51
|
Ruane D, Brane L, Reis BS, Cheong C, Poles J, Do Y, Zhu H, Velinzon K, Choi JH, Studt N, Mayer L, Lavelle EC, Steinman RM, Mucida D, Mehandru S. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. ACTA ACUST UNITED AC 2013; 210:1871-88. [PMID: 23960190 PMCID: PMC3754860 DOI: 10.1084/jem.20122762] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Developing efficacious vaccines against enteric diseases is a global challenge that requires a better understanding of cellular recruitment dynamics at the mucosal surfaces. The current paradigm of T cell homing to the gastrointestinal (GI) tract involves the induction of α4β7 and CCR9 by Peyer's patch and mesenteric lymph node (MLN) dendritic cells (DCs) in a retinoic acid-dependent manner. This paradigm, however, cannot be reconciled with reports of GI T cell responses after intranasal (i.n.) delivery of antigens that do not directly target the GI lymphoid tissue. To explore alternative pathways of cellular migration, we have investigated the ability of DCs from mucosal and nonmucosal tissues to recruit lymphocytes to the GI tract. Unexpectedly, we found that lung DCs, like CD103(+) MLN DCs, up-regulate the gut-homing integrin α4β7 in vitro and in vivo, and induce T cell migration to the GI tract in vivo. Consistent with a role for this pathway in generating mucosal immune responses, lung DC targeting by i.n. immunization induced protective immunity against enteric challenge with a highly pathogenic strain of Salmonella. The present report demonstrates novel functional evidence of mucosal cross talk mediated by DCs, which has the potential to inform the design of novel vaccines against mucosal pathogens.
Collapse
Affiliation(s)
- Darren Ruane
- Laboratory of Cellular Immunology and Physiology and 2 Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Nallamshetty S, Wang H, Rhee EJ, Kiefer FW, Brown JD, Lotinun S, Le P, Baron R, Rosen CJ, Plutzky J. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo. PLoS One 2013; 8:e71307. [PMID: 23951127 PMCID: PMC3739807 DOI: 10.1371/journal.pone.0071307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 11/28/2022] Open
Abstract
The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.
Collapse
Affiliation(s)
- Shriram Nallamshetty
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Marx J, Naudé H, Pretorius E. The Effects of Hypo- and Hypervitaminosis a and Its Involvement in Foetal Nervous System Development and Post-Natal Sensorimotor Functioning – A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/096979506799103677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
54
|
Shimozono S, Iimura T, Kitaguchi T, Higashijima SI, Miyawaki A. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 2013; 496:363-6. [PMID: 23563268 DOI: 10.1038/nature12037] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
|
55
|
Abstract
Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the biosynthesis of cholesterol, fatty acid, and triglyceride. They control the expression of crucial genes involved in lipogenesis and uptake. In this review, we summarize the processing of SREBPs and their regulation by insulin, cAMP, and vitamin A, and the relationship between miRNA and lipid metabolism. We also discuss the recent functional studies on SREBPs. These discoveries suggest that inhibition of SREBP can be a novel strategy to treat metabolic diseases, such as type II diabetes, insulin resistance, fatty liver, and atherosclerosis.
Collapse
Affiliation(s)
- Xu Xiao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shangha, China.
| | | |
Collapse
|
56
|
Porté S, Xavier Ruiz F, Giménez J, Molist I, Alvarez S, Domínguez M, Alvarez R, de Lera AR, Parés X, Farrés J. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity. Chem Biol Interact 2012; 202:186-94. [PMID: 23220004 DOI: 10.1016/j.cbi.2012.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Biological activity of natural retinoids requires the oxidation of retinol to retinoic acid (RA) and its binding to specific nuclear receptors in target tissues. The first step of this pathway, the reversible oxidoreduction of retinol to retinaldehyde, is essential to control RA levels. The enzymes of retinol oxidation are NAD-dependent dehydrogenases of the cytosolic medium-chain (MDR) and the membrane-bound short-chain (SDR) dehydrogenases/reductases. Retinaldehyde reduction can be performed by SDR and aldo-keto reductases (AKR), while its oxidation to RA is carried out by aldehyde dehydrogenases (ALDH). In contrast to SDR, AKR and ALDH are cytosolic. A common property of these enzymes is that they only use free retinoid, but not retinoid bound to cellular retinol binding protein (CRBP). The relative contribution of each enzyme type in retinoid metabolism is discussed in terms of the different subcellular localization, topology of membrane-bound enzymes, kinetic constants, binding affinity of CRBP for retinol and retinaldehyde, and partition of retinoid pools between membranes and cytoplasm. The development of selective inhibitors for AKR enzymes 1B1 and 1B10, of clinical relevance in diabetes and cancer, granted the investigation of some structure-activity relationships. Kinetics with the 4-methyl derivatives of retinaldehyde isomers was performed to identify structural features for substrate specificity. Hydrophilic derivatives were better substrates than the more hydrophobic compounds. We also explored the inhibitory properties of some synthetic retinoids, known for binding to retinoic acid receptors (RAR) and retinoid X receptors (RXR). Consistent with its substrate specificity towards retinaldehyde, AKR1B10 was more effectively inhibited by synthetic retinoids than AKR1B1. A RARβ/γ agonist (UVI2008) inhibited AKR1B10 with the highest potency and selectivity, and docking simulations predicted that its carboxyl group binds to the anion-binding pocket.
Collapse
Affiliation(s)
- Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Jiang W, Napoli JL. The retinol dehydrogenase Rdh10 localizes to lipid droplets during acyl ester biosynthesis. J Biol Chem 2012; 288:589-97. [PMID: 23155051 DOI: 10.1074/jbc.m112.402883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rdh10 catalyzes the first step of all-trans-retinoic acid biogenesis physiologically, conversion of retinol into retinal. We show that Rdh10 associates predominantly with mitochondria/mitochondrial-associated membrane (MAM) in the absence of lipid droplet biosynthesis, but also locates with lipid droplets during acyl ester biosynthesis. Targeting to lipid droplets requires the 32 N-terminal residues, which include a hydrophobic region followed by a net positive charge. Targeting to mitochondria/MAM and/or the stability of Rdh10 require both the N-terminal and the 48 C-terminal hydrophobic residues. Rdh10 behaves similarly to cellular retinol-binding protein, type 1, which also localizes to mitochondria/MAM before lipid droplet synthesis, and associates with lipid droplets during acyl ester synthesis (Jiang, W., and Napoli, J. L. (2012) Biochem. Biophys. Acta 1820, 859-8692). LRAT, an ER protein, also associates with lipid droplets upon acyl ester biosynthesis. Colocalization of Rdh10, Crbp1, and LRAT on lipid droplets suggests a metabolon that mediates retinol homeostasis.
Collapse
Affiliation(s)
- Weiya Jiang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
58
|
Fragoso YD, Campos NS, Tenrreiro BF, Guillen FJ. Systematic review of the literature on vitamin A and memory. Dement Neuropsychol 2012; 6:219-222. [PMID: 29213801 PMCID: PMC5619333 DOI: 10.1590/s1980-57642012dn06040005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Over the last 30 years, a variety of studies reporting the effects of vitamin
A on memory have been published. Objective To perform a rigorous systematic review of the literature on vitamin A and
memory in order to organize evidence-based data on the subject. Methods Four authors carried out the systematic review in accordance with strict
guidelines. The terms "vitamin A" OR "retinol" OR "retinoic acid" AND
"memory" OR "cognition" OR "Alzheimer" were searched in virtually all
medical research databases. Results From 236 studies containing the key words, 44 were selected for this review,
numbering 10 reviews and 34 original articles. Most studies used animal
models for studying vitamin A and cognition. Birds, mice and rats were more
frequently employed whereas human studies accounted for only two reports on
brain tissue from autopsies and one on the role of isotretinoin in cognition
among individuals taking this medication to treat acne. Conclusion Vitamin A may be an important and viable complement in the treatment and
prevention of Alzheimer's disease. Clinical trials are imperative and, at
present, there is no evidence-based data to recommend vitamin A
supplementation for the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yara Dadalti Fragoso
- Head of the Department of Neurology, Universidade Metropolitana de Santos, SP, Brazil
| | | | | | | |
Collapse
|
59
|
Leitch VD, Dwivedi PP, Anderson PJ, Powell BC. Retinol-binding protein 4 downregulation during osteogenesis and its localization to non-endocytic vesicles in human cranial suture mesenchymal cells suggest a novel tissue function. Histochem Cell Biol 2012; 139:75-87. [PMID: 22878527 DOI: 10.1007/s00418-012-1011-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2012] [Indexed: 12/12/2022]
Abstract
Craniosynostosis is a developmental disorder of the skull arising from premature bony fusion of cranial sutures, the sites of skull bone growth. In a recent gene microarray study, we demonstrated that retinol-binding protein 4 (RBP4) was the most highly downregulated gene in suture tissue during the pathological process of premature bony fusion. To gain insight into the function of RBP4 in cranial sutures, we analysed primary cells cultured from human cranial suture mesenchyme. These cells express RBP4 but not CRBP1, cellular retinol-binding protein 1, the typical cytoplasmic retinol storage protein. Using flow cytometry, we showed that suture mesenchymal cells express the RBP4 receptor, STRA6, on the cell surface. In a cell culture model of cranial osteogenesis, we found that RBP4 was significantly downregulated during mineralization, analogous to its decrease in pathological suture fusion. We found that cranial suture cells do not secrete detectable levels of RBP4, suggesting that it acts in a cell-autonomous manner. High-resolution confocal microscopy with a panel of antibody markers of cytoplasmic organelles demonstrated that RBP4 was present in several hundred cytoplasmic vesicles of about 300 nm in diameter which, in large part, were conspicuously distinct from the ER, the Golgi and endosomes of the endocytic pathway. We speculate that in suture mesenchymal cells, endogenous RBP4 receives retinol from STRA6 and the RBP4-retinol complex is stored in vesicles until needed for conversion to retinoic acid in the process of osteogenesis. This study extends the role of RBP4 beyond that of a serum transporter of retinol and implicates a broader role in osteogenesis.
Collapse
Affiliation(s)
- Victoria D Leitch
- Women's and Children's Health Research Institute, 72 King William Road, North Adelaide, SA 5006, Australia
| | | | | | | |
Collapse
|
60
|
Zhang Y, Li R, Li Y, Chen W, Zhao S, Chen G. Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats. Biochem Cell Biol 2012; 90:548-557. [PMID: 22554462 DOI: 10.1139/o2012-012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We hypothesized that vitamin A (VA) status may affect obesity development. Male Zucker lean (ZL) and fatty (ZF) rats after weaning were fed a synthetic VA deficient (VAD) or VA sufficient (VAS) diet for 8 weeks before their plasma parameters and hepatic genes' expression were analyzed. The body mass (BM) of ZL or ZF rats fed the VAD diet was lower than that of their corresponding controls fed the VAS diet at 5 or 2 weeks, respectively. The VAD ZL and ZF rats had less food intake than the VAS rats after 5 weeks. The VAD ZL and ZF rats had lower plasma glucose, triglyceride, insulin, and leptin levels, as well as lower liver glycogen content, net mass of epididymal fat, and liver/BM and epididymal fat/BM ratios (ZL only) than their respective VAS controls. VAD rats had lower hepatic Cyp26a1, Srebp-1c, Fas, Scd1, Me1, Gck, and Pklr (ZL and ZF); and higher Igfbp1 (ZL and ZF), Pck1(ZF only), and G6pc (ZF only) mRNA levels than their respective VAS controls. We conclude that ZL and ZF rats responded differently to dietary VA deficiency. VA status affected obesity development and altered the expression of hepatic genes for fuel metabolism in ZF rats. The mechanisms will help us to combat metabolic diseases.
Collapse
Affiliation(s)
- Yan Zhang
- The Diabetes Center at Wuhan Central Hospital, No. 26 Shengli Road, Jiangan District, Wuhan, Hubei 430014, China
| | | | | | | | | | | |
Collapse
|
61
|
Kawaguchi R, Zhong M, Kassai M, Ter-Stepanian M, Sun H. STRA6-catalyzed vitamin A influx, efflux, and exchange. J Membr Biol 2012; 245:731-45. [PMID: 22815070 DOI: 10.1007/s00232-012-9463-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/23/2012] [Indexed: 11/26/2022]
Abstract
Vitamin A has diverse biological functions and is essential for human survival. STRA6 is the high-affinity membrane receptor for plasma retinol binding protein (RBP), the principle and specific carrier of vitamin A (retinol) in the blood. It was previously shown that STRA6 couples to lecithin retinol acyltransferase (LRAT) and cellular retinol binding protein I (CRBP-I), but poorly to CRBP-II, for retinol uptake from holo-RBP. STRA6 catalyzes both retinol release from holo-RBP, which is responsible for its retinol uptake activity, and the loading of free retinol into apo-RBP, which can cause retinol efflux. Although STRA6-catalyzed retinol efflux into apo-RBP can theoretically deplete cells of retinoid, it is unclear to what extent this efflux happens and in what context. We show here that STRA6 can couple strongly to both CRBP-I and CRBP-II for retinol efflux to apo-RBP. Strikingly, pure apo-RBP can cause almost complete depletion of retinol taken up by CRBP-I in a STRA6-dependent manner. However, if STRA6 encounters both holo-RBP and apo-RBP (as in blood), holo-RBP blocks STRA6-mediated retinol efflux by competing with apo-RBP's binding to STRA6 and by counteracting retinol efflux with influx. We also found that STRA6 catalyzes efficient retinol exchange between intracellular CRBP-I and extracellular RBP, even in the presence of holo-RBP. STRA6's retinol exchange activity may serve to refresh the intracellular retinoid pool. This exchange is also a previously unknown function of CRBP-I and distinguishes CRBP-I from LRAT.
Collapse
Affiliation(s)
- Riki Kawaguchi
- Department of Physiology, Jules Stein Eye Institute and Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
62
|
Abstract
Retinoid acid is a metabolite of vitamin A and functions as an important factor in cell survival, differentiation and death. Most previous studies on retinoid metabolism have focused on its association with cancer, hematologic and dermatologic disorders. Given the special concern over the recent increase in the prevalence of diabetes worldwide, the role of retinoid metabolism on glucose metabolism and insulin resistance in the human body is of marked importance. Therefore, in this issue, we review the literature on the association of retinoid metabolism with glucose tolerance, with regard to insulin secretion, pancreatic autoimmunity, insulin sensitivity and lipid metabolism. Further, we tried to assess the possibility of using retinoids as a novel therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jorge Plutzky
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
63
|
Ruiz FX, Porté S, Parés X, Farrés J. Biological role of aldo-keto reductases in retinoic Acid biosynthesis and signaling. Front Pharmacol 2012; 3:58. [PMID: 22529810 PMCID: PMC3328219 DOI: 10.3389/fphar.2012.00058] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/19/2012] [Indexed: 12/12/2022] Open
Abstract
Several aldo-keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low K(m) and k(cat) values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- F Xavier Ruiz
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona Barcelona, Spain
| | | | | | | |
Collapse
|
64
|
Zhao S, Li R, Li Y, Chen W, Zhang Y, Chen G. Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochem Cell Biol 2012; 90:142-152. [PMID: 22292422 DOI: 10.1139/o11-079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rising prevalence of metabolic diseases, such as obesity and diabetes, has become a public health concern. Vitamin A (VA, retinol) is an essential micronutrient for a variety of physiological processes, such as tissue differentiation, immunity, and vision. However, its role in glucose and lipid metabolism has not been clearly defined. VA activities are mediated by the metabolite of retinol catabolism, retinoic acid, which activates the retinoic acid receptor and retinoid X receptor (RXR). Since RXR is an obligate heterodimeric partner for many nuclear receptors involved in metabolism, it is reasonable to assume that VA status and retinoids contribute to glucose and lipid homeostasis. To date, the impacts of VA and retinoids on energy metabolism in animals and humans have been demonstrated in some basic and clinical investigations. This review summarizes the effects of VA status and retinoid treatments on metabolism of the liver, adipocytes, pancreatic β-cells, and skeletal muscle. It proposes a mechanism by which the dietary and hormonal signals converge on the promoter of sterol regulatory element-binding protein 1c gene to induce its expression, and in turn, the expression of lipogenic genes in hepatocytes. Future research projects relevant to the VA's roles in metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Shi Zhao
- The Diabetes Center, Wuhan Central Hospital, Wuhan, Hubei 430014, China
| | | | | | | | | | | |
Collapse
|
65
|
Xun Z, Lee DY, Lim J, Canaria CA, Barnebey A, Yanonne SM, McMurray CT. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mech Ageing Dev 2012; 133:176-85. [PMID: 22336883 DOI: 10.1016/j.mad.2012.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/22/2011] [Accepted: 01/29/2012] [Indexed: 01/15/2023]
Abstract
Retinoic acid (RA) is used in differentiation therapy to treat a variety of cancers including neuroblastoma. The contributing factors for its therapeutic efficacy are poorly understood. However, mitochondria (MT) have been implicated as key effectors in RA-mediated differentiation process. Here we utilize the SH-SY5Y human neuroblastoma cell line as a model to examine how RA influences MT during the differentiation process. We find that RA confers an approximately sixfold increase in the oxygen consumption rate while the rate of glycolysis modestly increases. RA treatment does not increase the number of MT or cause measurable changes in the composition of the electron transport chain. Rather, RA treatment significantly increases the mitochondrial spare respiratory capacity. We propose a competition model for the therapeutic effects of RA. Specifically, the high metabolic rate in differentiated cells limits the availability of metabolic nutrients for use by the undifferentiated cells and suppresses their growth. Thus, RA treatment provides a selective advantage for the differentiated state.
Collapse
Affiliation(s)
- Zhiyin Xun
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:152-67. [PMID: 21621639 PMCID: PMC3179567 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
67
|
Everts HB. Endogenous retinoids in the hair follicle and sebaceous gland. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:222-9. [PMID: 21914489 PMCID: PMC3237781 DOI: 10.1016/j.bbalip.2011.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 08/12/2011] [Accepted: 08/29/2011] [Indexed: 12/19/2022]
Abstract
Vitamin A and its derivatives (retinoids) are critically important in the development and maintenance of multiple epithelial tissues, including skin, hair, and sebaceous glands, as shown by the detrimental effects of either vitamin A deficiency or toxicity. Thus, precise levels of retinoic acid (RA, active metabolite) are needed. These precise levels of RA are achieved by regulating several steps in the conversion of dietary vitamin A (retinol) to RA and RA catabolism. This review discusses the localization of RA synthesis to specific sites within the hair follicle and sebaceous gland, including their stem cells, during both homeostasis and disease states. It also discusses what is known about the specific roles of RA within the hair follicle and sebaceous gland. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Nutrition, The Oio State University, 350 Campell Hall, 1787 Neil Ave, Columbus, OH 43210, USA.
| |
Collapse
|
68
|
Mezaki Y, Morii M, Yoshikawa K, Yamaguchi N, Miura M, Imai K, Yoshino H, Senoo H. Characterization of a cellular retinol-binding protein from lamprey, Lethenteron japonicum. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:233-9. [PMID: 22155549 DOI: 10.1016/j.cbpb.2011.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/18/2022]
Abstract
Lampreys are ancestral representatives of vertebrates known as jawless fish. The Japanese lamprey, Lethenteron japonicum, is a parasitic member of the lampreys known to store large amounts of vitamin A within its body. How this storage is achieved, however, is wholly unknown. Within the body, the absorption, transfer and metabolism of vitamin A are regulated by a family of proteins called retinoid-binding proteins. Here we have cloned a cDNA for cellular retinol-binding protein (CRBP) from the Japanese lamprey, and phylogenetic analysis suggests that lamprey CRBP is an ancestor of both CRBP I and II. The lamprey CRBP protein was expressed in bacteria and purified. Binding of the lamprey CRBP to retinol (Kd of 13.2 nM) was identified by fluorimetric titration. However, results obtained with the protein fluorescence quenching technique indicated that lamprey CRBP does not bind to retinal. Northern blot analysis showed that lamprey CRBP mRNA was ubiquitously expressed, although expression was most abundant in the intestine. Together, these results suggest that lamprey CRBP has an important role in absorbing vitamin A from the blood of host animals.
Collapse
Affiliation(s)
- Yoshihiro Mezaki
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 2011; 50:388-402. [DOI: 10.1016/j.plipres.2011.07.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
70
|
Kane MA. Analysis, occurrence, and function of 9-cis-retinoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:10-20. [PMID: 21983272 DOI: 10.1016/j.bbalip.2011.09.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/09/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023]
Abstract
Metabolic conversion of vitamin A (retinol) into retinoic acid (RA) controls numerous physiological processes. 9-cis-retinoic acid (9cRA), an active metabolite of vitamin A, is a high affinity ligand for retinoid X receptor (RXR) and also activates retinoic acid receptor (RAR). Despite the identification of candidate enzymes that produce 9cRA and the importance of RXRs as established by knockout experiments, in vivo detection of 9cRA in tissue was elusive until recently when 9cRA was identified as an endogenous pancreas retinoid by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology. This review will discuss the current status of the analysis, occurrence, and function of 9cRA. Understanding both the nuclear receptor-mediated and non-genomic mechanisms of 9cRA will aid in the elucidation of disease physiology and possibly lead to the development of new retinoid-based therapeutics. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
71
|
Buchanan FQ, Rochette-Egly C, Asson-Batres MA. Detection of variable levels of RARα and RARγ proteins in pluripotent and differentiating mouse embryonal carcinoma and mouse embryonic stem cells. Cell Tissue Res 2011; 346:43-51. [PMID: 21987218 DOI: 10.1007/s00441-011-1247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/12/2011] [Indexed: 01/24/2023]
Abstract
Pluripotent mouse embryonal carcinoma (mEC) and mouse embryonic stem (mES) cells differentiate into several cell lineages upon retinoic acid (RA) addition. Differentiation is facilitated, in part, by RA activation of nuclear RA receptors (RARs) that bind to DNA response elements located in the promoters of target genes. The purpose of the studies reported here was to immunolocalize RARα and RARγ protein in mEC and mES cells and in their RA-induced differentiated progeny. Fixed cells were reacted with three different RARα antibodies and one RARγ antibody. Pluripotent and differentiated mEC and mES cells showed positive nuclear immunoreactivity with all antibodies tested. Two RARα antibodies also showed positive reactivity in the cytoplasm. Surprisingly, our results revealed variability in immunofluorescence intensity and in RARα and RARγ distribution from one cell to the other, suggesting that RARα and RARγ protein levels were not synchronous throughout the cell population. The results indicate that RARα and RARγ are present in pluripotent and differentiating mEC and mES cells and suggest that the expression of these proteins is dynamic.
Collapse
|
72
|
Ahn K, Choi E, Kim J, Lee J, Lee K, Bang D, Cho S. Increased retinol‐binding protein (RBP) 4 and anti‐RBP4 antibody in alopecia areata. Br J Dermatol 2011; 165:837-44. [DOI: 10.1111/j.1365-2133.2011.10482.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- K.J. Ahn
- Specialization Research Center, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - E.A. Choi
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun‐gu, 120‐752 Seoul, Korea
| | - J. Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun‐gu, 120‐752 Seoul, Korea
| | - J.H. Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun‐gu, 120‐752 Seoul, Korea
| | - K.H. Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun‐gu, 120‐752 Seoul, Korea
| | - D. Bang
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun‐gu, 120‐752 Seoul, Korea
| | - S.B. Cho
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun‐gu, 120‐752 Seoul, Korea
| |
Collapse
|
73
|
Zhang Y, Li R, Chen W, Li Y, Chen G. Retinoids induced Pck1 expression and attenuated insulin-mediated suppression of its expression via activation of retinoic acid receptor in primary rat hepatocytes. Mol Cell Biochem 2011; 355:1-8. [PMID: 21519922 DOI: 10.1007/s11010-011-0831-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Insulin regulates the expression of genes involved in hepatic glucose and lipid metabolism, such as the cytosolic form of phosphoenolpyruvate carboxykinase gene (Pck1). We have reported that lipophilic molecules from rat livers induced Pck1 transcription and attenuated insulin-mediated suppression of its expression in primary rat hepatocytes. After identification of retinol and retinal as the active molecules, the present study was aimed to determine the effects of retinoids on insulin-mediated suppression of Pck1 expression in primary rat hepatocytes. Real-time PCR and reporter gene assays were designed to determine retinoid effects in the absence or presence of insulin on the expression levels of Pck1 mRNA and activation of its promoter constructs, respectively. The lipophilic extract from rat livers specifically induced the expression of Pck1, but not that of two other insulin-suppressed genes, glucose 6-phosphatase catalytic subunit and insulin-like growth factor-binding protein 1. Retinol, retinal, and retinoic acid (RA) induced Pck1 expression dose-dependently in primary hepatocytes. Specific activation of retinoic acid receptor (RAR), but not retinoid X receptor, attenuated insulin-mediated suppression of Pck1 expression. RARα antagonist (Ro41-5253) abolished the retinal-mediated induction of Pck1 expression and attenuation of insulin-mediated suppression of its expression. Disruption of the proximal, but not the distal, RA responsive element in the Pck1 promoter eliminated the RA response of Pck1 promoter reporter constructs in primary hepatocytes. The results of this study demonstrated for the first time that retinoid treatment attenuated insulin-mediated suppression of Pck1 expression in primary rat hepatocytes. It suggests that retinoid metabolism in hepatocytes may modulate hepatic insulin action.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, 229 Jessie Harris Building, 1215 West Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
74
|
Napoli JL. Effects of ethanol on physiological retinoic acid levels. IUBMB Life 2011; 63:701-6. [PMID: 21766417 PMCID: PMC3197900 DOI: 10.1002/iub.500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/20/2011] [Indexed: 12/16/2022]
Abstract
All-trans-retinoic acid (atRA) serves essential functions during embryogenesis and throughout postnatal vertebrate life. Insufficient or excess atRA causes teratogenic and/or toxic effects in the developing embryo: interference with atRA biosynthesis or signaling likely underlies some forms of cancer. Many symptoms of vitamin A (atRA precursor) deficiency and/or toxicity overlap with those of another pleiotropic agent--ethanol. These overlapping symptoms have prompted research to understand whether interference with atRA biosynthesis and/or action may explain (in part) pathology associated with excess ethanol consumption. Ethanol affects many aspects of retinoid metabolism and mechanisms of action site specifically, but no robust data support inhibition of vitamin A metabolism, resulting in decreased atRA in vivo during normal vitamin A nutriture. Actually, ethanol either has no effect on or increases atRA at select sites. Despite this realization, insight into whether interactions between ethanol and retinoids represent cause versus effect requires additional research.
Collapse
Affiliation(s)
- Joseph L Napoli
- Program in Metabolic Biology, Nutritional Science and Toxicology, University of California-Berkeley, Berkeley, CA, USA.
| |
Collapse
|
75
|
de Oliveira MR, Lorenzi R, Schnorr CE, Morrone M, Moreira JCF. Increased 3-nitrotyrosine levels in mitochondrial membranes and impaired respiratory chain activity in brain regions of adult female rats submitted to daily vitamin A supplementation for 2 months. Brain Res Bull 2011; 86:246-53. [PMID: 21856383 DOI: 10.1016/j.brainresbull.2011.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/06/2011] [Accepted: 08/05/2011] [Indexed: 12/31/2022]
Abstract
Vitamin A supplementation among women is a common habit worldwide in an attempt to slow aging progression due to the antioxidant potential attributed to retinoids. Nonetheless, vitamin A elicits a myriad of side effects that result from either therapeutic or inadvertent intake at varying doses for different periods. The mechanism behind such effects remains to be elucidated. In this regard, we performed the present work aiming to investigate the effects of vitamin A supplementation at 100, 200, or 500IU/kgday(-1) for 2 months on female rat brain, analyzing tissue lipid peroxidation levels, antioxidant enzyme activities (both Cu/Zn-superoxide dismutase - SOD - and Mn-SOD); glutathione S-transferase (GST) and monoamine oxidase (MAO) enzyme activity; mitochondrial respiratory chain activity and redox parameters in mitochondrial membranes, as well as quantifying α- and β-synucleins, β-amyloid peptide(1-40), immunoglobulin heavy-chain binding protein/78kDa glucose-regulated protein (BiP/GRP78), receptor for advanced glycation end products (RAGE), D2 receptor, and tumor necrosis factor-α (TNF-α) contents in rat frontal cortex, hippocampus, striatum, and cerebellum. We observed increased lipid peroxidation marker levels, altered Cu/Zn-SOD and Mn-SOD enzyme activities, mitochondrial nitrosative stress, and impaired respiratory chain activity in such brain regions. On the other hand, we did not find any change in MAO and GST enzyme activities, and on α- and β-synucleins, β-amyloid peptide(1-40), GRP78/BiP, RAGE, D2 receptor, and TNF-α contents. Importantly, we did not observed any evidence regarding an antioxidant effect of such vitamin at low doses in this experimental model. The use of vitamin A as an antioxidant therapy among women needs to be reexamined.
Collapse
|
76
|
Rhee EJ, Nallamshetty S, Plutzky J. Retinoid metabolism and its effects on the vasculature. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:230-40. [PMID: 21810483 DOI: 10.1016/j.bbalip.2011.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/15/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022]
Abstract
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
77
|
Farjo KM, Moiseyev G, Nikolaeva O, Sandell LL, Trainor PA, Ma JX. RDH10 is the primary enzyme responsible for the first step of embryonic Vitamin A metabolism and retinoic acid synthesis. Dev Biol 2011; 357:347-55. [PMID: 21782811 DOI: 10.1016/j.ydbio.2011.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022]
Abstract
Retinoic acid (atRA) signaling is essential for regulating embryonic development, and atRA levels must be tightly controlled in order to prevent congenital abnormalities and fetal death which can result from both excessive and insufficient atRA signaling. Cellular enzymes synthesize atRA from Vitamin A, which is obtained from dietary sources. Embryos express multiple enzymes that are biochemically capable of catalyzing the initial step of Vitamin A oxidation, but the precise contribution of these enzymes to embryonic atRA synthesis remains unknown. Using Rdh10(trex)-mutant embryos, dietary supplementation of retinaldehyde, and retinol dehydrogenase (RDH) activity assays, we demonstrate that RDH10 is the primary RDH responsible for the first step of embryonic Vitamin A oxidation. Moreover, we show that this initial step of atRA synthesis occurs predominantly in a membrane-bound cellular compartment, which prevents inhibition by the cytosolic cellular retinol-binding protein (RBP1). These studies reveal that widely expressed cytosolic enzymes with RDH activity play a very limited role in embryonic atRA synthesis under normal dietary conditions. This provides a breakthrough in understanding the precise cellular mechanisms that regulate Vitamin A metabolism and the synthesis of the essential embryonic regulatory molecule atRA.
Collapse
Affiliation(s)
- Krysten M Farjo
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Schnorr CE, Morrone MDS, Weber MH, Lorenzi R, Behr GA, Moreira JCF. The effects of vitamin A supplementation to rats during gestation and lactation upon redox parameters: increased oxidative stress and redox modulation in mothers and their offspring. Food Chem Toxicol 2011; 49:2645-54. [PMID: 21771631 DOI: 10.1016/j.fct.2011.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 06/19/2011] [Accepted: 07/06/2011] [Indexed: 11/25/2022]
Abstract
Vitamin A is an essential nutrient required in adequate amounts for reproduction and development. Subtle variations in the status of maternal nutrition may affect physiological and metabolic parameters in the fetus. Evidence suggests a key role for oxidative stress in these events. Literature is controversial about the effects of vitamin A supplementation. Here, we studied the effects of vitamin A supplementation on female Wistar rats during gestation and lactation on oxidative stress parameters of maternal and offspring tissues. Rats received daily doses of vitamin A at 2500, 12,500 and 25,000IU/kg. We observed an increase of oxidative damage markers in the reproductive tissues and plasma of dams. The activity of glutathione-S-transferase was modulated by vitamin A supplementation. It was found to be increased in the liver of dams and decreased in the kidneys of mothers and offspring. In pups, supplementation decreased the total antioxidant potential of the liver along with decreased superoxide dismutase/catalase activity ratio in the kidney. The levels of lipoperoxidation were increased in male offspring, but decreased in female pups. Collectively, the results suggest that excessive vitamin A intake during gestation and lactation might be toxic for mothers with adverse effects for the developing offspring.
Collapse
Affiliation(s)
- Carlos Eduardo Schnorr
- Centro de Estudos de Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
79
|
CrbpI modulates glucose homeostasis and pancreas 9-cis-retinoic acid concentrations. Mol Cell Biol 2011; 31:3277-85. [PMID: 21670153 DOI: 10.1128/mcb.05516-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular retinol-binding protein type I (CrbpI), encoded by Rpb1, serves as a chaperone of retinol homeostasis, but its physiological effects remain incompletely understood. We show here that the Rbp1(-/-) mouse has disrupted retinoid homeostasis in multiple tissues, with abnormally high 9-cis-retinoic acid (9cRA), a pancreas autacoid that attenuates glucose-stimulated insulin secretion. The Rbp1(-/-) pancreas has increased retinol and intense ectopic expression of Rpb2 mRNA, which encodes CrbpII: both would contribute to increased β-cell 9cRA biosynthesis. 9cRA in Rbp1(-/-) pancreas resists postprandial and glucose-induced decreases. Rbp1(-/-) mice have defective islet expression of genes involved in glucose sensing and insulin secretion, as well as islet α-cell infiltration, which contribute to reduced glucose-stimulated insulin secretion, high glucagon secretion, an abnormally high rate of gluconeogenesis, and hyperglycemia. A diet rich in vitamin A (as in a standard chow diet) increases pancreas 9cRA and impairs glucose tolerance. Crbp1 attenuates the negative impact of vitamin A (retinol) on glucose tolerance, regardless of the dietary retinol content. Rbp1(-/-) mice have an increased rate of fatty acid oxidation and resist obesity when fed a high-fat diet. Thus, glucose homeostasis and energy metabolism rely on Rbp1 expression and its moderation of pancreas retinol and of the autacoid 9cRA.
Collapse
|
80
|
Pavone ME, Dyson M, Reirstad S, Pearson E, Ishikawa H, Cheng YH, Bulun SE. Endometriosis expresses a molecular pattern consistent with decreased retinoid uptake, metabolism and action. Hum Reprod 2011; 26:2157-64. [PMID: 21659316 DOI: 10.1093/humrep/der172] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Retinoic acid (RA) regulates key biological processes, including differentiation, apoptosis and cell survival. RA mediates induction of 17 beta-hydroxysteroid dehydrogenase type 2 mRNA, catalyzing the conversion of estradiol to estrone, in endometrium but not endometriosis because of a defect in endometriotic stromal cells. This defect may involve both the uptake and metabolism of RA. In this study, we analyze the expression of genes involved in RA signaling in normal endometrium and endometriosis. METHODS Tissue and stromal cells from ovarian endometriomas and eutopic endometrium from disease-free women were collected. Real-time reverse transcription-polymerase chain reaction was used to measure mRNA levels. Western blotting was used to evaluate protein expression. RESULTS We found that endometriotic tissue and stromal cells demonstrated significantly decreased mRNA expression of the major genes involved in RA signaling, including STRA6, CRBP1, ALDH1A2, CRABP2 and FABP5. We found increased levels of CYP26B1, responsible for RA metabolism. Nuclear extracts showed that RARα, RXRα and PPARβ/δ were underexpressed in both tissues and stromal cells from endometriotic tissue. Differences in protein levels were confirmed by western blotting. CONCLUSIONS Endometriosis is characterized by a gene expression pattern suggesting a decrease in uptake and metabolism of RA. Because RA is integral in regulating key biological processes involved in cell survival, this alteration could partially explain the resistance to apoptosis found in endometriosis.
Collapse
Affiliation(s)
- Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, Feinberg School of Medicine at Northwestern University, 303 Superior Street, Suite 4-123, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Stock A, Booth S, Cerundolo V. Prostaglandin E2 suppresses the differentiation of retinoic acid-producing dendritic cells in mice and humans. J Exp Med 2011; 208:761-73. [PMID: 21444662 PMCID: PMC3135350 DOI: 10.1084/jem.20101967] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/23/2011] [Indexed: 12/23/2022] Open
Abstract
The production of retinoic acid (RA) by dendritic cells (DCs) is critical for the induction of gut-tropic immune responses by driving the expression of intestinal-specific homing receptors, such as α4β7 and CCR9, upon T and B cell activation. However, how RA production is regulated during DC development remains unclear. We describe an unexpected role for prostaglandin E2 (PGE2) as a negative regulator of retinal dehydrogenases (RALDH), the enzymes responsible for RA synthesis. The presence of PGE2 during DC differentiation inhibited RALDH expression in mouse and human DCs, abrogating their ability to induce CCR9 expression upon T cell priming. Furthermore, blocking PGE2 signaling increased the frequency of RALDH(+) DCs in vitro, and reducing PGE2 synthesis in vivo promoted the systemic emergence of RA-producing DCs and the priming of CCR9(+) T cells in nonintestinal sites such as the spleen. Finally, we found that PGE2 stimulated the expression of the inducible cyclic AMP early repressor, which appears to directly inhibit RALDH expression in DCs, thus providing mechanistic insight into how PGE2 signaling down-modulates RALDH. Given the role of PGE2 in regulating the development of RA-producing DCs, modulating this pathway may prove a novel means to control the development of gut-tropic immune responses.
Collapse
Affiliation(s)
- Angus Stock
- Medical Research Council Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, England, UK
| | | | | |
Collapse
|
82
|
Jeong WI, Park O, Suh YG, Byun JS, Park SY, Choi E, Kim JK, Ko H, Wang H, Miller AM, Gao B. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice. Hepatology 2011; 53:1342-51. [PMID: 21480338 PMCID: PMC3079530 DOI: 10.1002/hep.24190] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Activation of innate immunity (natural killer [NK] cell/interferon-γ [IFN-γ]) has been shown to play an important role in antiviral and antitumor defenses as well as antifibrogenesis. However, little is known about the regulation of innate immunity during chronic liver injury. Here, we compared the functions of NK cells in early and advanced liver fibrosis induced by a 2-week or a 10-week carbon tetrachloride (CCl(4) ) challenge, respectively. Injection of polyinosinic-polycytidylic acid (poly I:C) or IFN-γ induced NK cell activation and NK cell killing of hepatic stellate cells (HSCs) in the 2-week CCl(4) model. Such activation was diminished in the 10-week CCl(4) model. Consistent with these findings, the inhibitory effect of poly I:C and IFN-γ on liver fibrosis was markedly reduced in the 10-week versus the 2-week CCl(4) model. In vitro coculture experiments demonstrated that 4-day cultured (early activated) HSCs induce NK cell activation via an NK group 2 member D/retinoic acid-induced early gene 1-dependent mechanism. Such activation was reduced when cocultured with 8-day cultured (intermediately activated) HSCs due to the production of transforming growth factor-β (TGF-β) by HSCs. Moreover, early activated HSCs were sensitive, whereas intermediately activated HSCs were resistant to IFN-γ-mediated inhibition of cell proliferation, likely due to elevated expression of suppressor of cytokine signaling 1 (SOCS1). Disruption of the SOCS1 gene restored the IFN-γ inhibition of cell proliferation in intermediately activated HSCs. Production of retinol metabolites by HSCs contributed to SOCS1 induction and subsequently inhibited IFN-γ signaling and functioning, whereas production of TGF-β by HSCs inhibited NK cell function and cytotoxicity against HSCs. CONCLUSION The antifibrogenic effects of NK cell/IFN-γ are suppressed during advanced liver injury, which is likely due to increased production of TGF-β and expression of SOCS1 in intermediately activated HSCs.
Collapse
Affiliation(s)
- Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Li R, Chen W, Li Y, Zhang Y, Chen G. Retinoids synergized with insulin to induce Srebp-1c expression and activated its promoter via the two liver X receptor binding sites that mediate insulin action. Biochem Biophys Res Commun 2011; 406:268-272. [PMID: 21316346 DOI: 10.1016/j.bbrc.2011.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/06/2011] [Indexed: 02/07/2023]
Abstract
We have reported that the rat liver lipophilic extract (LE) synergized with insulin to induce Gck and Srebp-1c in primary rat hepatocytes. After identification of retinol and retinal in LE, only their effects in the absence or presence of insulin on Gck, but not that on Srebp-1c, were investigated subsequently. The retinoid effects on the Srebp-1c expression and the activation of its promoter were examined with real-time PCR and reporter gene assays, respectively. In primary hepatocytes, retinal and retinoic acid (RA) synergized with insulin to induce Srebp-1c expression. This induction was followed by the elevation of its target gene, fatty acid synthase. Activation of retinoid X receptor, but not retinoic acid receptor, was responsible for the induction of Srebp-1c expression. RA, but not retinal, also induced Srebp-1c expression in a dose dependent manner in INS-1 cells. The RA responsive elements in Srebp-1c promoter were determined as previously identified two liver X receptor elements responsible for mediating insulin action. We conclude that retinoids regulate hepatic Srebp-1c expression through activation of retinoid X receptor. The RA- and insulin-induced Srebp-1c expression converged at the same sites in its promoter, indicating the roles of vitamin A in regulation of hepatic gene expression.
Collapse
Affiliation(s)
- Rui Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
84
|
Kane MA, Bright FV, Napoli JL. Binding affinities of CRBPI and CRBPII for 9-cis-retinoids. Biochim Biophys Acta Gen Subj 2011; 1810:514-8. [PMID: 21382444 DOI: 10.1016/j.bbagen.2011.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid × receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure-function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids. METHODS We have determined apparent dissociation constants, K'(d), through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions. RESULTS CRBPI and CRBPII, respectively, bind 9-cis-retinol (K'(d), 11nM and 68nM) and 9-cis-retinal (K'(d), 8nM and 5nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII. CONCLUSIONS CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal. GENERAL SIGNIFICANCE These data provide further insight into structure-binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins.
Collapse
Affiliation(s)
- Maureen A Kane
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720-3104, USA
| | | | | |
Collapse
|
85
|
Atikuzzaman M, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, Gomez MNL, Oh HJ, Hong SG, Jang G, Lee BC. The 9-cis retinoic acid signaling pathway and its regulation of prostaglandin-endoperoxide synthase 2 during in vitro maturation of pig cumulus cell-oocyte complexes and effects on parthenogenetic embryo production. Biol Reprod 2011; 84:1272-81. [PMID: 21368300 DOI: 10.1095/biolreprod.110.086595] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The addition of 9-cis retinoic acid to the oocyte maturation culture medium has a beneficial effect on in vitro fertilized embryos. However, the mechanism of this activity is not known. Therefore, this study was done to elucidate the effect of 9-cis retinoic acid on parthenogenetic embryo production and its signaling pathway and molecular function during in vitro maturation of porcine cumulus cell-oocyte complexes (COCs). Concentrations of 0, 5, 50, and 500 nM 9-cis retinoic acid were added to the in vitro maturation medium, and the embryos were assessed after parthenogenetic activation. Cumulus cells and oocytes from the in vitro matured COCs were separated and subjected to RT-PCR and real-time RT-PCR for detecting retinoic acid receptors and measuring expression of prostaglandin-endoperoxide synthase1 and 2. The addition of 5 nM 9-cis retinoic acid to the maturation medium was beneficial for parthenogenetic embryo production. The effect of 9-cis retinoic acid was exerted directly through the oocytes via the retinoic acid receptor alpha and retinoid X receptor gamma signaling pathways and indirectly through the cumulus cells by the retinoic acid receptor beta and gamma and retinoid X receptor alpha and beta signaling pathways. The addition of 5 nM 9-cis retinoic acid-stimulated cumulus cells reaches full expansion by suppressing their excessive expression of prostaglandin-endoperoxide synthase 2. This study shows that 9-cis retinoic acid can exert its beneficial effect on parthenogenetic embryo production in pigs by multidimensional pathways affecting oocyte maturation.
Collapse
Affiliation(s)
- Mohammad Atikuzzaman
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Sundberg JP, Taylor D, Lorch G, Miller J, Silva KA, Sundberg BA, Roopenian D, Sperling L, Ong D, King LE, Everts H. Primary follicular dystrophy with scarring dermatitis in C57BL/6 mouse substrains resembles central centrifugal cicatricial alopecia in humans. Vet Pathol 2011; 48:513-24. [PMID: 20861494 PMCID: PMC3101716 DOI: 10.1177/0300985810379431] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of C57BL/6 (B6) substrains are commonly used by scientists for basic biomedical research. One of several B6 strain-specific background diseases is focal alopecia that may resolve or progress to severe, ulcerative dermatitis. Clinical and progressive histologic changes of skin disease commonly observed in C57BL/6J and preliminary studies in other closely related substrains are presented. Lesions develop due to a primary follicular dystrophy with rupture of severely affected follicles leading to formation of secondary foreign body granulomas (trichogranulomas) in affected B6 substrains of mice. Histologically, these changes resemble the human disease called central centrifugal cicatrical alopecia (CCCA). Four B6 substrains tested have a polymorphism in alcohol dehydrogenase 4 (Adh4) that reduces its activity and potentially affects removal of excess retinol. Using immunohistochemistry, differential expression of epithelial retinol dehydrogenase (DHRS9) was detected, which may partially explain anecdotal reports of frequency differences between B6 substrains. The combination of these 2 defects has the potential to make high dietary vitamin A levels toxic in some B6 substrains while not affecting most other commonly used inbred strains.
Collapse
Affiliation(s)
- J P Sundberg
- DVM, PhD, The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future. Cell Biol Int 2011; 34:1247-72. [PMID: 21067523 DOI: 10.1042/cbi20100321] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HSCs (hepatic stellate cells) (also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells or Ito cells) exist in the space between parenchymal cells and liver sinusoidal endothelial cells of the hepatic lobule and store 50-80% of vitamin A in the whole body as retinyl palmitate in lipid droplets in the cytoplasm. In physiological conditions, these cells play pivotal roles in the regulation of vitamin A homoeostasis. In pathological conditions, such as hepatic fibrosis or liver cirrhosis, HSCs lose vitamin A and synthesize a large amount of extracellular matrix components including collagen, proteoglycan, glycosaminoglycan and adhesive glycoproteins. Morphology of these cells also changes from the star-shaped SCs (stellate cells) to that of fibroblasts or myofibroblasts. The hepatic SCs are now considered to be targets of therapy of hepatic fibrosis or liver cirrhosis. HSCs are activated by adhering to the parenchymal cells and lose stored vitamin A during hepatic regeneration. Vitamin A-storing cells exist in extrahepatic organs such as the pancreas, lungs, kidneys and intestines. Vitamin A-storing cells in the liver and extrahepatic organs form a cellular system. The research of the vitamin A-storing cells has developed and expanded vigorously. The past, present and future of the research of the vitamin A-storing cells (SCs) will be summarized and discussed in this review.
Collapse
|
88
|
Orywal K, Jelski W, Zdrodowski M, Szmitkowski M. The activity of class I, II, III, and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in endometrial cancer. J Clin Lab Anal 2011; 24:334-9. [PMID: 20872569 DOI: 10.1002/jcla.20412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The metabolism of cancerous cells is in many ways different than in healthy cells. In endometrial cancer, cells exhibit activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), which participate in the metabolism of many biological substances. The aim of this study was to compare the metabolism of endometrial cancer cells and normal endometrial cells by measurement of ADH isoenzymes and ALDH activities in these tissues. METHODS The study material consists of cancerous endometrial tissues obtained from 34 patients. Total ADH activity was measured using the photometric method and ALDH activity using the fluorometric method. For the measurement of class I and II ADH isoenzyme activity, we employed the fluorometric method, with class-specific fluorogenic substrates. The activity of class III and IV ADH was measured using the photometric method. RESULTS The activity of the class I ADH isoenzyme was significantly higher in the endometrial cancer tissues when compared with normal endometrial tissues. The other classes of ADH tested did not show significant differences between activity of cancerous cells and healthy endometrium. The activity of total ADH was also significantly higher in endometrial cancer. CONCLUSION The increased activity of total ADH in endometrial cancer, especially the class I isoenzyme and normal activity of ALDH, may be the cause of disorders in metabolic pathways that use these isoenzymes and could increase the concentration of acetaldehyde, which is cancerogenic substance.
Collapse
Affiliation(s)
- Karolina Orywal
- Department of Biochemical Diagnostics, Medical University, Bialystok, Poland.
| | | | | | | |
Collapse
|
89
|
Olson CR, Rodrigues PV, Jeong JK, Prahl DJ, Mello CV. Organization and development of zebra finch HVC and paraHVC based on expression of zRalDH, an enzyme associated with retinoic acid production. J Comp Neurol 2011; 519:148-61. [PMID: 21120932 PMCID: PMC3064427 DOI: 10.1002/cne.22510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The zRalDH gene encodes an aldehyde dehydrogenase associated with the conversion of retinaldehyde (the main vitamin A metabolite) into retinoic acid and its expression is highly enriched in the song control system of adult zebra finches (Taeniopygia guttata). Within song control nucleus HVC, zRalDH is specifically expressed in the neurons that project to area X of the striatum. It is also expressed in paraHVC, commonly considered a medial extension of HVC that is closely associated with auditory areas in the caudomedial telencephalon. Here we used in situ hybridization to generate a detailed analysis of HVC and paraHVC based on expression of zRalDH for adult zebra finches of both sexes and for males during the song-learning period. We demonstrate that the distribution of zRalDH-positive cells can be used for accurate assessments of HVC and paraHVC in adult and juvenile males. We describe marked developmental changes in the numbers of zRalDH-expressing cells in HVC and paraHVC, reaching a peak at day 50 posthatch, an effect potentially due to dynamic changes in the population of X-projecting cells in HVC. We also show that zRalDH-expressing cells in adult females, although much less numerous than in males, have a surprisingly broad distribution along the medial-to-lateral extent of HVC, but are lacking where paraHVC is found in adult males. Our study thus contributes to our understanding of the nuclear organization of the song system and the dynamics of its developmental changes during the song-learning period.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
90
|
Iwata M, Yokota A. Retinoic acid production by intestinal dendritic cells. VITAMINS AND HORMONES 2011; 86:127-52. [PMID: 21419270 DOI: 10.1016/b978-0-12-386960-9.00006-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Subpopulations of dendritic cells (DCs) in the small intestine and its related lymphoid organs can produce retinoic acid (RA) from vitamin A (retinol). Through the RA production, these DCs play a pivotal role in imprinting lymphocytes with gut-homing specificity, and contribute to the development of immune tolerance by enhancing the differentiation of Foxp3(+) regulatory T cells and inhibiting that of inflammatory Th17 cells. The RA-producing capacity in these DCs mostly depends on the expression of retinal dehydrogenase 2 (RALDH2, ALDH1A2). It is likely that the RALDH2 expression is induced in DCs by the microenvironmental factors in the small intestine and its related lymphoid organs. The major factor responsible for the RALDH2 expression appears to be GM-CSF. RA itself is essential for the GM-CSF-induced RALDH2 expression. IL-4 and IL-13 also enhance RALDH2 expression, but are dispensable. Toll-like receptor-mediated signals can also enhance the GM-CSF-induced RALDH2 expression in immature DCs.
Collapse
Affiliation(s)
- Makoto Iwata
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki-shi, Kagawa, Japan
| | | |
Collapse
|
91
|
Sun H, Kawaguchi R. The membrane receptor for plasma retinol-binding protein, a new type of cell-surface receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:1-41. [PMID: 21482409 DOI: 10.1016/b978-0-12-386041-5.00001-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin A is essential for diverse aspects of life ranging from embryogenesis to the proper functioning of most adult organs. Its derivatives (retinoids) have potent biological activities such as regulating cell growth and differentiation. Plasma retinol-binding protein (RBP) is the specific vitamin A carrier protein in the blood that binds to vitamin A with high affinity and delivers it to target organs. A large amount of evidence has accumulated over the past decades supporting the existence of a cell-surface receptor for RBP that mediates cellular vitamin A uptake. Using an unbiased strategy, this specific cell-surface RBP receptor has been identified as STRA6, a multitransmembrane domain protein with previously unknown function. STRA6 is not homologous to any protein of known function and represents a new type of cell-surface receptor. Consistent with the diverse functions of vitamin A, STRA6 is widely expressed in embryonic development and in adult organ systems. Mutations in human STRA6 are associated with severe pathological phenotypes in many organs such as the eye, brain, heart, and lung. STRA6 binds to RBP with high affinity and mediates vitamin A uptake into cells. This review summarizes the history of the RBP receptor research, its expression in the context of known functions of vitamin A in distinct human organs, structure/function analysis of this new type of membrane receptor, pertinent questions regarding its very existence, and its potential implication in treating human diseases.
Collapse
Affiliation(s)
- Hui Sun
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
92
|
Vitamin A supplementation in rats under pregnancy and nursing induces behavioral changes and oxidative stress upon striatum and hippocampus of dams and their offspring. Brain Res 2011; 1369:60-73. [DOI: 10.1016/j.brainres.2010.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/31/2010] [Accepted: 11/09/2010] [Indexed: 12/11/2022]
|
93
|
Hail N, Chen P, Wempe MF. The hydroxyl functional group of N-(4-hydroxyphenyl)retinamide mediates cellular uptake and cytotoxicity in premalignant and malignant human epithelial cells. Free Radic Biol Med 2010; 49:2001-9. [PMID: 20923701 PMCID: PMC3005946 DOI: 10.1016/j.freeradbiomed.2010.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 12/12/2022]
Abstract
In a previous study, we demonstrated that the anticancer synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) redox cycles at the mitochondrial enzyme dihydroorotate dehydrogenase to trigger anomalous reactive oxygen species (ROS) production and attendant apoptosis in transformed human epithelial cells. Furthermore, we speculated that the hydroxyl functional group of 4HPR was required for this pro-oxidant property. In this study, we investigated the role of the hydroxyl functional group in the in vitro cytotoxicity of 4HPR. Using 4HPR, its primary in vivo metabolite N-(4-methoxyphenyl)retinamide (4MPR), and the synthetic derivative N-(4-trifluoromethylphenyl)retinamide (4TPR), we examined the pro-oxidant and apoptotic effects, as well as the cellular uptake, of these three N-(4-substituted-phenyl)retinamides in premalignant and malignant human skin, prostate, and breast epithelial cells. Compared to 4HPR, both 4MPR and 4TPR were ineffective in promoting conspicuous cellular ROS production, mitochondrial disruption, or DNA fragmentation in these transformed cells. Interestingly, both 4MPR and 4TPR were not particularly cell permeative relative to 4HPR in skin or breast epithelial cells, which implied an additional role for the hydroxyl functional group in the cellular uptake of 4HPR. Moreover, the short-term uptake of 4HPR was directly proportional to cell size, but this characteristic, in obvious contrast to cellular bioenergetic status and/or dihydroorotate dehydrogenase expression, was not fundamentally influential in the overall sensitivity to the promotion of cellular ROS production and apoptosis induction by this agent. Together, these results strongly implicate the hydroxyl functional group in the cytotoxic effects of 4HPR.
Collapse
Affiliation(s)
- Numsen Hail
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
94
|
Wang C, Kane MA, Napoli JL. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J Biol Chem 2010; 286:6542-53. [PMID: 21138835 DOI: 10.1074/jbc.m110.198382] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All-trans-retinoic acid (atRA) stimulates neurogenesis, dendritic growth of hippocampal neurons, and higher cognitive functions, such as spatial learning and memory formation. Although astrocyte-derived atRA has been considered a key factor in neurogenesis, little direct evidence identifies hippocampus cell types and the enzymes that biosynthesize atRA. Here we show that primary rat astrocytes, but not neurons, biosynthesize atRA using multiple retinol dehydrogenases (Rdh) of the short chain dehydrogenase/reductase gene family and retinaldehyde dehydrogenases (Raldh). Astrocytes secrete atRA into their medium; neurons sequester atRA. The first step, conversion of retinol into retinal, is rate-limiting. Neurons and astrocytes both synthesize retinyl esters and reduce retinal into retinol. siRNA knockdown indicates that Rdh10, Rdh2 (mRdh1), and Raldh1, -2, and -3 contribute to atRA production. Knockdown of the Rdh Dhrs9 increased atRA synthesis ∼40% by increasing Raldh1 expression. Immunocytochemistry revealed cytosolic and nuclear expression of Raldh1 and cytosol and perinuclear expression of Raldh2. atRA autoregulated its concentrations by inducing retinyl ester synthesis via lecithin:retinol acyltransferase and stimulating its catabolism via inducing Cyp26B1. These data show that adult hippocampus astrocytes rely on multiple Rdh and Raldh to provide a paracrine source of atRA to neurons, and atRA regulates its own biosynthesis in astrocytes by directing flux of retinol. Observation of cross-talk between Dhrs9 and Raldh1 provides a novel mechanism of regulating atRA biosynthesis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
95
|
Wolf G. Tissue-specific increases in endogenous all-trans retinoic acid: possible contributing factor in ethanol toxicity. Nutr Rev 2010; 68:689-92. [PMID: 20961299 DOI: 10.1111/j.1753-4887.2010.00323.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
All-trans retinoic acid (atRA) is required for neurogenesis and dendritic growth in the hippocampus. The toxic effects of ethanol include developmental defects, cognitive dysfunction, and increased risk of cancer and have some similarities to the detrimental effects of excess atRA, the active form of vitamin A. It is therefore possible that disruption of atRA homeostasis would contribute to the deleterious effects of ethanol. However, previous work, using very high exogenous doses of retinol, found that ethanol toxicity led to decreased formation of atRA, apparently due to competitive inhibition of alcohol dehydrogenase, which is purportedly involved in the conversion of retinol to retinal. A new study, using assays that are highly sensitive for endogenous atRA, has reported that ethanol toxicity in mice actually increased atRA concentration in certain tissues, including brain hippocampus, apparently due to a mobilization of hepatic retinyl esters that led to increased retinol and atRA in specific tissues.
Collapse
Affiliation(s)
- George Wolf
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA.
| |
Collapse
|
96
|
Vitamin A supplementation to pregnant and breastfeeding female rats induces oxidative stress in the neonatal lung. Reprod Toxicol 2010; 30:452-6. [DOI: 10.1016/j.reprotox.2010.05.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 05/15/2010] [Accepted: 05/28/2010] [Indexed: 11/24/2022]
|
97
|
Lee GS, Liao X, Shimizu H, Collins MD. Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse. ACTA ACUST UNITED AC 2010; 88:863-82. [DOI: 10.1002/bdra.20712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
98
|
Siegel EM, Salemi JL, Craft NE, Villa LL, Ferenczy AS, Franco EL, Giuliano AR. No association between endogenous retinoic acid and human papillomavirus clearance or incident cervical lesions in Brazilian women. Cancer Prev Res (Phila) 2010; 3:1007-14. [PMID: 20606041 PMCID: PMC2917513 DOI: 10.1158/1940-6207.capr-09-0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although oncogenic human papillomavirus (HPV) infections have been established as the necessary cause of cervical cancer, most HPV infections are transient and rarely progress to squamous cervical lesions. The activity of HPV is tightly associated with epithelial cell differentiation; therefore, regulators of differentiation, such as retinoic acid (RA), have been considered targets for the prevention of HPV-associated squamous intraepithelial lesion (SIL) development. The purpose of this study was to determine the association between circulating RA and early events in cervical carcinogenesis, specifically type-specific HPV clearance and SIL detection. Archived blood samples from 643 women participating in the Ludwig-McGill Cohort in São Paulo, Brazil, were analyzed by high-pressure liquid chromatography for three RA isomers (all-trans, 13-cis, and 9-cis-RA). A type-specific HPV clearance event was defined as two consecutive visits negative for an HPV type during follow-up for 364 HPV-positive women. Among the 643 women in this analysis, 78 were diagnosed with incident SIL. The probability of clearing an oncogenic HPV infection was not significantly different across RA isomer quartiles. There was a suggestion that increasing all-trans-RA increased the rate of nononcogenic HPV clearance (P-trend = 0.05). There was no association observed between serum RA levels and incident SIL. Our results suggest that elevated circulating RA isomer levels do not increase the rate of HPV clearance or reduce the risk of incident SIL. The role of RA in the inhibition of HPV-induced carcinogenesis, as shown in vitro, lacks confirmatory evidence within epidemiologic studies among women.
Collapse
|
99
|
Starkey JM, Zhao Y, Sadygov RG, Haidacher SJ, LeJeune WS, Dey N, Luxon BA, Kane MA, Napoli JL, Denner L, Tilton RG. Altered retinoic acid metabolism in diabetic mouse kidney identified by O isotopic labeling and 2D mass spectrometry. PLoS One 2010; 5:e11095. [PMID: 20559430 PMCID: PMC2885420 DOI: 10.1371/journal.pone.0011095] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/14/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, (18)O- and (16)O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change >or=1.5 and p<or=0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARbeta/delta mRNA. CONCLUSIONS/SIGNIFICANCE Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in type 2 diabetic renal disease. Our observations provide novel insights into potential links between altered lipid metabolism and other gene networks controlled by retinoic acid in the diabetic kidney, and demonstrate the utility of using systems biology to gain new insights into diabetic nephropathy.
Collapse
Affiliation(s)
- Jonathan M. Starkey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Stark Diabetes Center, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rovshan G. Sadygov
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sigmund J. Haidacher
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wanda S. LeJeune
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nilay Dey
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruce A. Luxon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Translational Science Biomedical Informatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maureen A. Kane
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph L. Napoli
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Stark Diabetes Center, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald G. Tilton
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Stark Diabetes Center, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
100
|
Abstract
Retinoid acid, the bioactive metabolite of vitamin A, is a potent signaling molecule in the brains of growing and adult animals, regulates numerous gene products, and modulates neurogenesis, neuronal survival and synaptic plasticity. Vitamin A deficiency (VAD) is a global health problem, yet our knowledge of its effects on behavior and learning is still emerging. Here we review studies that have implicated retinoids in learning and memory deficits of post-embryonic and adult rodent and songbird models. Dietary vitamin A supplementation improves learning and memory in VAD rodents and can ameliorate cognitive declines associated with normal aging. Songbird studies examine the effects of retinoid signaling on vocal/auditory learning and are uniquely suited to study the behavioral effects of VAD because the neural circuitry of the song system is discrete and well understood. Similar to human speech acquisition, avian vocal learning proceeds in well-defined stages of template acquisition, rendition and maturation. Local blockade of retinoic acid production in the brain or excess dietary retinoic acid results in the failure of song maturation, yet does not affect prior song acquisition. Together these results yield significant insights into the role of vitamin A in maintaining neuronal plasticity and cognitive function in adulthood.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|