also delivered to cells for gene editing, cell reprograming, therapy, and other purposes. Quantifying the translocation kinetics is fundamentally and clinically essential, but remains limited by fluorescence-based technologies, which are semi-quantitative and only provide kinetics information at cellular level or in discrete time. Herein, a real-time method of quantifying cell internalization kinetics is reported using functionalized firefly-luciferase nanocapsules as the probe. This quantitative assay will facilitate the rational design of delivery vectors and enable high-throughput screening of peptides and other functional molecules, constituting an effective tool for broad applications, including drug development and cancer therapy.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yilong Yang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Pengcheng Xu
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Duo Xu
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Roxanne Castillo
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ran Yan
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - George Zhou
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Irvin Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chunsheng Kang
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lihua Jin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
100
|
Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C. Nanoparticle-Plant Interactions: Two-Way Traffic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901794. [PMID: 31318142 PMCID: PMC6800249 DOI: 10.1002/smll.201901794] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Indexed: 05/03/2023]
Abstract
In this Review, an effort is made to discuss the most recent progress and future trend in the two-way traffic of the interactions between plants and nanoparticles (NPs). One way is the use of plants to synthesize NPs in an environmentally benign manner with a focus on the mechanism and optimization of the synthesis. Another way is the effects of synthetic NPs on plant fate with a focus on the transport mechanisms of NPs within plants as well as NP-mediated seed germination and plant development. When NPs are in soil, they can be adsorbed at the root surface, followed by their uptake and inter/intracellular movement in the plant tissues. NPs may also be taken up by foliage under aerial deposition, largely through stomata, trichomes, and cuticles, but the exact mode of NP entry into plants is not well documented. The NP-plant interactions may lead to inhibitory or stimulatory effects on seed germination and plant development, depending on NP compositions, concentrations, and plant species. In numerous cases, radiation-absorbing efficiency, CO2 assimilation capacity, and delay of chloroplast aging have been reported in the plant response to NP treatments, although the mechanisms involved in these processes remain to be studied.
Collapse
Affiliation(s)
- Mujeebur Rahman Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tanveer Fatima Rizvi
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, U.S.A
| | - Faheem Ahamad
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| |
Collapse
|