51
|
Smith GA, Enquist LW. Break ins and break outs: viral interactions with the cytoskeleton of Mammalian cells. Annu Rev Cell Dev Biol 2003; 18:135-61. [PMID: 12142276 DOI: 10.1146/annurev.cellbio.18.012502.105920] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The host cytoskeleton plays important roles in the entry, replication, and egress of viruses. An assortment of viruses hijack cellular motor proteins to move on microtubules toward the cell interior during the entry process; others reverse this transport during egress to move assembling virus particles toward the plasma membrane. Polymerization of actin filaments is sometimes used to propel viruses from cell to cell, while many viruses induce the destruction of select cytoskeletal filaments apparently to effect efficient egress. Indeed, the tactics used by any given virus to achieve its infectious life cycle are certain to involve multiple cytoskeletal interactions. Understanding these interactions, and their orchestration during viral infections, is providing unexpected insights into basic virology, viral pathogenesis, and the biology of the cytoskeleton.
Collapse
Affiliation(s)
- Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
52
|
Abstract
Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, 301 LSA, University of California, Berkeley 94720-3200, USA.
| | | |
Collapse
|
53
|
Johnston JB, Barrett JW, Chang W, Chung CS, Zeng W, Masters J, Mann M, Wang F, Cao J, McFadden G. Role of the serine-threonine kinase PAK-1 in myxoma virus replication. J Virol 2003; 77:5877-88. [PMID: 12719581 PMCID: PMC154029 DOI: 10.1128/jvi.77.10.5877-5888.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Subversion or appropriation of cellular signal transduction pathways is a common strategy employed by viruses to promote an environment within infected cells that supports the viral replicative cycle. Using subsets of 3T3 murine fibroblasts previously shown to differ in their ability to support myxoma virus (MV) replication, we investigated the role of host serine-threonine kinases (STKs) as potential mediators of the permissive phenotype. Both permissive and nonpermissive 3T3 cells supported equivalent levels of virion binding, entry, and early virus gene expression, indicating that MV tropism in 3T3 cells was not determined by receptor-mediated entry. In contrast, late virus gene expression and viral DNA replication were selectively compromised in restrictive 3T3 cells. Addition of specific protein kinase inhibitors, many of which shared the ability to influence the activity of the STKs p21-activated kinase 1 (PAK-1) and Raf-1 attenuated MV replication in permissive 3T3 cells. Western blot detection of the phosphorylated forms of PAK-1 (Thr423) and Raf-1 (Ser338) confirmed activation of these kinases in permissive cells after MV infection or gamma interferon treatment, but the activated forms of both kinases were greatly reduced or absent in restrictive 3T3 cells. The biological significance of these activations was demonstrated by using the autoinhibitory domain of PAK-1 (amino acids 83 to 149), expression of which reduced the efficiency of MV infection in permissive 3T3 cells concurrent with a decrease in PAK-1 activation. In comparison, overexpression of a constitutively active PAK-1 (T423E) mutant increased MV replication in restrictive 3T3 cells. These observations suggest that induced signaling via cellular STKs may play important roles in determining the permissiveness of host cells to poxvirus infection.
Collapse
Affiliation(s)
- J B Johnston
- Robarts Research Institute and Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada N6G 2V4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Otsuki M, Itoh T, Takenawa T. Neural Wiskott-Aldrich syndrome protein is recruited to rafts and associates with endophilin A in response to epidermal growth factor. J Biol Chem 2003; 278:6461-9. [PMID: 12477732 DOI: 10.1074/jbc.m207433200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural Wiskott-Aldrich syndrome protein (N-WASP) has been implicated in endocytosis; however, little is known about how it interacts functionally with the endocytic machinery. Sucrose gradient fractionation experiments and immunofluorescence studies with anti-N-WASP antibody revealed that N-WASP is recruited together with clathrin and dynamin, which play essential roles in clathrin-mediated endocytosis, to lipid rafts in an epidermal growth factor (EGF)-dependent manner. Endophilin A (EA) binds to dynamin and plays an essential role in the fission step of clathrin-mediated endocytosis. In the present study, we show that the Src homology 3 (SH3) domain of EA associates with the proline-rich domain of N-WASP and dynamin in vitro. Co-immunoprecipitation assays with anti-N-WASP antibody revealed that EGF induces association of N-WASP with EA. In addition, EA enhances N-WASP-induced actin-related protein 2/3 (Arp2/3) complex activation in vitro. Immunofluorescence studies revealed that actin accumulates at sites where N-WASP and EA are co-localized after EGF stimulation. Furthermore, studies of overexpression of the SH3 domain of EA indicate that EA may regulate EGF-induced recruitment of N-WASP to lipid rafts. These results suggest that, upon EGF stimulation, N-WASP interacts with EA through its proline-rich domain to induce the fission step of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Makiko Otsuki
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
55
|
Smith GL, Vanderplasschen A, Law M. The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 2002; 83:2915-2931. [PMID: 12466468 DOI: 10.1099/0022-1317-83-12-2915] [Citation(s) in RCA: 404] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus produces four different types of virion from each infected cell called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). These virions have different abundance, structure, location and roles in the virus life-cycle. Here, the formation and function of these virions are considered with emphasis on the EEV form and its precursors, IEV and CEV. IMV is the most abundant form of virus and is retained in cells until lysis; it is a robust, stable virion and is well suited to transmit infection between hosts. IEV is formed by wrapping of IMV with intracellular membranes, and is an intermediate between IMV and CEV/EEV that enables efficient virus dissemination to the cell surface on microtubules. CEV induces the formation of actin tails that drive CEV particles away from the cell and is important for cell-to-cell spread. Lastly, EEV mediates the long-range dissemination of virus in cell culture and, probably, in vivo. Seven virus-encoded proteins have been identified that are components of IEV, and five of them are present in CEV or EEV. The roles of these proteins in virus morphogenesis and dissemination, and as targets for neutralizing antibody are reviewed. The production of several different virus particles in the VV replication cycle represents a coordinated strategy to exploit cell biology to promote virus spread and to aid virus evasion of antibody and complement.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| | - Alain Vanderplasschen
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| | - Mansun Law
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| |
Collapse
|
56
|
Merrifield CJ, Feldman ME, Wan L, Almers W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 2002; 4:691-8. [PMID: 12198492 DOI: 10.1038/ncb837] [Citation(s) in RCA: 545] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a final step in endocytosis, clathrin-coated pits must separate from the plasma membrane and move into the cytosol as a coated vesicle. Because these events involve minute movements that conventional light microscopy cannot resolve, they have not been observed directly and their dynamics remain unexplored. Here, we used evanescent field (EF) microscopy to observe single clathrin-coated pits or vesicles as they draw inwards from the plasma membrane and finally lose their coats. This inward movement occurred immediately after a brief burst of dynamin recruitment and was accompanied by transient actin assembly. Therefore, dynamin may provide the trigger and actin may provide the force for movement into the cytosol.
Collapse
Affiliation(s)
- Christien J Merrifield
- Vollum Institute L-474, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201, USA
| | | | | | | |
Collapse
|
57
|
Bearer EL, Satpute-Krishnan P. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: tracks, motors, and polymerization machines. CURRENT DRUG TARGETS. INFECTIOUS DISORDERS 2002; 2:247-64. [PMID: 12462128 PMCID: PMC3616324 DOI: 10.2174/1568005023342407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in microbiology implicate the cytoskeleton in the life cycle of some pathogens, such as intracellular bacteria, Rickettsia and viruses. The cellular cytoskeleton provides the basis for intracellular movements such as those that transport the pathogen to and from the cell surface to the nuclear region, or those that produce cortical protrusions that project the pathogen outwards from the cell surface towards an adjacent cell. Transport in both directions within the neuron is required for pathogens such as the herpesviruses to travel to and from the nucleus and perinuclear region where replication takes place. This trafficking is likely to depend on cellular motors moving on a combination of microtubule and actin filament tracks. Recently, Bearer et al. reconstituted retrograde transport of herpes simplex virus (HSV) in the giant axon of the squid. These studies identified the tegument proteins as the viral proteins most likely to recruit retrograde motors for the transport of HSV to the neuronal nucleus. Similar microtubule-based intracellular movements are part of the biological behavior of vaccinia, a poxvirus, and of adenovirus. Pathogen-induced surface projections and motility within the cortical cytoplasm also play a role in the life cycle of intracellular pathogens. Such motility is driven by pathogen-mediated actin polymerization. Virulence depends on this actin-based motility, since virulence is reduced in Listeria ActA mutants that lack the ability to recruit Arp2/3 and polymerize actin and in vaccinia virus mutants that cannot stimulate actin polymerization. Inhibition of intracellular movements provides a potential strategy to limit pathogenicity. The host cell motors and tracks, as well as the pathogen factors that interact with them, are potential targets for novel antimicrobial therapy.
Collapse
Affiliation(s)
- E L Bearer
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI 02912, USA.
| | | |
Collapse
|
58
|
Pelkmans L, Püntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 2002; 296:535-9. [PMID: 11964480 DOI: 10.1126/science.1069784] [Citation(s) in RCA: 561] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Simian virus 40 (SV40) utilizes endocytosis through caveolae for infectious entry into host cells. We found that after binding to caveolae, virus particles induced transient breakdown of actin stress fibers. Actin was then recruited to virus-loaded caveolae as actin patches that served as sites for actin "tail" formation. Dynamin II was also transiently recruited. These events depended on the presence of cholesterol and on the activation of tyrosine kinases that phosphorylated proteins in caveolae. They were necessary for formation of caveolae-derived endocytic vesicles and for infection of the cell. Thus, caveolar endocytosis is ligand-triggered and involves extensive rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Lucas Pelkmans
- Swiss Federal Institute of Technology Zurich (ETHZ), HPM1 Building, ETH Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
59
|
Higgs HN, Pollard TD. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem 2002; 70:649-76. [PMID: 11395419 DOI: 10.1146/annurev.biochem.70.1.649] [Citation(s) in RCA: 509] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actin filament assembly and turnover drive many forms of cellular motility, particularly extension of the leading edge of locomoting cells and rocketing of pathogenic microorganisms through host cell cytoplasm. De novo nucleation of actin filaments appears to be required for these movements. A complex of seven proteins called Arp2/3 complex is the best characterized cellular initiator of actin filament nucleation. Arp2/3 complex is intrinsically inactive, relying on nucleation promoting factors for activation. WASp/Scar family proteins are prominent cellular nucleation promoting factors. They bring together an actin monomer and Arp2/3 complex in solution or on the side of an existing actin filament to initiate a new filament that grows in the barbed end direction. WASp and N-WASP are intrinsically autoinhibited, and their activity is regulated by Rho-family GTPases such as Cdc42, membrane polyphosphoinositides, WIP/verprolin, and SH3 domain proteins. These interactions provide a final common pathway for many signaling inputs to regulate actin polymerization. Microorganisms either activate Arp2/3 complex directly or usurp N-WASP to initiate actin polymerization.
Collapse
Affiliation(s)
- H N Higgs
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
60
|
Luna A, Matas OB, Martínez-Menárguez JA, Mato E, Durán JM, Ballesta J, Way M, Egea G. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell 2002; 13:866-79. [PMID: 11907268 PMCID: PMC99605 DOI: 10.1091/mbc.01-12-0579] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and non-coated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgi-to-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(Delta WA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-N-WASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP-dependent manner.
Collapse
Affiliation(s)
- Ana Luna
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
A convergence of cellular, genetic and biochemical studies supports the hypothesis that the actin cytoskeleton is coupled to endocytic processes, but the roles played by actin filaments during endocytosis are not yet clear. Recent studies have identified several proteins that may functionally link the endocytic machinery with actin filament dynamics. Three of these proteins, Abp1p, Pan1p and cortactin, are activators of actin assembly nucleated by the Arp2/3 complex, a key regulator of actin assembly in vivo. Two others, intersectin and syndapin, bind N-WASp, a potent activator of actin assembly via the Arp2/3 complex. All of these proteins also bind components of the endocytic machinery, and thus, could coordinately regulate actin assembly and trafficking events. Hip1R, an F-actin-binding protein that associates with clathrin-coated vesicles, may physically link endocytic vesicles to actin filaments. The GTPase dynamin is implicated in modulating actin filaments at specialized actin-rich structures of the cell cortex, suggesting that dynamin may regulate the organization of cortical actin filaments as well as regulate actin dynamics during endocytosis. Finally, myosin VI may generate actin-dependent forces for membrane invagination or vesicle movement during the early stages of endocytosis.
Collapse
Affiliation(s)
- Dorothy A Schafer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63119, USA.
| |
Collapse
|
62
|
Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2002; 17:517-68. [PMID: 11687498 DOI: 10.1146/annurev.cellbio.17.1.517] [Citation(s) in RCA: 488] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has recently been considerable progress in understanding the regulation of clathrin-coated vesicle (CCV) formation and function. These advances are due to the determination of the structure of a number of CCV coat components at molecular resolution and the identification of novel regulatory proteins that control CCV formation in the cell. In addition, pathways of (a) phosphorylation, (b) receptor signaling, and (c) lipid modification that influence CCV formation, as well as the interaction between the cytoskeleton and CCV transport pathways are becoming better defined. It is evident that although clathrin coat assembly drives CCV formation, this fundamental reaction is modified by different regulatory proteins, depending on where CCVs are forming in the cell. This regulatory difference likely reflects the distinct biological roles of CCVs at the plasma membrane and trans-Golgi network, as well as the distinct properties of these membranes themselves. Tissue-specific functions of CCVs require even more-specialized regulation and defects in these pathways can now be correlated with human diseases.
Collapse
Affiliation(s)
- F M Brodsky
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
63
|
Affiliation(s)
- David C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
64
|
Goldberg MB. Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 2001; 65:595-626, table of contents. [PMID: 11729265 PMCID: PMC99042 DOI: 10.1128/mmbr.65.4.595-626.2001] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review.
Collapse
Affiliation(s)
- M B Goldberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
65
|
Lanzetti L, Di Fiore PP, Scita G. Pathways linking endocytosis and actin cytoskeleton in mammalian cells. Exp Cell Res 2001; 271:45-56. [PMID: 11697881 DOI: 10.1006/excr.2001.5369] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L Lanzetti
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Ripamonti 435, Milan, 20141, Italy
| | | | | |
Collapse
|
66
|
Insall R, Müller-Taubenberger A, Machesky L, Köhler J, Simmeth E, Atkinson SJ, Weber I, Gerisch G. Dynamics of the Dictyostelium Arp2/3 complex in endocytosis, cytokinesis, and chemotaxis. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:115-28. [PMID: 11807934 DOI: 10.1002/cm.10005] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Arp2/3 complex is a ubiquitous and important regulator of the actin cytoskeleton. Here we identify this complex from Dictyostelium and investigate its dynamics in live cells. The predicted sequences of the subunits show a strong homology to the members of the mammalian complex, with the larger subunits generally better conserved than the smaller ones. In the highly motile cells of Dictyostelium, the Arp2/3 complex is rapidly re-distributed to the cytoskeleton in response to external stimuli. Fusions of Arp3 and p41-Arc with GFP reveal that in phagocytosis, macropinocytosis, and chemotaxis the complex is recruited within seconds to sites where actin polymerization is induced. In contrast, there is little or no localization to the cleavage furrow during cytokinesis. Rather the Arp2/3 complex is enriched in ruffles at the polar regions of mitotic cells, which suggests a role in actin polymerization in these ruffles.
Collapse
Affiliation(s)
- R Insall
- School of Biosciences, Birmingham University, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD. Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell 2001; 8:1041-52. [PMID: 11741539 DOI: 10.1016/s1097-2765(01)00393-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Arp2/3 complex is a seven-protein assembly that is critical for actin nucleation and branching in cells. Here we report the reconstitution of active human Arp2/3 complex after expression of all seven subunits in insect cells. Expression of partial complexes revealed that a heterodimer of the p34 and p20 subunits constitutes a critical structural core of the complex, whereas the remaining subunits are peripherally located. Arp3 is crucial for nucleation, consistent with it being a structural component of the nucleation site. p41, p21, and p16 contribute differently to nucleation and stimulation by ActA and WASP, whereas p34/p20 bind actin filaments and likely function in actin branching. This study reveals that the nucleating and organizing functions of Arp2/3 complex subunits are separable, indicating that these activities may be differentially regulated in cells.
Collapse
Affiliation(s)
- H Gournier
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
68
|
Bennett EM, Chen CY, Engqvist-Goldstein AE, Drubin DG, Brodsky FM. Clathrin hub expression dissociates the actin-binding protein Hip1R from coated pits and disrupts their alignment with the actin cytoskeleton. Traffic 2001; 2:851-8. [PMID: 11733052 DOI: 10.1034/j.1600-0854.2001.21114.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The actin cytoskeleton has been implicated in the maintenance of discrete sites for clathrin-coated pit formation during receptor-mediated endocytosis in mammalian cells, and its function is intimately linked to the endocytic pathway in yeast. Here we demonstrate that staining for mammalian endocytic clathrin-coated pits using a monoclonal antibody against the AP2 adaptor complex revealed a linear pattern that correlates with the organization of the actin cytoskeleton. This vesicle organization was disrupted by treatment of cells with cytochalasin D, which disassembles actin, or with 2,3-butanedione monoxime, which prevents myosin association with actin. The linear AP2 staining pattern was also disrupted in HeLa cells that were induced to express the Hub fragment of the clathrin heavy chain, which acts as a dominant-negative inhibitor of receptor-mediated endocytosis by direct interference with clathrin function. Additionally, Hub expression caused the actin-binding protein Hip1R to dissociate from coated pits. These findings indicate that proper function of clathrin is required for coated pit alignment with the actin cytoskeleton and suggest that the clathrin-Hip1R interaction is involved in the cytoskeletal organization of coated pits.
Collapse
Affiliation(s)
- E M Bennett
- The G. W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco 94143-0552, USA
| | | | | | | | | |
Collapse
|
69
|
Geada MM, Galindo I, Lorenzo MM, Perdiguero B, Blasco R. Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J Gen Virol 2001; 82:2747-2760. [PMID: 11602786 DOI: 10.1099/0022-1317-82-11-2747] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus produces several forms of infectious virions. Intracellular mature virions (IMV) assemble in areas close to the cell nucleus. Some IMV acquire an envelope from intracellular membranes derived from the trans-Golgi network, producing enveloped forms found in the cytosol (intracellular enveloped virus; IEV), on the cell surface (cell-associated enveloped virus) or free in the medium (extracellular enveloped virus; EEV). Blockage of IMV envelopment inhibits transport of virions to the cell surface, indicating that enveloped virus forms are required for virion movement from the Golgi area. To date, the induction of actin tails that propel IEV is the only well-characterized mechanism for enveloped virus transport. However, enveloped virus transport and release occur under conditions where actin tails are not formed. In order to study these events, recombinant vaccinia viruses were constructed with GFP fused to the most abundant protein in the EEV envelope, P37 (F13L). The P37-GFP fusion, like normal P37, accumulated in the Golgi area and was incorporated efficiently into enveloped virions. These recombinants allowed the monitoring of enveloped virus movements in vivo. In addition to a variety of relatively slow movements (<0.4 microm/s), faster, saltatory movements both towards and away from the Golgi area were observed. These movements were different from those dependent on actin tails and were inhibited by the microtubule-disrupting drug nocodazole, but not by the myosin inhibitor 2,3-butanedione monoxime. Video microscopy (5 frames per s) revealed that saltatory movements had speeds of up to, and occasionally more than, 3 microm/s. These results suggest that a second, microtubule-dependent mechanism exists for intracellular transport of enveloped vaccinia virions.
Collapse
Affiliation(s)
- María M Geada
- Departamento de Biotecnología - INIA, Ctra La Coruña km 7·5, E-28040 Madrid, Spain1
| | - Inmaculada Galindo
- Departamento de Biotecnología - INIA, Ctra La Coruña km 7·5, E-28040 Madrid, Spain1
| | - María M Lorenzo
- Departamento de Biotecnología - INIA, Ctra La Coruña km 7·5, E-28040 Madrid, Spain1
| | - Beatriz Perdiguero
- Departamento de Biotecnología - INIA, Ctra La Coruña km 7·5, E-28040 Madrid, Spain1
| | - Rafael Blasco
- Departamento de Biotecnología - INIA, Ctra La Coruña km 7·5, E-28040 Madrid, Spain1
| |
Collapse
|
70
|
Takenawa T, Itoh T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1533:190-206. [PMID: 11731330 DOI: 10.1016/s1388-1981(01)00165-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Phosphoinositide plays a critical role not only in generating second messengers, such as inositol 1,4,5-trisphosphate and diacylglycerol, but also in modulating a variety of cellular functions including cytoskeletal organization and membrane trafficking. Many inositol lipid kinases and phosphatases appear to regulate the concentration of a variety of phosphoinositides in a specific area, thereby inducing spatial and temporal changes in their availability. For example, local concentration changes in phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to extracellular stimuli cause the reorganization of actin filaments and a change in cell shape. PI(4,5)P(2) uncaps the barbed end of actin filaments and increases actin nucleation by modulating a variety of actin regulatory proteins, leading to de novo actin polymerization. PI(4,5)P(2) also plays a key role in membrane trafficking processes. In endocytosis, PI(4,5)P(2) targets clathrin-associated proteins to endocytic vesicles, leading to clathrin-coated pit formation. On the contrary, PI(4,5)P(2) must be dephosphorylated when they shed clathrin coats to fuse endosome. Thus, through regulating actin cytoskeleton organization and membrane trafficking, phosphoinositides play crucial roles in a variety of cell functions such as growth, polarity, movement, and pattern formation.
Collapse
Affiliation(s)
- T Takenawa
- Department of Biology, Institute of Medical Science, University of Tokyo, Japan.
| | | |
Collapse
|
71
|
Rottner K, Krause M, Gimona M, Small JV, Wehland J. Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions. Mol Biol Cell 2001; 12:3103-13. [PMID: 11598195 PMCID: PMC60159 DOI: 10.1091/mbc.12.10.3103] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-actinin. To characterize the localization and dynamics of zyxin in detail, we generated both monoclonal antibodies and a green fluorescent protein (GFP)-fusion construct. The antibodies colocalized with ectopically expressed GFP-VASP at focal adhesions and along stress fibers, but failed to label lamellipodial and filopodial tips, which also recruit Ena/VASP proteins. Likewise, neither microinjected, fluorescently labeled zyxin antibodies nor ectopically expressed GFP-zyxin were recruited to these latter sites in live cells, whereas both probes incorporated into focal adhesions and stress fibers. Comparing the dynamics of zyxin with that of the focal adhesion protein vinculin revealed that both proteins incorporated simultaneously into newly formed adhesions. However, during spontaneous or induced focal adhesion disassembly, zyxin delocalization preceded that of either vinculin or paxillin. Together, these data identify zyxin as an early target for signals leading to adhesion disassembly, but exclude its role in recruiting Ena/VASP proteins to the tips of lamellipodia and filopodia.
Collapse
Affiliation(s)
- K Rottner
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
72
|
Abstract
Exposure of cells to a variety of external signals causes rapid changes in plasma membrane morphology. Plasma membrane dynamics, including membrane ruffle and microspike formation, fusion or fission of intracellular vesicles, and the spatial organization of transmembrane proteins, is directly controlled by the dynamic reorganization of the underlying actin cytoskeleton. Two members of the Rho family of small GTPases, Cdc42 and Rac, have been well established as mediators of extracellular signaling events that impact cortical actin organization. Actin-based signaling through Cdc42 and Rac ultimately results in activation of the actin-related protein (Arp) 2/3 complex, which promotes the formation of branched actin networks. In addition, the activity of both receptor and non-receptor protein tyrosine kinases along with numerous actin binding proteins works in concert with Arp2/3-mediated actin polymerization in regulating the formation of dynamic cortical actin-associated structures. In this review we discuss the structure and role of the cortical actin binding protein cortactin in Rho GTPase and tyrosine kinase signaling events, with the emphasis on the roles cortactin plays in tyrosine phosphorylation-based signal transduction, regulating cortical actin assembly, transmembrane receptor organization and membrane dynamics. We also consider how aberrant regulation of cortactin levels contributes to tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- S A Weed
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, Colorado, CO 80262, USA.
| | | |
Collapse
|
73
|
Affiliation(s)
- T Suzuki
- Division of Bacterial Infection, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
74
|
Abstract
Cellular actin assembly is tightly regulated. The study of pathogen motility has led to the identification of several cellular factors that are critical for controlling this process. Pathogens such as Listeria require Ena/VASP and Arp2/3 proteins to translate actin polymerization into movement. Recent work has extended these observations and uncovered some similarities and surprising differences in the way cells and pathogens utilize the actin cytoskeleton.
Collapse
Affiliation(s)
- J E Bear
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
75
|
Boldogh IR, Yang HC, Nowakowski WD, Karmon SL, Hays LG, Yates JR, Pon LA. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci U S A 2001; 98:3162-7. [PMID: 11248049 PMCID: PMC30624 DOI: 10.1073/pnas.051494698] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Indexed: 11/18/2022] Open
Abstract
The Arp2/3 complex is implicated in actin polymerization-driven movement of Listeria monocytogenes. Here, we find that Arp2p and Arc15p, two subunits of this complex, show tight, actin-independent association with isolated yeast mitochondria. Arp2p colocalizes with mitochondria. Consistent with this result, we detect Arp2p-dependent formation of actin clouds around mitochondria in intact yeast. Cells bearing mutations in ARP2 or ARC15 genes show decreased velocities of mitochondrial movement, loss of all directed movement and defects in mitochondrial morphology. Finally, we observe a decrease in the velocity and extent of mitochondrial movement in yeast in which actin dynamics are reduced but actin cytoskeletal structure is intact. These results support the idea that the movement of mitochondria in yeast is actin polymerization driven and that this movement requires Arp2/3 complex.
Collapse
Affiliation(s)
- I R Boldogh
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Abstract
In the past decade, studies into the way in which intracellular bacterial pathogens hijack and subvert their hosts have provided many important insights into regulation of the actin cytoskeleton and cell motility, in addition to increasing our understanding of the infection process. Viral pathogens, however, may ultimately unlock more cellular secrets as they are even more dependent on their hosts during their life cycle.
Collapse
Affiliation(s)
- A Ploubidou
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | |
Collapse
|
78
|
Mimuro H, Suzuki T, Suetsugu S, Miki H, Takenawa T, Sasakawa C. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J Biol Chem 2000; 275:28893-901. [PMID: 10867004 DOI: 10.1074/jbc.m003882200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of Shigella to mediate actin-based motility within the host cell is a prominent pathogenic feature of bacillary dysentery. The ability is dependent on the interaction of VirG with neural Wiskott-Aldrich syndrome protein (N-WASP), which in turn mediates recruitment of Arp2/3 complex and several actin-related proteins. In the present study, we show that profilin I is essential to the rapid movement of Shigella in epithelial cells, for which the capacity of profilin to interact with G-actin and N-WASP is critical. In COS-7 cells overexpressing either mutated profilin H119E, which failed to bind G-actin, or H133S, which is unable to interact with poly-l-proline, Shigella motility was significantly inhibited. Similarly, depletion of profilin from Xenopus egg extracts resulted in a decrease in bacterial motility that was completely rescued by adding back profilin I but not H119E or H133S. In COS-7 cells overexpressing a N-WASP mutant lacking the proline-rich domain (Deltap) unable to interact with profilin, the actin tail formation of intracellular Shigella was inhibited. In N-WASP-depleted extracts, addition of Deltap but not full-length N-WASP was unable to restore the bacterial motility. Furthermore, in a plaque formation assay with Madin-Darby canine kidney cell monolayers infected by Shigella, Madin-Darby canine kidney cells stably expressing H119E, H133S, or Deltap reduced the bacterial cell-to-cell spreading. These results indicate that profilin I associated with N-WASP is an essential host factor for sustaining efficient intra- and intercellular spreading of Shigella.
Collapse
Affiliation(s)
- H Mimuro
- Division of Bacterial Infection, Department of Microbiology and Immunology, Department of Biochemistry, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Qualmann B, Kessels MM, Kelly RB. Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 2000; 150:F111-6. [PMID: 10974009 PMCID: PMC2175242 DOI: 10.1083/jcb.150.5.f111] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2000] [Accepted: 07/10/2000] [Indexed: 12/02/2022] Open
Affiliation(s)
- B Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39008 Magdeburg, Germany.
| | | | | |
Collapse
|
80
|
Van Kirk LS, Hayes SF, Heinzen RA. Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins. Infect Immun 2000; 68:4706-13. [PMID: 10899876 PMCID: PMC98416 DOI: 10.1128/iai.68.8.4706-4713.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-based motility (ABM) is a mechanism for intercellular spread that is utilized by vaccinia virus and the invasive bacteria within the genera Rickettsia, Listeria, and Shigella. Within the Rickettsia, ABM is confined to members of the spotted fever group (SFG), such as Rickettsia rickettsii, the agent of Rocky Mountain spotted fever. Infection by each agent induces the polymerization of host cell actin to form the typical F (filamentous)-actin comet tail. Assembly of the actin tail propels the pathogen through the host cytosol and into cell membrane protrusions that can be engulfed by neighboring cells, initiating a new infectious cycle. Little is known about the structure and morphogenesis of the Rickettsia rickettsii actin tail relative to Shigella and Listeria actin tails. In this study we examined the ultrastructure of the rickettsial actin tail by confocal, scanning electron, and transmission electron microscopy. Confocal microscopy of rhodamine phalloidin-stained infected Vero cells revealed the typhus group rickettsiae, Rickettsia prowazekii and Rickettsia typhi, to have no actin tails and short (approximately 1- to 3-micrometer) straight or hooked actin tails, respectively. The SFG rickettsia, R. rickettsii, displayed long actin tails (>10 micrometer) that were frequently comprised of multiple, distinct actin bundles, wrapping around each other in a helical fashion. Transmission electron microscopy, in conjunction with myosin S1 subfragment decoration, revealed that the individual actin filaments of R. rickettsii tails are >1 micrometer long, arranged roughly parallel to one another, and oriented with the fast-growing barbed end towards the rickettsial pole. Scanning electron microscopy of intracellular rickettsiae demonstrated R. rickettsii to have polar associations of cytoskeletal material and R. prowazekii to be devoid of cytoskeletal interactions. By indirect immunofluorescence, both R. rickettsii and Listeria monocytogenes actin tails were shown to contain the cytoskeletal proteins vasodilator-stimulated phosphoprotein profilin, vinculin, and filamin. However, rickettsial tails lacked ezrin, paxillin, and tropomyosin, proteins that were associated with actin tails of cytosolic or protrusion-bound Listeria. The unique ultrastructural and compositional characteristics of the R. rickettsii actin tail suggest that rickettsial ABM is mechanistically different from previously described microbial ABM systems.
Collapse
Affiliation(s)
- L S Van Kirk
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944, USA
| | | | | |
Collapse
|
81
|
Waterman-Storer C, Duey DY, Weber KL, Keech J, Cheney RE, Salmon E, Bement WM. Microtubules remodel actomyosin networks in Xenopus egg extracts via two mechanisms of F-actin transport. J Cell Biol 2000; 150:361-76. [PMID: 10908578 PMCID: PMC2180232 DOI: 10.1083/jcb.150.2.361] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2000] [Accepted: 06/12/2000] [Indexed: 01/28/2023] Open
Abstract
Interactions between microtubules and filamentous actin (F-actin) are crucial for many cellular processes, including cell locomotion and cytokinesis, but are poorly understood. To define the basic principles governing microtubule/F-actin interactions, we used dual-wavelength digital fluorescence and fluorescent speckle microscopy to analyze microtubules and F-actin labeled with spectrally distinct fluorophores in interphase Xenopus egg extracts. In the absence of microtubules, networks of F-actin bundles zippered together or exhibited serpentine gliding along the coverslip. When microtubules were nucleated from Xenopus sperm centrosomes, they were released and translocated away from the aster center. In the presence of microtubules, F-actin exhibited two distinct, microtubule-dependent motilities: rapid ( approximately 250-300 nm/s) jerking and slow ( approximately 50 nm/s), straight gliding. Microtubules remodeled the F-actin network, as F-actin jerking caused centrifugal clearing of F-actin from around aster centers. F-actin jerking occurred when F-actin bound to motile microtubules powered by cytoplasmic dynein. F-actin straight gliding occurred when F-actin bundles translocated along the microtubule lattice. These interactions required Xenopus cytosolic factors. Localization of myosin-II to F-actin suggested it may power F-actin zippering, while localization of myosin-V on microtubules suggested it could mediate interactions between microtubules and F-actin. We examine current models for cytokinesis and cell motility in light of these findings.
Collapse
Affiliation(s)
- Clare Waterman-Storer
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037
| | - Devin Y. Duey
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037
| | - Kari L. Weber
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706
| | - John Keech
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard E. Cheney
- Department of Cellular and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - E.D. Salmon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - William M. Bement
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
82
|
Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2000; 2:441-8. [PMID: 10878810 DOI: 10.1038/35017080] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASP) and N-WASP have emerged as key proteins connecting signalling cascades to actin polymerization. Here we show that the amino-terminal WH1 domain, and not the polyproline-rich region, of N-WASP is responsible for its recruitment to sites of actin polymerization during Cdc42-independent, actin-based motility of vaccinia virus. Recruitment of N-WASP to vaccinia is mediated by WASP-interacting protein (WIP), whereas in Shigella WIP is recruited by N-WASP. Our observations show that vaccinia and Shigella activate the Arp2/3 complex to achieve actin-based motility, by mimicking either the SH2/SH3-containing adaptor or Cdc42 signalling pathways to recruit the N-WASP-WIP complex. We propose that the N-WASP-WIP complex has a pivotal function in integrating signalling cascades that lead to actin polymerization.
Collapse
Affiliation(s)
- V Moreau
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
83
|
Suzuki T, Mimuro H, Miki H, Takenawa T, Sasaki T, Nakanishi H, Takai Y, Sasakawa C. Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J Exp Med 2000; 191:1905-20. [PMID: 10839806 PMCID: PMC2213524 DOI: 10.1084/jem.191.11.1905] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, is capable of directing its movement within host cells by exploiting actin dynamics. The VirG protein expressed at one pole of the bacterium can recruit neural Wiskott-Aldrich syndrome protein (N-WASP), a downstream effector of Cdc42. Here, we show that Cdc42 is required for the actin-based motility of Shigella. Microinjection of a dominant active mutant Cdc42, but not Rac1 or RhoA, into Swiss 3T3 cells accelerated Shigella motility. In add-back experiments in Xenopus egg extracts, addition of a guanine nucleotide dissociation inhibitor for the Rho family, RhoGDI, greatly diminished the bacterial motility or actin assembly, which was restored by adding activated Cdc42. In N-WASP-depleted extracts, the bacterial movement almost arrested was restored by adding exogenous N-WASP but not H208D, an N-WASP mutant defective in binding to Cdc42. In pyrene actin assay, Cdc42 enhanced VirG-stimulating actin polymerization by N-WASP-actin-related protein (Arp)2/3 complex. Actually, Cdc42 stimulated actin cloud formation on the surface of bacteria expressing VirG in a solution containing N-WASP, Arp2/3 complex, and G-actin. Immunohistological study of Shigella-infected cells expressing green fluorescent protein-tagged Cdc42 revealed that Cdc42 accumulated by being colocalized with actin cloud at one pole of intracellular bacterium. Furthermore, overexpression of H208D mutant in cells interfered with the actin assembly of infected Shigella and diminished the intra- and intercellular spreading. These results suggest that Cdc42 activity is involved in initiating actin nucleation mediated by VirG-N-WASP-Arp2/3 complex formed on intracellular Shigella.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hitomi Mimuro
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Miki
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takuya Sasaki
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita 565-0871, Japan
| | - Hiroyuki Nakanishi
- Takai Biotimer Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita 565-0871, Japan
- Takai Biotimer Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Chihiro Sasakawa
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Bacterial Toxicology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
84
|
Abstract
Bacterial actin-based motility has provided cell biologists with tools that led to the recent discovery that, in many forms of actin-based motilities, a key player is a protein complex named the Arp2/3 complex. The Arp2/3 complex is evolutionally conserved and made up of seven polypeptides involved in both actin filament nucleation and organization. Interestingly, this complex is inactive by itself and recent work has highlighted the fact that its activation is achieved differently in the different types of actin-based motilities, including the well-known examples of Listeria and Shigella motilities. Proteins of the WASP family and small G-proteins are involved in most cases. It is interesting that bacteria bypass or mimic some of the events occurring in eukaryotic systems. The Shigella protein IcsA recruits N-WASP and activates it in a Cdc42-like fashion. This activation leads to Arp2/3 complex recruitment, activation of the complex and ultimately actin polymerization and movement. The Listeria ActA protein activates Arp2/3 directly and, thus, seems to mimic proteins of the WASP family. A breakthrough in the field is the recent reconstitution of the actin-based motilities of Listeria and N-WASP-coated E. coli (IcsA) using a restricted number of purified cellular proteins including F-actin, the Arp2/3 complex, actin depolymerizing factor (ADF or cofilin) and capping protein. The movement was more effective upon addition of profilin, alpha-actinin and VASP (for Listeria). Bacterial actin-based motility is now one of the best-documented examples of the exploitation of mammalian cell machineries by bacterial pathogens.
Collapse
Affiliation(s)
- P Cossart
- Unité des Interactions Bactéries-cellules, Institut Pasteur, Paris, France. pcossart@pasteur
| |
Collapse
|
85
|
Abstract
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.
Collapse
Affiliation(s)
- F Doussau
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
86
|
Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 2000; 10:311-20. [PMID: 10744973 DOI: 10.1016/s0960-9822(00)00384-5] [Citation(s) in RCA: 416] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Phosphatidylinositol 4,5-bisphosphate (PIP(2)) has been implicated in the regulation of the actin cytoskeleton and vesicle trafficking. It stimulates de novo actin polymerization by activating the pathway involving the Wiskott-Aldrich syndrome protein (WASP) and the actin-related protein complex Arp2/3. Other studies show that actin polymerizes from cholesterol-sphingolipid-rich membrane microdomains called 'rafts', in a manner dependent on tyrosine phosphorylation. Although actin has been implicated in vesicle trafficking, and rafts are sites of active phosphoinositide and tyrosine kinase signaling that mediate apically directed vesicle trafficking, it is not known whether phosphoinositide regulation of actin dynamics occurs in rafts, or if it is linked to vesicle movements. RESULTS Overexpression of type I phosphatidylinositol phosphate 5-kinase (PIP5KI), which synthesizes PIP(2), promoted actin polymerization from membrane-bound vesicles to form motile actin comets. Pervanadate (PV), a tyrosine phosphatase inhibitor, induced comets even in the absence of PIP5KI overexpression. PV increased PIP(2) levels, suggesting that it induces comets by changing PIP(2) homeostasis and by increasing tyrosine phosphorylation. Platelet-derived growth factor (PDGF) enhanced PV-induced comet formation, and these stimuli together potentiated the PIP5KI effect. The vesicles at the heads of comets were enriched in PIP5KIs and tyrosine phosphoproteins. WASP-Arp2/3 involvement was established using dominant-negative WASP constructs. Endocytic and exocytic markers identified vesicles enriched in lipid rafts as preferential sites of comet generation. Extraction of cholesterol with methyl-beta-cyclodextrin reduced comets, establishing that rafts promote comet formation. CONCLUSIONS Sphingolipid-cholesterol rafts are preferred platforms for membrane-linked actin polymerization. This is mediated by in situ PIP(2) synthesis and tyrosine kinase signaling through the WASP-Arp2/3 pathway. Actin comets may provide a novel mechanism for raft-dependent vesicle transport and apical membrane trafficking.
Collapse
Affiliation(s)
- A L Rozelle
- Departments of Physiology and Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Qualmann B, Kelly RB. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 2000; 148:1047-62. [PMID: 10704453 PMCID: PMC2174535 DOI: 10.1083/jcb.148.5.1047] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 01/19/2000] [Indexed: 11/22/2022] Open
Abstract
Syndapin I (SdpI) interacts with proteins involved in endocytosis and actin dynamics and was therefore proposed to be a molecular link between the machineries for synaptic vesicle recycling and cytoskeletal organization. We here report the identification and characterization of SdpII, a ubiquitously expressed isoform of the brain-specific SdpI. Certain splice variants of rat SdpII in other species were named FAP52 and PACSIN 2. SdpII binds dynamin I, synaptojanin, synapsin I, and the neural Wiskott-Aldrich syndrome protein (N-WASP), a stimulator of Arp2/3 induced actin filament nucleation. In neuroendocrine cells, SdpII colocalizes with dynamin, consistent with a role for syndapin in dynamin-mediated endocytic processes. The src homology 3 (SH3) domain of SdpI and -II inhibited receptor-mediated internalization of transferrin, demonstrating syndapin involvement in endocytosis in vivo. Overexpression of full-length syndapins, but not the NH(2)-terminal part or the SH3 domains alone, had a strong effect on cortical actin organization and induced filopodia. This syndapin overexpression phenotype appears to be mediated by the Arp2/3 complex at the cell periphery because it was completely suppressed by coexpression of a cytosolic COOH-terminal fragment of N-WASP. Consistent with a role in actin dynamics, syndapins localized to sites of high actin turnover, such as filopodia tips and lamellipodia. Our results strongly suggest that syndapins link endocytosis and actin dynamics.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Biochemistry and Biophysics and the Hormone Research Institute, University of California, San Francisco, California 94143-0534
| | - Regis B. Kelly
- Department of Biochemistry and Biophysics and the Hormone Research Institute, University of California, San Francisco, California 94143-0534
| |
Collapse
|
88
|
Steele-Mortimer O, Knodler LA, Finlay BB. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton. Traffic 2000; 1:107-18. [PMID: 11208091 DOI: 10.1034/j.1600-0854.2000.010203.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.
Collapse
Affiliation(s)
- O Steele-Mortimer
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
89
|
Frischknecht F, Moreau V, Röttger S, Gonfloni S, Reckmann I, Superti-Furga G, Way M. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 1999; 401:926-9. [PMID: 10553910 DOI: 10.1038/44860] [Citation(s) in RCA: 343] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of the actin-based motility of the intracellular pathogens Listeria monocytogenes and Shigella flexneri have provided important insight into the events occurring at the leading edges of motile cells. Like the bacteria Listeria and Shigella, vaccinia virus, a relative of the causative agent of smallpox, uses actin-based motility to spread between cells. In contrast to Listeria or Shigella, the actin-based motility of vaccinia is dependent on an unknown phosphotyrosine protein, but the underlying mechanism remains obscure. Here we show that phosphorylation of tyrosine 112 in the viral protein A36R by Src-family kinases is essential for the actin-based motility of vaccinia. Tyrosine phosphorylation of A36R results in a direct interaction with the adaptor protein Nck and the recruitment of the Ena/VASP family member N-WASP to the site of actin assembly. We also show that Nck and N-WASP are essential for the actin-based motility of vaccinia virus. We suggest that vaccinia virus spreads by mimicking the signalling pathways that are normally involved in actin polymerization at the plasma membrane.
Collapse
Affiliation(s)
- F Frischknecht
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
90
|
Rochlin MW, Dailey ME, Bridgman PC. Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol Biol Cell 1999; 10:2309-27. [PMID: 10397767 PMCID: PMC25445 DOI: 10.1091/mbc.10.7.2309] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We identify an actin-based protrusive structure in growth cones termed "intrapodium." Unlike filopodia, intrapodia are initiated exclusively within lamellipodia and elongate in a continuous (nonsaltatory) manner parallel to the plane of the dorsal plasma membrane causing a ridge-like protrusion. Intrapodia resemble the actin-rich structures induced by intracellular pathogens (e.g., Listeria) or by extracellular beads. Cytochalasin B inhibits intrapodial elongation and removal of cytochalasin B produced a burst of intrapodial activity. Electron microscopic studies revealed that lamellipodial intrapodia contain both short and long actin filaments oriented with their barbed ends toward the membrane surface or advancing end. Our data suggest an interaction between microtubule endings and intrapodia formation. Disruption of microtubules by acute nocodazole treatment decreased intrapodia frequency, and washout of nocodazole or addition of the microtubule-stabilizing drug Taxol caused a burst of intrapodia formation. Furthermore, individual microtubule ends were found near intrapodia initiation sites. Thus, microtubule ends or associated structures may regulate these actin-dependent structures. We propose that intrapodia are the consequence of an early step in a cascade of events that leads to the development of F-actin-associated plasma membrane specializations.
Collapse
Affiliation(s)
- M W Rochlin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
91
|
Merrifield CJ, Moss SE, Ballestrem C, Imhof BA, Giese G, Wunderlich I, Almers W. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1999; 1:72-4. [PMID: 10559868 DOI: 10.1038/9048] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
92
|
Röttger S, Frischknecht F, Reckmann I, Smith GL, Way M. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol 1999; 73:2863-75. [PMID: 10074134 PMCID: PMC104044 DOI: 10.1128/jvi.73.4.2863-2875.1999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular enveloped form of vaccinia virus (IEV) induces the formation of actin tails that are strikingly similar to those seen in Listeria and Shigella infections. In contrast to the case for Listeria and Shigella, the vaccinia virus protein(s) responsible for directly initiating actin tail formation remains obscure. However, previous studies with recombinant vaccinia virus strains have suggested that the IEV-specific proteins A33R, A34R, A36R, B5R, and F13L play an undefined role in actin tail formation. In this study we have sought to understand how these proteins, all of which are predicted to have small cytoplasmic domains, are involved in IEV assembly and actin tail formation. Our data reveal that while deletion of A34R, B5R, or F13L resulted in a severe reduction in IEV particle assembly, IEVs formed by the DeltaB5R and DeltaF13L deletion strains, but not DeltaA34R, were still able to induce actin tails. The DeltaA36R deletion strain produced normal amounts of IEV particles, although these were unable to induce actin tails. Using several different approaches, we demonstrated that A36R is a type Ib membrane protein with a large, 195-amino-acid cytoplasmic domain exposed on the surface of IEV particles. Finally, coimmunoprecipitation experiments demonstrated that A36R interacts with A33R and A34R but not with B5R and that B5R forms a complex with A34R but not with A33R or A36R. Using extracts from DeltaA34R- and DeltaA36R-infected cells, we found that the interaction of A36R with A33R and that of A34R with B5R are independent of A34R and A36R, respectively. We conclude from our observations that multiple interactions between IEV membrane proteins exist which have important implications for IEV assembly and actin tail formation. Furthermore, these data suggest that while A34R is involved in IEV assembly and organization, A36R is critical for actin tail formation.
Collapse
Affiliation(s)
- S Röttger
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg D-69117, Germany
| | | | | | | | | |
Collapse
|