51
|
van Kempen ZLE, Hogenboom L, Toorop AA, Steenhuis M, Stalman EW, Kummer LYL, van Dam KPJ, Bloem K, ten Brinke A, van Ham SM, Kuijpers TW, Wolbink GJ, Loeff FC, Wieske L, Eftimov F, Rispens T, Strijbis EMM, Killestein J, the T2B! immunity against SARS‐CoV‐2 study group. Ocrelizumab Concentration Is a Good Predictor of SARS-CoV-2 Vaccination Response in Patients with Multiple Sclerosis. Ann Neurol 2023; 93:103-108. [PMID: 36250739 PMCID: PMC9874752 DOI: 10.1002/ana.26534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
Ocrelizumab, an anti-CD20 monoclonal antibody, counteracts induction of humoral immune responses after severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccinations in patients with multiple sclerosis (MS). We aimed to assess if serum ocrelizumab concentration measured at the time of vaccination could predict the humoral response after SARS-CoV-2 vaccination. In 52 patients with MS, we found ocrelizumab concentration at the time of vaccination to be a good predictor for SARS-CoV-2 IgG anti-RBD titers after vaccination (comparable to B-cell count). As the course of ocrelizumab concentration may be predicted using pharmacokinetic models, this may be a superior biomarker to guide optimal timing for vaccinations in B-cell depleted patients with MS. ANN NEUROL 2023;93:103-108.
Collapse
Affiliation(s)
- Zoé L. E. van Kempen
- Department of NeurologyAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
| | - Laura Hogenboom
- Department of NeurologyAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
| | - Alyssa A. Toorop
- Department of NeurologyAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
| | - Maurice Steenhuis
- Department of ImmunopathologySanquin Research and Landsteiner Laboratory, Amsterdam UMCAmsterdamThe Netherlands
| | - Eileen W. Stalman
- Department of Neurology and Neurophysiology, Amsterdam NeuroscienceAmsterdam UMC, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Laura Y. L. Kummer
- Department of ImmunopathologySanquin Research and Landsteiner Laboratory, Amsterdam UMCAmsterdamThe Netherlands,Department of Neurology and Neurophysiology, Amsterdam NeuroscienceAmsterdam UMC, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Koos P. J. van Dam
- Department of Neurology and Neurophysiology, Amsterdam NeuroscienceAmsterdam UMC, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Karien Bloem
- Sanquin Diagnostic ServicesSanquin LaboratoryAmsterdamThe Netherlands
| | - Anja ten Brinke
- Department of ImmunopathologySanquin Research and Landsteiner Laboratory, Amsterdam UMCAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Department of ImmunopathologySanquin Research and Landsteiner Laboratory, Amsterdam UMCAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious DiseaseAmsterdam UMC, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Gerrit J. Wolbink
- Department of ImmunopathologySanquin Research and Landsteiner Laboratory, Amsterdam UMCAmsterdamThe Netherlands,Department of RheumatologyAmsterdam Rheumatology and Immunology CenterAmsterdamThe Netherlands
| | - Floris C. Loeff
- Sanquin Diagnostic ServicesSanquin LaboratoryAmsterdamThe Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam NeuroscienceAmsterdam UMC, location AMC, University of AmsterdamAmsterdamThe Netherlands,Department of Clinical NeurophysiologySt. Antonius HospitalNieuwegeinThe Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam NeuroscienceAmsterdam UMC, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Theo Rispens
- Department of ImmunopathologySanquin Research and Landsteiner Laboratory, Amsterdam UMCAmsterdamThe Netherlands
| | - Eva M. M. Strijbis
- Department of NeurologyAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
| | - Joep Killestein
- Department of NeurologyAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
| | | |
Collapse
|
52
|
Ali A, Zhang GF, Hu C, Yuan B, Jahan S, Kitsios GD, Morris A, Gao SJ, Panat R. Ultrarapid and ultrasensitive detection of SARS-CoV-2 antibodies in COVID-19 patients via a 3D-printed nanomaterial-based biosensing platform. J Med Virol 2022; 94:5808-5826. [PMID: 35981973 PMCID: PMC9538259 DOI: 10.1002/jmv.28075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 01/06/2023]
Abstract
Rapid detection of antibodies during infection and after vaccination is critical for the control of infectious outbreaks, understanding immune response, and evaluating vaccine efficacy. In this manuscript, we evaluate a simple ultrarapid test for SARS-CoV-2 antibodies in COVID-19 patients, which gives quantitative results (i.e., antibody concentration) in 10-12 s using a previously reported nanomaterial-based three-dimensional (3D)-printed biosensing platform. This platform consists of a micropillar array electrode fabricated via 3D printing of aerosolized gold nanoparticles and coated with nanoflakes of graphene and specific SARS-CoV-2 antigens, including spike S1, S1 receptor-binding domain (RBD) and nucleocapsid (N). The sensor works on the principle of electrochemical transduction, where the change of sensor impedance is realized by the interactions between the viral proteins attached to the sensor electrode surface and the antibodies. The three sensors were used to test samples from 17 COVID-19 patients and 3 patients without COVID-19. Unlike other serological tests, the 3D sensors quantitatively detected antibodies at a concentration as low as picomole within 10-12 s in human plasma samples. We found that the studied COVID-19 patients had higher concentrations of antibodies to spike proteins (RBD and S1) than to the N protein. These results demonstrate the enormous potential of the rapid antibody test platform for understanding patients' immunity, disease epidemiology and vaccine efficacy, and facilitating the control and prevention of infectious epidemics.
Collapse
Affiliation(s)
- Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
- Current address: Department of Animal and Poultry Sciences,
Virginia Tech, Blacksburg, VA, 24061 USA
| | - George Fei Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center and
Department of Microbiology and Molecular Genetics, University of Pittsburgh School
of Medicine, Pittsburgh, PA, 15213 USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Sanjida Jahan
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,
15213 USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,
15213 USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center and
Department of Microbiology and Molecular Genetics, University of Pittsburgh School
of Medicine, Pittsburgh, PA, 15213 USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| |
Collapse
|
53
|
Early CD4 + T cell responses induced by the BNT162b2 SARS-CoV-2 mRNA vaccine predict immunological memory. Sci Rep 2022; 12:20376. [PMID: 36437407 PMCID: PMC9701808 DOI: 10.1038/s41598-022-24938-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Longitudinal studies have revealed large interindividual differences in antibody responses induced by SARS-CoV-2 mRNA vaccines. Thus, we performed a comprehensive analysis of adaptive immune responses induced by three doses of the BNT162b2 SARS-CoV-2 mRNA vaccines. The responses of spike-specific CD4+ T cells, CD8+ T cells and serum IgG, and the serum neutralization capacities induced by the two vaccines declined 6 months later. The 3rd dose increased serum spike IgG and neutralizing capacities against the wild-type and Omicron spikes to higher levels than the 2nd dose, and this was supported by memory B cell responses, which gradually increased after the 2nd dose and were further enhanced by the 3rd dose. The 3rd dose moderately increased the frequencies of spike-specific CD4+ T cells, but the frequencies of spike-specific CD8+ T cells remained unchanged. T cells reactive against the Omicron spike were 1.3-fold fewer than those against the wild-type spike. The early responsiveness of spike-specific CD4+ T, circulating T follicular helper cells and circulating T peripheral helper cells correlated with memory B cell responses to the booster vaccination, and early spike-specific CD4+ T cell responses were also associated with spike-specific CD8+ T cell responses. These findings highlight the importance of evaluating cellular responses to optimize future vaccine strategies.
Collapse
|
54
|
van den Dijssel J, Hagen RR, de Jongh R, Steenhuis M, Rispens T, Geerdes DM, Mok JY, Kragten AHM, Duurland MC, Verstegen NJM, van Ham SM, van Esch WJE, van Gisbergen KPJM, Hombrink P, ten Brinke A, van de Sandt CE. Parallel detection of SARS-CoV-2 epitopes reveals dynamic immunodominance profiles of CD8 + T memory cells in convalescent COVID-19 donors. Clin Transl Immunology 2022; 11:e1423. [PMID: 36254196 PMCID: PMC9568370 DOI: 10.1002/cti2.1423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/09/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Ruth R Hagen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Rivka de Jongh
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Maurice Steenhuis
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Theo Rispens
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents B.V.AmsterdamThe Netherlands
| | | | - Mariël C Duurland
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - S Marieke van Ham
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Klaas PJM van Gisbergen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Pleun Hombrink
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Anja ten Brinke
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Carolien E van de Sandt
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
55
|
Tang PCH, Ng WH, King NJC, Mahalingam S. Can live-attenuated SARS-CoV-2 vaccine contribute to stopping the pandemic? PLoS Pathog 2022; 18:e1010821. [PMID: 36129963 PMCID: PMC9491521 DOI: 10.1371/journal.ppat.1010821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Patrick Chun Hean Tang
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Nicholas J. C. King
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
- The Discipline of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|
56
|
Soltani-Zangbar MS, Parhizkar F, Abdollahi M, Shomali N, Aghebati-Maleki L, Shahmohammadi Farid S, Roshangar L, Mahmoodpoor A, Yousefi M. Immune system-related soluble mediators and COVID-19: basic mechanisms and clinical perspectives. Cell Commun Signal 2022; 20:131. [PMID: 36038915 PMCID: PMC9421625 DOI: 10.1186/s12964-022-00948-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
During SARS-CoV-2 infection, an effective immune response provides the first line of defense; however, excessive inflammatory innate immunity and impaired adaptive immunity may harm tissues. Soluble immune mediators are involved in the dynamic interaction of ligands with membrane-bound receptors to maintain and restore health after pathological events. In some cases, the dysregulation of their expression can lead to disease pathology. In this literature review, we described current knowledge of the basic features of soluble immune mediators and their dysregulation during SARS-CoV-2 infections and highlighted their contribution to disease severity and mortality. Video Abstract
Collapse
Affiliation(s)
- Mohammad Sadegh Soltani-Zangbar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Abdollahi
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sima Shahmohammadi Farid
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
57
|
Kudryavtsev IV, Arsentieva NA, Korobova ZR, Isakov DV, Rubinstein AA, Batsunov OK, Khamitova IV, Kuznetsova RN, Savin TV, Akisheva TV, Stanevich OV, Lebedeva AA, Vorobyov EA, Vorobyova SV, Kulikov AN, Sharapova MA, Pevtsov DE, Totolian AA. Heterogenous CD8+ T Cell Maturation and 'Polarization' in Acute and Convalescent COVID-19 Patients. Viruses 2022; 14:1906. [PMID: 36146713 PMCID: PMC9504186 DOI: 10.3390/v14091906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adaptive antiviral immune response requires interaction between CD8+ T cells, dendritic cells, and Th1 cells for controlling SARS-CoV-2 infection, but the data regarding the role of CD8+ T cells in the acute phase of COVID-19 and post-COVID-19 syndrome are still limited. METHODS . Peripheral blood samples collected from patients with acute COVID-19 (n = 71), convalescent subjects bearing serum SARS-CoV-2 N-protein-specific IgG antibodies (n = 51), and healthy volunteers with no detectable antibodies to any SARS-CoV-2 proteins (HC, n = 46) were analyzed using 10-color flow cytometry. RESULTS Patients with acute COVID-19 vs. HC and COVID-19 convalescents showed decreased absolute numbers of CD8+ T cells, whereas the frequency of CM and TEMRA CD8+ T cells in acute COVID-19 vs. HC was elevated. COVID-19 convalescents vs. HC had increased naïve and CM cells, whereas TEMRA cells were decreased compared to HC. Cell-surface CD57 was highly expressed by the majority of CD8+ T cells subsets during acute COVID-19, but convalescents had increased CD57 on 'naïve', CM, EM4, and pE1 2-3 months post-symptom onset. CXCR5 expression was altered in acute and convalescent COVID-19 subjects, whereas the frequencies of CXCR3+ and CCR4+ cells were decreased in both patient groups vs. HC. COVID-19 convalescents had increased CCR6-expressing CD8+ T cells. Moreover, CXCR3+CCR6- Tc1 cells were decreased in patients with acute COVID-19 and COVID-19 convalescents, whereas Tc2 and Tc17 levels were increased compared to HC. Finally, IL-27 negatively correlated with the CCR6+ cells in acute COVID-19 patients. CONCLUSIONS We described an abnormal CD8+ T cell profile in COVID-19 convalescents, which resulted in lower frequencies of effector subsets (TEMRA and Tc1), higher senescent state (upregulated CD57 on 'naïve' and memory cells), and higher frequencies of CD8+ T cell subsets expressing lung tissue and mucosal tissue homing molecules (Tc2, Tc17, and Tc17.1). Thus, our data indicate that COVID-19 can impact the long-term CD8+ T cell immune response.
Collapse
Affiliation(s)
- Igor V. Kudryavtsev
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Zoia R. Korobova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Dmitry V. Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Irina V. Khamitova
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Raisa N. Kuznetsova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tikhon V. Savin
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tatiana V. Akisheva
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Smorodintsev Research Institute of Influenza, Prof. Popov St. 15/17, 197376 Saint Petersburg, Russia
| | - Aleksandra A. Lebedeva
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Evgeny A. Vorobyov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Snejana V. Vorobyova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Alexander N. Kulikov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Maria A. Sharapova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Dmitrii E. Pevtsov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| |
Collapse
|
58
|
André S, Azarias da Silva M, Picard M, Alleaume-Buteau A, Kundura L, Cezar R, Soudaramourty C, André SC, Mendes-Frias A, Carvalho A, Capela C, Pedrosa J, Gil Castro A, Loubet P, Sotto A, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Tran TA, Zghidi-Abouzid O, Nioche P, Silvestre R, Corbeau P, Mammano F, Estaquier J. Low quantity and quality of anti-spike humoral response is linked to CD4 T-cell apoptosis in COVID-19 patients. Cell Death Dis 2022; 13:741. [PMID: 36030261 PMCID: PMC9419645 DOI: 10.1038/s41419-022-05190-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
In addition to an inflammatory reaction, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-infected patients present lymphopenia, which we recently reported as being related to abnormal programmed cell death. As an efficient humoral response requires CD4 T-cell help, we hypothesized that the propensity of CD4 T cells to die may impact the quantity and quality of the humoral response in acutely infected individuals. In addition to specific immunoglobulins (Ig)A, IgM, and IgG against SARS-CoV-2 nucleocapsid (N), membrane (M), and spike (S1) proteins, we assessed the quality of IgG response by measuring the avidity index. Because the S protein represents the main target for neutralization and antibody-dependent cellular cytotoxicity responses, we also analyzed anti-S-specific IgG using S-transfected cells (S-Flow). Our results demonstrated that most COVID-19 patients have a predominant IgA anti-N humoral response during the early phase of infection. This specific humoral response preceded the anti-S1 in time and magnitude. The avidity index of anti-S1 IgG was low in acutely infected individuals compared to convalescent patients. We showed that the percentage of apoptotic CD4 T cells is inversely correlated with the levels of specific IgG antibodies. These lower levels were also correlated positively with plasma levels of CXCL10, a marker of disease severity, and soluble Fas ligand that contributes to T-cell death. Finally, we found lower S-Flow responses in patients with higher CD4 T-cell apoptosis. Altogether, these results demonstrate that individuals with high levels of CD4 T-cell apoptosis and CXCL10 have a poor ability to build an efficient anti-S response. Consequently, preventing CD4 T-cell death might be a strategy for improving humoral response during the acute phase, thereby reducing COVID-19 pathogenicity.
Collapse
Affiliation(s)
- Sonia André
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France
| | - Marne Azarias da Silva
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France
| | - Morgane Picard
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France
| | - Aurélie Alleaume-Buteau
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,grid.508487.60000 0004 7885 7602Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Lucy Kundura
- grid.411165.60000 0004 0593 8241Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | - Renaud Cezar
- grid.411165.60000 0004 0593 8241Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | | | - Santa Cruz André
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Ana Mendes-Frias
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Alexandre Carvalho
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Carlos Capela
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Jorge Pedrosa
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paul Loubet
- grid.411165.60000 0004 0593 8241Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Albert Sotto
- grid.411165.60000 0004 0593 8241Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Laurent Muller
- grid.411165.60000 0004 0593 8241Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | - Jean-Yves Lefrant
- grid.411165.60000 0004 0593 8241Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | - Claire Roger
- grid.411165.60000 0004 0593 8241Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | - Pierre-Géraud Claret
- grid.411165.60000 0004 0593 8241Urgences Médico-Chirugicales Hospitalisation, CHU de Nîmes, Nîmes, France
| | - Sandra Duvnjak
- grid.411165.60000 0004 0593 8241Service de Gérontologie et Prévention du Vieillissement, CHU de Nîmes, Nîmes, France
| | - Tu-Anh Tran
- grid.411165.60000 0004 0593 8241Service de Pédiatrie, CHU de Nîmes, Nîmes, France
| | | | - Pierre Nioche
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,grid.508487.60000 0004 7885 7602Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Ricardo Silvestre
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pierre Corbeau
- grid.411165.60000 0004 0593 8241Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France ,grid.121334.60000 0001 2097 0141Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, Montpellier, France
| | - Fabrizio Mammano
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,INSERM U1259 MAVIVH, Université de Tours, Tours, France
| | - Jérôme Estaquier
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,CHU de Québec—Université Laval Research Center, Québec City, QC Canada
| |
Collapse
|
59
|
Gawelek KL, Padera R, Connors J, Pinkus GS, Podznyakova O, Battinelli EM. Cardiac megakaryocytes in SARS-CoV-2 positive autopsies. Histopathology 2022; 81:600-624. [PMID: 35925828 PMCID: PMC9538948 DOI: 10.1111/his.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/08/2023]
Abstract
Thromboembolic phenomena are an important complication of infection by severe acute respiratory coronavirus 2 (SARS‐CoV‐2). Increasing focus on the management of the thrombotic complications of Coronavirus Disease 2019 (COVID‐19) has led to further investigation into the role of platelets, and their precursor cell, the megakaryocyte, during the disease course. Previously published postmortem evaluations of patients who succumbed to COVID‐19 have reported the presence of megakaryocytes in the cardiac microvasculature. Our series evaluated a cohort of autopsies performed on SARS‐CoV‐2‐positive patients in 2020 (n = 36) and prepandemic autopsies performed in early 2020 (n = 12) and selected to represent comorbidities common in cases of severe COVID‐19, in addition to infectious and noninfectious pulmonary disease and thromboembolic phenomena. Cases were assessed for the presence of cardiac megakaryocytes and correlated with the presence of pulmonary emboli and laboratory platelet parameters and inflammatory markers. Cardiac megakaryocytes were detected in 64% (23/36) of COVID‐19 autopsies, and 40% (5/12) prepandemic autopsies, with averages of 1.77 and 0.84 megakaryocytes per cm2, respectively. Within the COVID‐19 cohort, autopsies with detected megakaryocytes had significantly higher platelet counts compared with cases throughout; other platelet parameters were not statistically significant between groups. Although studies have supported a role of platelets and megakaryocytes in the response to viral infections, including SARS‐CoV‐2, our findings suggest cardiac megakaryocytes may be representative of a nonspecific inflammatory response and are frequent in, but not exclusive to, COVID‐19 autopsies.
Collapse
Affiliation(s)
- Kara L Gawelek
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Padera
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Jean Connors
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Geraldine S Pinkus
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Olga Podznyakova
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
60
|
Rebholz H, Braun RJ, Saha T, Harzer O, Schneider M, Ladage D. Longitudinal monitoring of SARS-CoV-2 spike protein-specific antibody responses in Lower Austria. PLoS One 2022; 17:e0271382. [PMID: 35895668 PMCID: PMC9328535 DOI: 10.1371/journal.pone.0271382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
The Lower Austrian Wachau region was an early COVID-19 hotspot of infection. As previously reported, in June 2020, after the first peak of infections, we determined that 8.5% and 9.0% of the participants in Weißenkirchen and surrounding communities in the Wachau region were positive for immunoglobulin G (IgG) and immunoglobulin A (IgA) antibodies against the receptor-binding domain of the spike protein of SARS-CoV-2, respectively. Here, we present novel data obtained eight months later (February 2021) from Weißenkirchen, after the second peak of infection, with 25.0% (138/552) and 23.6% (130/552) of participants that are positive for IgG and IgA, respectively. In participants with previous IgG/IgA positivity (June 2020), we observed a 24% reduction in IgG levels, whereas the IgA levels remained stable in February 2021. This subgroup was further analyzed for SARS-CoV-2 induced T cell activities. Although 76% (34/45) and 76% (34/45) of IgG positive and IgA positive participants, respectively, showed specific T cell activities (upon exposure to SARS-CoV-2 spike protein-derived peptides), those were not significantly correlated with the levels of IgG or IgA. Thus, the analyses of antibodies cannot surrogate the measurement of T cell activities. For a comprehensive view on SARS-CoV-2-triggered immune responses, the measurement of different classes of antibodies should be complemented with the determination of T cell activities.
Collapse
Affiliation(s)
- Heike Rebholz
- Research Division for Neurodegenerative Diseases, Center for Biosciences, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
- GHU Psychiatrie et Neurosciences, Paris, France
| | - Ralf J. Braun
- Research Division for Neurodegenerative Diseases, Center for Biosciences, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
- * E-mail: (RJB); (DL)
| | - Titas Saha
- Department of Scientific Coordination and Management, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Oliver Harzer
- Center for Biosciences, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
- Bioscientia, Institute of Medical Diagnostics, Ingelheim, Germany
| | - Miriam Schneider
- Department of Scientific Coordination and Management, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Dennis Ladage
- Internal Medicine, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
- Heart Center, University of Cologne, Cologne, Germany
- Department of Pneumology, Maria Hilf Hospital, Mönchengladbach, Germany
- * E-mail: (RJB); (DL)
| |
Collapse
|
61
|
Kedzierska K, Nguyen THO. PD-1 blockade unblocks immune responses to vaccination. Nat Immunol 2022; 23:1135-1137. [PMID: 35902636 DOI: 10.1038/s41590-022-01254-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
62
|
Verstegen NJM, Hagen RR, van den Dijssel J, Kuijper LH, Kreher C, Ashhurst T, Kummer LYL, Steenhuis M, Duurland M, de Jongh R, de Jong N, van der Schoot CE, Bos AV, Mul E, Kedzierska K, van Dam KPJ, Stalman EW, Boekel L, Wolbink G, Tas SW, Killestein J, van Kempen ZLE, Wieske L, Kuijpers TW, Eftimov F, Rispens T, van Ham SM, ten Brinke A, van de Sandt CE. Immune dynamics in SARS-CoV-2 experienced immunosuppressed rheumatoid arthritis or multiple sclerosis patients vaccinated with mRNA-1273. eLife 2022; 11:e77969. [PMID: 35838348 PMCID: PMC9337853 DOI: 10.7554/elife.77969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).
Collapse
Affiliation(s)
- Niels JM Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Christine Kreher
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Thomas Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute, and The University of SydneySydneyAustralia
- School of Medical Sciences, Faculty of Medicine and Health, The University of SydneySydneyAustralia
| | - Laura YL Kummer
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Mariel Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Rivka de Jongh
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Nina de Jong
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Erik Mul
- Department of Research Facilities, Sanquin ResearchAmsterdamNetherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido UniversitySapporoJapan
| | - Koos PJ van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Gertjan Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Sander W Tas
- Amsterdam Rheumatology and immunology Center, Department of Rheumatology and Clinical Immunology, University of AmsterdamAmsterdamNetherlands
| | - Joep Killestein
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Zoé LE van Kempen
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
- Department of Clinical Neurophysiology, St Antonius HospitalNieuwegeinNetherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, University of AmsterdamAmsterdamNetherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
63
|
Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol 2022; 13:888248. [PMID: 35844604 PMCID: PMC9279859 DOI: 10.3389/fimmu.2022.888248] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Natural Killer (NK) cells are lymphocytes of the innate immunity that play a crucial role in the control of viral infections in the absence of a prior antigen sensitization. Indeed, they display rapid effector functions against target cells with the capability of direct cell killing and antibody-dependent cell-mediated cytotoxicity. Furthermore, NK cells are endowed with immune-modulatory functions innate and adaptive immune responses via the secretion of chemokines/cytokines and by undertaking synergic crosstalks with other innate immune cells, including monocyte/macrophages, dendritic cells and neutrophils. Recently, the Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the specific role of NK cells in COVID-19 pathophysiology still need to be explored, mounting evidence indicates that NK cell tissue distribution and effector functions could be affected by SARS-CoV-2 infection and that a prompt NK cell response could determine a good clinical outcome in COVID-19 patients. In this review, we give a comprehensive overview of how SARS-CoV-2 infection interferes with NK cell antiviral effectiveness and their crosstalk with other innate immune cells. We also provide a detailed characterization of the specific NK cell subsets in relation to COVID-19 patient severity generated from publicly available single cell RNA sequencing datasets. Finally, we summarize the possible NK cell-based therapeutic approaches against SARS-CoV-2 infection and the ongoing clinical trials updated at the time of submission of this review. We will also discuss how a deep understanding of NK cell responses could open new possibilities for the treatment and prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Emergency Medicine Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| |
Collapse
|
64
|
Rosa Duque JS, Wang X, Leung D, Cheng SMS, Cohen CA, Mu X, Hachim A, Zhang Y, Chan SM, Chaothai S, Kwan KKH, Chan KCK, Li JKC, Luk LLH, Tsang LCH, Wong WHS, Cheang CH, Hung TK, Lam JHY, Chua GT, Tso WWY, Ip P, Mori M, Kavian N, Leung WH, Valkenburg S, Peiris M, Tu W, Lau YL. Immunogenicity and reactogenicity of SARS-CoV-2 vaccines BNT162b2 and CoronaVac in healthy adolescents. Nat Commun 2022; 13:3700. [PMID: 35764637 PMCID: PMC9240007 DOI: 10.1038/s41467-022-31485-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
We present an interim analysis of a registered clinical study (NCT04800133) to establish immunobridging with various antibody and cellular immunity markers and to compare the immunogenicity and reactogenicity of 2-dose BNT162b2 and CoronaVac in healthy adolescents as primary objectives. One-dose BNT162b2, recommended in some localities for risk reduction of myocarditis, is also assessed. Antibodies and T cell immune responses are non-inferior or similar in adolescents receiving 2 doses of BNT162b2 (BB, N = 116) and CoronaVac (CC, N = 123) versus adults after 2 doses of the same vaccine (BB, N = 147; CC, N = 141) but not in adolescents after 1-dose BNT162b2 (B, N = 116). CC induces SARS-CoV-2 N and N C-terminal domain seropositivity in a higher proportion of adolescents than adults. Adverse reactions are mostly mild for both vaccines and more frequent for BNT162b2. We find higher S, neutralising, avidity and Fc receptor-binding antibody responses in adolescents receiving BB than CC, and a similar induction of strong S-specific T cells by the 2 vaccines, in addition to N- and M-specific T cells induced by CoronaVac but not BNT162b2, possibly implying differential durability and cross-variant protection by BNT162b2 and CoronaVac, the 2 most used SARS-CoV-2 vaccines worldwide. Our results support the use of both vaccines in adolescents.
Collapse
Affiliation(s)
- Jaime S Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Carolyn A Cohen
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Asmaa Hachim
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Kelvin K H Kwan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Karl C K Chan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - John K C Li
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo L H Luk
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo C H Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wilfred H S Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk Hei Cheang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Timothy K Hung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer H Y Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilbert T Chua
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Winnie W Y Tso
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Niloufar Kavian
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- IRCCS, Humanitas Research Hospital, Milan, Italy
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sophie Valkenburg
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Centre for Immunology and Infection, Hong Kong, China.
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
65
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
66
|
Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Höll JI, Gekle M, Mikolajczyk R, Binder M. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med 2022; 3:100663. [PMID: 35732153 PMCID: PMC9214726 DOI: 10.1016/j.xcrm.2022.100663] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Post-acute sequelae of COVID-19 (PASC) is emerging as global problem with unknown molecular drivers. Using a digital epidemiology approach, we recruited 8,077 individuals to the cohort study for digital health research in Germany (DigiHero) to respond to a basic questionnaire followed by a PASC-focused survey and blood sampling. We report the first 318 participants, the majority thereof after mild infections. Of those, 67.8% report PASC, predominantly consisting of fatigue, dyspnea, and concentration deficit, which persists in 60% over the mean 8-month follow-up period and resolves independently of post-infection vaccination. PASC is not associated with autoantibodies, but with elevated IL-1β, IL-6, and TNF plasma levels, which we confirm in a validation cohort with 333 additional participants and a longer time from infection of 10 months. Blood profiling and single-cell data from early infection suggest the induction of these cytokines in COVID-19 lung pro-inflammatory macrophages creating a self-sustaining feedback loop. We report a post-COVID-19 digital epidemiology study with biomarker analysis (n = 651) PASC persists in 60% of participants up to 24 months after mild COVID-19 PASC is associated with high IL-1β, IL-6, and TNF levels but not autoantibodies Overactivated monocytes/macrophages are likely the source of cytokine production
Collapse
Affiliation(s)
- Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Svenja-Sibylla Henkes
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 8, 06112 Halle (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Jessica I Höll
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, 06110 Halle (Saale), Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Magdeburger Strasse 8, 06097 Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
67
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 2022; 13:3466. [PMID: 35710908 PMCID: PMC9201272 DOI: 10.1038/s41467-022-31142-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.
Collapse
Affiliation(s)
- Kevin J Kramer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Erin M Wilfong
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sierra M Barone
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea R Shiakolas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Caroline E Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Lauren M Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Steven C Wall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Ariana Paulo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Samuel Schaefer
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Debolanle Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Camille S Westlake
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA
| | | | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Rachel H Bonami
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| |
Collapse
|
68
|
Rosen DB, Murphy EA, Gejman RS, Capili A, Friedlander RL, Rand S, Cagino KA, Glynn SM, Matthews KC, Kubiak JM, Yee J, Prabhu M, Riley LE, Yang YJ. Cytokine response over the course of COVID-19 infection in pregnant women. Cytokine 2022; 154:155894. [PMID: 35490452 PMCID: PMC9035355 DOI: 10.1016/j.cyto.2022.155894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To study how severity and progression of coronavirus disease (COVID-19) affect cytokine profiles in pregnant women. MATERIALS AND METHODS 69 third-trimester, pregnant women were tested for COVID-19 infection and SARS-CoV-2 specific IgM and IgG antibodies. Patients were stratified according to SARS-CoV-2 Reverse Transcriptase-PCR (RT-PCR) status and serology (IgM and IgG) status. Cytokines G-CSF, HGF, IL-18, IL-1Ra, IL-2Ra, IL-8, and IP-10 were measured via ELISA. Retrospective chart review for COVID-19 symptoms and patient vitals was conducted, and cytokine levels were compared between SARS-CoV-2 positive and negative cohorts, by seronegative and seropositive infection, by time course since onset of infection, and according to NIH defined clinical severity. RESULTS IL-18, IL-1Ra, and IP-10 increased in the 44 RT-PCR positive pregnant women compared to the 25 RT-PCR negative pregnant controls. Elevated cytokine levels were found in early infections, defined by positive RT-PCR and seronegative status, and higher cytokine levels were also associated with more severe disease. By IgM seroconversion, IL-8 and IP-10 returned to levels seen in uninfected patients, while IL-18 levels remained significantly elevated. CONCLUSION Cytokine profiles of third-trimester pregnant women vary with the time course of infection and are correlated with clinical severity.
Collapse
Affiliation(s)
| | - Elisabeth A Murphy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Sophie Rand
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kristen A Cagino
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, USA
| | | | - Kathy C Matthews
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Jeff M Kubiak
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jim Yee
- New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Malavika Prabhu
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Laura E Riley
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Yawei J Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
69
|
Zhang W, Chua BY, Selva KJ, Kedzierski L, Ashhurst TM, Haycroft ER, Shoffner-Beck SK, Hensen L, Boyd DF, James F, Mouhtouris E, Kwong JC, Chua KYL, Drewett G, Copaescu A, Dobson JE, Rowntree LC, Habel JR, Allen LF, Koay HF, Neil JA, Gartner MJ, Lee CY, Andersson P, Khan SF, Blakeway L, Wisniewski J, McMahon JH, Vine EE, Cunningham AL, Audsley J, Thevarajan I, Seemann T, Sherry NL, Amanat F, Krammer F, Londrigan SL, Wakim LM, King NJC, Godfrey DI, Mackay LK, Thomas PG, Nicholson S, Arnold KB, Chung AW, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Nguyen THO, Kedzierska K. SARS-CoV-2 infection results in immune responses in the respiratory tract and peripheral blood that suggest mechanisms of disease severity. Nat Commun 2022; 13:2774. [PMID: 35589689 PMCID: PMC9120039 DOI: 10.1038/s41467-022-30088-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Kevin J Selva
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Ebene R Haycroft
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | | | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - David F Boyd
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Effie Mouhtouris
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Kyra Y L Chua
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - George Drewett
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Ana Copaescu
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Julie E Dobson
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jessica A Neil
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Matthew J Gartner
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Michigan, USA
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sadid F Khan
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Jessica Wisniewski
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Victorian Infectious Diseases Services, The Royal Melbourne Hospital and Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, VIC, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Norelle L Sherry
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Nicholas J C King
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Michigan, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC, Australia
- Data Analytics Research and Evaluation (DARE) Centre, Austin Health and University of Melbourne, Heidelberg, VIC, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC, Australia.
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC, Australia.
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC, Australia.
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
70
|
Schaenman J, Byford H, Grogan T, Motwani Y, Beaird OE, Kamath M, Lum E, Meneses K, Sayah D, Vucicevic D, Saab S. Impact of solid organ transplant status on outcomes of hospitalized patients with COVID-19 infection. Transpl Infect Dis 2022; 24:e13853. [PMID: 35579437 PMCID: PMC9347588 DOI: 10.1111/tid.13853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
Background The COVID‐19 pandemic has caused significant morbidity and mortality in solid organ transplant (SOT) recipients. However, it remains unclear whether the risk factor for SOT patients is the immunosuppression inherent to transplantation versus patient comorbidities. Methods We reviewed outcomes in a cohort of SOT (n = 129) and non‐SOT (NSOT) patients (n = 708) admitted to the University of California, Los Angeles for COVID‐19 infection. Data analyses utilized multivariate logistic regression to evaluate the impact of patient demographics, comorbidities, and transplant status on outcomes. SOT patients were analyzed by kidney SOT (KSOT) versus nonkidney SOT (NKSOT) groups. Results SOT and NSOT patients with COVID‐19 infection differed in terms of patient age, ethnicity, and comorbidities. NKSOT patients were the most likely to experience death, with a mortality rate of 16.2% compared with 1.8% for KSOT and 8.3% for NSOT patients (p = .013). Multivariable analysis of hospitalized patients revealed that patient age (odds ratio [OR] 2.79, p = .001) and neurologic condition (OR 2.66, p < .001) were significantly associated with mortality. Analysis of ICU patients revealed a 2.98‐fold increased odds of death in NKSOT compared with NSOT patients (p = .013). Conclusions This study demonstrates the importance of transplant status in predicting adverse clinical outcomes in patients hospitalized or admitted to the ICU with COVID‐19, especially for NKSOT patients. Transplant status and comorbidities, including age, could be used to risk stratify patients with COVID‐19. This data suggests that immunosuppression contributes to COVID‐19 disease severity and mortality and may have implications for managing immunosuppression, especially for critically ill patients admitted to the ICU.
Collapse
Affiliation(s)
- Joanna Schaenman
- Division of Infectious, Diseases, University of California at Los Angeles, Los Angeles, California, United States
| | - Hannah Byford
- Transplant Nephrology, University of California at Los Angeles, Los Angeles, California, United States
| | - Tristan Grogan
- Division of General Internal Medicine and Health Services Research, University of California at Los Angeles, Los Angeles, California, United States
| | - Yash Motwani
- Division of General Internal Medicine and Health Services Research, University of California at Los Angeles, Los Angeles, California, United States
| | - Omer E Beaird
- Division of Infectious, Diseases, University of California at Los Angeles, Los Angeles, California, United States
| | - Megan Kamath
- Division of Cardiology, University of California at Los Angeles, Los Angeles, California, United States
| | - Erik Lum
- Transplant Nephrology, University of California at Los Angeles, Los Angeles, California, United States
| | - Katherine Meneses
- Transplant Hepatology, University of California at Los Angeles, Los Angeles, California, United States
| | - David Sayah
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| | - Darko Vucicevic
- Division of Cardiology, University of California at Los Angeles, Los Angeles, California, United States
| | - Sammy Saab
- Transplant Hepatology, University of California at Los Angeles, Los Angeles, California, United States
| |
Collapse
|
71
|
McCarthy EE, Odorizzi PM, Lutz E, Smullin CP, Tenvooren I, Stone M, Simmons G, Hunt PW, Feeney ME, Norris PJ, Busch MP, Spitzer MH, Rutishauser RL. A cytotoxic-skewed immune set point predicts low neutralizing antibody levels after Zika virus infection. Cell Rep 2022; 39:110815. [PMID: 35584677 PMCID: PMC9151348 DOI: 10.1016/j.celrep.2022.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022] Open
Abstract
Although generating high neutralizing antibody levels is a key component of protective immunity after acute viral infection or vaccination, little is known about why some individuals generate high versus low neutralizing antibody titers. Here, we leverage the high-dimensional single-cell profiling capacity of mass cytometry to characterize the longitudinal cellular immune response to Zika virus (ZIKV) infection in viremic blood donors in Puerto Rico. During acute ZIKV infection, we identify widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated cell types during acute infection are associated with high titers of ZIKV neutralizing antibodies 6 months post-infection, while stable immune features suggesting a cytotoxic-skewed immune set point are associated with low titers. Our study offers insight into the coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials aimed at inducing high levels of antiviral neutralizing antibodies.
Collapse
Affiliation(s)
- Elizabeth E McCarthy
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pamela M Odorizzi
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Emma Lutz
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Carolyn P Smullin
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Iliana Tenvooren
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter W Hunt
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Margaret E Feeney
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Philip J Norris
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Rachel L Rutishauser
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
72
|
Tan HX, Wragg KM, Kelly HG, Esterbauer R, Dixon BJ, Lau JSY, Flanagan KL, van de Sandt CE, Kedzierska K, McMahon JH, Wheatley AK, Juno JA, Kent SJ. Cutting Edge: SARS-CoV-2 Infection Induces Robust Germinal Center Activity in the Human Tonsil. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2267-2271. [PMID: 35487578 DOI: 10.4049/jimmunol.2101199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/14/2022] [Indexed: 01/15/2023]
Abstract
Understanding the generation of immunity to SARS-CoV-2 in lymphoid tissues draining the site of infection has implications for immunity to SARS-CoV-2. We performed tonsil biopsies under local anesthesia in 19 subjects who had recovered from SARS-CoV-2 infection 24-225 d previously. The biopsies yielded >3 million cells for flow cytometric analysis in 17 subjects. Total and SARS-CoV-2 spike-specific germinal center B cells, and T follicular helper cells, were readily detectable in human tonsils early after SARS-CoV-2 infection, as assessed by flow cytometry. Responses were higher in samples within 2 mo of infection but still detectable in some subjects out to 7 mo following infection. We conclude the tonsils are a secondary lymphoid organ that develop germinal center responses to SARS-CoV-2 infection and could play a role in the long-term development of immunity.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin J Dixon
- Head and Neck Surgery, Epworth Healthcare, Richmond, Victoria, Australia
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia.,School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia; and.,Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; .,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
73
|
Influence of Advanced Organ Support (ADVOS) on Cytokine Levels in Patients with Acute-on-Chronic Liver Failure (ACLF). J Clin Med 2022; 11:jcm11102782. [PMID: 35628913 PMCID: PMC9144177 DOI: 10.3390/jcm11102782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: ADVanced Organ Support (ADVOS) is a novel type of extracorporeal albumin dialysis that supports multiorgan function in patients with acute-on-chronic liver failure (ACLF). No data exist on whether ADVOS affects inflammatory cytokine levels, which play a relevant role in ACLF. Aim: Our aim was to quantify cytokine levels both before and after a single ADVOS treatment in patients with ACLF at a regular dialysis ward. Methods and results: In this prospective study, 15 patients (60% men) with ACLF and an indication for renal replacement therapy were included. Patient liver function was severely compromised, reflected by a median CLIF-consortium ACLF score of 38 (IQR 35; 40). Blood samples were directly taken before and after ADVOS dialysis. The concentration of cytokines for IL-1β, IFN-α2, IFN-γ, TNF-α, MCP-1, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-18, IL-23, IL-33 were quantified via a cytometric bead array. We found no significant (p > 0.05) change in cytokine levels, even when patients were stratified for dialysis time (<480 min versus ≥480 min). The relevance of the assessed cytokines in contributing to systemic inflammation in ACLF was demonstrated by Ingenuity pathway analysis®. Conclusion: Concentrations of pathomechanistically relevant cytokines remained unchanged both before and after ADVOS treatment in patients with ACLF.
Collapse
|
74
|
Rodríguez-Hernández MÁ, Carneros D, Núñez-Núñez M, Coca R, Baena R, López-Ruiz GM, Cano-Serrano ME, Martínez-Tellería A, Fuentes-López A, Praena-Fernandez JM, Garbers C, Hernández-Quero J, García F, Rose-John S, Bustos M. Identification of IL-6 Signalling Components as Predictors of Severity and Outcome in COVID-19. Front Immunol 2022; 13:891456. [PMID: 35634332 PMCID: PMC9137400 DOI: 10.3389/fimmu.2022.891456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
IL-6 is one of the major mediators of the hyper-inflammatory responses with complex biological functions as it can signal via different modes of action. IL-6 by classical signalling has anti-inflammatory and antibacterial activities, while trans-signalling mediates pro-inflammatory effects. The net biological effect of IL-6 is established by multiple factors beyond its absolute concentration. Here, we assess the relationship between IL-6 signalling variables [IL-6, soluble IL-6R (sIL-6R) and soluble gp130 (sgp130)] and outcomes in a cohort of 366 COVID-19 patients. The potential trans-signalling was evaluated by a ratio between the pro-inflammatory binary IL-6:sIL-6R complex and the inactive ternary IL-6:sIL-6R:sgp130 complex (binary/ternary complex) and the fold molar excess of sgp130 over sIL-6R (FME). Our data provide new evidence that high levels of IL-6, sIL-6R, sgp130, binary/ternary complex ratio, and low FME are independent predictors of COVID-19 severity in survivor patients (without death), and the combination of IL-6 + sIL-6R + sgp130 exhibited the most robust classification capacity. Conversely, in a subgroup of patients with a very poor prognosis, we found that high levels of IL-6 and low levels of sIL-6R, sgp130, and binary/ternary complex ratio were predictors of death. In this context, the highest predictive capacity corresponded to the combined analysis of IL-6 + FME + lymphopenia + creatinine. Herein, we present IL-6 signalling variables as a helpful tool for the early identification and stratification of patients with clear implications for treatment and clinical decision-making.
Collapse
Affiliation(s)
- María Ángeles Rodríguez-Hernández
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBIS), Spanish National Research Council (CSIC) - University of Seville (US) - Virgen del Rocio University Hospital (HUVR), Seville, Spain
- *Correspondence: María Ángeles Rodríguez-Hernández, ; Matilde Bustos,
| | - David Carneros
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBIS), Spanish National Research Council (CSIC) - University of Seville (US) - Virgen del Rocio University Hospital (HUVR), Seville, Spain
| | - María Núñez-Núñez
- Department of Pharmacy, San Cecilio University Hospital, Granada, Spain
- Infectious Disease Unit, San Cecilio University Hospital, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.Granada), Granada, Spain
| | - Ramón Coca
- Department of Clinical Analysis, Virgen de las Nieves University Hospital, Granada, Spain
| | - Rosario Baena
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Gema M. López-Ruiz
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBIS), Spanish National Research Council (CSIC) - University of Seville (US) - Virgen del Rocio University Hospital (HUVR), Seville, Spain
| | | | | | - Ana Fuentes-López
- Department of Microbiology, San Cecilio University Hospital, Granada, Spain
| | | | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Federico García
- Biosanitary Research Institute of Granada (ibs.Granada), Granada, Spain
- Department of Microbiology, San Cecilio University Hospital, Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | | | - Matilde Bustos
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBIS), Spanish National Research Council (CSIC) - University of Seville (US) - Virgen del Rocio University Hospital (HUVR), Seville, Spain
- *Correspondence: María Ángeles Rodríguez-Hernández, ; Matilde Bustos,
| |
Collapse
|
75
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
76
|
Establishment and recall of SARS-CoV-2 spike epitope-specific CD4+ T cell memory. Nat Immunol 2022; 23:768-780. [DOI: 10.1038/s41590-022-01175-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
|
77
|
Abstract
The rapid pace of the COVID-19 pandemic precluded traditional approaches to evaluating clinical research and guidelines. We highlight notable successes and pitfalls of clinicians' new approaches to managing evidence amidst an unprecedented crisis. In "Era 1" (early 2020), clinicians relied on anecdote and social media, which democratized conversations on guidelines, but also led clinicians astray. "Era 2" (approximately late 2020 to early 2021) saw preprints that accelerated new interventions but suffered from a surfeit of poor-quality data. In the current era, clinicians consolidate the evidentiary gains of Era 2 with living, online clinical guidelines, but the public suffers from misinformation. The COVID-19 pandemic is a laboratory on how clinicians adapt to an absence of clinical guidance amidst an informational and healthcare crisis. Challenges remain as we integrate new approaches to innovations made in the traditional guideline process to confront both the long tail of COVID-19 and future pandemics.
Collapse
|
78
|
Abstract
Robust T cell responses have been associated with milder outcomes in many infections. T cells also establish long-term memory pools and, as they are predominantly directed toward epitopes encompassing conserved peptides, can respond to SARS-CoV-2 variants, including Omicron. Here, we discuss epitope-specific CD8+ and CD4+ T cell responses toward SARS-CoV-2 infection and vaccination, their subsequent persistence into long-term memory, and ongoing work to determine their role in limiting disease severity.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
79
|
Bonam SR, Chauvin C, Levillayer L, Mathew MJ, Sakuntabhai A, Bayry J. SARS-CoV-2 Induces Cytokine Responses in Human Basophils. Front Immunol 2022; 13:838448. [PMID: 35280992 PMCID: PMC8907115 DOI: 10.3389/fimmu.2022.838448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Basophils play a key role in the orientation of immune responses. Though the interaction of SARS-CoV-2 with various immune cells has been relatively well studied, the response of basophils to this pandemic virus is not characterized yet. In this study, we report that SARS-CoV-2 induces cytokine responses and in particular IL-13, in both resting and IL-3 primed basophils. The response was prominent under IL-3 primed condition. However, either SARS-CoV-2 or SARS-CoV-2-infected epithelial cells did not alter the expression of surface markers associated with the activation of basophils, such as CD69, CD13 and/or degranulation marker CD107a. We also validate that human basophils are not permissive to SARS-CoV-2 replication. Though increased expression of immune checkpoint molecule PD-L1 has been reported on the basophils from COVID-19 patients, we observed that SARS-CoV-2 does not induce PD-L1 on the basophils. Our data suggest that basophil cytokine responses to SARS-CoV-2 might help in reducing the inflammation and also to promote antibody responses to the virus.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Functional Genetics of Infectious Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Laurine Levillayer
- Functional Genetics of Infectious Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France
| | | | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR2000, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| |
Collapse
|
80
|
Cantoni D, Mayora-Neto M, Nadesalingam A, Wells DA, Carnell GW, Ohlendorf L, Ferrari M, Palmer P, Chan AC, Smith P, Bentley EM, Einhauser S, Wagner R, Page M, Raddi G, Baxendale H, Castillo-Olivares J, Heeney J, Temperton N. Neutralisation Hierarchy of SARS-CoV-2 Variants of Concern Using Standardised, Quantitative Neutralisation Assays Reveals a Correlation With Disease Severity; Towards Deciphering Protective Antibody Thresholds. Front Immunol 2022; 13:773982. [PMID: 35330908 PMCID: PMC8940306 DOI: 10.3389/fimmu.2022.773982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold.
Collapse
Affiliation(s)
- Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, United Kingdom
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, United Kingdom
| | - Angalee Nadesalingam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David A. Wells
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - George W. Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luis Ohlendorf
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matteo Ferrari
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Phil Palmer
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew C.Y. Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Peter Smith
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emma M. Bentley
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Mark Page
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Gianmarco Raddi
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Helen Baxendale
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, United Kingdom
| |
Collapse
|
81
|
Schimke LF, Marques AHC, Baiocchi GC, de Souza Prado CA, Fonseca DLM, Freire PP, Rodrigues Plaça D, Salerno Filgueiras I, Coelho Salgado R, Jansen-Marques G, Rocha Oliveira AE, Peron JPS, Cabral-Miranda G, Barbuto JAM, Camara NOS, Calich VLG, Ochs HD, Condino-Neto A, Overmyer KA, Coon JJ, Balnis J, Jaitovich A, Schulte-Schrepping J, Ulas T, Schultze JL, Nakaya HI, Jurisica I, Cabral-Marques O. Severe COVID-19 Shares a Common Neutrophil Activation Signature with Other Acute Inflammatory States. Cells 2022; 11:cells11050847. [PMID: 35269470 PMCID: PMC8909161 DOI: 10.3390/cells11050847] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.
Collapse
Affiliation(s)
- Lena F. Schimke
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| | - Alexandre H. C. Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriela Crispim Baiocchi
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Dennyson Leandro M. Fonseca
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Paula Paccielli Freire
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Igor Salerno Filgueiras
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Ranieri Coelho Salgado
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriel Jansen-Marques
- Information Systems, School of Arts, Sciences and Humanities, University of Sao Paulo, São Paulo 03828-000, Brazil;
| | - Antonio Edson Rocha Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Jean Pierre Schatzmann Peron
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gustavo Cabral-Miranda
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - José Alexandre Marzagão Barbuto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Laboratory of Medical Investigation in Pathogenesis, Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Niels Olsen Saraiva Camara
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Vera Lúcia Garcia Calich
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Hans D. Ochs
- Department of Pediatrics, Seattle Children’s Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA;
| | - Antonio Condino-Neto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Jonas Schulte-Schrepping
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Joachim L. Schultze
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-020, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Otávio Cabral-Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| |
Collapse
|
82
|
Park U, Cho NH. Protective and pathogenic role of humoral responses in COVID-19. J Microbiol 2022; 60:268-275. [PMID: 35235178 PMCID: PMC8890013 DOI: 10.1007/s12275-022-2037-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
Abstract
Since the advent of SARS-CoV-2 in Dec. 2019, the global endeavor to identify the pathogenic mechanism of COVID-19 has been ongoing. Although humoral immunity including neutralizing activity play an important role in protection from the viral pathogen, dysregulated antibody responses may be associated with the pathogenic progression of COVID-19, especially in high-risk individuals. In addition, SARS-CoV-2 spike-specific antibodies acquired by prior infection or vaccination act as immune pressure, driving continuous population turnover by selecting for antibody-escaping mutations. Here, we review accumulating knowledge on the potential role of humoral immune responses in COVID-19, primarily focusing on their beneficial and pathogenic properties. Understanding the multifaceted regulatory mechanisms of humoral responses during SARS-CoV-2 infection can help us to develop more effective therapeutics, as well as protective measures against the ongoing pandemic.
Collapse
Affiliation(s)
- Uni Park
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
- Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
83
|
Ordoñez R, Solano D, Granizo G. T and B Cells Immune Response and the importance of vaccines Against SARS-CoV-2. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 has become a global pandemic because it is a severe respiratory syndrome that attacks many people worldwide and can lead to death depending on the severity. In recent years, the study of the acquired immune response (T cells) and innate (B cells) has increased to better treat the disease from the quantitative cell count. A picture has begun to emerge revealing that CD4+ T cells, CD8+ T cells, and neutralizing antibodies contribute to the control of SARS-CoV-2 in COVID-19 cases. This work studies the three fundamental components of the adaptive immune system: B cells (the source of antibodies), CD4+T cells, and CD8+T cells and their function against SARS-CoV2. The importance of vaccines and the different types of existing vaccines are discussed. Implications of covid-19 variants on Immunity and vaccine types are also analyzed to understand how the action of the immune system will help treat the disease.
Collapse
Affiliation(s)
- Ronny Ordoñez
- School of Biological Science and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Dulexy Solano
- School of Biological Science and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Gustavo Granizo
- School of Biological Science and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| |
Collapse
|
84
|
Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, Juno JA, Burrell LM, Kent SJ, Dore GJ, Kelleher AD, Matthews GV. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol 2022; 23:210-216. [PMID: 35027728 DOI: 10.1038/s41590-021-01113-x] [Citation(s) in RCA: 591] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
A proportion of patients surviving acute coronavirus disease 2019 (COVID-19) infection develop post-acute COVID syndrome (long COVID (LC)) lasting longer than 12 weeks. Here, we studied individuals with LC compared to age- and gender-matched recovered individuals without LC, unexposed donors and individuals infected with other coronaviruses. Patients with LC had highly activated innate immune cells, lacked naive T and B cells and showed elevated expression of type I IFN (IFN-β) and type III IFN (IFN-λ1) that remained persistently high at 8 months after infection. Using a log-linear classification model, we defined an optimal set of analytes that had the strongest association with LC among the 28 analytes measured. Combinations of the inflammatory mediators IFN-β, PTX3, IFN-γ, IFN-λ2/3 and IL-6 associated with LC with 78.5-81.6% accuracy. This work defines immunological parameters associated with LC and suggests future opportunities for prevention and treatment.
Collapse
Affiliation(s)
| | - David R Darley
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Daniel B Wilson
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Annett Howe
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - C Mee Ling Munier
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Sheila K Patel
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Gregory J Dore
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| | - Gail V Matthews
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
85
|
Leung E, Crass RL, Jorgensen SCJ, Raybardhan S, Langford BJ, Moore WJ, Rhodes NJ. Pharmacokinetic/Pharmacodynamic Considerations of Alternate Dosing Strategies of Tocilizumab in COVID-19. Clin Pharmacokinet 2022; 61:155-165. [PMID: 34894345 PMCID: PMC8665708 DOI: 10.1007/s40262-021-01092-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 12/29/2022]
Abstract
Tocilizumab is one of few treatments that have been shown to improve mortality in patients with coronavirus disease 2019 (COVID-19), but increased demand has led to relative global shortages. Recently, it has been suggested that lower doses, or fixed doses, of tocilizumab could be a potential solution to conserve the limited global supply while conferring equivalent therapeutic benefit to the dosing regimens studied in major trials. The relationship between tocilizumab dose, exposure, and response in COVID-19 has not been adequately characterized. There are a number of pharmacokinetic (PK) parameters that likely differ between patients with severe COVID-19 and patients in whom tocilizumab was studied during the US FDA approval process. Likewise, it is unclear whether a threshold exposure is necessary for tocilizumab efficacy. The safety and efficacy of fixed versus weight-based dosing of tocilizumab has been evaluated outside of COVID-19, but it is uncertain if these observations are generalizable to severe or critical COVID-19. In the current review, we consider the potential advantages and limitations of alternative tocilizumab dosing strategies. Leveraging PK models and simulation analyses, we demonstrate that a fixed single dose of tocilizumab 400 mg is unlikely to produce PK exposures equivalent to those achieved in the REMAP-CAP trial, although weight-stratified dosing appears to produce more uniform exposure distribution. Data from current and future trials could provide PK/pharmacodynamic insight to better inform dosing strategies at the bedside. Ultimately, rational dosing strategies that balance available limited supply with patient needs are required.
Collapse
Affiliation(s)
- Elizabeth Leung
- Department of Pharmacy, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
- Li Ka Shing Knowledge Institute, Toronto, ON, Canada.
| | - Ryan L Crass
- Ann Arbor Pharmacometrics Group, Ann Arbor, MI, USA
| | - Sarah C J Jorgensen
- Department of Pharmacy, Mount Sinai Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | | | - W Justin Moore
- Department of Pharmacy, Northwestern Medicine, Chicago, IL, USA
| | - Nathaniel J Rhodes
- Department of Pharmacy, Northwestern Medicine, Chicago, IL, USA
- Department of Pharmacy Practice, College of Pharmacy Downers Grove Campus, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, College of Pharmacy Downers Grove Campus, Midwestern University, Downers Grove, IL, USA
| |
Collapse
|
86
|
Ryan FJ, Hope CM, Masavuli MG, Lynn MA, Mekonnen ZA, Yeow AEL, Garcia-Valtanen P, Al-Delfi Z, Gummow J, Ferguson C, O'Connor S, Reddi BAJ, Hissaria P, Shaw D, Kok-Lim C, Gleadle JM, Beard MR, Barry SC, Grubor-Bauk B, Lynn DJ. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med 2022; 20:26. [PMID: 35027067 PMCID: PMC8758383 DOI: 10.1186/s12916-021-02228-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects. METHODS We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection. RESULTS Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not. CONCLUSIONS Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher M Hope
- Women's and Children's Health Network, North Adelaide, SA, Australia.,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Pravin Hissaria
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.,Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Simon C Barry
- Women's and Children's Health Network, North Adelaide, SA, Australia. .,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
87
|
Koutsakos M, Kedzierska K, Nguyen THO. Evaluation of Human Circulating T Follicular Helper Cells in Influenza- and SARS-CoV-2-Specific B Cell Immunity. Methods Mol Biol 2022; 2380:201-209. [PMID: 34802133 DOI: 10.1007/978-1-0716-1736-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Generation of effective immune protection against viral infection and vaccination depends greatly on a successful engagement and stimulation of adaptive immune B cells and a specialized CD4+ T cell subset called T follicular helper cells (TFH cells). Since TFH cells primarily reside in lymphoid tissues, they can be challenging to study in human settings. However, a counterpart of these cells, circulating TFH (cTFH) cells, can be detected in peripheral blood. Assessment of cTFH cells serves as an informative marker of humoral responses following viral infection and vaccination and can be predictive of antibody titers. Here, we describe a comprehensive flow cytometry detection method for dissecting cTFH subsets and activation, together with the assessment of antibody-secreting cells (ASCs), from a small volume of human whole blood. This approach allows the investigation of cellular events that underpin successful immune responses following influenza and SARS-CoV-2 infection/vaccination in humans and is applicable to other viral disease settings.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
88
|
Oyong DA, Loughland JR, Soon MSF, Chan JA, Andrew D, Wines BD, Hogarth PM, Olver SD, Collinge AD, Varelias A, Beeson JG, Kenangalem E, Price RN, Anstey NM, Minigo G, Boyle MJ. Adults with Plasmodium falciparum malaria have higher magnitude and quality of circulating T-follicular helper cells compared to children. EBioMedicine 2022; 75:103784. [PMID: 34968760 PMCID: PMC8718734 DOI: 10.1016/j.ebiom.2021.103784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Protective malarial antibodies are acquired more rapidly in adults than children, independently of cumulative exposure, however the cellular responses mediating these differences are unknown. CD4 T-follicular helper (Tfh) cells have key roles in inducing antibodies, with Th2-Tfh cell activation associated with antibody development in malaria. Whether Tfh cell activation in malaria is age dependent is unknown and no studies have compared Tfh cell activation in children and adults with malaria. METHODS We undertook a comprehensive study of Tfh cells, along with B cells and antibody induction in children and adults with malaria. Activation and proliferation of circulating Tfh (cTfh) cell subsets was measured ex vivo and parasite-specific Tfh cell frequencies and functions studied with Activation Induced Marker (AIM) assays and intracellular cytokine staining. FINDINGS During acute malaria, the magnitude of cTfh cell activation was higher in adults than in children and occurred across all cTfh cell subsets in adults but was restricted only to the Th1-cTfh subset in children. Further, adults had higher levels of parasite-specific cTfh cells, and cTfh cells which produced more Th2-Tfh associated cytokine IL-4. Consistent with a role of higher Tfh cell activation in rapid immune development in adults, adults had higher activation of B cells during infection and higher induction of antibodies 7 and 28 days after malaria compared to children. INTERPRETATION Our data provide evidence that age impacts Tfh cell activation during malaria, and that these differences may influence antibody induction after treatment. Findings have important implications for vaccine development in children. FUNDING This word was supported by the National Health and Medical Research Council of Australia, Wellcome Trust, Charles Darwin University Menzies School of Health Research, Channel 7 Children's Research Foundation, and National Health Institute.
Collapse
Affiliation(s)
- Damian A Oyong
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Jessica R Loughland
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alika D Collinge
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia; Department of Microbiology, Monash University, VIC, Australia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Michelle J Boyle
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Burnet Institute, Melbourne, VIC, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia.
| |
Collapse
|
89
|
Nguyen THO, Cohen CA, Rowntree LC, Bull MB, Hachim A, Kedzierska K, Valkenburg SA. T Cells Targeting SARS-CoV-2: By Infection, Vaccination, and Against Future Variants. Front Med (Lausanne) 2021; 8:793102. [PMID: 35004764 PMCID: PMC8739267 DOI: 10.3389/fmed.2021.793102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
T cell responses are a key cornerstone to viral immunity to drive high-quality antibody responses, establishing memory for recall and for viral clearance. Inefficient recruitment of T cell responses plays a role in the development of severe COVID-19 and is also represented by reduced cellular responses in men, children, and diversity compared with other epitope-specific subsets and available T cell receptor diversity. SARS-CoV-2-specific T cell responses are elicited by multiple vaccine formats and augmented by prior infection for hybrid immunity. Epitope conservation is relatively well-maintained leading to T cell crossreactivity for variants of concern that have diminished serological responses.
Collapse
Affiliation(s)
- Thi H. O. Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Maireid B. Bull
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
90
|
Hall VG, Ferreira V, Kumar D, Humar A. Impact of immunosuppression on the immune response to SARS-CoV-2 infection: A mechanistic study. Transpl Infect Dis 2021; 23:e13743. [PMID: 34668283 PMCID: PMC8646571 DOI: 10.1111/tid.13743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
The optimal management of immunosuppression in transplant patients infected with COVID-19 is unknown. We performed an in vitro study to determine the effect of individual immunosuppressive agents on SARS-CoV-2-specific T-cell cytokine expression. Convalescent peripheral blood mononuclear cells from eleven non-immunosuppressed patients with COVID-19 were preincubated with clinically relevant concentrations of immunosuppressive drugs (tacrolimus, mycophenolate, sirolimus, prednisone) and then stimulated with a SARS-CoV-2 peptide pool. Supernatants were analyzed by 14-plex high sensitivity T-cell cytokine array. With increasing concentrations of tacrolimus, there was a trend to reduction in the release of IL-2 (p = .0137), and IFN-γ (p = .0147) in response to peptide stimulation. There was also a subsequent trend toward a Th2 phenotype, indicated by lower IFN-γ:IL-13 ratio (p = .0663) and IFNγ:IL-4 ratio (p = .0176). Sirolimus appeared to be associated with a proinflammatory cytokine release, including TNF-α (p = .0027) and IL-1β (p = .0016), in response to SARS-CoV-2 peptides. In contrast, mycophenolate and prednisone did not influence the SARS-CoV-2-specific cytokine response. These are preliminary findings only, with larger studies required to inform clinical recommendations.
Collapse
Affiliation(s)
- Victoria G. Hall
- Transplant Infectious Diseases and Multi‐Organ Transplant ProgramUniversity Health NetworkTorontoOntarioCanada
| | - Victor Ferreira
- Transplant Infectious Diseases and Multi‐Organ Transplant ProgramUniversity Health NetworkTorontoOntarioCanada
| | - Deepali Kumar
- Transplant Infectious Diseases and Multi‐Organ Transplant ProgramUniversity Health NetworkTorontoOntarioCanada
| | - Atul Humar
- Transplant Infectious Diseases and Multi‐Organ Transplant ProgramUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
91
|
Koutsakos M, Lee WS, Wheatley AK, Kent SJ, Juno JA. T follicular helper cells in the humoral immune response to SARS-CoV-2 infection and vaccination. J Leukoc Biol 2021; 111:355-365. [PMID: 34730247 PMCID: PMC8667651 DOI: 10.1002/jlb.5mr0821-464r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vaccination remains the most effective mechanism to reduce the impact of COVID‐19. Induction of neutralizing antibodies is a strong correlate of protection from infection and severe disease. An understanding of the cellular events that underpin the generation of effective neutralizing antibodies is therefore key to the development of efficacious vaccines that target emerging variants of concern. Analysis of the immune response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2) infection and vaccination has identified circulating T follicular helper cells (cTFH) as a robust correlate of the neutralizing antibody response. Here, we discuss the analysis of cTFH cells and their lymphoid counterparts in human humoral immune responses during COVID‐19, and in response to vaccination with SARS‐CoV‐2 spike. We discuss the phenotypic heterogeneity of cTFH cells and the utility of cTFH subsets as informative biomarkers for development of humoral immunity. We posit that the analysis of the most effective cTFH will be critical to inducing durable immunity to new variants of SARS‐CoV‐2.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
92
|
Hill DL, Whyte CE, Innocentin S, Lee JL, Dooley J, Wang J, James EA, Lee JC, Kwok WW, Zand MS, Liston A, Carr EJ, Linterman MA. Impaired HA-specific T follicular helper cell and antibody responses to influenza vaccination are linked to inflammation in humans. eLife 2021; 10:e70554. [PMID: 34726156 PMCID: PMC8562996 DOI: 10.7554/elife.70554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody production following vaccination can provide protective immunity to subsequent infection by pathogens such as influenza viruses. However, circumstances where antibody formation is impaired after vaccination, such as in older people, require us to better understand the cellular and molecular mechanisms that underpin successful vaccination in order to improve vaccine design for at-risk groups. Here, by studying the breadth of anti-haemagglutinin (HA) IgG, serum cytokines, and B and T cell responses by flow cytometry before and after influenza vaccination, we show that formation of circulating T follicular helper (cTfh) cells was associated with high-titre antibody responses. Using Major Histocompatability Complex (MHC) class II tetramers, we demonstrate that HA-specific cTfh cells can derive from pre-existing memory CD4+ T cells and have a diverse T cell receptor (TCR) repertoire. In older people, the differentiation of HA-specific cells into cTfh cells was impaired. This age-dependent defect in cTfh cell formation was not due to a contraction of the TCR repertoire, but rather was linked with an increased inflammatory gene signature in cTfh cells. Together, this suggests that strategies that temporarily dampen inflammation at the time of vaccination may be a viable strategy to boost optimal antibody generation upon immunisation of older people.
Collapse
Affiliation(s)
- Danika L Hill
- Department of Immunology and Pathology, Monash UniversityMelbourneAustralia
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
| | - Carly E Whyte
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
| | - Silvia Innocentin
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
| | - Jia Le Lee
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
| | - James Dooley
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
| | - Jiong Wang
- Division of Nephrology, Department of Medicine and Clinical and Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Translational Research Program and Tetramer Core LaboratorySeattleUnited States
| | - James C Lee
- Department of Medicine, Cambridge Biomedical Campus, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of CambridgeCambridgeUnited Kingdom
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Diabetes ProgramSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
| | - Martin S Zand
- Division of Nephrology, Department of Medicine and Clinical and Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Adrian Liston
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
| | - Edward J Carr
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
- Department of Medicine, Cambridge Biomedical Campus, University of CambridgeCambridgeUnited Kingdom
| | - Michelle A Linterman
- Immunology Program, The Babraham Institute, Babraham Research CampusCambridgeUnited Kingdom
| |
Collapse
|
93
|
Cui D, Tang Y, Jiang Q, Jiang D, Zhang Y, Lv Y, Xu D, Wu J, Xie J, Wen C, Lu L. Follicular Helper T Cells in the Immunopathogenesis of SARS-CoV-2 Infection. Front Immunol 2021; 12:731100. [PMID: 34603308 PMCID: PMC8481693 DOI: 10.3389/fimmu.2021.731100] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious infectious disease that has led to a global pandemic with high morbidity and mortality. High-affinity neutralizing antibody is important for controlling infection, which is closely regulated by follicular helper T (Tfh) cells. Tfh cells play a central role in promoting germinal center reactions and driving cognate B cell differentiation for antibody secretion. Available studies indicate a close relationship between virus-specific Tfh cell-mediated immunity and SARS-CoV-2 infection progression. Although several lines of evidence have suggested that Tfh cells contribute to the control of SARS-CoV-2 infection by eliciting neutralizing antibody productions, further studies are needed to elucidate Tfh-mediated effector mechanisms in anti-SARS-CoV-2 immunity. Here, we summarize the functional features and roles of virus-specific Tfh cells in the immunopathogenesis of SARS-CoV-2 infection and in COVID-19 vaccines, and highlight the potential of targeting Tfh cells as therapeutic strategy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
94
|
Chappell KJ, Mordant FL, Li Z, Wijesundara DK, Ellenberg P, Lackenby JA, Cheung STM, Modhiran N, Avumegah MS, Henderson CL, Hoger K, Griffin P, Bennet J, Hensen L, Zhang W, Nguyen THO, Marrero-Hernandez S, Selva KJ, Chung AW, Tran MH, Tapley P, Barnes J, Reading PC, Nicholson S, Corby S, Holgate T, Wines BD, Hogarth PM, Kedzierska K, Purcell DFJ, Ranasinghe C, Subbarao K, Watterson D, Young PR, Munro TP. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1383-1394. [PMID: 33887208 PMCID: PMC8055208 DOI: 10.1016/s1473-3099(21)00200-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). METHODS We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 μg, 15 μg, or 45 μg, or one dose of sclamp vaccine at 45 μg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. FINDINGS Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 μg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 μg dose (7492, 4959-11 319), and the two 45 μg dose cohorts (8770, 5526-13 920 in the two-dose 45 μg cohort; 8793, 5570-13 881 in the single-dose 45 μg cohort); 4 weeks after the second dose (day 57) with two 5 μg doses (102 400, 64 857-161 676), with two 15 μg doses (74 725, 51 300-108 847), with two 45 μg doses (79 586, 55 430-114 268), only a single 45 μg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 μg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 μg doses (GMT 228, 95% CI 146-356), two 15 μg doses (230, 170-312), and two 45 μg doses (239, 187-307). INTERPRETATION This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. FUNDING Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.
Collapse
Affiliation(s)
- Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Zheyi Li
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Paula Ellenberg
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julia A Lackenby
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michael S Avumegah
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Christina L Henderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Kym Hoger
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Paul Griffin
- School of Medicine, The University of Queensland, St Lucia, QLD, Australia; Nucleus Network Brisbane Clinic, Herston, QLD, Australia; Department of Infectious Diseases, Mater Health, QLD, Australia
| | | | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sara Marrero-Hernandez
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Mai H Tran
- TetraQ, The University of Queensland, Herston, QLD, Australia
| | - Peter Tapley
- TetraQ, The University of Queensland, Herston, QLD, Australia
| | - James Barnes
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stavroula Corby
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas Holgate
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia; Department of Immunology and Pathology, Monash University, Alfred Health, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Charani Ranasinghe
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Trent P Munro
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
95
|
Zouboulis C, van Laar J, Schirmer M, Emmi G, Fortune F, Gül A, Kirino Y, Lee E, Sfikakis P, Shahram F, Wallace G. Adamantiades-Behçet's disease (Behçet's disease) and COVID-19. J Eur Acad Dermatol Venereol 2021; 35:e541-e543. [PMID: 33914986 PMCID: PMC8242698 DOI: 10.1111/jdv.17325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- C.C. Zouboulis
- International Society for Behçet's DiseaseDessauGermany
- Departments of Dermatology, Venereology, Allergology and ImmunologyDessau Medical CenterBrandenburg Medical School Theodor Fontane and Faculty of Health Sciences BrandenburgDessauGermany
| | - J.A.M. van Laar
- International Society for Behçet's DiseaseDessauGermany
- Departments of Internal Medicine and ImmunologyDivision of Allergy and Clinical ImmunologyAcademic Center for Rare Systemic Immune DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. Schirmer
- International Society for Behçet's DiseaseDessauGermany
- Department of Internal MedicineClinic IIMedical University of InnsbruckInnsbruckAustria
| | - G. Emmi
- International Society for Behçet's DiseaseDessauGermany
- Department of Experimental and Clinical MedicineUniversity of FirenzeFirenzeItaly
| | - F. Fortune
- International Society for Behçet's DiseaseDessauGermany
- Centre for Oral Immunobiology and Regenerative Medicine, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Oral Medicine UnitInstitute of DentistryDental Hospital and Behçet's Centre of ExcellenceRoyal London HospitalBarts Health NHS TrustLondonUK
| | - A. Gül
- International Society for Behçet's DiseaseDessauGermany
- Division of RheumatologyDepartment of Internal MedicineIstanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Y. Kirino
- International Society for Behçet's DiseaseDessauGermany
- Department of Stem Cell and Immune RegulationYokohama City University Graduate School of MedicineYokohamaJapan
| | - E.‐S. Lee
- International Society for Behçet's DiseaseDessauGermany
- Department of DermatologyAjou University School of MedicineSuwonKorea
| | - P.P. Sfikakis
- International Society for Behçet's DiseaseDessauGermany
- 1st Department of Propaedeutic and Internal Medicine and Joint Rheumatology ProgramMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - F. Shahram
- International Society for Behçet's DiseaseDessauGermany
- Rheumatology Research CenterShariati HospitalTehran University of Medical SciencesTeheranIran
| | - G.R. Wallace
- International Society for Behçet's DiseaseDessauGermany
- Academic Unit of OphthalmologyInstitute of Inflammation and AgeingUniversity of BirminghamBirminghamWest MidlandsUK
| |
Collapse
|
96
|
Zhang W, Chua B, Selva K, Kedzierski L, Ashhurst T, Haycroft E, Shoffner S, Hensen L, Boyd D, James F, Mouhtouris E, Kwong J, Chua K, Drewett G, Copaescu A, Dobson J, Rowntree L, Habel J, Allen L, Koay HF, Neil J, Gartner M, Lee C, Andersson P, Seemann T, Sherry N, Amanat F, Krammer F, Londrigan S, Wakim L, King N, Godfrey D, Mackay L, Thomas P, Nicholson S, Arnold K, Chung A, Holmes N, Smibert O, Trubiano J, Gordon C, Nguyen T, Kedzierska K. Immune responses in COVID-19 respiratory tract and blood reveal mechanisms of disease severity. RESEARCH SQUARE 2021:rs.3.rs-802084. [PMID: 34462740 PMCID: PMC8404907 DOI: 10.21203/rs.3.rs-802084/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luca Hensen
- Peter Doherty Institute for Infection and Immunity
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sarah Londrigan
- University of Melbourne at the Peter Doherty Institute for Infection and Immunity
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
97
|
Chaurasia P, Nguyen THO, Rowntree LC, Juno JA, Wheatley AK, Kent SJ, Kedzierska K, Rossjohn J, Petersen J. Structural basis of biased T cell receptor recognition of an immunodominant HLA-A2 epitope of the SARS-CoV-2 spike protein. J Biol Chem 2021; 297:101065. [PMID: 34384783 PMCID: PMC8352664 DOI: 10.1016/j.jbc.2021.101065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
CD8+ T cells play an important role in vaccination and immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although numerous SARS-CoV-2 CD8+ T cell epitopes have been identified, the molecular basis underpinning T cell receptor (TCR) recognition of SARS-CoV-2-specific T cells remains unknown. The T cell response directed toward SARS-CoV-2 spike protein–derived S269–277 peptide presented by the human leukocyte antigen (HLA)-A∗02:01 allomorph (hereafter the HLA-A2S269–277 epitope) is, to date, the most immunodominant SARS-CoV-2 epitope found in individuals bearing this allele. As HLA-A2S269–277-specific CD8+ T cells utilize biased TRAV12 gene usage within the TCR α-chain, we sought to understand the molecular basis underpinning this TRAV12 dominance. We expressed four TRAV12+ TCRs which bound the HLA-A2S269–277 complex with low micromolar affinity and determined the crystal structure of the HLA-A2S269–277 binary complex, and subsequently a ternary structure of the TRAV12+ TCR complexed to HLA-A2S269–277. We found that the TCR made extensive contacts along the entire length of the S269–277 peptide, suggesting that the TRAV12+ TCRs would be sensitive to sequence variation within this epitope. To examine this, we investigated cross-reactivity toward analogous peptides from existing SARS-CoV-2 variants and closely related coronaviruses. We show via surface plasmon resonance and tetramer studies that the TRAV12+ T cell repertoire cross-reacts poorly with these analogous epitopes. Overall, we defined the structural basis underpinning biased TCR recognition of CD8+ T cells directed at an immunodominant epitope and provide a framework for understanding TCR cross-reactivity toward viral variants within the S269–277 peptide.
Collapse
Affiliation(s)
- Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
98
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker L, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-Cell Profiling of the Antigen-Specific Response to BNT162b2 SARS-CoV-2 RNA Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.28.453981. [PMID: 34341788 PMCID: PMC8328055 DOI: 10.1101/2021.07.28.453981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA-based vaccines against SARS-CoV-2 are critical to limiting COVID-19 severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. We used single-cell technologies to identify and characterized antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 in longitudinal samples from a cohort of healthy donors. Mass cytometry and machine learning pinpointed a novel expanding, population of antigen-specific non-canonical memory CD4 + and CD8 + T cells. B cell sequencing suggested progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlated with eventual SARS-CoV-2 IgG and a donor lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms reveal an antigen-specific cellular basis of RNA vaccine-based immunity. ONE SENTENCE SUMMARY Single-cell profiling reveals the cellular basis of the antigen-specific response to the BNT162b2 SARS-CoV-2 RNA vaccine.
Collapse
|
99
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
100
|
Knies A, Ladage D, Braun RJ, Kimpel J, Schneider M. Persistence of humoral response upon SARS-CoV-2 infection. Rev Med Virol 2021; 32:e2272. [PMID: 34191369 PMCID: PMC8420449 DOI: 10.1002/rmv.2272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023]
Abstract
SARS‐CoV‐2 continues to leave its toll on global health and the economy. Management of the pandemic will rely heavily on the degree of adaptive immunity persistence following natural SARS‐CoV‐2 infection. Along with the progression of the pandemic, more literature on the persistence of the SARS‐CoV‐2‐specific antibody response is becoming available. Here, we summarize findings on the persistence of the humoral, including neutralizing antibody, response at three to eight months post SARS‐CoV‐2 infection in non‐pregnant adults. While the comparability of the literature is limited, findings on the detectability of immunoglobulin G class of antibodies (IgG) were most consistent and were reported in most studies to last for six to eight months. Studies investigating the response of immunoglobins M and A (IgM, IgA) were limited and reported mixed results, in particular, for IgM. The majority of studies observed neutralizing antibodies at all time points tested, which in some studies lasted up to eight months. The presence of neutralizing antibodies has been linked to protection from re‐infection, suggesting long‐term immunity to SARS‐CoV‐2. These neutralizing capacities may be challenged by emerging virus variants, but mucosal antibodies as well as memory B and T cells may optimize future immune responses. Thus, further longitudinal investigation of PCR‐confirmed seropositive individuals using sensitive assays is warranted to elucidate the nature and duration of a more long‐term humoral response.
Collapse
Affiliation(s)
- Andrea Knies
- Department of Scientific Coordination and Management, Danube Private University, Krems/Donau, Austria
| | - Dennis Ladage
- Department of Internal Medicine, Danube Private University, Krems/Donau, Austria
| | - Ralf J Braun
- Research Division for Neurodegenerative Diseases, Danube Private University, Krems/Donau, Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Miriam Schneider
- Department of Scientific Coordination and Management, Danube Private University, Krems/Donau, Austria
| |
Collapse
|