51
|
Zhu YX, Jia HR, Guo Y, Liu X, Zhou N, Liu P, Wu FG. Repurposing Erythrocytes as a "Photoactivatable Bomb": A General Strategy for Site-Specific Drug Release in Blood Vessels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100753. [PMID: 34259382 DOI: 10.1002/smll.202100753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Tumor vasculature has long been considered as an extremely valuable therapeutic target for cancer therapy, but how to realize controlled and site-specific drug release in tumor blood vessels remains a huge challenge. Despite the widespread use of nanomaterials in constructing drug delivery systems, they are suboptimal in principle for meeting this demand due to their easy blood cell adsorption/internalization and short lifetime in the systemic circulation. Here, natural red blood cells (RBCs) are repurposed as a remote-controllable drug vehicle, which retains RBC's morphology and vessel-specific biodistribution pattern, by installing photoactivatable molecular triggers on the RBC membrane via covalent conjugation with a finely tuned modification density. The molecular triggers can burst the RBC vehicle under short and mild laser irradiation, leading to a complete and site-specific release of its payloads. This cell-based vehicle is generalized by loading different therapeutic agents including macromolecular thrombin, a blood clotting-inducing enzyme, and a small-molecule hypoxia-activatable chemodrug, tirapazamine. In vivo results demonstrate that the repurposed "anticancer RBCs" exhibit long-term stability in systemic circulation but, when tumors receive laser irradiation, precisely releases their cargoes in tumor vessels for thrombosis-induced starvation therapy and local deoxygenation-enhanced chemotherapy. This study proposes a general strategy for blood vessel-specific drug delivery.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ningxuan Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
52
|
Shi Y, Lu A, Wang X, Belhadj Z, Wang J, Zhang Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm Sin B 2021; 11:2396-2415. [PMID: 34522592 PMCID: PMC8424287 DOI: 10.1016/j.apsb.2021.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The need for long-term treatments of chronic diseases has motivated the widespread development of long-acting parenteral formulations (LAPFs) with the aim of improving drug pharmacokinetics and therapeutic efficacy. LAPFs have been proven to extend the half-life of therapeutics, as well as to improve patient adherence; consequently, this enhances the outcome of therapy positively. Over past decades, considerable progress has been made in designing effective LAPFs in both preclinical and clinical settings. Here we review the latest advances of LAPFs in preclinical and clinical stages, focusing on the strategies and underlying mechanisms for achieving long acting. Existing strategies are classified into manipulation of in vivo clearance and manipulation of drug release from delivery systems, respectively. And the current challenges and prospects of each strategy are discussed. In addition, we also briefly discuss the design principles of LAPFs and provide future perspectives of the rational design of more effective LAPFs for their further clinical translation.
Collapse
Key Words
- 2′-F, 2′-fluoro
- 2′-O-MOE, 2′-O-(2-methoxyethyl)
- 2′-OMe, 2′-O-methyl
- 3D, three-dimensional
- ART, antiretroviral therapy
- ASO, antisense oligonucleotide
- Biomimetic strategies
- Chemical modification
- DDS, drug delivery systems
- ECM, extracellular matrix
- ENA, ethylene-bridged nucleic acid
- ESC, enhanced stabilization chemistry
- EVA, ethylene vinyl acetate
- Fc/HSA fusion
- FcRn, Fc receptor
- GLP-1, glucagon like peptide-1
- GS, glycine–serine
- HA, hyaluronic acid
- HES, hydroxy-ethyl-starch
- HP, hypoparathyroidism
- HSA, human serum albumin
- Hydrogels
- ISFI, in situ forming implants
- IgG, immunoglobulin G
- Implantable systems
- LAFs, long-acting formulations
- LAPFs, long-acting parenteral formulations
- LNA, locked nucleic acid
- Long-acting
- MNs, microneedles
- Microneedles
- NDS, nanochannel delivery system
- NPs, nanoparticles
- Nanocrystal suspensions
- OA, osteoarthritis
- PCPP-SA, poly(1,3-bis(carboxyphenoxy)propane-co-sebacic-acid)
- PEG, polyethylene glycol
- PM, platelet membrane
- PMPC, poly(2-methyacryloyloxyethyl phosphorylcholine)
- PNAs, peptide nucleic acids
- PS, phase separation
- PSA, polysialic acid
- PTH, parathyroid hormone
- PVA, polyvinyl alcohol
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNAi, RNA interference
- SAR, structure‒activity relationship
- SCID, severe combined immunodeficiency
- SE, solvent extraction
- STC, standard template chemistry
- TNFR2, tumor necrosis factor receptor 2
- hGH, human growth hormone
- im, intramuscular
- iv, intravenous
- mPEG, methoxypolyethylene glycol
- sc, subcutaneous
Collapse
Affiliation(s)
- Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangyu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
53
|
Chen Z, Li H, Bian Y, Wang Z, Chen G, Zhang X, Miao Y, Wen D, Wang J, Wan G, Zeng Y, Abdou P, Fang J, Li S, Sun CJ, Gu Z. Bioorthogonal catalytic patch. NATURE NANOTECHNOLOGY 2021; 16:933-941. [PMID: 33972760 DOI: 10.1038/s41565-021-00910-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/29/2021] [Indexed: 05/23/2023]
Abstract
Bioorthogonal catalysis mediated by transition metals has inspired a new subfield of artificial chemistry complementary to enzymatic reactions, enabling the selective labelling of biomolecules or in situ synthesis of bioactive agents via non-natural processes. However, the effective deployment of bioorthogonal catalysis in vivo remains challenging, mired by the safety concerns of metal toxicity or complicated procedures to administer catalysts. Here, we describe a bioorthogonal catalytic device comprising a microneedle array patch integrated with Pd nanoparticles deposited on TiO2 nanosheets. This device is robust and removable, and can mediate the local conversion of caged substrates into their active states in high-level living systems. In particular, we show that such a patch can promote the activation of a prodrug at subcutaneous tumour sites, restoring its parent drug's therapeutic anticancer properties. This in situ applied device potentiates local treatment efficacy and eliminates off-target prodrug activation and dose-dependent side effects in healthy organs or distant tissues.
Collapse
Affiliation(s)
- Zhaowei Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Zhejiang Laboratory of Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, P. R. China
| | - Yijie Bian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Xudong Zhang
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Yimin Miao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Di Wen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Jinqiang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Gang Wan
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Yi Zeng
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jun Fang
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, USA
| | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA.
- Zhejiang Laboratory of Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, P. R. China.
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
54
|
Zhou M, Lai W, Li G, Wang F, Liu W, Liao J, Yang H, Liu Y, Zhang Q, Tang Q, Hu C, Huang J, Zhang R. Platelet Membrane-Coated and VAR2CSA Malaria Protein-Functionalized Nanoparticles for Targeted Treatment of Primary and Metastatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25635-25648. [PMID: 34038097 DOI: 10.1021/acsami.1c02581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastasis is the main cause of death in cancer patients. The efficacy of pharmacological therapy for cancer is limited by the heterogeneous nature of cancer cells and the lack of knowledge of microenvironments in metastasis. Evidence has shown that activated platelets possess both tumor-homing and metastasis-targeting properties via intrinsic cell adhesion molecules on platelets, and malaria protein VAR2CSA is able to specifically bind to oncofetal chondroitin sulfate, which is overexpressed on cancer cells with both epithelial and mesenchymal phenotypes. Inspired by these mechanisms, we developed a recombinant VAR2CSA peptide (rVAR2)-modified activated platelet-mimicking nanoparticles (rVAR2-PM/PLGA-ss-HA) by coating the surface of disulfide-containing biodegradable PLGA conjugate nanoparticles (PLGA-ss-HA) with an activated platelet membrane. The results demonstrated that the engineered 122 nm rVAR2-PM/PLGA-ss-HA inherited the innate properties of the activated platelet membrane and achieved enhanced homing to both primary and metastatic foci. The nanoparticles were endocytosed and responded to a high intracellular concentration of reduced glutathione, resulting in nanoparticle disintegration and the release of chemotherapeutic drugs to kill tumor cells. Thus, rVAR2-decorated activated platelet-targeting nanoparticles with controlled drug release provide a promising drug delivery strategy for efficient treatment of primary and metastatic cancer.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Jiaxing Liao
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Haibo Yang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing 400037, China
| |
Collapse
|
55
|
Meng X, Wang J, Zhou J, Tian Q, Qie B, Zhou G, Duan W, Zhu Y. Tumor cell membrane-based peptide delivery system targeting the tumor microenvironment for cancer immunotherapy and diagnosis. Acta Biomater 2021; 127:266-275. [PMID: 33813091 DOI: 10.1016/j.actbio.2021.03.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 01/22/2023]
Abstract
The development of an effective delivery system for peptides targeting the tumor microenvironment has always been a hot topic of research in the field of cancer diagnosis and therapy. In this study, superparamagnetic iron oxide nanoparticles (SPIO NPs) were encapsulated with H460 lung cancer cell membranes (SPIO NP@M), and two peptides, namely PD-L1 inhibitory peptide (TPP1) and MMP2 substrate peptide (PLGLLG), were conjugated to the H460 membrane (SPIO NP@M-P). Homologous targeting, cytotoxicity, and pharmacokinetics of SPIO NP@M-P were evaluated. The TPP1 peptide was delivered and released to the tumor microenvironment through the homotypic effect of tumor cell membrane and specific digestion by the tumor-specific enzyme MMP2. The newly developed delivery system (SPIO NP@M-P) for the PD-L1 inhibitory peptide could effectively extend the half-life of the peptides (60 times longer than that for peptides alone) and could maintain the ability to reactivate T cells and inhibit the tumor growth both in vitro and in vivo. Furthermore, SPIO NPs in the system could be used as a tumor imaging agent and thus show the effect of peptide treatment. The SPIO NP@M might serve as a promising theranostic platform for therapeutic application of peptides in cancer therapy. STATEMENT OF SIGNIFICANCE: A multifunctional delivery system (SPIO NP@M) was constructed for effectively delivering therapeutic peptides into the tumor microenvironment for cancer diagnosis and therapy. In this paper, the TPP-1 peptide inhibiting the binding of PD-L1 and PD-1 was delivered and released into the tumor microenvironment by the homotypic targeting of H460 cell membrane and specific digestion by the MMP2 enzyme. SPIO NPs in this system were aggregated effectively at the tumor sites and were used for magnetic resonance imaging of tumors. The SPIO NP@M-P delivery system could effectively extend the half-life of the TPP-1 peptide (60 times longer than that of the free peptide) and could maintain the ability to re-activate T cells and inhibit tumor growth in vitro and in vivo. In conclusion, the SPIO NP@M system coated with lung cancer cell membrane and loaded with the PD-L1-blocking TPP-1 peptide could be a promising integrated platform for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangzhou Meng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiaojiao Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jundong Zhou
- Nanjing Medical University, Suzhou Cancer Center, Core Lab, Affiliated Suzhou Hospital, Suzhou 215001, Jiangsu, China
| | - Qingmei Tian
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Qie
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Gan Zhou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wei Duan
- GenePharma-Deakin Joint laboratory of Aptamer Medicine, Waurn Ponds, Victoria 3216, Australia
| | - Yimin Zhu
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
56
|
Jarosinski MA, Dhayalan B, Rege N, Chatterjee D, Weiss MA. 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021; 64:1016-1029. [PMID: 33710398 PMCID: PMC8158166 DOI: 10.1007/s00125-021-05422-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nischay Rege
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
57
|
Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics 2021; 11:6477-6490. [PMID: 33995669 PMCID: PMC8120229 DOI: 10.7150/thno.55708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Rationale: Integration of several monotherapies into a single nanosystem can produce remarkable synergistic antitumor effects compared with separate delivery of combination therapies. We developed near-infrared (NIR) light-triggered nanoparticles that induce a domino effect for multimodal tumor therapy. Methods: The designed intelligent phototriggered nanoparticles (IPNs) were composed of a copper sulfide-loaded upconversion nanoparticle core, a thermosensitive and photosensitive enaminitrile molecule (EM) organogel shell loaded with anticancer drugs, and a cancer cell membrane coating. Irradiation with an NIR laser activated a domino effect beginning with photothermal generation by copper sulfide for photothermal therapy that also resulted in phase transformation of the EM gel to release the anticancer drug. Meanwhile, the NIR light energy was converted to ultraviolet light by the upconversion core to excite the EM, which generated reactive oxygen species for photodynamic therapy. Results: IPNs achieved excellent antitumor effects in vitro and in vivo with little systemic toxicity, indicating that IPNs could serve as a safe and high-performance instrument for synergetic antitumor therapy. Conclusion: This intelligent drug delivery system induced a chain reaction generating multiple antitumor therapies after a single stimulus.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chunling Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| |
Collapse
|
58
|
Li L, Miao Q, Meng F, Li B, Xue T, Fang T, Zhang Z, Zhang J, Ye X, Kang Y, Zhang X, Chen Q, Liang X, Chen H, Zhang X. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Am J Cancer Res 2021; 11:6033-6043. [PMID: 33897897 PMCID: PMC8058713 DOI: 10.7150/thno.48868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint blockade therapies, especially those targeting the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) have achieved impressive clinical responses in multiple types of cancers. To optimize the therapeutic effect of the checkpoint antibodies, many strategies including targeting delivery, controlled release, and cellular synthesis have been developed. However, within these strategies, antibodies were attached to drug carriers by chemical bonding, which may affect the steric configuration and function of the antibodies. Herein, we prepared cluster of differentiation 64 (CD64), a natural catcher of the fragment crystalline (Fc) of monomeric immunoglobulin G (IgG), and over-expressed it on the cell membrane nanovesicles (NVs) as PD-L1 antibody delivery vehicle (CD64-NVs-aPD-L1), which was employed to disrupt the PD-1/PD-L1 immunosuppressive signal axis for boosting T cell dependent tumor elimination. Meanwhile, chemical immunomodulatory drug cyclophosphamide (CP) was also encapsulated in the vesicle (CD64-NVs-aPD-L1-CP), to simultaneously restrain the regulatory T cells (Tregs) and invigorate Ki67+CD8+ T cells, then further enhance their anti-tumor ability. Methods: The cell membrane NVs overexpressing CD64 were incubated with PD-L1 antibody and chemotherapeutic agent CP to prepare CD64-NVs-aPD-L1-CP. Results: The CD64-NVs-aPD-L1-CP could simultaneously interrupt the immunosuppressive effect of PD-L1 and decrease the inhibition of Tregs, leading to tumor growth suppression and survival time extension. Conclusion: CD64-NVs are charismatic carriers to achieve both checkpoint blockade and immunomodulatory drugs for combined cancer immunotherapy.
Collapse
|
59
|
Sun L, Xiong Z, Shen F, Wang Z, Liu Z. Biological membrane derived nanomedicines for cancer therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9943-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
60
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
61
|
Microparticles from glycidylmethacrylated gelatin as cell carriers prepared in an aqueous two-phase system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
62
|
Geng X, Gao D, Hu D, Liu Q, Liu C, Yuan Z, Zhang X, Liu X, Sheng Z, Wang X, Zheng H. Active-Targeting NIR-II Phototheranostics in Multiple Tumor Models Using Platelet-Camouflaged Nanoprobes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55624-55637. [PMID: 33269904 DOI: 10.1021/acsami.0c16872] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cancer phototheranostics in the second near-infrared window (NIR-II, 1000-1700 nm) has recently attracted much attention owing to its high efficacy and good safety compared with that in the first near-infrared window (NIR-I, 650-950 nm). However, the lack of theranostic nanoagents with active-targeting features limits its further application in cancer precision therapies. Herein, we constructed platelet-camouflaged nanoprobes with active-targeting characteristics for NIR-II cancer phototheranostics. The as-prepared biomimetic nanoprobes can not only escape phagocytosis by macrophages but also specifically bind to CD44 on the surface of most cancer cells. We evaluated the active-targeting performance of biomimetic nanoprobes in pancreatic cancer, breast cancer, and glioma mouse models and achieved NIR-II photoacoustic imaging with a high signal-to-background ratio and photothermal treatment with excellent tumor growth inhibition. Our results show the great potential of platelet-camouflaged nanoprobes with NIR-II active-targeting features for cancer precision diagnosis and efficient therapies.
Collapse
Affiliation(s)
- Xiaorui Geng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR999078, P. R. China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chengbo Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR999078, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR999078, P. R. China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| |
Collapse
|
63
|
Ci T, Li H, Chen G, Wang Z, Wang J, Abdou P, Tu Y, Dotti G, Gu Z. Cryo-shocked cancer cells for targeted drug delivery and vaccination. SCIENCE ADVANCES 2020; 6:6/50/eabc3013. [PMID: 33298439 PMCID: PMC7725453 DOI: 10.1126/sciadv.abc3013] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/21/2020] [Indexed: 05/11/2023]
Abstract
Live cells have been vastly engineered into drug delivery vehicles to leverage their targeting capability and cargo release behavior. Here, we describe a simple method to obtain therapeutics-containing "dead cells" by shocking live cancer cells in liquid nitrogen to eliminate pathogenicity while preserving their major structure and chemotaxis toward the lesion site. In an acute myeloid leukemia (AML) mouse model, we demonstrated that the liquid nitrogen-treated AML cells (LNT cells) can augment targeted delivery of doxorubicin (DOX) toward the bone marrow. Moreover, LNT cells serve as a cancer vaccine and promote antitumor immune responses that prolong the survival of tumor-bearing mice. Preimmunization with LNT cells along with an adjuvant also protected healthy mice from AML cell challenge.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hongjun Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yiming Tu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
64
|
Han X, Li H, Zhou D, Chen Z, Gu Z. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Acc Chem Res 2020; 53:2521-2533. [PMID: 33073988 DOI: 10.1021/acs.accounts.0c00339] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune checkpoint blockade (ICB) therapy elicits antitumor response by inhibiting immune suppressor components, including programmed cell death protein 1 and its ligand (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). Despite improved therapeutic efficacy, the clinical response rate is still unsatisfactory as revealed by the fact that only a minority of patients experience durable benefits. Additionally, "off-target" effects after systemic administration remain challenging for ICB treatment. To this end, the local and targeted delivery of ICB agents instead could be a potential solution to maximize the therapeutic outcomes while minimizing the side effects.In this Account, our recent studies directed at the development of different strategies for the local and targeted delivery of ICB agents are discussed. For example, transdermal microneedle patches loaded with anti-programmed death-1 antibody (aPD1) and anti-CTLA4 were developed to facilitate sustained release of ICB agents at the diseased sites. Triggered release could also be achieved by various stimuli within the tumor microenvironment, including low pH and abnormally expressed enzymes. Recently, the combination of an anti-programmed death-ligand 1 antibody (aPD-L1) loaded hollow-structured microneedle patch with cold atmospheric plasma (CAP) therapy was also reported. Microneedles provided microchannels to facilitate the transdermal transport of CAP and further induce immunogenic tumor cell death, which could be synergized by the local release of aPD-L1. In addition, in situ formed injectable or sprayable hydrogels were tailored to deliver immunomodulatory antibodies to the surgical bed to inhibit tumor recurrence after primary tumor resection. In paralell, inspired by the unique targeting ability of platelets toward the inflammatory sites, we engineered natural platelets decorated with aPD-L1 for targeted delivery after tumor resection to inhibit tumor recurrence. We further constructed a cell-cell combination delivery platform based on conjugates of platelets and hematopoietic stem cells (HSCs) for leukemia treatment. With the homing ability of HSCs to the bone marrow, the HSC-platelet-aPD1 assembly could effectively deliver aPD1 in an acute myeloid leukemia mouse model. Besides living cells, we also leveraged HEK293T-derived vesicles with PD1 receptors on their surfaces to disrupt the PD-1/PD-L1 immune inhibitory pathway. Moreover, the inner space of the vesicles allowed the packaging of an indoleamine 2,3-dioxygenase inhibitor, further reinforcing the therapeutic efficacy. A similar approach has also been demonstrated by genetically engineering platelets overexpressing PD1 receptor for postsurgical treatment. We hope the local and targeted ICB agent delivery methods introduced in this collection would further inspire the development of advanced drug delivery strategies to improve the efficiency of cancer treatment while alleviating side effects.
Collapse
Affiliation(s)
- Xiao Han
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Hongjun Li
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Daojia Zhou
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Zhaowei Chen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, California 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
65
|
Xia Y, Song T, Hu Y, Ma G. Synthetic Particles for Cancer Vaccines: Connecting the Inherent Supply Chain. Acc Chem Res 2020; 53:2068-2080. [PMID: 32945648 DOI: 10.1021/acs.accounts.0c00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer vaccines have opened a new paradigm for safe and effective antitumor therapy, but they still suffer from shortcomings such as insufficient immunogenicity and immune tolerance, which seldom makes them the first choice in clinic. In fact, similar to providing a high-end product, a robust antitumor effect depends on the inherent supply chain, which attains, processes, and presents tumor-associated antigens via antigen presenting cells to T cells, which then leads to lysis of the cancer cells to release more antigens to complete the supply chain. Under these circumstances, the failure of cancer vaccines can be treated as a blockade or chain rupture. Thus, for effective tumor treatment, the key is to rationally design logistic systems to restore the supply chain.Under these circumstances, this Account summarizes our recent attempts to exploit the immunogenic trait of synthetic particles to enhance the distribution, presentation, and immune activations of the whole priming process in cancer vaccines: (1) Raw material (tumor antigen/signals) procurement: We illustrated the efforts to deliver antigens to antigen presenting cells (APCs) and draining lymph nodes for potent internalizations, and put more emphasis on the structural effect of sizes, charges, shapes, and assembly strategies for the antigen depot, lymph node transfer, and APC endocytosis. (2) Manufacture of cytotoxic T lymphocytes (CTLs) via APC recognition and presentation: We centered on exploiting the softness of two-dimensional graphene and Pickering emulsions to dynamically potentiate the immune recognition, and demonstrating the recent advances in lysosome escape strategies for enhanced antigen cross-presentations. (3) Marketing the accumulations of CTLs and the reversal of an immunosuppressive microenvironment within the tumor: We demonstrated the previous attempts to inherently cultivate the tumor tropism of the T cells via the multiantigenic repertoire and discussed the advances and challenges of combinatory cancer vaccines with an immune checkpoint blockade to reinforce the antitumor efficacy. Collectively, this Account aims to illustrate the potential of the particulate cancer vaccines to recapitalize the inherent host immune responses for the maximum antitumor effect. And by integrating the antitumor supply chain, optimized synthetic particles may shed light on the development of safe and effective particulate cancer vaccines.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yuning Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
66
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
67
|
Sun L, Shen F, Xu J, Han X, Fan C, Liu Z. DNA‐Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lele Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
| | - Fengyun Shen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 201240 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
| |
Collapse
|
68
|
Dual-engineered, “Trojanized” macrophages bio-modally eradicate tumors through biologically and photothermally deconstructing cancer cells in an on-demand, NIR-commanded, self-explosive manner. Biomaterials 2020; 250:120021. [DOI: 10.1016/j.biomaterials.2020.120021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
|
69
|
Wang P, Yang R, Liu S, Ren Y, Liu X, Wang X, Zhang W, Chi B. Thermosensitive nanoparticle of mPEG-PTMC for oligopeptide delivery into osteoclast precursors. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520933916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transmembrane delivery of biomolecules through nanoparticles plays an important role in targeted therapy. Here, we designed a simple nanoparticle for the delivery of model peptide drug into primary osteoclast precursor cells (bone marrow macrophages) by thermosensitive and biodegradable diblock copolymer monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate). The model peptide drug was encapsulated into the nanoparticle by dropping the drug carrier dissolved in dimethylsulfoxide solvent into water containing poly(vinyl alcohol) to achieve temperature response nanoparticles. Through size analysis, we found that the nanoparticles possessed a temperature-sensitive property between 30°C and 40°C. Moreover, flow cytometry and spectrofluorimetry analysis indicated that nanoparticle systems underwent significant cellular uptake. In addition, the evaluation of cell biology showed that nanoparticles have excellent biocompatibility. Thus, the results indicated that the temperature-sensitive nanoparticles have potential application value for targeted delivery of oligopeptide in the treatment process of osteoarthritis.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University, Nanjing, China
| |
Collapse
|
70
|
Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. J Control Release 2020; 325:163-175. [PMID: 32629134 DOI: 10.1016/j.jconrel.2020.06.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Polymeric microneedles (MNs) have been leveraged as a novel transdermal drug delivery platform for effective drug permeation, which were widely used in the treatment of various diseases. However, issues including limited loading capacity of hydrophobic drugs, uncontrollable drug release rates, and monotonic therapeutic strategy hamper the further application of polymeric MNs. As a recent emerging research topic, drawing inspiration from the ways that nanomedicine integrated with MNs have opened new avenues for disease therapy. In this review, we examined the recent studies employing nanoparticles (NPs)-encapsulated polymeric MNs (NPs@MNs) for transdermal delivery of various therapeutic cargos, particularly focused on the application of NPs@MNs for diabetes therapy, infectious disease therapy, cancer therapy, and other dermatological disease therapy. We also provided an overview of the clinical potential and future translation of NPs@MNs.
Collapse
|
71
|
DNA‐Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. Angew Chem Int Ed Engl 2020; 59:14842-14853. [DOI: 10.1002/anie.202003367] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/25/2020] [Indexed: 12/21/2022]
|
72
|
Zhao P, Wang M, Chen M, Chen Z, Peng X, Zhou F, Song J, Qu J. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials 2020; 254:120142. [PMID: 32485591 DOI: 10.1016/j.biomaterials.2020.120142] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022]
Abstract
Immunotherapy shows remarkable efficacy in treating several types of cancer such as melanoma, leukemia, and lung carcinoma, but its therapeutic effect for most solid tumors is still limited. Various cancer therapies, such as chemotherapy, radiotherapy and phototherapy, kill solid tumors through non-inflammatory apoptosis or ablation, rather than making solid tumors immunogenic. As a highly-inflammatory programmed cell death (PCD), pyroptosis provides a great opportunity to alleviate immunosuppression and promote a systemic immune response in treating solid tumors. Herein, by fusing breast cancer membrane onto the poly(lactic-co-glycolic acid) polymeric core, we design a biomimetic nanoparticle (BNP) loaded with indocyanine green (ICG) and decitabine (DCT) for photo-activated cancer cell pyroptosis and solid tumor immunotherapy. The tumor-homing BNP effectively accumulate in tumor with low immunogenicity. ICG in BNP puncture cancer cell membranes induces a sharp cytoplasm Ca2+ concentration increase by low-dose NIR photo-activation, which promotes cytochrome c release followed by caspase-3 activation. DCT up-regulates GSDME expression synergistically via inhibiting DNA methylation, which enhances caspase-3 cleavage to GSDME and causes cancer cell pyroptosis. Finally, photo-activated pyroptosis mediated by BNP induces an impressive systemic antitumor immunity for inhibition of both primary tumor and distant tumors. Overall, pyroptosis-associated BNP shows a novel strategy for solid tumor immunotherapy with high compatibility and wide clinical applicability.
Collapse
Affiliation(s)
- Pengfei Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Meng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Mian Chen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, PR China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, CAS-HK Joint Lab of Biomaterials, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Feifan Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
73
|
Wan M, Wang Q, Wang R, Wu R, Li T, Fang D, Huang Y, Yu Y, Fang L, Wang X, Zhang Y, Miao Z, Zhao B, Wang F, Mao C, Jiang Q, Xu X, Shi D. Platelet-derived porous nanomotor for thrombus therapy. SCIENCE ADVANCES 2020; 6:eaaz9014. [PMID: 32766445 PMCID: PMC7385437 DOI: 10.1126/sciadv.aaz9014] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/18/2020] [Indexed: 05/04/2023]
Abstract
The treatment difficulties of venous thrombosis include short half-life, low utilization, and poor penetration of drugs at thrombus site. Here, we develop one kind of mesoporous/macroporous silica/platinum nanomotors with platelet membrane (PM) modification (MMNM/PM) for sequentially targeting delivery of thrombolytic and anticoagulant drugs for thrombus treatment. Regulated by the special proteins on PM, the nanomotors target the thrombus site and then PM can be ruptured under near-infrared (NIR) irradiation to achieve desirable sequential drug release, including rapid release of thrombolytic urokinase (3 hours) and slow release of anticoagulant heparin (>20 days). Meantime, the motion ability of nanomotors under NIR irradiation can effectively promote them to penetrate deeply in thrombus site to enhance retention ratio. The in vitro and in vivo evaluation results confirm that the synergistic effect of targeting ability from PM and motion ability from nanomotors can notably enhance the thrombolysis effect in both static/dynamic thrombus and rat model.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Rongliang Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Rui Wu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xingwen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yinghua Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhuoyue Miao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fenghe Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
74
|
Chen Z, Wen D, Gu Z. Cargo-encapsulated cells for drug delivery. SCIENCE CHINA-LIFE SCIENCES 2020; 63:599-601. [PMID: 32146697 DOI: 10.1007/s11427-020-1653-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China. .,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| | - Di Wen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA. .,Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
75
|
Zhong X, Zhang H, Zhu Y, Liang Y, Yuan Z, Li J, Li J, Li X, Jia Y, He T, Zhu J, Sun Y, Jiang W, Zhang H, Wang C, Ke Z. Circulating tumor cells in cancer patients: developments and clinical applications for immunotherapy. Mol Cancer 2020; 19:15. [PMID: 31980023 PMCID: PMC6982393 DOI: 10.1186/s12943-020-1141-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/16/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer metastasis is the leading cause of cancer-related death. Circulating tumor cells (CTCs) are shed into the bloodstream from either primary or metastatic tumors during an intermediate stage of metastasis. In recent years, immunotherapy has also become an important focus of cancer research. Thus, to study the relationship between CTCs and immunotherapy is extremely necessary and valuable to improve the treatment of cancer. In this review, based on the advancements of CTC isolation technologies, we mainly discuss the clinical applications of CTCs in cancer immunotherapy and the related immune mechanisms of CTC formation. In order to fully understand CTC formation, sufficiently and completely understood molecular mechanism based on the different immune cells is critical. This understanding is a promising avenue for the development of effective immunotherapeutic strategies targeting CTCs.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hangtian Zhang
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuqing Liang
- The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Commonwealth of Pennsylvania, USA
| | - Zhuolin Yuan
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiachen Li
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Li
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Li
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yifan Jia
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tian He
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiangyuan Zhu
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wengting Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Cheng Wang
- Division of Nephrology, Department of medicine, The Fifth Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
76
|
Dong H, Xu X, Wang L, Mo R. Advances in living cell-based anticancer therapeutics. Biomater Sci 2020; 8:2344-2365. [DOI: 10.1039/d0bm00036a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the applications of living cells as drug carriers or active drugs for anticancer drug delivery and cancer therapy.
Collapse
Affiliation(s)
- He Dong
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Xiao Xu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Leikun Wang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
77
|
Aquib M, Juthi AZ, Farooq MA, Ali MG, Janabi AHW, Bavi S, Banerjee P, Bhosale R, Bavi R, Wang B. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mater Chem B 2020; 8:8507-8518. [DOI: 10.1039/d0tb00987c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphical representation of local and systemic drug delivery systems.
Collapse
Affiliation(s)
- Md Aquib
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Ajkia Zaman Juthi
- Department of Biochemistry and Molecular Biology
- School of life Science
- University of Science and Technology of China
- Hefei City
- People's Republic of China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Manasik Gumah Ali
- Antibody Engineering Laboratory
- School of Life Science & Technology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | | | - Sneha Bavi
- Axiom Market Research and ConsultingTM
- Pune 411007
- India
| | - Parikshit Banerjee
- School of Pharmacy, Faculty of Medicine
- The Chinese University of Hong Kong
- New Territories
- People's Republic of China
| | - Raghunath Bhosale
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
| | - Rohit Bavi
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
- State Key Laboratory of Natural Medicines
| | - Bo Wang
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
78
|
Zhang X, Wang Y, Chi J, Zhao Y. Smart Microneedles for Therapy and Diagnosis. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7462915. [PMID: 33623910 PMCID: PMC7877383 DOI: 10.34133/2020/7462915] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 01/26/2023]
Abstract
Microneedles represent a cutting-edge and idea-inspiring technology in biomedical engineering, which have attracted increasing attention of scientific researchers and medical staffs. Over the past decades, numerous great achievements have been made. The fabrication process of microneedles has been simplified and becomes more precise, easy-to-operate, and reusable. Besides, microneedles with various features have been developed and the microneedle materials have greatly expanded. In recent years, efforts have been focused on generating smart microneedles by endowing them with intriguing functions such as adhesion ability, responsiveness, and controllable drug release. Such improvements enable the microneedles to take an important step in practical applications including household drug delivery devices, wearable biosensors, biomedical assays, cell culture, and microfluidic chip analysis. In this review, the fabrication strategies, distinctive properties, and typical applications of the smart microneedles are discussed. Recent accomplishments, remaining challenges, and future prospects are also presented.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junjie Chi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
79
|
Li Y, Gan Y, Li C, Yang YY, Yuan P, Ding X. Cell membrane-engineered hybrid soft nanocomposites for biomedical applications. J Mater Chem B 2020; 8:5578-5596. [DOI: 10.1039/d0tb00472c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An overview of various cell membrane-engineered hybrid soft nanocomposites for medical applications.
Collapse
Affiliation(s)
- Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Yingying Gan
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| |
Collapse
|
80
|
Liu L, He H, Liu J. Advances on Non-Genetic Cell Membrane Engineering for Biomedical Applications. Polymers (Basel) 2019; 11:E2017. [PMID: 31817418 PMCID: PMC6961000 DOI: 10.3390/polym11122017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapeutics are very promising modalities to address many unmet medical needs, including genetic engineering, drug delivery, and regenerative medicine as well as bioimaging. To enhance the function and improve the efficacy of cell-based therapeutics, a variety of cell surface engineering strategies (genetic engineering and non-genetic engineering) are developed to modify the surface of cells or cell-based therapeutics with some therapeutic molecules, artificial receptors, and multifunctional nanomaterials. In comparison to complicated procedures and potential toxicities associated with genetic engineering, non-genetic engineering strategies have emerged as a powerful and compatible complement to traditional genetic engineering strategies for enhancing the function of cells or cell-based therapeutics. In this review, we will first briefly summarize key non-genetic methodologies including covalent chemical conjugation (surface reactive groups-direct conjugation, and enzymatically mediated and metabolically mediated indirect conjugation) and noncovalent physical bioconjugation (biotinylation, electrostatic interaction, and lipid membrane fusion as well as hydrophobic insertion), which have been developed to engineer the surface of cell-based therapeutics with various materials. Next, we will comprehensively highlight the latest advances in non-genetic cell membrane engineering surrounding different cells or cell-based therapeutics, including whole-cell-based therapeutics, cell membrane-derived therapeutics, and extracellular vesicles. Advances will be focused specifically on cells that are the most popular types in this field, including erythrocytes, platelets, cancer cells, leukocytes, stem cells, and bacteria. Finally, we will end with the challenges, future trends, and our perspectives of this relatively new and fast-developing research field.
Collapse
Affiliation(s)
- Lisha Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, USA;
| | - Hongliang He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, USA;
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
81
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
82
|
Xu X, Li T, Shen S, Wang J, Abdou P, Gu Z, Mo R. Advances in Engineering Cells for Cancer Immunotherapy. Am J Cancer Res 2019; 9:7889-7905. [PMID: 31695806 PMCID: PMC6831467 DOI: 10.7150/thno.38583] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy aims to utilize the host immune system to kill cancer cells. Recent representative immunotherapies include T-cell transfer therapies, such as chimeric antigen receptor T cell therapy, antibody-based immunomodulator therapies, such as immune checkpoint blockade therapy, and cytokine therapies. Recently developed therapies leveraging engineered cells for immunotherapy against cancers have been reported to enhance antitumor efficacy while reducing side effects. Such therapies range from biologically, chemically and physically -engineered cells to bioinspired and biomimetic nanomedicines. In this review, advances of engineering cells for cancer immunotherapy are summarized, and prospects of this field are discussed.
Collapse
|
83
|
Bu LL, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, Bell RB, Gu Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019; 219:119182. [DOI: 10.1016/j.biomaterials.2019.04.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
|
84
|
Liu L, Chen Q, Ruan C, Chen X, He X, Zhang Y, Zhang Y, Lu Y, Guo Q, Zhou W, Li C, Sun T, Jiang C. Nano-engineered lymphocytes for alleviating suppressive tumor immune microenvironment. APPLIED MATERIALS TODAY 2019; 16:273-279. [DOI: 10.1016/j.apmt.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
|
85
|
Zhang X, Wang F, Yu Y, Chen G, Shang L, Sun L, Zhao Y. Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Sci Bull (Beijing) 2019; 64:1110-1117. [PMID: 36659772 DOI: 10.1016/j.scib.2019.06.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/02/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
Microneedle (MN) arrays have demonstrated value for cosmetics, diagnosis, transdermal drug delivery, and other biomedical areas. Much effort has been devoted to developing simple stratagem for creating versatile moldings and generating functional MN arrays. Here, inspired by the serrated microstructure of mantises' forelegs, we present a novel serration-like clamping MN array based on ferrofluid-configured moldings. Benefiting from the flexibility and versatility of ferrofluids, negative microhole array moldings with various sizes and angles toward the midline could be created easily. The corresponding biocompatible polymer MN arrays with both isotropic and anisotropic structures could then be produced feasibly and cost-effectively by simply replicating these moldings. It was found that the resultant serrated clamping MN arrays had the ability to adhere to skin firmly, enabling them to be used over a relatively long time and while the recipient was moving. This proposed technology performed well in minimally invasive drug administration and sustained glucocorticoids release during treatment for imiquimod-induced psoriasis in mice. These features indicated that such MN arrays could play important roles in wearable transdermal drug delivery systems and in other applications.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
86
|
Yan H, Shao D, Lao Y, Li M, Hu H, Leong KW. Engineering Cell Membrane-Based Nanotherapeutics to Target Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900605. [PMID: 31406672 PMCID: PMC6685500 DOI: 10.1002/advs.201900605] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/28/2019] [Indexed: 05/10/2023]
Abstract
Inflammation is ubiquitous in the body, triggering desirable immune response to defend against dangerous signals or instigating undesirable damage to cells and tissues to cause disease. Nanomedicine holds exciting potential in modulating inflammation. In particular, cell membranes derived from cells involved in the inflammatory process may be used to coat nanotherapeutics for effective targeted delivery to inflammatory tissues. Herein, the recent progress of rationally engineering cell membrane-based nanotherapeutics for inflammation therapy is highlighted, and the challenges and opportunities presented in realizing the full potential of cell-membrane coating in targeting and manipulating the inflammatory microenvironment are discussed.
Collapse
Affiliation(s)
- Huize Yan
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Dan Shao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Mingqiang Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Guangdong Provincial Key Laboratory of Liver DiseaseThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510630China
| | - Hanze Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Institutes of Life SciencesSchool of Biomedical Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
- Department of System BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
87
|
Jiang G, Xu B, Zhu J, Zhang Y, Liu T, Song G. Polymer microneedles integrated with glucose-responsive mesoporous bioactive glass nanoparticles for transdermal delivery of insulin. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
88
|
Chen Z, Zhang H, Guo P, Zhang J, Tira G, Kim YJ, Wu YA, Liu Y, Wen J, Rajh T, Niklas J, Poluektov OG, Laible PD, Rozhkova EA. Semi-artificial Photosynthetic CO2 Reduction through Purple Membrane Re-engineering with Semiconductor. J Am Chem Soc 2019; 141:11811-11815. [DOI: 10.1021/jacs.9b05564] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - He Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Peijun Guo
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jingjing Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Gregory Tira
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yu Jin Kim
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yimin A. Wu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Elena A. Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
89
|
Tang C, Wang C, Zhang Y, Xue L, Li Y, Ju C, Zhang C. Recognition, Intervention, and Monitoring of Neutrophils in Acute Ischemic Stroke. NANO LETTERS 2019; 19:4470-4477. [PMID: 31244234 DOI: 10.1021/acs.nanolett.9b01282] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neutrophils are implicated in numerous inflammatory diseases, and especially in acute ischemic stroke (AIS). The unchecked migration of neutrophils into cerebral ischemic regions, and their subsequent release of reactive oxygen species, are considered the primary causes of reperfusion injury following AIS. Reducing the infiltration of inflammatory neutrophils may therefore be a useful therapy for AIS. Here, inspired by the specific cell-cell recognition that occurs between platelets and inflammatory neutrophils, we describe platelet-mimetic nanoparticles (PTNPs) that can be used to directly recognize, intervene, and monitor inflammatory neutrophils in the AIS treatment and therapeutic evaluation. We demonstrate that PTNPs, coloaded with piceatannol, a selective spleen tyrosine kinase inhibitor, and superparamagnetic iron oxide (SPIO), a T2 contrast agent, can successfully recognize adherent neutrophils via platelet membrane coating. The loaded piceatannol could then be delivered to adherent neutrophils and detach them into circulation, thus decreasing neutrophil infiltration and reducing infarct size. Moreover, when coupled with magnetic resonance imaging, internalized SPIO could be used to monitor the inflammatory neutrophils, associated with therapeutic effects, in real time. This approach is an innovative method for both the treatment and therapeutic evaluation of AIS, and provides new insights into how to treat and monitor neutrophil-associated diseases.
Collapse
Affiliation(s)
- Chunming Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Yanyi Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
90
|
Abstract
Cardiovascular disease (CVD) is a major health problem worldwide. Since adult cardiomyocytes irreversibly withdraw from the cell cycle soon after birth, it is hard for cardiac cells to proliferate and regenerate after myocardial injury, such as that caused myocardial infarction (MI). Live cell-based therapies, which we term as first generation of therapeutic strategies, have been widely used for the treatment of many diseases, including CVD. However, cellular approaches have the problems of poor retention of the transplanted cells and the significant entrapment of the cells in the lungs when delivered intravenously. Another big problem is the low storage/shipping stability of live cells, which limits the manufacturability of living cell products. The field of chemical engineering focuses on designing large-scale processes to convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. By definition, chemical engineers conceive and design processes to produce, transform, and transport materials. This matches the direction that cell therapies are heading toward: "produce", from live cells to synthetic artificial cells; "transform", from bare cells to cell/matrix/factor combinations; and "transport". from simple systemic injections to targeted delivery. Thus, we hereby introduce the "chemical engineering of cell therapies" as a concept. In this Account, we summarize our recent efforts to develop chemical engineering approaches to repair injured hearts. To address the limitations of poor cellular retention and integration, the first step was the artificial manipulation of stem cells before injections (we term this the second generation of therapeutic strategies). For example, we took advantage of the natural infarct-targeting ability of platelet membranes by fusing them onto the surface of cardiac stromal/stem cells (CSCs). By doing so, we improved the rate at which they were delivered through the vasculature to sites of MI. In addition to modifying natural CSCs, we described a bioengineering approach that involved the encapsulation of CSCs in a polymeric microneedle patch for myocardium regeneration. The painless microneedle patches were used as an in situ delivery device, which directly transported the loaded CSCs to the MI heart. In addition to low cell retention, there are some other barriers that need to be addressed before further clinical application is viable, including the storage/shipping stability of and the evident safety concerns about live cells. Therefore, we developed the third generation of therapeutic strategies, which utilize cell-free approaches for cardiac cell therapies. Numerous studies have indicated that paracrine mechanisms reasonably explain stem cell based heart repair. By imitating or adapting natural stem cells, as well as their secretions, and using them in conjunction with biocompatible materials, we can simulate the function of natural stem cells while avoiding the complications association with the first and second generation therapeutic options. Additionally, we can develop approaches to capture endogenous stem cells and directly transport them to the infarct site. Using these third generation therapeutic strategies, we can provide unprecedented opportunities for cardiac cell therapies. We hope that our designs will promote the use of chemical engineering approaches to transform, transport, and fabricate cell-free systems as novel cardiac cell therapeutic agents for clinical applications.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
91
|
Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, Gu Z. Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 2019; 6:129-140. [PMID: 31198581 PMCID: PMC6547311 DOI: 10.1093/rb/rbz022] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/31/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Articular cartilage is an important load-bearing tissue distributed on the surface of diarthrodial joints. Due to its avascular, aneural and non-lymphatic features, cartilage has limited self-regenerative properties. To date, the utilization of biomaterials to aid in cartilage regeneration, especially through the use of injectable scaffolds, has attracted considerable attention. Various materials, therapeutics and fabrication approaches have emerged with a focus on manipulating the cartilage microenvironment to induce the formation of cartilaginous structures that have similar properties to the native tissues. In particular, the design and fabrication of injectable hydrogel-based scaffolds have advanced in recent years with the aim of enhancing its therapeutic efficacy and improving its ease of administration. This review summarizes recent progress in these efforts, including the structural improvement of scaffolds, network cross-linking techniques and strategies for controlled release, which present new opportunities for the development of injectable scaffolds for cartilage regeneration.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| |
Collapse
|
92
|
Zhang T, Li F, Xu Q, Wang Q, Jiang X, Liang Z, Liao H, Kong X, Liu J, Wu H, Zhang D, An C, Dong L, Lu Y, Cao H, Kim D, Sun J, Hyeon T, Gao J, Ling D. Ferrimagnetic Nanochains‐Based Mesenchymal Stem Cell Engineering for Highly Efficient Post‐Stroke Recovery. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201900603] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 03/10/2025]
Abstract
AbstractUnsatisfactory post‐stroke recovery has long been a negative factor in the prognosis of ischemic stroke due to the lack of pharmacological treatments. Mesenchymal stem cells (MSCs)‐based therapy has recently emerged as a promising strategy redefining stroke treatment; however, its effectiveness has been largely restricted by insufficient therapeutic gene expression and inadequate cell numbers in the ischemic cerebrum. Herein, a non‐viral and magnetic field‐independent gene transfection approach is reported, using magnetosome‐like ferrimagnetic iron oxide nanochains (MFIONs), to genetically engineer MSCs for highly efficient post‐stroke recovery. The 1D MFIONs show efficient cellular uptake by MSCs, which results in highly efficient genetic engineering of MSCs to overexpress brain‐derived neurotrophic factor for treating ischemic cerebrum. Moreover, the internalized MFIONs promote the homing of MSCs to the ischemic cerebrum by upregulating CXCR4. Consequently, a pronounced recovery from ischemic stroke is achieved using MFION‐engineered MSCs in a mouse model.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Fangyuan Li
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qianhao Xu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qiyue Wang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xinchi Jiang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Zeyu Liang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Hongwei Liao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xianglei Kong
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Jianan Liu
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Honghui Wu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Danping Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Changhua An
- School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Liang Dong
- Division of Nanomaterials and Chemistry Hefei National Research Centre for Physical Sciences at the Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yang Lu
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases the First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310003 China
| | - Dokyoon Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jihong Sun
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jianqing Gao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Daishun Ling
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou 310027 China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310012 China
| |
Collapse
|
93
|
Xue Y, Wu Y, Wang Q, Xue L, Su Z, Zhang C. Cellular Vehicles Based on Neutrophils Enable Targeting of Atherosclerosis. Mol Pharm 2019; 16:3109-3120. [PMID: 31082253 DOI: 10.1021/acs.molpharmaceut.9b00342] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the multiple interactions between neutrophils (NEs) and atherosclerosis (AS), in this study, we exploited NEs as cellular vehicles loaded with cationic liposomes for actively targeting atherosclerotic sites. The cellular vehicles based on NEs possess efficient internalization of cationic liposomes and sensitive response to the chemotaxis of atherosclerotic inflammatory cells, which ultimately realize the targeted delivery of the cargos into the target cells in vitro. Moreover, these effects also translated to significant enhancement of the accumulation of NEs' cargos into the atherosclerotic plaque in vivo after administering NE vehicles to the AS animal model. Consequently, cellular vehicles based on NEs could be a novel strategy for targeted delivery of payloads into atherosclerotic plaque, which would facilitate theranostics for AS and the development of anti-AS drugs to manage the disease.
Collapse
Affiliation(s)
- Yanan Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Yue Wu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Qianqian Wang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Can Zhang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| |
Collapse
|
94
|
Abstract
Nanomedicine development aims to enhance the efficacy, accuracy, safety, and/or compliance of diagnosis and treatment of diseases by leveraging the unique properties of engineered nanomaterials. To this end, a multitude of organic and inorganic nanoparticles have been designed to facilitate drug delivery, sensing, and imaging, some of which are currently in clinical trials or have been approved by the Food and Drug Administration (FDA). In the process, the increasing knowledge in understanding how natural particulates, including cells, pathogens, and organelles, interact with body and cellular systems has spurred efforts to mimic their morphology and functions for developing new generations of nanomedicine formulations. In addition, the advances in bioengineering tools, bioconjugation chemistries, and bio-nanotechnologies have further enabled researchers to exploit these natural particulates for theranostic purposes. In this Account, we will discuss the recent progress in our lab on engineering bioinspired and biomimetic synthetic and cellular systems toward rational design of nanomedicine platforms for treating diabetes and cancer. Inspired by the structure and response mechanism of pancreatic β-cells, we synthesized a series of insulin granule-like vesicles that can respond to high blood or intestinal glucose levels for aiding in transdermal or oral insulin delivery, respectively. Then, to more closely mimic the multicompartmental architecture of β-cells, we further developed synthetic artificial cells with vesicle-in-vesicle superstructures which can sense blood glucose levels and dynamically release insulin via a membrane fusion process. Meanwhile, clues drawn from the traits of anaerobic bacteria that selectively invade and proliferate in solid tumors inspired the synthesis of a light-tuned hypoxia-responsive nanovesicle for implementing synergistic cancer therapy. In parallel, we also studied how autologous particulates could be recruited for developing advanced drug delivery systems. Through combination of genetic engineering and top-down cell engineering technologies, biomimetic nanomedicines derived from cytoplasmic membrane with programmed death 1 (PD-1) receptors expressed on surfaces were generated and employed for cancer immunotherapy. Based on our earlier study where aPD-L1 (antibodies against PD ligand 1)-conjugated platelets could release aPD-L1-bearing particles in situ and inhibit postsurgical tumor recurrence, we further genetically engineered megakaryocytes, the precursor cells of platelets, to express PD-1 receptors. In this way, platelets born with checkpoint blocking activity could be produced directly in vitro, avoiding post chemical modification processes while exerting similar therapeutic impact. As a further extension, by virtue of the bone marrow-homing ability of hematopoietic stem cells (HSCs), we recently conceived a cell-combination strategy by conjugating HSCs with platelets decorated with antibodies against PD1 (aPD-1) to suppress the growth and recurrence of leukemia. While we are still on the way of digging deep to understand and optimize bioinspired and biomimetic drug carriers, we expect that the strategies summarized in this Account would contribute to the development of advanced nanomedicines.
Collapse
Affiliation(s)
- Zhaowei Chen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
95
|
Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. Natl Sci Rev 2019; 6:551-561. [PMID: 34691904 PMCID: PMC8291551 DOI: 10.1093/nsr/nwz037] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
Surface engineering of synthetic carriers is an essential and important strategy for drug delivery in vivo. However, exogenous properties make synthetic nanosystems invaders that easily trigger the passive immune clearance mechanism, increasing the retention effect caused by the reticuloendothelial systems and bioadhesion, finally leading to low therapeutic efficacy and toxic effects. Recently, a cell membrane cloaking technique has been reported as a novel interfacing approach from the biological/immunological perspective, and has proved useful for improving the performance of synthetic nanocarriers in vivo. After cell membrane cloaking, nanoparticles not only acquire the physiochemical properties of natural cell membranes but also inherit unique biological functions due to the presence of membrane-anchored proteins, antigens, and immunological moieties. The derived biological properties and functions, such as immunosuppressive capability, long circulation time, and targeted recognition integrated in synthetic nanosystems, have enhanced their potential in biomedicine in the future. Here, we review the cell membrane-covered nanosystems, highlight their novelty, introduce relevant biomedical applications, and describe the future prospects for the use of this novel biomimetic system constructed from a combination of cell membranes and synthetic nanomaterials.
Collapse
Affiliation(s)
- Mingjun Xuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Jingxin Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| |
Collapse
|
96
|
Sokolov AV, Kostin NN, Ovchinnikova LA, Lomakin YA, Kudriaeva AA. Targeted Drug Delivery in Lipid-like Nanocages and Extracellular Vesicles. Acta Naturae 2019; 11:28-41. [PMID: 31413877 PMCID: PMC6643341 DOI: 10.32607/20758251-2019-11-2-28-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
The possibility of targeted drug delivery to a specific tissue, organ, or cell has opened new promising avenues in treatment development. The technology of targeted delivery aims to create multifunctional carriers that are capable of long circulation in the patient's organism and possess low toxicity at the same time. The surface of modern synthetic carriers has high structural similarity to the cell membrane, which, when combined with additional modifications, also promotes the transfer of biological properties in order to penetrate physiological barriers effectively. Along with artificial nanocages, further efforts have recently been devoted to research into extracellular vesicles that could serve as natural drug delivery vehicles. This review provides a detailed description of targeted delivery systems that employ lipid and lipid-like nanocages, as well as extracellular vesicles with a high level of biocompatibility, highlighting genetically encoded drug delivery vehicles.
Collapse
Affiliation(s)
- A. V. Sokolov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - N. N. Kostin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - L. A. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - Y. A. Lomakin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - A. A. Kudriaeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| |
Collapse
|
97
|
Mi Y, Hagan CT, Vincent BG, Wang AZ. Emerging Nano-/Microapproaches for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801847. [PMID: 30937265 PMCID: PMC6425500 DOI: 10.1002/advs.201801847] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Indexed: 05/15/2023]
Abstract
Cancer immunotherapy has achieved remarkable clinical efficacy through recent advances such as chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB) therapy, and neoantigen vaccines. However, application of immunotherapy in a clinical setting has been limited by low durable response rates and immune-related adverse events. The rapid development of nano-/microtechnologies in the past decade provides potential strategies to improve cancer immunotherapy. Advances of nano-/microparticles such as virus-like size, high surface to volume ratio, and modifiable surfaces for precise targeting of specific cell types can be exploited in the design of cancer vaccines and delivery of immunomodulators. Here, the emerging nano-/microapproaches in the field of cancer vaccines, immune checkpoint blockade, and adoptive or indirect immunotherapies are summarized. How nano-/microparticles improve the efficacy of these therapies, relevant immunological mechanisms, and how nano-/microparticle methods are able to accelerate the clinical translation of cancer immunotherapy are explored.
Collapse
Affiliation(s)
- Yu Mi
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - C. Tilden Hagan
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer CenterDepartment of Microbiology & ImmunologyCurriculum in Bioinformatics and Computational BiologyDivision of Hematology/OncologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Andrew Z. Wang
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
98
|
Ruan H, Bu L, Hu Q, Cheng H, Lu W, Gu Z. Strategies of Combination Drug Delivery for Immune Checkpoint Blockades. Adv Healthc Mater 2019; 8:e1801099. [PMID: 30548835 DOI: 10.1002/adhm.201801099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/29/2018] [Indexed: 12/19/2022]
Abstract
The past few years have witnessed vast clinical accomplishments of immune checkpoint blockades (ICB), which block the regulatory receptor expressed on immune cells or tumor cells to prevent the suppression of antitumor cytotoxic T-cell responses. Despite this, limitations still exist, such as low objective response rate (ORR) and the risk of immune-related side effects. To address these issues, combination treatment strategies are vastly explored and recommended. This review summarizes recent advances in combination of ICB with therapies that participate in different stages of cancer immune cycle, including tumor antigen release, tumor antigen presentation, T-cell activation, recognition of cancer cells by T-cells, and tumor-killing activity. Challenges and potential opportunities of combination approaches in this field are also discussed.
Collapse
Affiliation(s)
- Huitong Ruan
- Department of PharmaceuticsSchool of PharmacyKey Laboratory of Smart Drug DeliveryFudan University Shanghai 201203 China
- Department of BioengineeringUniversity of California Los Angeles CA 90095 USA
- California NanoSystems InstituteJonsson Comprehensive Cancer Center and Center for Minimally Invasive TherapeuticsUniversity of California Los Angeles CA 90095 USA
- Department of Materials Science & EngineeringDrexel University Philadelphia PA 19104 USA
| | - Linlin Bu
- Department of BioengineeringUniversity of California Los Angeles CA 90095 USA
- California NanoSystems InstituteJonsson Comprehensive Cancer Center and Center for Minimally Invasive TherapeuticsUniversity of California Los Angeles CA 90095 USA
| | - Quanyin Hu
- Department of BioengineeringUniversity of California Los Angeles CA 90095 USA
- California NanoSystems InstituteJonsson Comprehensive Cancer Center and Center for Minimally Invasive TherapeuticsUniversity of California Los Angeles CA 90095 USA
| | - Hao Cheng
- Department of Materials Science & EngineeringDrexel University Philadelphia PA 19104 USA
| | - Weiyue Lu
- Department of PharmaceuticsSchool of PharmacyKey Laboratory of Smart Drug DeliveryFudan University Shanghai 201203 China
| | - Zhen Gu
- Department of BioengineeringUniversity of California Los Angeles CA 90095 USA
- California NanoSystems InstituteJonsson Comprehensive Cancer Center and Center for Minimally Invasive TherapeuticsUniversity of California Los Angeles CA 90095 USA
| |
Collapse
|
99
|
Farina M, Alexander JF, Thekkedath U, Ferrari M, Grattoni A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev 2019; 139:92-115. [PMID: 29719210 DOI: 10.1016/j.addr.2018.04.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively. Some of the advanced encapsulation systems provide active agents to the cells and enable a complete retrieval of the graft in the case of an adverse body reaction. Here, we review various encapsulation strategies developed in academic and industrial settings, including the state-of-the-art technologies in advanced preclinical phases as well as those undergoing clinical trials, and assess their advantages and challenges. We also emphasize the importance of stimulus-responsive encapsulated cell systems that provide a "smart and live" therapeutic delivery to overcome barriers in cell transplantation as well as their use in patients.
Collapse
|
100
|
Deng G, Sun Z, Li S, Peng X, Li W, Zhou L, Ma Y, Gong P, Cai L. Cell-Membrane Immunotherapy Based on Natural Killer Cell Membrane Coated Nanoparticles for the Effective Inhibition of Primary and Abscopal Tumor Growth. ACS NANO 2018; 12:12096-12108. [PMID: 30444351 DOI: 10.1021/acsnano.8b05292] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Developing effective immunotherapies with low toxicity and high tumor specificity is the ultimate goal in the battle against cancer. Here, we reported a cell-membrane immunotherapy strategy that was able to eliminate primary tumors and inhibited distant tumors by using natural killer (NK) cell membrane cloaked photosensitizer 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP)-loaded nanoparticles (NK-NPs). The proteomic profiling of NK cell membranes was performed through shotgun proteomics, and we found that NK cell membranes enabled the NK-NPs to target tumors and could induce or enhance pro-inflammatory M1-macrophages polarization to produce antitumor immunity. The TCPP loaded in NK-NPs could induce cancer cell death through photodynamic therapy and consequently enhanced the antitumor immunity efficiency of the NK cell membranes. The results confirmed that NK-NPs selectively accumulated in the tumor and were able to eliminate primary tumor growth and produce an abscopal effect to inhibit distant tumors. This cell-membrane immunotherapeutic approach offers a strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhihong Sun
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Sanpeng Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinghua Peng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| |
Collapse
|