51
|
A nanofiber membrane maintains the quiescent phenotype of hepatic stellate cells. Dig Dis Sci 2012; 57:1152-62. [PMID: 22359192 DOI: 10.1007/s10620-012-2084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/06/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hepatic stellate cells (HSC) play a major role in the progression of liver fibrosis. AIM The aim of our study was to investigate whether rat HSC cultured on a nanofiber membrane (NM) retain their quiescent phenotype during both short- and long-term culture and whether activated HSC revert to a quiescent form when re-cultured on NM. METHODS Rat HSC cultured for 1 day on plastic plates (PP) were used as quiescent HSC, while cells cultured for 1 week on PP were considered to be activated HSC. Quiescent or activated HSC were subsequently plated on PP or NM and cultured for an additional 4 days at which time their gene expression, stress fiber development, and growth factor production were determined. For long-term culture, HSC were grown on NM for 20 days and the cells then replated on PP and cultured for another 10 days. RESULTS Expression of marker genes for HSC activation, stress fiber development, and growth factor production were significantly lower in both quiescent and activated HSC cultured on NM than in those cultured on PP. After long-term culture on NM, activation marker gene expression and stress fiber development were still significantly lower in HSC than in PP, and HSC still retained the ability to activate when replated onto PP. CONCLUSIONS HSC cultured on NM retained quiescent characteristics after both short- and long-term culture while activated HSC reverted toward a quiescent state when cultured on NM. Cultures of HSC grown on NM are a useful in vitro model to investigate the mechanisms of activation and deactivation.
Collapse
|
52
|
Abstract
Hepatic stellate cells (HSCs) are recognized as a major player in liver fibrogenesis. Upon liver injury, HSCs differentiate into myofibroblasts and participate in progression of fibrosis and cirrhosis. Additional cell types such as resident liver fibroblasts/myofibroblasts or bone marrow cells are also known to generate myofibroblasts. One of the major obstacles to understanding the mechanism of liver fibrogenesis is the lack of knowledge regarding the developmental origin of HSCs and other liver mesenchymal cells. Recent cell lineage analyses demonstrate that HSCs are derived from mesoderm during liver development. MesP1-expressing mesoderm gives rise to the septum transversum mesenchyme before liver formation and then to the liver mesothelium and mesenchymal cells, including HSCs and perivascular mesenchymal cells around the veins during liver development. During the growth of embryonic liver, the mesothelium, consisting of mesothelial cells and submesothelial cells, migrates inward from the liver surface and gives rise to HSCs and perivascular mesenchymal cells, including portal fibroblasts, smooth muscle cells around the portal vein, and fibroblasts around the central vein. Cell lineage analyses indicate that mesothelial cells are HSC progenitor cells capable of differentiating into HSCs and other liver mesenchymal cells during liver development.
Collapse
Affiliation(s)
- Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California
| |
Collapse
|
53
|
Abstract
Chronic liver injury of many etiologies produces liver fibrosis and may eventually lead to the formation of cirrhosis. Fibrosis is part of a dynamic process associated with the continuous deposition and resorption of extracellular matrix, mainly fibrillar collagen. Studies of fibrogenesis conducted in many organs including the liver demonstrate that the primary source of the extracellular matrix in fibrosis is the myofibroblast. Hepatic myofibroblasts are not present in the normal liver but transdifferentiate from heterogeneous cell populations in response to a variety of fibrogenic stimuli. Debate still exists regarding the origin of hepatic myofibroblasts. It is considered that hepatic stellate cells and portal fibroblasts have fibrogenic potential and are the major origin of hepatic myofibroblasts. Depending on the primary site of injury the fibrosis may be present in the hepatic parenchyma as seen in chronic hepatitis or may be restricted to the portal areas as in most biliary diseases. It is suggested that hepatic injury of different etiology triggers the transdifferentiation to myofibroblasts from distinct cell populations. Here we discuss the origin and fate of myofibroblast in liver fibrosis.
Collapse
Affiliation(s)
- Keiko Iwaisako
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0602, USA
| | | | | |
Collapse
|
54
|
Abstract
Hepatic fibrosis (HF) is a progressive condition with serious clinical complications arising from abnormal proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large number of mediator molecules make the fibrotic process enormously complex and dynamic. However, with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives.
Collapse
Affiliation(s)
- Areeba Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India,Address for correspondence: Dr. Riaz Ahmad, Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh- 202 002, Uttar Pradesh, India. E-mail:
| |
Collapse
|
55
|
Crawford JM, Burt AD. Anatomy, pathophysiology and basic mechanisms of disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:1-77. [DOI: 10.1016/b978-0-7020-3398-8.00001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
56
|
Abstract
Liver fibrosis is the result of the entire organism responding to a chronic injury. Every cell type in the liver contributes to the fibrosis. This paper first discusses key intracellular signaling pathways that are induced during liver fibrosis. The paper then examines the effects of these signaling pathways on the major cell types in the liver. This will provide insights into the molecular pathophysiology of liver fibrosis and should identify therapeutic targets.
Collapse
|
57
|
Chuang HY, Ng LT, Lin LT, Chang JS, Chen JY, Lin TC, Lin CC. Hydrolysable tannins of tropical almond show antifibrotic effects in TGF-β1-induced hepatic stellate cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2777-2784. [PMID: 21725979 DOI: 10.1002/jsfa.4521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 04/28/2011] [Accepted: 05/16/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Persistent activation of hepatic stellate cells (HSC-T6) has been known to cause liver fibrosis. In this study, our objective was to investigate the effects of chebulagic acid and chebulinic acid, two hydrolysable tannins of tropical almond (Terminalia chebula) fruits, on collagen synthesis and signal transduction in transforming growth factor-β1-stimulated HSC-T6 cells. The expression of Smad2, Smad3, Smad4, collagen I(α1)/III, and plasminogen activator inhibitor 1 (PAI-1) mRNAs was determined by reverse-transcription polymerase chain reaction and their protein levels were assessed by western blotting. RESULTS Results showed that chebulagic acid and chebulinic acid at 20 µmol L(-1) exhibited cytotoxic and anti-proliferative effects on HSC-T6 cells. They also significantly decreased the expression of Smd2, Smad3 and Smad4, and the synthesis of collagen, procollagen I (α1) and III, as well as suppressing the activation of PAI-1; these events consequently facilitated the resolution of fibrosis. CONCLUSION These results indicate that both chebulagic acid and chebulinic acid possess antifibrotic activity, and their mechanism of action could be through the inhibition of the Smad pathway.
Collapse
Affiliation(s)
- Hsin-Ying Chuang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | |
Collapse
|
58
|
Kisseleva T, Brenner DA. Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol 2011; 25:305-17. [PMID: 21497747 PMCID: PMC3086317 DOI: 10.1016/j.bpg.2011.02.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/18/2011] [Accepted: 02/23/2011] [Indexed: 01/31/2023]
Abstract
Liver fibrosis is an outcome of many chronic diseases, and often results in cirrhosis, liver failure, and portal hypertension. Liver transplantation is the only treatment available for patients with advanced stage of fibrosis. Therefore, alternative methods are required to develop new strategies for anti-fibrotic therapy. Available treatments are designed to substitute for liver transplantation or bridge the patients, they include inhibitors of fibrogenic cytokines such as TGF-β1 and EGF, inhibitors of rennin angiotensin system, and blockers of TLR4 signalling. Development of liver fibrosis is orchestrated by many cell types. However, activated myofibroblasts remain the primary target for anti-fibrotic therapy. Hepatic stellate cells and portal fibroblasts are considered to play a major role in development of liver fibrosis. Here we discuss the origin of activated myofibroblasts and different aspects of their activation, differentiation and potential inactivation during regression of liver fibrosis.
Collapse
|
59
|
Penz-Österreicher M, Österreicher CH, Trauner M. Fibrosis in autoimmune and cholestatic liver disease. Best Pract Res Clin Gastroenterol 2011; 25:245-58. [PMID: 21497742 PMCID: PMC3134112 DOI: 10.1016/j.bpg.2011.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 01/31/2023]
Abstract
Autoimmune and cholestatic liver disease account for a significant part of end-stage liver disease and are leading indications for liver transplantation. Especially cholestatic liver diseases (primary biliary cirrhosis and primary sclerosing cholangitis) appear to be different from other chronic liver diseases with regards to pathogenesis. Portal fibroblasts located in the connective tissue surrounding bile ducts appear to be different from hepatic stellate cells with regards to expression of marker proteins and response the profibrogenic and mitogenic stimuli. In addition there is increasing evidence for a cross talk between activated cholangiocytes and portal myofibroblasts. Several animal models have improved our understanding of the mechanisms underlying these chronic liver diseases. In the present review, we discuss the current concepts and ideas with regards to myofibroblastic cell populations, mechanisms of fibrosis, summarize characteristic histological findings and currently employed animal models of autoimmune and cholestatic liver disease.
Collapse
Affiliation(s)
- Melitta Penz-Österreicher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
60
|
Abstract
Hepatic fibrosis represents a wound healing response to liver injury due to various causes. Cirrhosis is the most advanced stage of fibrosis and, along with its complications, constitutes one of the major causes of morbidity and mortality worldwide. Past decades have witnessed tremendous progress in understanding the mechanisms of hepatic fibrosis. Activation of hepatic stellate cells is a key event in fibrosis, while a wide range of cytokines and their receptors and inflammatory cell subsets participate in the dynamic regulation of fibrosis progression. In terms of the diagnosis of hepatic fibrosis, novel serum markers and transient elastography have helped a lot in the assessment of liver fibrosis in addition to traditional liver biopsy. These findings both in the mechanism of liver fibrosis and the diagnosis of fibrosis are important for the implementation of rationally based approaches to limit fibrosis, accelerate repair and enhance liver regeneration in patients with chronic liver disease.
Collapse
|
61
|
Hickling KC, Hitchcock JM, Chipman JK, Hammond TG, Evans JG. Induction and progression of cholangiofibrosis in rat liver injured by oral administration of furan. Toxicol Pathol 2010; 38:213-29. [PMID: 20231548 DOI: 10.1177/0192623309357945] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cholangiofibrosis is a structural anomaly that precedes the development of cholangiocarcinoma in some rodent models. In this article, the authors examine the contribution of the epithelial and mesenchymal cells in the pathogenesis of this complex lesion. Furan was administered to rats by gavage in corn oil at 30 mg/kg b.w. (five daily doses per week) and livers were sampled between eight hr to three months. Characteristically the administration of furan caused centrilobular injury, and restoration was accomplished by proliferation of hepatocytes. Some areas of the liver were, however, more severely affected, and here, injury extended into portal and capsular areas, which resulted in a rapid proliferation of ductular cells that extended into the parenchyma accompanied by a subtype of liver fibroblasts. These ductules either differentiated into hepatocytes, with loss of the associated fibroblasts, or progressed to form tortuous ductular structures that replaced much of the parenchyma, leading to cholangiofibrosis. Although it is unclear what determines the difference in the hepatic response, a loss of micro-environmental cues that instigate hepatocyte differentiation and termination of the hepatocyte stem cell repair response may be perturbed by continual furan administration that results in an irreversible expansile lesion that may mimic the features of cholangiocarcinoma.
Collapse
Affiliation(s)
- K C Hickling
- Safety Assessment, AstraZeneca R&D Charnwood, Loughborough, United Kingdom.
| | | | | | | | | |
Collapse
|
62
|
Abstract
UNLABELLED Portal fibroblasts are an important yet often overlooked nonparenchymal cell population in the liver. They are distinct from hepatic stellate cells, yet like stellate cells differentiate in the setting of chronic injury to fibrogenic myofibroblasts, playing an important role in collagen production in the fibrotic liver. Portal fibroblasts (PFs) are located adjacent to bile duct epithelia and thus play a particularly significant role in biliary fibrosis. New data suggest that they may also have key functions independent of fibrogenesis. This review addresses the definition and characteristics of PFs as well as their signaling pathways, interactions with the biliary epithelium, and contributions to liver pathobiology. CONCLUSION PFs are an important and multifunctional nonparenchymal cell population in need of further study.
Collapse
Affiliation(s)
- Jonathan A. Dranoff
- Department of Medicine (Digestive Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520
| | - Rebecca G. Wells
- Department of Medicine (Gastroenterology), The University of Pennsylvania School of Medicine, 415 Curie Blvd., Philadelphia, PA, 19104
| |
Collapse
|
63
|
Lee Y, Friedman SL. Fibrosis in the Liver. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:151-200. [DOI: 10.1016/b978-0-12-385233-5.00006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
64
|
Abstract
Chronic injury results in a wound healing response that eventually leads to fibrosis. The response is generalized, with features common among multiple organ systems. In the liver, various different types of injury lead to fibrogenesis, implying a common pathogenesis. Although several specific therapies for patients who have different liver diseases have been successfully developed, including antiviral therapies for those who have hepatitis B and hepatitis C virus infection, specific and effective antifibrotic therapy remains elusive. Over the past 2 decades, great advances in the understanding of fibrosis have been made and multiple mechanisms underlying hepatic fibrogenesis uncovered. Elucidation of these mechanisms has been of fundamental importance in highlighting novel potential therapies. Preclinical studies have indicated several putative therapies that might abrogate fibrogenesis. This article emphasizes mechanisms underlying fibrogenesis and reviews available and future therapeutics.
Collapse
Affiliation(s)
- Don C Rockey
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
65
|
Decker NK, Abdelmoneim SS, Yaqoob U, Hendrickson H, Hormes J, Bentley M, Pitot H, Urrutia R, Gores GJ, Shah VH. Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1002-12. [PMID: 18755846 PMCID: PMC2543069 DOI: 10.2353/ajpath.2008.080158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/20/2008] [Indexed: 12/20/2022]
Abstract
Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.
Collapse
|
66
|
Wang M, Chen M, Zheng G, Dillard B, Tallarico M, Ortiz Z, Holterman AX. Transcriptional activation by growth hormone of HNF-6-regulated hepatic genes, a potential mechanism for improved liver repair during biliary injury in mice. Am J Physiol Gastrointest Liver Physiol 2008; 295:G357-66. [PMID: 18511741 PMCID: PMC2519853 DOI: 10.1152/ajpgi.00581.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth hormone (GH) function is mediated through multiple endocrine pathways. In the liver, GH also transcriptionally activates hepatocyte nuclear factor-6 (HNF-6; OC-1), a liver-enriched transcription factor that regulates the expression of genes essential to hepatic function. We hypothesize that GH modulates hepatic function in the normal and injured liver through HNF-6 and HNF-6 target genes. CD1 mice received PBS or GH for the 1-, 7-, and 28-day course of Sham operation or bile duct ligation (BDL). Proliferation-, metabolic-, and profibrotic-specific hepatic functions were assessed with a focus on candidate HNF-6 transcriptional target genes. Confirmation of HNF-6 regulation was done by analysis of target gene expression in liver infected with recombinant adenovirus AdHNF-6 expression vectors. GH administration upregulated HNF-6 expression throughout the course of liver injury. This was associated with increased expression of HNF-6 proliferative target genes cyclin D1 and metabolic gene Cyp7A1 and downregulation of profibrogenic TGFb2R. Hepatic function improved such as enhanced hepatocyte proliferation, higher cholesterol clearance throughout the course of injury, and attenuated fibrogenic response at day 28 of BDL. GH treatment also transcriptionally increased albumin expression in an HNF-6-independent manner. This was associated with enhanced serum albumin levels. In conclusion, the GH/HNF-6 axis is a potential in vivo mechanism underlying GH diverse function in the liver to modulate the liver repair response to BDL.
Collapse
Affiliation(s)
- Minhua Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Michael Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Guoqiang Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Barney Dillard
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Mike Tallarico
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Zorayda Ortiz
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Ai-Xuan Holterman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
67
|
Friedman SL. Hepatic fibrosis -- overview. Toxicology 2008; 254:120-9. [PMID: 18662740 DOI: 10.1016/j.tox.2008.06.013] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 02/08/2023]
Abstract
The study of hepatic fibrosis, or scarring in response to chronic liver injury, has witnessed tremendous progress in the past two decades. Clarification of the cellular sources of scar, and emergence of hepatic stellate cells not only as a fibrogenic cell type, but also as a critical immunomodulatory and homeostatic regulator are among the most salient advances. Activation of hepatic stellate cells remains a central event in fibrosis, complemented by evidence of additional sources of matrix-producing cells including bone marrow, portal fibroblasts, and epithelial-mesenchymal transition from both hepatocytes and cholangiocytes. A growing range of cytokines and their receptors and inflammatory cell subsets have further expanded our knowledge about this dynamic process. Collectively, these findings have laid the foundation for continued elucidation of underlying mechanisms, and more importantly for the implementation of rationally based approaches to limit fibrosis, accelerate repair and enhance liver regeneration in patients with chronic liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Box 1123, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 11-70C, New York, NY 10029-6574, United States.
| |
Collapse
|
68
|
Abstract
Substantial improvements in the treatment of chronic liver disease have accelerated interest in uncovering the mechanisms underlying hepatic fibrosis and its resolution. Activation of resident hepatic stellate cells into proliferative, contractile, and fibrogenic cells in liver injury remains a dominant theme driving the field. However, several new areas of rapid progress in the past 5-10 years also have taken root, including: (1) identification of different fibrogenic populations apart from resident stellate cells, for example, portal fibroblasts, fibrocytes, and bone-marrow-derived cells, as well as cells derived from epithelial mesenchymal transition; (2) emergence of stellate cells as finely regulated determinants of hepatic inflammation and immunity; (3) elucidation of multiple pathways controlling gene expression during stellate cell activation including transcriptional, post-transcriptional, and epigenetic mechanisms; (4) recognition of disease-specific pathways of fibrogenesis; (5) re-emergence of hepatic macrophages as determinants of matrix degradation in fibrosis resolution and the importance of matrix cross-linking and scar maturation in determining reversibility; and (6) hints that hepatic stellate cells may contribute to hepatic stem cell behavior, cancer, and regeneration. Clinical and translational implications of these advances have become clear, and have begun to impact significantly on the management and outlook of patients with chronic liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
69
|
Chang HF, Lin YH, Chu CC, Wu SJ, Tsai YH, Chao JCJ. Protective effects of Ginkgo biloba, Panax ginseng, and Schizandra chinensis extract on liver injury in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2008; 35:995-1009. [PMID: 18186586 DOI: 10.1142/s0192415x07005466] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study investigated the effects of the combined extracts of Ginkgo biloba, Panax ginseng, and Schizandra chinensis at different doses on hepatic antioxidant status and fibrosis in rats with carbon tetrachloride (CCl4)-induced liver injury. Male Sprague-Dawley rats (n = 8-12 per group) were divided into the control, CCl4, CCl4 + silymarin (0.35%), CCl4 + low-dose herbal extract (0.24% of Ginkgo biloba, Panax ginseng, and Schizandra chinensis extract at 1:1:1; LE), and CCl4 + high-dose herbal extract (1.20% of the same herbal extract; HE) groups. Silymarin or herbal extract was orally given to rats a week before chronic intraperitoneal injection with CCl4 for 6 weeks. The pathological results showed that herbal extract suppressed hepatic bile duct proliferation, and low-dose herbal extract inhibited liver fibrosis. Hepatic superoxide dismutase (SOD) activity was lower in the CCl4 group, but there was no difference in the silymarin or herbal extract treated groups compared to the control group. Hepatic catalase activity and the ratio of reduced to oxidized glutathione were significantly higher (p < 0.05) in the HE group than those in the CCl4 group. Silymarin and herbal extract reversed the impaired hepatic total antioxidant status (p < 0.05). Herbal extract partially reduced the elevated hepatic lipid peroxides. Hepatic transforming growth factor-beta1 (TGF-beta1) level decreased significantly (p < 0.05) in the LE group. Therefore, high-dose herbal extract improved hepatic antioxidant capacity through enhancing catalase activity and glutathione redox status, whereas low-dose herbal extract inhibited liver fibrosis through decreasing hepatic TGF-beta1 level in rats with CCl4-induced liver injury.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | |
Collapse
|
70
|
Díaz R, Kim JW, Hui JJ, Li Z, Swain GP, Fong KSK, Csiszar K, Russo PA, Rand EB, Furth EE, Wells RG. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008; 39:102-15. [PMID: 17900655 DOI: 10.1016/j.humpath.2007.05.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 12/11/2022]
Abstract
The epithelial to mesenchymal transition has recently been implicated as a source of fibrogenic myofibroblasts in organ fibrosis, particularly in the kidney. There is as yet minimal evidence for the epithelial to mesenchymal transition in the liver. We hypothesized that this process in biliary epithelial cells plays an important role in biliary fibrosis and might be found in patients with especially rapid forms, such as is seen in biliary atresia. We therefore obtained liver tissue from patients with biliary atresia as well as a variety of other pediatric and adult liver diseases. Tissues were immunostained with antibodies against the biliary epithelial cell marker CK19 as well as with antibodies against proteins characteristically expressed by cells undergoing the epithelial to mesenchymal transition, including fibroblast-specific protein 1, the collagen chaperone heat shock protein 47, the intermediate filament protein vimentin, and the transcription factor Snail. The degree of colocalization was quantified using a multispectral imaging system. We observed significant colocalization between CK19 and other markers of the epithelial to mesenchymal transition in biliary atresia as well as other liver diseases associated with significant bile ductular proliferation, including primary biliary cirrhosis. There was minimal colocalization seen in healthy adult and pediatric livers, or in livers not also demonstrating bile ductular proliferation. Multispectral imaging confirmed significant colocalization of the different markers in biliary atresia. In conclusion, we present significant histologic evidence suggesting that the epithelial to mesenchymal transition occurs in human liver fibrosis, particularly in diseases such as biliary atresia and primary biliary cirrhosis with prominent bile ductular proliferation.
Collapse
Affiliation(s)
- Rosalyn Díaz
- Department of Medicine (Gastroenterology), University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 2007; 46:1246-56. [PMID: 17625791 DOI: 10.1002/hep.21792] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UNLABELLED Myofibroblasts derived from portal fibroblasts are important fibrogenic cells in the early stages of biliary fibrosis. In contrast to hepatic stellate cells, portal fibroblasts have not been well studied in vitro, and little is known about their myofibroblastic differentiation. In this article we report the isolation and characterization of rat portal fibroblasts in culture. We demonstrate that primary portal fibroblasts undergo differentiation to alpha-smooth muscle actin-expressing myofibroblasts over 10-14 days. Marker analysis comparing portal fibroblasts to hepatic stellate cells demonstrated that these are distinct populations and that staining with elastin and desmin can differentiate between them. Portal fibroblasts expressed elastin at all stages in culture but never expressed desmin, whereas hepatic stellate cells consistently expressed desmin but never elastin. Immunostaining of rat liver tissue confirmed these results in vivo. Characterization of portal fibroblast differentiation in culture demonstrated that these cells required transforming growth factor-beta (TGF-beta): cells remained quiescent in the presence of a TGF-beta receptor kinase inhibitor, whereas exogenous TGF-beta1 enhanced portal fibroblast alpha-smooth muscle actin expression and stress fiber formation. In contrast, platelet-derived growth factor inhibited myofibroblastic differentiation. Portal fibroblasts were also dependent on mechanical tension for myofibroblastic differentiation, and cells cultured on polyacrylamide supports of variable stiffness demonstrated an increasingly myofibroblastic phenotype as stiffness increased. CONCLUSION Portal fibroblasts are morphologically and functionally distinct from hepatic stellate cells. Portal fibroblast myofibroblastic differentiation can be modeled in culture and requires both TGF-beta and mechanical tension.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
72
|
Otte JM, Schwenger M, Brunke G, Schmitz F, Otte C, Kiehne K, Kloehn S, Mönig H, Schmidt WE, Herzig KH. Differential regulated expression of keratinocyte growth factor and its receptor in experimental and human liver fibrosis. ACTA ACUST UNITED AC 2007; 144:82-90. [PMID: 17692400 DOI: 10.1016/j.regpep.2007.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 06/07/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM Immunomodulatory and protective properties have been identified for the keratinocyte growth factor (KGF). For hepatocytes, pro-proliferative and anti-apoptotic effects of this growth factor have been reported in vitro. This study was designed to characterize a putative role of KGF in observed histomorphological changes in both, human and experimental liver fibrosis. METHODS Liver fibrosis and cirrhosis was induced in rats by repetitive exposure to phenobarbitone and increasing doses of carbon tetrachloride. Human samples were obtained from patients undergoing surgery for partial hepatectomy or transplantation. Organ samples were scored for inflammation and morphological changes. Expression of KGF and its receptor (KGFR) mRNA was quantified by real-time RT-PCR. Protein expression and receptor phosphorylation was determined by Western blot analysis. In-situ hybridization and immunohistochemistry were utilized to determine distribution of KGF and KGFR in the liver. RESULTS Expression of KGF was significantly increased in damaged liver tissue in correlation to the degree of fibrosis, whereas expression of the receptor was up-regulated in early stages of liver fibrosis and down-regulated in cirrhotic organs. Protein expression of this growth factor and its receptor correlated with the alterations in mRNA. KGF expression was restricted to mesenchymal cells, whereas expression of KGFR was detected on hepatocytes only. CONCLUSION The expression of KGF and KGFR is differentially and significantly regulated in damaged liver tissue. This growth factor might therefore not only contribute to morphological alterations but also regeneration of liver parenchyma most likely mediated by indirect mechanisms of action.
Collapse
Affiliation(s)
- Jan-Michel Otte
- Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Omenetti A, Yang L, Li YX, McCall SJ, Jung Y, Sicklick JK, Huang J, Choi S, Suzuki A, Diehl AM. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. J Transl Med 2007; 87:499-514. [PMID: 17334411 DOI: 10.1038/labinvest.3700537] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In bile duct-ligated (BDL) rodents, as in humans with chronic cholangiopathies, biliary obstruction triggers proliferation of bile ductular cells that are surrounded by fibrosis produced by adjacent myofibroblastic cells in the hepatic mesenchyme. The proximity of the myofibroblasts and cholangiocytes suggests that mesenchymal-epithelial crosstalk promotes the fibroproliferative response to cholestatic liver injury. Studying BDL mice, we found that bile duct obstruction induces activity of the Hedgehog (Hh) pathway, a system that regulates the viability and differentiation of various progenitors during embryogenesis. After BDL, many bile ductular cells and fibroblastic-appearing cells in the portal stroma express Hh ligands, receptor and/or target genes. Transwell cocultures of an immature cholangiocyte line that expresses the Hh receptor, Patched (Ptc), with liver myofibroblastic cells demonstrated that both cell types produced Hh ligands that enhanced each other's viability and proliferation. Further support for the concept that Hh signaling modulates the response to BDL was generated by studying PtcLacZ mice, which have an impaired ability to constrain Hh signaling due to a heterozygous deficiency of Ptc. After BDL, PtcLacZ mice upregulated fibrosis gene expression earlier than wild-type controls and manifested an unusually intense ductular reaction, more expanded fibrotic portal areas, and a greater number of lobular necrotic foci. Our findings reveal that adult livers resurrect developmental signaling systems, such as the Hh pathway, to guide remodeling of the biliary epithelia and stroma after cholestatic injury.
Collapse
MESH Headings
- Animals
- Bile Ducts/metabolism
- Bile Ducts/pathology
- Bile Ducts/surgery
- Biomarkers/metabolism
- Cell Survival
- Cells, Cultured
- Disease Models, Animal
- Epithelium/metabolism
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Hydroxyproline/metabolism
- Kruppel-Like Transcription Factors/metabolism
- Kupffer Cells/metabolism
- Kupffer Cells/pathology
- Ligation
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/metabolism
- Liver Cirrhosis, Biliary/pathology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Patched Receptors
- Patched-1 Receptor
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Zinc Finger Protein Gli2
Collapse
Affiliation(s)
- Alessia Omenetti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007; 117:539-48. [PMID: 17332881 PMCID: PMC1804370 DOI: 10.1172/jci30542] [Citation(s) in RCA: 693] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Models of liver fibrosis, which include cell culture models, explanted and biopsied human material, and experimental animal models, have demonstrated that liver fibrosis is a highly dynamic example of solid organ wound healing. Recent work in human and animal models has shown that liver fibrosis is potentially reversible and, in specific circumstances, demonstrates resolution with a restoration of near normal architecture. This Review highlights the manner in which studies of models of liver fibrosis have contributed to the paradigm of dynamic wound healing in this solid organ.
Collapse
Affiliation(s)
- John P Iredale
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
75
|
Jiroutova A, Slavkovsky R, Cermakova M, Majdiakova L, Hanovcova I, Bolehovska R, Hajzlerova M, Radilova H, Ruszova E, Kanta J. Expression of mRNAs related to connective tissue metabolism in rat hepatic stellate cells and myofibroblasts. ACTA ACUST UNITED AC 2007; 58:263-73. [PMID: 17056239 DOI: 10.1016/j.etp.2006.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 06/07/2006] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cells (HSC) and liver myofibroblasts (MFB) are two cell populations most likely responsible for the synthesis of most connective tissue components in fibrotic liver. They differ in their origin and location, and possibly in patterns of gene expression. Normal and carbon tetrachloride-cirrhotic livers from rats were used to isolate HSC. Liver was perfused with pronase and collagenase solutions, followed by centrifugation of the cell suspension on a density gradient. HSC were quiescent 2 days after plating on plastic but they became activated after another 5 days in culture. When the culture was passaged 5 times, its character changed profoundly as HSC were replaced by MFB. Microarray analysis was used to determine gene expression in quiescent HSC, activated HSC and MFB. The expression of 49 genes coding for connective tissue proteins, proteoglycans, metalloproteinases and their inhibitors, growth factors and cellular markers was determined. The pattern of gene expression changed during HSC activation and there were distinct differences between HSC and MFB. Little difference between normal cells and cells isolated from cirrhotic liver was found.
Collapse
Affiliation(s)
- Alena Jiroutova
- Charles University in Prague, Faculty of Medicine in Hradec Kralove, Department of Medical Biochemistry, Simkova 870, 500 38 Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Chen CL, Huang SS, Huang JS. Cellular Heparan Sulfate Negatively Modulates Transforming Growth Factor-β1 (TGF-β1) Responsiveness in Epithelial Cells. J Biol Chem 2006; 281:11506-14. [PMID: 16492675 DOI: 10.1074/jbc.m512821200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-surface proteoglycans have been shown to modulate transforming growth factor (TGF)-beta responsiveness in epithelial cells and other cell types. However, the proteoglycan (heparan sulfate or chondroitin sulfate) involved in modulation of TGF-beta responsiveness and the mechanism by which it modulates TGF-beta responsiveness remain unknown. Here we demonstrate that TGF-beta1 induces transcriptional activation of plasminogen activator inhibitor-1 (PAI-1) and growth inhibition more potently in CHO cell mutants deficient in heparan sulfate (CHO-677 cells) than in wild-type CHO-K1 cells. 125I-TGF-beta1 affinity labeling analysis of cell-surface TGF-beta receptors reveals that CHO-K1 and CHO-677 cells exhibit low (<1) and high (>1) ratios of 125I-TGF-beta1 binding to TbetaR-II and TbetaR-I, respectively. Receptor-bound 125I-TGF-beta1 undergoes nystatin-inhibitable rapid degradation in CHO-K1 cells but not in CHO-677 cells. In Mv1Lu cells (which, like CHO-K1 cells, exhibit nystatin-inhibitable rapid degradation of receptor-bound 125I-TGF-beta1), treatment with heparitinase or a heparan sulfate biosynthesis inhibitor results in a change from a low (<1) to a high (>1) ratio of 125I-TGF-beta1 binding to TbetaR-II and TbetaR-I and enhanced TGF-beta1-induced transcriptional activation of PAI-1. Sucrose density gradient analysis indicates that a significant fraction of TbetaR-I and TbetaR-II is localized in caveolae/lipid-raft fractions in CHO-K1 and Mv1Lu cells whereas the majority of the TGF-beta receptors are localized in non-lipid-raft fractions in CHO-677 cells. These results suggest that heparan sulfate negatively modulates TGF-beta1 responsiveness by decreasing the ratio of TGF-beta1 binding to TbetaR-II and TbetaR-I, facilitating caveolae/lipid-raft-mediated endocytosis and rapid degradation of TGF-beta1, thus diminishing non-lipid-raft-mediated endocytosis and signaling of TGF-beta1 in these epithelial cells.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
78
|
Hepatic Fibrosis and Cirrhosis. ZAKIM AND BOYER'S HEPATOLOGY 2006. [DOI: 10.1016/b978-1-4160-3258-8.50011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
79
|
White ES, Atrasz RG, Hu B, Phan SH, Stambolic V, Mak TW, Hogaboam CM, Flaherty KR, Martinez FJ, Kontos CD, Toews GB. Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). Am J Respir Crit Care Med 2005; 173:112-21. [PMID: 16179636 PMCID: PMC1434700 DOI: 10.1164/rccm.200507-1058oc] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Myofibroblasts are primary effector cells in idiopathic pulmonary fibrosis (IPF). Defining mechanisms of myofibroblast differentiation may be critical to the development of novel therapeutic agents. OBJECTIVE To show that myofibroblast differentiation is regulated by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) activity in vivo, and to identify a potential mechanism by which this occurs. METHODS We used tissue sections of surgical lung biopsies from patients with IPF to localize expression of PTEN and alpha-smooth muscle actin (alpha-SMA). We used cell culture of pten(-/-) and wild-type fibroblasts, as well as adenoviral strategies and pharmacologic inhibitors, to determine the mechanism by which PTEN inhibits alpha-SMA, fibroblast proliferation, and collagen production. RESULTS In human lung specimens of IPF, myofibroblasts within fibroblastic foci demonstrated diminished PTEN expression. Furthermore, inhibition of PTEN in mice worsened bleomycin-induced fibrosis. In pten(-/-) fibroblasts, and in normal fibroblasts in which PTEN was inhibited, alpha-SMA, proliferation, and collagen production was upregulated. Addition of transforming growth factor-beta to wild-type cells, but not pten(-/-) cells, resulted in increased alpha-SMA expression in a time-dependent fashion. In pten(-/-) cells, reconstitution of PTEN decreased alpha-SMA expression, proliferation, and collagen production, whereas overexpression of PTEN in wild-type cells inhibited transforming growth factor-beta-induced myofibroblast differentiation. It was observed that both the protein and lipid phosphatase actions of PTEN were capable of modulating the myofibroblast phenotype. CONCLUSIONS The results indicate that in IPF, myofibroblasts have diminished PTEN expression. Inhibition of PTEN in vivo promotes fibrosis, and PTEN inhibits myofibroblast differentiation in vitro.
Collapse
Affiliation(s)
- Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6301 MSRB III/0642, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0642, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Younossi ZM, Baranova A, Ziegler K, Del Giacco L, Schlauch K, Born TL, Elariny H, Gorreta F, VanMeter A, Younoszai A, Ong JP, Goodman Z, Chandhoke V. A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease. Hepatology 2005; 42:665-674. [PMID: 16116632 DOI: 10.1002/hep.20838] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and some of its forms are progressive. This study describes the profiling of hepatic gene expression and serum protein content in patients with different subtypes of NAFLD. Liver biopsy specimens from 98 bariatric surgery patients were classified as normal, steatosis alone, steatosis with nonspecific inflammation, and nonalcoholic steatohepatitis (NASH). Microarray hybridizations were performed in triplicate and the microarray expression levels of a selected group of genes were confirmed using real-time quantitative reverse-transcriptase polymerase chain reaction. Serum protein profiles of the same patients were determined by SELDI-TOF mass spectrometry. Of 98 obese patients, 91 were diagnosed with NAFLD (12 steatosis alone, 52 steatosis with nonspecific inflammation, and 27 NASH), and 7 patients without NAFLD served as obese controls. Each group of NAFLD patients was compared with the obese controls, and 22 genes with more than twofold differences in expression levels were revealed. Proteomics analyses were performed for the same group comparisons and revealed twelve significantly different protein peaks. In conclusion, this genomic/proteomic analysis suggests differential expression of several genes and protein peaks in patients within and across the forms of NAFLD. These findings may help clarify the pathogenesis of NAFLD and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zobair M Younossi
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA 22042, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Proell V, Mikula M, Fuchs E, Mikulits W. The plasticity of p19 ARF null hepatic stellate cells and the dynamics of activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:76-87. [PMID: 15878400 DOI: 10.1016/j.bbamcr.2004.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/16/2004] [Accepted: 12/20/2004] [Indexed: 02/08/2023]
Abstract
In the healthy adult liver, quiescent hepatic stellate cells (HSCs) present the major site for vitamin A storage in cytoplasmic lipid droplets. During liver injury due to viral infection or alcohol intoxication, HSCs get activated and produce high amounts of extracellular matrix components for tissue repair and fibrogenesis. Employing p19 ARF deficiency, we established a non-transformed murine HSC model to investigate their plasticity and the dynamics of HSC activation. Primary HSCs isolated from livers of adult p19 ARF null mice underwent spontaneous activation through long-term passaging without an obvious replicative limit. The immortalized cell line, referred to as M1-4HSC, showed stellate cell characteristics including the expression of desmin, glial fibrillary acidic protein, alpha-smooth muscle actin and pro-collagen I. Treatment of these non-tumorigenic M1-4HSC with pro-fibrogenic TGF-beta1 provoked a morphological transition to a myofibroblastoid cell type which was accompanied by enhanced cellular turnover and impaired migration. In addition, M1-4HSCs expressed constituents of cell adhesion complexes such as p120(ctn) and beta-catenin at cell borders, which dislocalized in the cytoplasm during stimulation to myofibroblasts, pointing to the epitheloid characteristics of HSCs. By virtue of its non-transformed phenotype and unlimited availability of cells, the p19(ARF) deficient model of activated HSCs and corresponding myofibroblasts render this system a highly valuable tool for studying the cellular and molecular basis of hepatic fibrogenesis.
Collapse
Affiliation(s)
- Verena Proell
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschke-Gasse 8a, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
82
|
TGF beta1 and PDGF AA override collagen type I inhibition of proliferation in human liver connective tissue cells. BMC Gastroenterol 2004; 4:30. [PMID: 15579200 PMCID: PMC539266 DOI: 10.1186/1471-230x-4-30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 12/03/2004] [Indexed: 12/14/2022] Open
Abstract
Background A marked expansion of the connective tissue population and an abnormal deposition of extracellular matrix proteins are hallmarks of chronic and acute injuries to liver tissue. Liver connective tissue cells, also called stellate cells, derived from fibrotic liver have been thoroughly characterized and correspond phenotypically to myofibroblasts. They are thought to derive from fat-storing Ito cells in the perisinusoidal space and acquire a contractile phenotype when activated by tissue injury. In the last few years it has become evident that several peptide growth factors such as PDGF AA and TGF-β are involved in the development of fibrosis by modulating myofibroblast proliferation and collagen secretion. The fact that during the development of chronic fibrosis there is concomitant deposition of collagen, a known inhibitory factor, and sustained cell proliferation, raises the possibility that stellate cells from chronic liver fibrosis patients fail to respond to normal physiologic controls. Methods In this study we address whether cells from fibrotic liver patients respond to normal controls of proliferation. We compared cell proliferation of primary human liver connective tissue cells (LCTC) from patients with liver fibrosis and skin fibroblasts (SF) in the presence of collagens type I and IV; TGF-β, PDGF AA and combinations of collagen type I and TGF-β or PDGF AA. Results Our results indicate that despite displaying normal contact and collagen-induced inhibition of proliferation LCTC respond more vigorously to lower concentrations of PDGF AA. In addition, we show that collagen type I synergizes with growth factors to promote mitogenesis of LCTC but not SF. Conclusions The synergistic interaction of growth factors and extracellular matrix proteins may underlie the development of chronic liver fibrosis.
Collapse
|
83
|
Corchero J, Martín-Partido G, Dallas SL, Fernández-Salguero PM. Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-beta-binding protein-1. Int J Exp Pathol 2004; 85:295-302. [PMID: 15379962 PMCID: PMC2517523 DOI: 10.1111/j.0959-9673.2004.00397.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mice lacking aryl hydrocarbon (dioxin) receptor (AhR) had variable degree of hepatic fibrosis and altered liver architecture. Transforming growth factor-beta (TGF-beta), a major profibrogenic molecule in the liver, is localized to the extracellular matrix by its association to the latent TGF-beta-binding protein-1 (LTBP-1). Very recently, LTBP-1 has been shown to be negatively regulated by the AhR. Embryonic fibroblasts from AhR-null (AhR(-/-)) mice overexpress LTBP-1 and secrete four times more active TGF-beta than wild-type fibroblasts. To test whether TGF-beta and LTBP-1 overexpression colocalize within the fibrotic nodule of AhR(-/-) liver, we have characterized this hepatic portal fibrosis using collagen protein staining, immunohistochemistry and in situ hybridization. LTBP-1 mRNA and protein were overexpressed in the fibrotic region and colocalized with other indicators of fibrosis such as collagen and fibronectin and the fibroblast marker proteins alpha-actin and vimentin. TGF-beta protein also colocalized with fibrosis, although in contrast, TGF-beta mRNA expression, rather than restricted to the fibrotic compartment, was present throughout the hepatic parenchyma and exhibited similar levels in wild-type and AhR(-/-) mice. These results suggest that LTBP-1 targets TGF-beta to specific areas of the liver and that the AhR could be a negative regulator of liver fibrosis, possibly through the control of LTBP-1 and TGF-beta activities.
Collapse
Affiliation(s)
- Javier Corchero
- Departamento de Bioquímicay Biología Molecular, Facultad de Ciencias Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
84
|
Yang W, Wu B, Asakura S, Kohno I, Matsuda M. Soluble fibrin augments spreading of fibroblasts by providing RGD sequences of fibrinogen in soluble fibrin. Thromb Res 2004; 114:293-300. [PMID: 15381393 DOI: 10.1016/j.thromres.2004.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 05/13/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
We previously reported that fibroblasts were found to spread far more avidly on NaBr-solubilized fibrin monomer (FM) monolayers than on immobilized fibrinogen (Fbg), indicating that removal of fibrinopeptides by thrombin is a prerequisite for the fibrin-mediated augmentation of cell spreading [J. Biol. Chem. 272 (1997) 8824-8829]. Soluble fibrin (SF), a 1:2 complex of fibrin-monomer and fibrinogen, is known to be present in the circulating blood under the pathological condition in which blood coagulation is activated. However, its physiological roles are still incompletely known. Fibroblasts spread on immobilized purified soluble fibrin. Cells spreading on immobilized soluble fibrin were blocked by the exogenous addition of soluble fibrin and glycine-arginine-glycine-aspartic acid-serine-phenylalanine (GRGDSP)-synthetic peptide but not by the addition of fibrinogen or fibrin monomer. However, cell spreading activity was decreased in the surfaces coated with fragment X, whose Aalpha-chains lack carboxyl-terminal segments including arginine-glycine-aspartic acid (RGD)-2 domain, fibrin monomer complexes. It suggests that the RGD-2 domain of fibrinogen after being complexed with fibrin monomer plays a pivotal role for soluble fibrin-dependent cell spreading. Soluble fibrin in plasma derived from the patients of disseminated intravascular coagulation (DIC) was immuno-purified using the monoclonal antibody (mAb) which specifically recognizes the Ca(++)-dependent conformer of fibrinogen. The purified soluble fibrin consisted of desAA-fibrin monomer and two fibrinogen molecules and did show the cell spreading activity. Thus, soluble fibrin in plasma plays a role as the modulator of thrombogenic process in vivo.
Collapse
Affiliation(s)
- Wei Yang
- Division of Laboratory of Hematological Research, the 2nd Affiliated Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, PR China.
| | | | | | | | | |
Collapse
|