51
|
LO JO, SCHABEL MC, ROBERTS VH, MORGAN TK, FEI SS, GAO L, RAY KG, LEWANDOWSKI KS, NEWMAN NP, BOHN JA, GRANT KA, FRIAS AE, KROENKE CD. Effects of early daily alcohol exposure on placental function and fetal growth in a rhesus macaque model. Am J Obstet Gynecol 2022; 226:130.e1-130.e11. [PMID: 34364844 PMCID: PMC8748286 DOI: 10.1016/j.ajog.2021.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Prenatal alcohol exposure is the most common cause of birth defects and intellectual disabilities and can increase the risk of stillbirth and negatively impact fetal growth. OBJECTIVE To determine the effect of early prenatal alcohol exposure on nonhuman primate placental function and fetal growth. We hypothesized that early chronic prenatal alcohol would alter placental perfusion and oxygen availability that adversely affects fetal growth. STUDY DESIGN Rhesus macaques self-administered 1.5 g/kg/d of ethanol (n=12) or isocaloric maltose-dextrin (n=12) daily before conception through the first 60 days of gestation (term is approximately 168 days). All animals were serially imaged with Doppler ultrasound to measure fetal biometry, uterine artery volume blood flow, and placental volume blood flow. Following Doppler ultrasound, all animals underwent both blood oxygenation level-dependent magnetic resonance imaging to characterize placental blood oxygenation and dynamic contrast-enhanced magnetic resonance imaging to quantify maternal placental perfusion. Animals were delivered by cesarean delivery for placental collection and fetal necropsy at gestational days 85 (n=8), 110 (n=8), or 135 (n=8). Histologic and RNA-sequencing analyses were performed on collected placental tissue. RESULTS Placental volume blood flow was decreased at all gestational time points in ethanol-exposed vs control animals, but most significantly at gestational day 110 by Doppler ultrasound (P<.05). A significant decrease in total volumetric blood flow occurred in ethanol-exposed vs control animals on dynamic contrast-enhanced magnetic resonance imaging at both gestation days 110 and 135 (P<.05); moreover, a global reduction in T2∗, high blood deoxyhemoglobin concentration, occurred throughout gestation (P<.05). Similarly, evidence of placental ischemic injury was notable by histologic analysis, which revealed a significant increase in microscopic infarctions in ethanol-exposed, not control, animals, largely present at middle to late gestation. Fetal biometry and weight were decreased in ethanol-exposed vs control animals, but the decrease was not significant. Analysis with RNA sequencing suggested the involvement of the inflammatory and extracellular matrix response pathways. CONCLUSION Early chronic prenatal alcohol exposure significantly diminished placental perfusion at mid to late gestation and also significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy, these findings were associated with the presence of microscopic placental infarctions in the nonhuman primate. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury.
Collapse
Affiliation(s)
- Jamie O. LO
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Corresponding Author: Jamie Lo, MD, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L458, Portland, Oregon 97239, Work Phone: (503) 494-2101, Home Phone: (503) 679-2025, Fax: (503) 494-5296,
| | - Matthias C. SCHABEL
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Victoria H.J. ROBERTS
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Terry K. MORGAN
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Suzanne S. FEI
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Lina GAO
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Karina G. RAY
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Katherine S. LEWANDOWSKI
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Natali P. NEWMAN
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacqueline A. BOHN
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kathleen A. GRANT
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Antonio E. FRIAS
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Christopher D. KROENKE
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
52
|
Arthurs AL, Jankovic-Karasoulos T, Roberts CT. COVID-19 in pregnancy: What we know from the first year of the pandemic. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166248. [PMID: 34461257 PMCID: PMC8397492 DOI: 10.1016/j.bbadis.2021.166248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/21/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic has infected nearly 178 million people and claimed the lives of over 3.8 million in less than 15 months. This has prompted a flurry of research studies into the mechanisms and effects of SARS-CoV-2 viral infection in humans. However, studies examining the effects of COVID-19 in pregnant women, their placentae and their babies remain limited. Furthermore, reports of safety and efficacy of vaccines for SARS-CoV-2 in pregnancy are limited. This review concisely summarises the case studies and research on COVID-19 in pregnancy, to date. It also reviews the mechanism of infection with SARS-CoV-2, and its reliance and effects upon the renin-angiotensin-aldosterone system. Overall, the data suggest that infection during pregnancy can be dangerous at any time, but this risk to both the mother and fetus, as well as placental damage, increases during the third trimester. The possibility of vertical transmission, which is explored in this review, remains contentious. However, maternal infection with SARS-CoV-2 can increase risk of miscarriage, preterm birth and stillbirth, which is likely due to damage to the placenta.
Collapse
Affiliation(s)
- Anya Lara Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5042, Australia.
| | | | - Claire Trelford Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
53
|
Haese NN, Smith H, Onwuzu K, Kreklywich CN, Smith JL, Denton M, Kreklywich N, Streblow AD, Frias AE, Morgan TK, Hirsch AJ, Bimber BN, Roberts VH, Streblow DN. Differential Type 1 IFN Gene Expression in CD14+ Placenta Cells Elicited by Zika Virus Infection During Pregnancy. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:783407. [PMID: 40012721 PMCID: PMC11864791 DOI: 10.3389/fviro.2021.783407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Zika virus (ZIKV) is an arthropod-borne Flavivirus that can also be transmitted vertically from infected mother to fetus. Infection of the fetus during pregnancy can lead to congenital malformations and severely impact fetal brain development causing a myriad of diseases now labeled Congenital Zika Syndrome (CZS). The mechanisms by which ZIKV crosses the placenta into the fetal circulation and the extent of ZIKV-induced changes remain unclear. We have previously shown that ZIKV infection of pregnant rhesus macaques results in abnormal oxygen transport across the placenta which may promote uterine vasculitis and placental villous damage. Changes in immune cell frequencies and activation status were also detected, as were distinct changes in the proportions of CD14+ cell subsets with an altered ratio of classical to non-classical CD14+ monocyte cells in both the maternal decidua and placental villous from ZIKV-infected animals compare to uninfected controls. In the current study, we performed single cell RNA sequencing on CD14+ cells isolated from the decidua of animals that were ZIKV infected at 31, 51, or 115 days of gestation (where term is ~168 days) compared to pregnant, time-matched uninfected controls. Bioinformatic analysis identified unique transcriptional phenotypes between CD14+ cells of infected and uninfected animals suggesting a distinct and sustained difference in transcriptomes between infected and uninfected CD14+ cells derived from the decidua. The timing of ZIKV infection had no effect on the CD14+ cell transcriptional profiles. Interestingly, ZIKV infection caused changes in expression of genes in pathways related to cellular stress and metabolism as well as immune response activation. Type 1 interferon response genes (ISGs) were among those that were differentially expressed following infection and these included members of the ISG12 family, IFI27 and IFI6. These ISGs have been recently described as effectors of the IFN response to flaviviruses. Supplementing our animal findings, in CD14+ cells isolated from human placenta, ZIKV infection similarly induced the expression of IFI27 and IFI6. Overall, our results showed that ZIKV infection during pregnancy induces the stable expression of antiviral genes within CD14+ cells of the placenta, which may provide an immune shield to protect the placenta from further infection and damage.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Hannah Smith
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Kosiso Onwuzu
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Craig N. Kreklywich
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Jessica L. Smith
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Michael Denton
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Nicholas Kreklywich
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Aaron D. Streblow
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Antonio E. Frias
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
- Department of Obstetrics & Gynecology, OHSU, 3181 Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Terry K. Morgan
- Department of Obstetrics & Gynecology, OHSU, 3181 Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Benjamin N. Bimber
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Victoria H.J. Roberts
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| |
Collapse
|
54
|
Azamor T, Cunha DP, da Silva AMV, Bezerra OCDL, Ribeiro-Alves M, Calvo TL, Kehdy FDSG, Manta FDN, Pinto TGDT, Ferreira LP, Portari EA, Guida LDC, Gomes L, Moreira MEL, de Carvalho EF, Cardoso CC, Muller M, Ano Bom APD, Neves PCDC, Vasconcelos Z, Moraes MO. Congenital Zika Syndrome Is Associated With Interferon Alfa Receptor 1. Front Immunol 2021; 12:764746. [PMID: 34899713 PMCID: PMC8657619 DOI: 10.3389/fimmu.2021.764746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Host factors that influence Congenital Zika Syndrome (CZS) outcome remain elusive. Interferons have been reported as the main antiviral factor in Zika and other flavivirus infections. Here, we accessed samples from 153 pregnant women (77 without and 76 with CZS) and 143 newborns (77 without and 66 with CZS) exposed to ZIKV conducted a case-control study to verify whether interferon alfa receptor 1 (IFNAR1) and interferon lambda 2 and 4 (IFNL2/4) single nucleotide polymorphisms (SNPs) contribute to CZS outcome, and characterized placenta gene expression profile at term. Newborns carrying CG/CC genotypes of rs2257167 in IFNAR1 presented higher risk of developing CZS (OR=3.41; IC=1.35-8.60; Pcorrected=0.032). No association between IFNL SNPs and CZS was observed. Placenta from CZS cases displayed lower levels of IFNL2 and ISG15 along with higher IFIT5. The rs2257167 CG/CC placentas also demonstrated high levels of IFIT5 and inflammation-related genes. We found CZS to be related with exacerbated type I IFN and insufficient type III IFN in placenta at term, forming an unbalanced response modulated by the IFNAR1 rs2257167 genotype. Despite of the low sample size se findings shed light on the host-pathogen interaction focusing on the genetically regulated type I/type III IFN axis that could lead to better management of Zika and other TORCH (Toxoplasma, Others, Rubella, Cytomegalovirus, Herpes) congenital infections.
Collapse
Affiliation(s)
- Tamiris Azamor
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | - Daniela Prado Cunha
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Andréa Marques Vieira da Silva
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia, Fiocruz, Rio de Janeiro, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | - Elyzabeth Avvad Portari
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Letícia da Cunha Guida
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Leonardo Gomes
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Maria Elisabeth Lopes Moreira
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | - Cynthia Chester Cardoso
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Muller
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula Dinis Ano Bom
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Zilton Vasconcelos
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
55
|
Goetzl L, Stephens AJ, Schlesinger Y, Darbinian N, Merabova N, Hillel M, Hirsch AJ, Streblow DN, Frias AE, Roberts VHJ, Haese NN, Mani A, Eldar-Yedidia Y. Fetal Central Nervous System Derived Extracellular Vesicles: Potential for Non-invasive Tracking of Viral Mediated Fetal Brain Injury. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:782863. [PMID: 40012720 PMCID: PMC11864790 DOI: 10.3389/fviro.2021.782863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Introduction Extracellular vesicles derived from the fetal central nervous system (FCNSEs) can be purified from maternal serum or plasma using the protein Contactin-2/TAG1that is expressed almost exclusively by developing neurons in the hippocampus, cerebral cortex and cerebellum. We hypothesized that fetal CNSEs could be used to non-invasively detect and quantify viral mediated in-utero brain injury in the first trimester. Materials and Methods First trimester maternal samples were collected from a human clinical population infected with primary cytomegalovirus (CMV) and a non-human primate model of Zika (ZIKV) infection. In the CMV cohort, a nested case control study was performed comparing pregnancies with and without fetal infection. Cases of fetal infection were further subdivided into those with and without adverse neurologic outcome. ZIKV samples were collected serially following maternal inoculation or saline. All ZIKV cases had histopathologic findings on necropsy. Serum was precipitated with ExoQuick solution and FCEs were isolated with biotinylated anti-Contactin-2/TAG1 antibody-streptavidin matrix immunoabsorption. FCE Synaptopodin (SYNPO) and Neurogranin (NG) protein levels were measured using standard ELISA kits and normalized to the exosome marker CD81. Results Fetal CNSE SYNPO and NG were significantly reduced in cases of first trimester fetal CMV infection compared to those with infection limited to the mother but could not discriminate between fetal infection with and without adverse neurologic outcome. Following ZIKV inoculation, fetal CNSE SYNPO was reduced by 48 h and significantly reduced by day 4. Discussion These data are the first to suggest that first trimester non-invasive diagnosis of fetal viral infection is possible. Fetal CNSEs have the potential to augment clinical and pre-clinical studies of perinatal viral infection. Serial sampling may be needed to discriminate between fetuses that are responding to treatment and/or recovering due to innate defenses and those that have ongoing neuronal injury. If confirmed, this technology may advance the paradigm of first trimester prenatal diagnosis and change the calculus for the cost benefit of CMV surveillance programs in pregnancy.
Collapse
Affiliation(s)
- Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Angela J. Stephens
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Nune Darbinian
- Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nana Merabova
- Department of Family Medicine, Medical College of Wisconsin-Prevea Health, Green Bay, WI, United States
| | | | - Alec J. Hirsch
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Daniel N. Streblow
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Antonio E. Frias
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Nicole N. Haese
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
56
|
Haese NN, Roberts VHJ, Chen A, Streblow DN, Morgan TK, Hirsch AJ. Nonhuman Primate Models of Zika Virus Infection and Disease during Pregnancy. Viruses 2021; 13:2088. [PMID: 34696518 PMCID: PMC8539636 DOI: 10.3390/v13102088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Since the explosive outbreak of Zika virus in Brazil and South/Central America in 2015-2016, the frequency of infections has subsided, but Zika virus remains present in this region as well as other tropical and sub-tropical areas of the globe. The most alarming aspect of Zika virus infection is its association with severe birth defects when infection occurs in pregnant women. Understanding the mechanism of Zika virus pathogenesis, which comprises features unique to Zika virus as well as shared with other teratogenic pathogens, is key to future prophylactic or therapeutic interventions. Nonhuman primate-based research has played a significant role in advancing our knowledge of Zika virus pathogenesis, especially with regard to fetal infection. This review summarizes what we have learned from these models and potential future research directions.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
| | - Victoria H. J. Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA;
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
57
|
Bohm EK, Vangorder-Braid JT, Jaeger AS, Moriarty RV, Baczenas JJ, Bennett NC, O’Connor SL, Fritsch MK, Fuhler NA, Noguchi KK, Aliota MT. Zika Virus Infection of Pregnant Ifnar1-/- Mice Triggers Strain-Specific Differences in Fetal Outcomes. J Virol 2021; 95:e0081821. [PMID: 34379510 PMCID: PMC8513483 DOI: 10.1128/jvi.00818-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 01/22/2023] Open
Abstract
Zika virus (ZIKV) is a flavivirus that causes a constellation of adverse fetal outcomes collectively termed congenital Zika syndrome (CZS). However, not all pregnancies exposed to ZIKV result in an infant with apparent defects. During the 2015 to 2016 American outbreak of ZIKV, CZS rates varied by geographic location. The underlying mechanisms responsible for this heterogeneity in outcomes have not been well defined. Therefore, we sought to characterize and compare the pathogenic potential of multiple Asian-/American-lineage ZIKV strains in an established Ifnar1-/- pregnant mouse model. Here, we show significant differences in the rate of fetal demise following maternal inoculation with ZIKV strains from Puerto Rico, Panama, Mexico, Brazil, and Cambodia. Rates of fetal demise broadly correlated with maternal viremia but were independent of fetus and placenta virus titer, indicating that additional underlying factors contribute to fetal outcome. Our results, in concert with those from other studies, suggest that subtle differences in ZIKV strains may have important phenotypic impacts. With ZIKV now endemic in the Americas, greater emphasis needs to be placed on elucidating and understanding the underlying mechanisms that contribute to fetal outcome. IMPORTANCE Zika virus (ZIKV) transmission has been reported in 87 countries and territories around the globe. ZIKV infection during pregnancy is associated with adverse fetal outcomes, including birth defects, microcephaly, neurological complications, and even spontaneous abortion. Rates of adverse fetal outcomes vary between regions, and not every pregnancy exposed to ZIKV results in birth defects. Not much is known about how or if the infecting ZIKV strain is linked to fetal outcomes. Our research provides evidence of phenotypic heterogeneity between Asian-/American-lineage ZIKV strains and provides insight into the underlying causes of adverse fetal outcomes. Understanding ZIKV strain-dependent pathogenic potential during pregnancy and elucidating underlying causes of diverse clinical sequelae observed during human infections is critical to understanding ZIKV on a global scale.
Collapse
Affiliation(s)
- Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Jennifer T. Vangorder-Braid
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John J. Baczenas
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalie C. Bennett
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael K. Fritsch
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole A. Fuhler
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
58
|
Ikumi NM, Anumba D, Matjila M. Pharmacokinetics and placental transfer of dolutegravir in pregnancy. J Antimicrob Chemother 2021; 77:283-289. [PMID: 34618029 DOI: 10.1093/jac/dkab365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dolutegravir is currently recommended by the WHO as the preferred first-line treatment for all people with HIV, including pregnant women. Estimates indicate that, by 2024, nearly 22 million adults in low- and middle-income countries will have transitioned to dolutegravir-based ART. It is therefore critical that there is a clear appreciation and understanding of the risks that may be associated with in utero exposure to dolutegravir. In this review we consolidate data from studies on dolutegravir and the placenta. The studies have largely focused on the pharmacokinetics and placental transfer of dolutegravir in pregnancy. These include studies on transplacental transfer of dolutegravir, ex vivo placenta perfusion models, physiologically based pharmacokinetic (PBPK) models and animal studies. The data available clearly demonstrate that placental transfer of dolutegravir occurs in moderate to high concentrations. Intracellular placental dolutegravir has been demonstrated in the placental villous tissue. There are limited data suggesting that pregnancy is associated with decreased maternal dolutegravir levels. In addition, PBPK models have great potential in predicting the passage of drugs through the placenta and further contributing towards the elucidation of fetal exposure. The animal studies available demonstrate that in utero dolutegravir exposure can be associated with neural tube defects. Taking into consideration that antiretroviral exposure may be associated with poor placental development or function and increased risk of adverse effects to the fetus, it is crucially important that these risks are evaluated, especially with the rapid scale up of dolutegravir-based ART into national treatment programmes.
Collapse
Affiliation(s)
- Nadia M Ikumi
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Dilly Anumba
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
59
|
Polonio CM, Peron JPS. ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses 2021; 13:v13101992. [PMID: 34696422 PMCID: PMC8541119 DOI: 10.3390/v13101992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Over the years, viral infections have caused severe illness in humans. Zika Virus (ZIKV) is a flavivirus transmitted by mosquito vectors that leads to notable neurological impairment, whose most dramatic impact is the Congenital ZIKV Syndrome (CZS). ZIKV targets neuronal precursor cells leading to apoptosis and further impairment of neuronal development, causing microcephaly, lissencephaly, ventriculomegaly, and calcifications. Several regulators of biological processes are involved in CZS development, and in this context, microRNAs (miRNAs) seem to have a fundamental role. miRNAs are important regulators of protein translation, as they form the RISC silencing complex and interact with complementary mRNA target sequences to further post-transcriptional repression. In this context, little is known about their participation in the pathogenesis of viral infections. In this review, we discuss how miRNAs could relate to ZIKV and other flavivirus infections.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil
- Correspondence:
| |
Collapse
|
60
|
Abstract
IMPORTANCE Rates of maternal sepsis are increasing, and prior studies of maternal sepsis have focused on immediate maternal morbidity and mortality associated with sepsis during delivery admission. There are no data on pregnancy outcomes among individuals who recover from their infections prior to delivery. OBJECTIVE To describe perinatal outcomes among patients with antepartum sepsis who did not deliver during their infection hospitalization. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted using data from August 1, 2012, to August 1, 2018, at an academic referral center in San Francisco, California. Included patients were all individuals with nonanomalous, singleton pregnancies who delivered after 20 weeks' gestation during the study period. Data were analyzed from March 2020 through March 2021. EXPOSURES Antepartum admission for infection with clinical concern for sepsis and hospital discharge prior to delivery. MAIN OUTCOMES AND MEASURES The primary outcome was a composite of perinatal outcomes associated with placental dysfunction and consisted of 1 or more of the following: fetal growth restriction, oligohydramnios, hypertensive disease of pregnancy, cesarean delivery for fetal indication, child who is small for gestational age, or stillbirth. RESULTS Among 14 565 patients with nonanomalous singleton pregnancies (mean [SD] age at delivery, 33.1 [5.2] years), 59 individuals (0.4%) were in the sepsis group and 14 506 individuals (99.6%) were in the nonsepsis group; 8533 individuals (59.0%) were nulliparous. Patients with sepsis, compared with patients in the reference group, were younger (mean [SD] age at delivery, 30.6 [5.7] years vs 33.1 [5.2] years; P < .001), were more likely to have pregestational diabetes (5 individuals [8.5%] vs 233 individuals [1.6%]; P = .003), and had higher mean (SD) pregestational body mass index scores (26.1 [6.1] vs 24.4 [5.9]; P = .03). In the sepsis group, the most common infections were urinary tract infections (24 patients [40.7%]) and pulmonary infections (22 patients [37.3%]). Among patients with sepsis, 5 individuals (8.5%) were admitted to the intensive care unit, the mean (SD) gestational age at infection was 24.6 (9.0) weeks, and the median (interquartile range) time from infection to delivery was 82 (42-147) days. Antepartum sepsis was associated with higher odds of placental dysfunction (21 patients [35.6%] vs 3450 patients [23.8%]; odds ratio, 1.77; 95% CI, 1.04-3.02; P = .04). On multivariable logistic regression analysis, antepartum sepsis was an independent factor associated with placental dysfunction (adjusted odds ratio, 1.88; 95% CI, 1.10-3.23; P = .02) after adjusting for possible confounders. CONCLUSIONS AND RELEVANCE This study found that pregnancies complicated by antepartum sepsis were associated with higher odds of placental dysfunction. These findings suggest that increased antenatal surveillance should be considered for these patients.
Collapse
Affiliation(s)
- Christine A. Blauvelt
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Francisco
| | - Kiana C. Nguyen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Francisco
| | - Arianna G. Cassidy
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Francisco
| | - Stephanie L. Gaw
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Francisco
| |
Collapse
|
61
|
Westrich JA, McNulty EE, Edmonds MJ, Nalls AV, Miller MR, Foy BD, Rovnak J, Perera R, Mathiason CK. Characterization of subclinical ZIKV infection in immune-competent guinea pigs and mice. J Gen Virol 2021; 102. [PMID: 34410903 PMCID: PMC8513637 DOI: 10.1099/jgv.0.001641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An infectious agent’s pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Marisa J Edmonds
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Megan R Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Joel Rovnak
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Rushika Perera
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
62
|
Silva P, Maronezi MC, Padilha-Nakaghi LC, Gasser B, Pavan L, Nogueira Aires LP, Russo M, Spada S, Ramirez Uscategui RA, Moraes PC, Rossi Feliciano MA. Contrast-enhanced ultrasound evaluation of placental perfusion in brachicephalic bitches. Theriogenology 2021; 173:230-240. [PMID: 34399387 DOI: 10.1016/j.theriogenology.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed to investigate placental hemodynamics to determine quantitative and qualitative parameters for pregnant brachycephalic bitches as well as describe placental vascularization and perfusion in females with fetal abnormalities close to delivery. Forty-four healthy fetuses from 22 brachycephalic bitches and 9 fetuses with gestational abnormalities (anasarca and hydrocephalus) from 8 brachycephalic bitches were evaluated. All female dogs were artificially inseminated intravaginally and underwent cesarean section at the end of gestation. Pregnancy diagnosis was made on the 25th day and experimental evaluations were performed on Days 25 (M1), 45 (M2), and 58 (M3) of gestation in normal pregnancies. Fetuses with gestational abnormalities were evaluated at the last time point. Biometric values of the fetuses were determined by B-mode and vascular indices by Doppler fluxometry of the umbilical artery, whereas qualitative assessment of contrast filling and quantitative parameters of placental perfusion were performed using CEUS. Parameter comparisons among the examined fetuses (normal and abnormal) and between the moments (M1, M2, and M3) were performed by Student's t-test and ANOVA tests, and then correlated using the Spearman test. In healthy fetuses, systolic and diastolic velocities as well as the time averages of minimum and maximum velocities increased significantly from M2 to M3 (P < 0.05), whereas the pulsatility index (P < 0.043) and vascular resistance (P < 0.001) decreased. Contrast distribution was always homogeneous in placental tissues and CEUS filling parameters remained constant during the evaluated periods (P < 0.05). In fetuses with hydrops, Doppler values were similar to those obtained in healthy subjects (P > 0.05), but CEUS evaluation demonstrated a heterogeneous distribution with lower intensity of placental tissue filling and a delay in perfusion time (P < 0.05) with a diagnostic accuracy of 75%. The association of dopplerfluxometry and CEUS allowed evaluation of qualitative and quantitative parameters of physiological pregnancy hemodynamics in all gestational thirds without evidence of significant changes in the physiology of the maternal-fetal binomial, and CEUS was shown to be applicable in the detection of failures in placental vascular filling (tissue dysfunction) in fetuses with anasarca and hydrocephaly.
Collapse
Affiliation(s)
- Priscila Silva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marjury Cristina Maronezi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Beatriz Gasser
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Luiz Paulo Nogueira Aires
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marco Russo
- Department of Veterinary Medicine and Animal Sciences University of Naples "Federico II", Italy
| | - Stefano Spada
- Department of Veterinary Medicine and Animal Sciences University of Naples "Federico II", Italy
| | - Ricardo Andrés Ramirez Uscategui
- Institute of Agricultural Sciences, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Unaí, Minas Gerais, Brazil
| | - Paola Castro Moraes
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcus Antônio Rossi Feliciano
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil; Diagnostic Imaging Service, Department of Large Animal Clinic, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
63
|
Pietsch M, Ho A, Bardanzellu A, Zeidan AMA, Chappell LC, Hajnal JV, Rutherford M, Hutter J. APPLAUSE: Automatic Prediction of PLAcental health via U-net Segmentation and statistical Evaluation. Med Image Anal 2021; 72:102145. [PMID: 34229190 PMCID: PMC8350147 DOI: 10.1016/j.media.2021.102145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Artificial-intelligence population-based automated quantification of placental maturation and health from a rapid functional Magnetic Resonance scan. The placenta plays a crucial role for any successful human pregnancy. Deviations from the normal dynamic maturation throughout gestation are closely linked to major pregnancy complications. Antenatal assessment in-vivo using T2* relaxometry has shown great promise to inform management and possible interventions but clinical translation is hampered by time consuming manual segmentation and analysis techniques based on comparison against normative curves over gestation. METHODS This study proposes a fully automatic pipeline to predict the biological age and health of the placenta based on a free-breathing rapid (sub-30 second) T2* scan in two steps: Automatic segmentation using a U-Net and a Gaussian process regression model to characterize placental maturation and health. These are trained and evaluated on 108 3T MRI placental data sets, the evaluation included 20 high-risk pregnancies diagnosed with pre-eclampsia and/or fetal growth restriction. An independent cohort imaged at 1.5 T is used to assess the generalization of the training and evaluation pipeline. RESULTS Across low- and high-risk groups, automatic segmentation performs worse than inter-rater performance (mean Dice coefficients of 0.58 and 0.68, respectively) but is sufficient for estimating placental mean T2* (0.986 Pearson Correlation Coefficient). The placental health prediction achieves an excellent ability to differentiate cases of placental insufficiency between 27 and 33 weeks. High abnormality scores correlate with low birth weight, premature birth and histopathological findings. Retrospective application on a different cohort imaged at 1.5 T illustrates the ability for direct clinical translation. CONCLUSION The presented automatic pipeline facilitates a fast, robust and reliable prediction of placental maturation. It yields human-interpretable and verifiable intermediate results and quantifies uncertainties on the cohort-level and for individual predictions. The proposed machine-learning pipeline runs in close to real-time and, deployed in clinical settings, has the potential to become a cornerstone of diagnosis and intervention of placental insufficiency. APPLAUSE generalizes to an independent cohort imaged at 1.5 T, demonstrating robustness to different operational and clinical environments.
Collapse
Affiliation(s)
- Maximilian Pietsch
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK.
| | - Alison Ho
- Department of Women and Children's Health, King's College London, London, UK
| | - Alessia Bardanzellu
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Aya Mutaz Ahmad Zeidan
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Lucy C Chappell
- Department of Women and Children's Health, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Mary Rutherford
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Jana Hutter
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| |
Collapse
|
64
|
Moström MJ, Scheef EA, Sprehe LM, Szeltner D, Tran D, Hennebold JD, Roberts VHJ, Maness NJ, Fahlberg M, Kaur A. Immune Profile of the Normal Maternal-Fetal Interface in Rhesus Macaques and Its Alteration Following Zika Virus Infection. Front Immunol 2021; 12:719810. [PMID: 34394129 PMCID: PMC8358803 DOI: 10.3389/fimmu.2021.719810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
The maternal decidua is an immunologically complex environment that balances maintenance of immune tolerance to fetal paternal antigens with protection of the fetus against vertical transmission of maternal pathogens. To better understand host immune determinants of congenital infection at the maternal-fetal tissue interface, we performed a comparative analysis of innate and adaptive immune cell subsets in the peripheral blood and decidua of healthy rhesus macaque pregnancies across all trimesters of gestation and determined changes after Zika virus (ZIKV) infection. Using one 28-color and one 18-color polychromatic flow cytometry panel we simultaneously analyzed the frequency, phenotype, activation status and trafficking properties of αβ T, γδ T, iNKT, regulatory T (Treg), NK cells, B lymphocytes, monocytes, macrophages, and dendritic cells (DC). Decidual leukocytes showed a striking enrichment of activated effector memory and tissue-resident memory CD4+ and CD8+ T lymphocytes, CD4+ Tregs, CD56+ NK cells, CD14+CD16+ monocytes, CD206+ tissue-resident macrophages, and a paucity of B lymphocytes when compared to peripheral blood. t-distributed stochastic neighbor embedding (tSNE) revealed unique populations of decidual NK, T, DC and monocyte/macrophage subsets. Principal component analysis showed distinct spatial localization of decidual and circulating leukocytes contributed by NK and CD8+ T lymphocytes, and separation of decidua based on gestational age contributed by memory CD4+ and CD8+ T lymphocytes. Decidua from 10 ZIKV-infected dams obtained 16-56 days post infection at third (n=9) or second (n=1) trimester showed a significant reduction in frequency of activated, CXCR3+, and/or Granzyme B+ memory CD4+ and CD8+ T lymphocytes and γδ T compared to normal decidua. These data suggest that ZIKV induces local immunosuppression with reduced immune recruitment and impaired cytotoxicity. Our study adds to the immune characterization of the maternal-fetal interface in a translational nonhuman primate model of congenital infection and provides novel insight in to putative mechanisms of vertical transmission.
Collapse
Affiliation(s)
- Matilda J Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| | - Elizabeth A Scheef
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Lesli M Sprehe
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Dawn Szeltner
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Dollnovan Tran
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Nicholas J Maness
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States.,Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Marissa Fahlberg
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| |
Collapse
|
65
|
African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques. J Virol 2021; 95:e0222020. [PMID: 34076485 PMCID: PMC8312872 DOI: 10.1128/jvi.02220-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants. IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.
Collapse
|
66
|
Srinivasan V, Melbourne A, Oyston C, James JL, Clark AR. Multiscale and multimodal imaging of utero-placental anatomy and function in pregnancy. Placenta 2021; 112:111-122. [PMID: 34329969 DOI: 10.1016/j.placenta.2021.07.290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Placental structures at the nano-, micro-, and macro scale each play important roles in contributing to its function. As such, quantifying the dynamic way in which placental structure evolves during pregnancy is critical to both clinical diagnosis of pregnancy disorders, and mechanistic understanding of their pathophysiology. Imaging the placenta, both exvivo and invivo, can provide a wealth of structural and/or functional information. This review outlines how imaging across modalities and spatial scales can ultimately come together to improve our understanding of normal and pathological pregnancies. We discuss how imaging technologies are evolving to provide new insights into placental physiology across disciplines, and how advanced computational algorithms can be used alongside state-of-the-art imaging to obtain a holistic view of placental structure and its associated functions to improve our understanding of placental function in health and disease.
Collapse
Affiliation(s)
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, Kings College London, UK
| | - Charlotte Oyston
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
67
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
68
|
Herry CL, Soares HMF, Schuler-Faccini L, Frasch MG. Machine learning model on heart rate variability metrics identifies asymptomatic toddlers exposed to zika virus during pregnancy. Physiol Meas 2021; 42. [PMID: 33984844 DOI: 10.1088/1361-6579/ac010e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
Objective. Although the Zika virus (ZIKV) seems to be prominently neurotropic, there are some reports of involvement of other organs, particularly the heart. Of special concern are those children exposed prenatally to ZIKV and born without microcephaly or other congenital anomalies. Electrocardiogram (ECG)-derived heart rate variability (HRV) metrics represent an attractive, low-cost, widely deployable tool for early identification of developmental functional alterations in exposed children born without such overt clinical symptoms. We hypothesized that HRV in such children would yield a biomarker of fetal ZIKV exposure. Our objective was to test this hypothesis in young children exposed to ZIKV during pregnancy.Approach. We investigated the HRV properties of 21 children aged 4-25 months from Brazil. The infants were divided into two groups, the ZIKV-exposed (n = 13) and controls (n = 8). Single-channel ECG was recorded in each child at ∼15 months of age and HRV was analyzed in 5 min segments to provide a comprehensive characterization of the degree of variability and complexity of the heart rate.Main results.Using a cubic support vector machine classifier we identified babies as Zika cases or controls with a negative predictive value of 92% and a positive predictive value of 86%. Our results show that a machine learning model derived from HRV metrics can help differentiate between ZIKV-affected, yet asymptomatic, and non-ZIKV-exposed babies. We identified the box count as the best HRV metric in this study allowing such differentiation, regardless of the presence of microcephaly.Significance.We show that it is feasible to measure HRV in infants and toddlers using a small non-invasive portable ECG device and that such an approach may uncover the memory ofin uteroexposure to ZIKV. We discuss putative mechanisms. This approach may be useful for future studies and low-cost screening tools involving this challenging to examine population.
Collapse
Affiliation(s)
| | - Helena M F Soares
- INAGEMP-Departamento de Genética-Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Lavinia Schuler-Faccini
- INAGEMP-Departamento de Genética-Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
69
|
Affiliation(s)
- Rebecca L Clements
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
70
|
Candelo E, Sanz AM, Ramirez-Montaño D, Diaz-Ordoñez L, Granados AM, Rosso F, Nevado J, Lapunzina P, Pachajoa H. A Possible Association Between Zika Virus Infection and CDK5RAP2 Mutation. Front Genet 2021; 12:530028. [PMID: 33815457 PMCID: PMC8018576 DOI: 10.3389/fgene.2021.530028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Flaviviridae family belongs to the Spondweni serocomplex, which is mainly transmitted by vectors from the Aedes genus. Zika virus (ZIKV) is part of this genus. It was initially reported in Brazil in December 2014 as an unknown acute generalized exanthematous disease and was subsequently identified as ZIKV infection. ZIKV became widespread all over Brazil and was linked with potential cases of microcephaly. Case report We report a case of a 28-year-old Colombian woman, who came to the Obstetric Department with an assumed conglomerate of fetal abnormalities detected via ultrasonography, which was performed at 29.5 weeks of gestation. The patient presented with multiple abnormalities, which range from a suggested Arnold–Chiari malformation, compromising the lateral and third ventricles, liver calcifications, bilateral pyelocalic dilatations, other brain anomalies, and microcephaly. At 12 weeks of gestation, the vertical transmission of ZIKV was suspected. At 38.6 weeks of gestation, the newborn was delivered, with the weight in the 10th percentile (3,180 g), height in the 10th percentile (48 cm), and cephalic circumference under the 2nd percentile (31 cm). Due to the physical findings, brain magnetic resonance imaging (MRI) was performed, revealing a small and deviated brain stem, narrowing of the posterior fossa, a giant posterior fossa cyst with ventricular dilatation, a severe cortical and white matter thinning, cerebellar vermis with hypoplasia, and superior and lateral displacement of the cerebellum. In addition, hydrocephalus was displayed by the axial sequence, and the cerebral cortex was also compromised with lissencephaly. Schizencephaly was found with left frontal open-lip, and no intracranial calcifications were found. Two novel heterozygous nonsense mutations were identified using whole-exome sequencing, and both are located in exon 8 under the affection of ZIKV congenital syndrome (CZS) that produced a premature stop codon resulting in the truncation of the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) protein. Conclusion We used molecular and microbiological assessments to report the initial case of vertically transmitted ZIKV infection with congenital syndrome associated with a neurological syndrome, where a mutation in the CDK5RAP2 gene was also identified. The CDK5RAP2 gene encodes a pericentriolar protein that intervenes in microtubule nucleation and centriole attachment. Diallelic mutation has previously been associated with primary microcephaly.
Collapse
Affiliation(s)
- Estephania Candelo
- Universidad Icesi, Ear Institute University College London and Fundación Valle del Lili, Cali, Colombia.,Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia
| | | | - Diana Ramirez-Montaño
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia
| | - Lorena Diaz-Ordoñez
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia
| | | | | | - Julian Nevado
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, HospitalUniversitario La Paz, Madrid, CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, HospitalUniversitario La Paz, Madrid, CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Harry Pachajoa
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Colombia.,Genetics Department, Fundación Valledel Lili, Cali, Colombia
| |
Collapse
|
71
|
de Alcantara BN, Imbeloni AA, de Brito Simith Durans D, de Araújo MTF, do Rosário Moutinho da Cruz E, de Carvalho CAM, de Mendonça MHR, de Sousa JR, Moraes AF, Filho AJM, de Lourdes Gomes Lima M, Neto OPA, Chiang JO, de Azevedo Scalercio SRR, Carneiro LA, Quaresma JAS, da Costa Vasconcelos PF, de Almeida Medeiros DB. Histopathological lesions of congenital Zika syndrome in newborn squirrel monkeys. Sci Rep 2021; 11:6099. [PMID: 33731800 PMCID: PMC7971060 DOI: 10.1038/s41598-021-85571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The absence of an adequate animal model for studies has limited the understanding of congenital Zika syndrome (CZS) in humans during the outbreak in America. In this study, we used squirrel monkeys (Saimiri collinsi), a neotropical primate (which mimics the stages of human pregnancy), as a model of Zika virus (ZIKV) infection. Seven pregnant female squirrel monkeys were experimentally infected at three different gestational stages, and we were able reproduce a broad range of clinical manifestations of ZIKV lesions observed in newborn humans. Histopathological and immunohistochemical analyses of early-infected newborns (2/4) revealed damage to various areas of the brain and ZIKV antigens in the cytoplasm of neurons and glial cells, indicative of CZS. The changes caused by ZIKV infection were intrauterine developmental delay, ventriculomegaly, simplified brain gyri, vascular impairment and neuroprogenitor cell dysfunction. Our data show that the ZIKV infection outcome in squirrel monkeys is similar to that in humans, indicating that this model can be used to help answer questions about the effect of ZIKV infection on neuroembryonic development and the morphological changes induced by CZS.
Collapse
Affiliation(s)
- Bianca Nascimento de Alcantara
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Aline Amaral Imbeloni
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | | | - Carlos Alberto Marques de Carvalho
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | | | - Jorge Rodrigues de Sousa
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Adriana Freitas Moraes
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Maria de Lourdes Gomes Lima
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Orlando Pereira Amador Neto
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | - Liliane Almeida Carneiro
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil. .,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.
| |
Collapse
|
72
|
Steinweg JK, Hui GTY, Pietsch M, Ho A, van Poppel MP, Lloyd D, Colford K, Simpson JM, Razavi R, Pushparajah K, Rutherford M, Hutter J. T2* placental MRI in pregnancies complicated with fetal congenital heart disease. Placenta 2021; 108:23-31. [PMID: 33798991 DOI: 10.1016/j.placenta.2021.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most important and common group of congenital malformations in humans. Concurrent development and close functional links between the fetal heart and placenta emphasise the importance of understanding placental function and its influence in pregnancy outcomes. The aim of this study was to evaluate placental oxygenation by relaxometry (T2*) to assess differences in placental phenotype and function in CHD. METHODS In this prospective cross-sectional observational study, 69 women with a fetus affected with CHD and 37 controls, whole placental T2* was acquired using a 1.5-Tesla MRI scanner. Gaussian Process Regression was used to assess differences in placental phenotype in CHD cohorts compared to our controls. RESULTS Placental T2* maps demonstrated significant differences in CHD compared to controls at equivalent gestational age. Mean T2* values over the entire placental volume were lowest compared to predicted normal in right sided obstructive lesions (RSOL) (Z-Score 2.30). This cohort also showed highest lacunarity indices (Z-score -1.7), as a marker of lobule size. Distribution patterns of T2* values over the entire placental volume were positively skewed in RSOL (Z-score -4.69) and suspected, not confirmed coarctation of the aorta (CoA-) (Z-score -3.83). Deviations were also reflected in positive kurtosis in RSOL (Z-score -3.47) and CoA- (Z-score -2.86). CONCLUSION Placental structure and function appear to deviate from normal development in pregnancies with fetal CHD. Specific patterns of altered placental function assessed by T2* deliver crucial complementary information to antenatal assessments in the presence of fetal CHD.
Collapse
Affiliation(s)
- Johannes K Steinweg
- Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom.
| | - Grace Tin Yan Hui
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, King's College London, London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom
| | - Alison Ho
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Milou Pm van Poppel
- Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom
| | - David Lloyd
- Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom; Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - John M Simpson
- Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom; Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Reza Razavi
- Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom; Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Kuberan Pushparajah
- Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom; Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, King's College London, London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom
| |
Collapse
|
73
|
Imbeloni AA, de Alcantara BN, Coutinho LN, de Azevedo Scalercio SRR, Carneiro LA, Oliveira KG, Filho AJM, de Brito Simith Durans D, da Silva WB, Nunes BTD, Casseb LMN, Chiang JO, de Carvalho CAM, Machado MB, Quaresma JAS, de Almeida Medeiros DB, da Costa Vasconcelos PF. Prenatal disorders and congenital Zika syndrome in squirrel monkeys. Sci Rep 2021; 11:2698. [PMID: 33514824 PMCID: PMC7846595 DOI: 10.1038/s41598-021-82028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
During the Zika virus (ZIKV) outbreak in Brazil (2015–2016), the clinical manifestations associated with its infection were complex and included miscarriage and congenital malformations, not previously described. In this study, we evaluated the prenatal conditions of pregnant female squirrel monkeys (Saimiri collinsi) infected during different gestational thirds (GTs) and assessed all clinical aspects, diagnostic imaging, viremia and the immune response. In our study, 75% of the infected animals in the 1st GT group had significant clinical manifestations, such as miscarriage and prolonged viremia associated with a late immune response. Consequently, their neonates showed fetal neuropathology, such as cerebral hemorrhage, lissencephaly or malformations of the brain grooves, ventriculomegaly, and craniofacial malformations. Thus, our study demonstrated the relevance of pregnant squirrel monkeys as a model for the study of ZIKV infection in neonates due to the broad clinical manifestations presented, including the typical congenital Zika syndrome manifestations described in humans.
Collapse
Affiliation(s)
- Aline Amaral Imbeloni
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | | | | | - Liliane Almeida Carneiro
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Karol Guimarães Oliveira
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Livia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Mariana Borges Machado
- University Center of Para, Governador Jose Malcher Avenue, 485, Belem, Para, 66035-065, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil.
| |
Collapse
|
74
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
75
|
Yiu G, Thomasy SM, Casanova MI, Rusakevich A, Keesler RI, Watanabe J, Usachenko J, Singapuri A, Ball EE, Bliss-Moreau E, Guo W, Webster H, Singh T, Permar S, Ardeshir A, Coffey LL, Van Rompay KK. Evolution of ocular defects in infant macaques following in utero Zika virus infection. JCI Insight 2020; 5:143947. [PMID: 33180748 PMCID: PMC7819741 DOI: 10.1172/jci.insight.143947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 12/28/2022] Open
Abstract
Congenital Zika syndrome (CZS) is associated with microcephaly and various neurological, musculoskeletal, and ocular abnormalities, but the long-term pathogenesis and postnatal progression of ocular defects in infants are not well characterized. Rhesus macaques are superior to rodents as models of CZS because they are natural hosts of the virus and share similar immune and ocular characteristics, including blood–retinal barrier characteristics and the unique presence of a macula. Using a previously described model of CZS, we infected pregnant rhesus macaques with Zika virus (ZIKV) during the late first trimester and characterized postnatal ocular development and evolution of ocular defects in 2 infant macaques over 2 years. We found that one of them exhibited colobomatous chorioretinal atrophic lesions with macular and vascular dragging as well as retinal thinning caused by loss of retinal ganglion neuron and photoreceptor layers. Despite these congenital ocular malformations, axial elongation and retinal development in these infants progressed at normal rates compared with healthy animals. The ZIKV-exposed infants displayed a rapid loss of ZIKV-specific antibodies, suggesting the absence of viral replication after birth, and did not show any behavioral or neurological defects postnatally. Our findings suggest that ZIKV infection during early pregnancy can impact fetal retinal development and cause congenital ocular anomalies but does not appear to affect postnatal ocular growth.
Collapse
Affiliation(s)
- Glenn Yiu
- Department of Ophthalmology & Vision Science, School of Medicine, and
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - M Isabel Casanova
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | | | | | | | - Jodie Usachenko
- California National Primate Research Center, Davis, California, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| | - Erin E Ball
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| | - Eliza Bliss-Moreau
- California National Primate Research Center, Davis, California, USA.,Department of Psychology, University of California, Davis, Davis, California, USA
| | - Wendi Guo
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Helen Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Tulika Singh
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Amir Ardeshir
- California National Primate Research Center, Davis, California, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| | - Koen Ka Van Rompay
- California National Primate Research Center, Davis, California, USA.,Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| |
Collapse
|
76
|
Histopathologic Changes in Placental Tissue Associated With Vertical Transmission of Zika Virus. Int J Gynecol Pathol 2020; 39:157-162. [PMID: 30789499 DOI: 10.1097/pgp.0000000000000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zika virus (ZIKV) is highly neurotropic after crossing the placenta, inducing teratogenic effects that result in delayed development and microcephaly in infants. The available evidence for vertical transmission of this infection is based on placental studies showing alterations in trophoblastic tissue. However, complete characterization of ZIKV-infected placenta and involved pathways has yet to be fully clarified. This case report of placental ZIKV infection describes morphologic and molecular changes in the placenta. Hyperplasia of placental Hofbauer cells in chorionic villi and numerous histiocyte-like cells in the decidua were observed. The decidua, fibroblasts, and chorion, as well as circulating cells in the intravascular compartment stained positive for ZIKV envelop protein. Deciduitis was present on the maternal surface of the placenta, with a prevalence of lymphocytes associated with vasculitis. A high level of uncommitted CD3 T lymphocytes were present, in addition to CD4 and CD8 cells. Elevated expression of the apoptosis inhibitor, Bcl-2, was observed in syncytiotrophoblasts. These parameters may promote the persistence of ZIKV in placental tissue and transmission to the fetus.
Collapse
|
77
|
Pomar L, Lambert V, Madec Y, Vouga M, Pomar C, Matheus S, Fontanet A, Panchaud A, Carles G, Baud D. Placental infection by Zika virus in French Guiana. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:740-748. [PMID: 31773804 DOI: 10.1002/uog.21936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To describe placental findings on prenatal ultrasound and anatomopathological examination in women with Zika virus (ZIKV) infection, and to assess their association with congenital ZIKV infection and severe adverse outcome, defined as fetal loss or congenital Zika syndrome (CZS). METHODS This was a prospective study of pregnancies undergoing testing for maternal ZIKV infection at a center in French Guiana during the ZIKV epidemic. In ZIKV-positive women, congenital infection was defined as either a positive reverse transcription polymerase chain reaction result or identification of ZIKV-specific immunoglobulin-M in at least one placental, fetal or neonatal sample. Placental ZIKV-infection status was classified as non-exposed (placentae from non-infected women), exposed (placentae from ZIKV-infected women without congenital infection) or infected (placentae from ZIKV-infected women with proven congenital infection). Placentae were assessed by monthly prenatal ultrasound examinations, measuring placental thickness and umbilical artery Doppler parameters, and by anatomopathological examination after live birth or intrauterine death in women with ZIKV infection. The association of placental thickness during pregnancy and anatomopathological findings with the ZIKV status of the placenta was assessed. The association between placental findings and severe adverse outcome (CZS or fetal loss) in the infected group was also assessed. RESULTS Among 291 fetuses/neonates/placentae from women with proven ZIKV infection, congenital infection was confirmed in 76 cases, of which 16 resulted in CZS and 11 resulted in fetal loss. The 215 remaining placentae from ZIKV-positive women without evidence of congenital ZIKV infection represented the exposed group. A total of 334 placentae from ZIKV-negative pregnant women represented the non-exposed control group. Placentomegaly (placental thickness > 40 mm) was observed more frequently in infected placentae (39.5%) than in exposed placentae (17.2%) or controls (7.2%), even when adjusting for gestational age at diagnosis and comorbidities (adjusted hazard ratio (aHR), 2.02 (95% CI, 1.22-3.36) and aHR, 3.23 (95% CI, 1.86-5.61), respectively), and appeared earlier in infected placentae. In the infected group, placentomegaly was observed more frequently in cases of CZS (62.5%) or fetal loss (45.5%) than in those with asymptomatic congenital infection (30.6%) (aHR, 5.43 (95% CI, 2.17-13.56) and aHR, 4.95 (95% CI, 1.65-14.83), respectively). Abnormal umbilical artery Doppler was observed more frequently in cases of congenital infection resulting in fetal loss than in those with asymptomatic congenital infection (30.0% vs 6.1%; adjusted relative risk (aRR), 4.83 (95% CI, 1.09-20.64)). Infected placentae also exhibited a higher risk for any pathological anomaly than did exposed placentae (62.8% vs 21.6%; aRR, 2.60 (95% CI, 1.40-4.83)). CONCLUSIONS Early placentomegaly may represent the first sign of congenital infection in ZIKV-infected women, and should prompt enhanced follow-up of these pregnancies. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- L Pomar
- Materno-fetal and Obstetrics Research Unit, Department 'Femme-Mère-Enfant', University Hospital, Lausanne, Switzerland
- Department of Obstetrics and Gynecology, Centre Hospitalier de l'Ouest Guyanais Franck Joly, Saint-Laurent-du-Maroni, France
| | - V Lambert
- Department of Obstetrics and Gynecology, Centre Hospitalier de l'Ouest Guyanais Franck Joly, Saint-Laurent-du-Maroni, France
| | - Y Madec
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
| | - M Vouga
- Materno-fetal and Obstetrics Research Unit, Department 'Femme-Mère-Enfant', University Hospital, Lausanne, Switzerland
| | - C Pomar
- Department of Obstetrics and Gynecology, Centre Hospitalier de l'Ouest Guyanais Franck Joly, Saint-Laurent-du-Maroni, France
| | - S Matheus
- Laboratory of Virology, National Reference Center for Arboviruses, Institut Pasteur, Cayenne; Environment and Infections Risks Unit, Institut Pasteur, Paris, France
| | - A Fontanet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
- PACRI Unit, Conservatoire National des Arts et Métiers, Paris, France
| | - A Panchaud
- Service of Pharmacy, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | - G Carles
- Department of Obstetrics and Gynecology, Centre Hospitalier de l'Ouest Guyanais Franck Joly, Saint-Laurent-du-Maroni, France
| | - D Baud
- Materno-fetal and Obstetrics Research Unit, Department 'Femme-Mère-Enfant', University Hospital, Lausanne, Switzerland
| |
Collapse
|
78
|
Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus. PLoS One 2020; 15:e0235877. [PMID: 33091010 PMCID: PMC7580995 DOI: 10.1371/journal.pone.0235877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Congenital Zika virus (ZIKV) exposure results in a spectrum of disease ranging from severe birth defects to delayed onset neurodevelopmental deficits. ZIKV-related neuropathogenesis, predictors of birth defects, and neurodevelopmental deficits are not well defined in people. Here we assess the methodological and statistical feasibility of a congenital ZIKV exposure macaque model for identifying infant neurobehavior and brain abnormalities that may underlie neurodevelopmental deficits. We inoculated five pregnant macaques with ZIKV and mock-inoculated one macaque in the first trimester. Following birth, growth, ocular structure/function, brain structure, hearing, histopathology, and neurobehavior were quantitatively assessed during the first week of life. We identified the typical pregnancy outcomes of congenital ZIKV infection, with fetal demise and placental abnormalities. We estimated sample sizes needed to define differences between groups and demonstrated that future studies quantifying brain region volumes, retinal structure, hearing, and visual pathway function require a sample size of 14 animals per group (14 ZIKV, 14 control) to detect statistically significant differences in at least half of the infant exam parameters. Establishing the parameters for future studies of neurodevelopmental outcomes following congenital ZIKV exposure in macaques is essential for robust and rigorous experimental design.
Collapse
|
79
|
Animal models of congenital zika syndrome provide mechanistic insight into viral pathogenesis during pregnancy. PLoS Negl Trop Dis 2020; 14:e0008707. [PMID: 33091001 PMCID: PMC7580937 DOI: 10.1371/journal.pntd.0008707] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In utero Zika virus (ZIKV; family Flaviviridae) infection causes a distinct pattern of birth defects and disabilities in the developing fetus and neonate that has been termed congenital zika syndrome (CZS). Over 8,000 children were affected by the 2016 to 2017 ZIKV outbreak in the Americas, many of whom developed CZS as a result of in utero exposure. To date, there is no consensus about how ZIKV causes CZS; animal models, however, are providing mechanistic insights. Using nonhuman primates, immunocompromised mice, immunocompetent mice, and other animal models (e.g., pigs, sheep, guinea pigs, and hamsters), studies are showing that maternal immunological responses, placental infection and inflammation, as well as viral genetic factors play significant roles in predicting the downstream consequences of in utero ZIKV infection on the development of CZS in offspring. There are thousands of children suffering from adverse consequences of CZS. Therefore, the animal models developed to study ZIKV-induced adverse outcomes in offspring could provide mechanistic insights into how other viruses, including influenza and hepatitis C viruses, impact placental viability and fetal growth to cause long-term adverse outcomes in an effort to identify therapeutic treatments.
Collapse
|
80
|
Kelleher MA, Lee JY, Roberts VHJ, Novak CM, Baschat AA, Morgan TK, Novy MJ, Räsänen JP, Frias AE, Burd I. Maternal azithromycin therapy for Ureaplasma parvum intraamniotic infection improves fetal hemodynamics in a nonhuman primate model. Am J Obstet Gynecol 2020; 223:578.e1-578.e11. [PMID: 32343954 PMCID: PMC7591241 DOI: 10.1016/j.ajog.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ureaplasma parvum infection is a prevalent cause of intrauterine infection associated with preterm birth, preterm premature rupture of membranes, fetal inflammatory response syndrome, and adverse postnatal sequelae. Elucidation of diagnostic and treatment strategies for infection-associated preterm labor may improve perinatal and long-term outcomes for these cases. OBJECTIVE This study assessed the effect of intraamniotic Ureaplasma infection on fetal hemodynamic and cardiac function and the effect of maternal antibiotic treatment on these outcomes. STUDY DESIGN Chronically catheterized pregnant rhesus monkeys were assigned to control (n=6), intraamniotic inoculation with Ureaplasma parvum (107 colony-forming units/mL, n=15), and intraamniotic infection plus azithromycin treatment (12.5 mg/kg twice a day intravenously, n=8) groups. At approximately 135 days' gestation (term=165 days), pulsed and color Doppler ultrasonography was used to obtain measurements of fetal hemodynamics (pulsatility index of umbilical artery, ductus venosus, descending aorta, ductus arteriosus, aortic isthmus, right pulmonary artery, middle cerebral artery and cerebroplacental ratio, and left and right ventricular cardiac outputs) and cardiac function (ratio of peak early vs late transmitral flow velocity [marker of ventricular function], Tei index [myocardial performance index]). These indices were stratified by amniotic fluid proinflammatory mediator levels and cardiac histology. RESULTS Umbilical and fetal pulmonary artery vascular impedances were significantly increased in animals from the intraamniotic inoculation with Ureaplasma parvum group (P<.05). Azithromycin treatment restored values to control levels. Amniotic fluid prostaglandin F2 alpha levels were significantly higher in animals with abnormal umbilical artery pulsatility index (>1.1) than in those with normal blood flow (P<.05; Spearman ρ=0.6, P<.05). In the intraamniotic inoculation with Ureaplasma parvum group, left ventricular cardiac output was significantly decreased (P<.001), and more animals had abnormal right-to-left ventricular cardiac output ratios (defined as >1.6, P<.05). Amniotic fluid interleukin-6 concentrations were elevated in cases of abnormal right-to-left ventricular cardiac output ratios compared with those in normal cases (P<.05). CONCLUSION Fetal hemodynamic alterations were associated with intraamniotic Ureaplasma infection and ameliorated after maternal antibiotic treatment. Doppler ultrasonographic measurements merit continuing investigation as a diagnostic method to identify fetal cardiovascular and hemodynamic compromise associated with intrauterine infection or inflammation and in the evaluation of therapeutic interventions or clinical management of preterm labor.
Collapse
Affiliation(s)
- Meredith A Kelleher
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR.
| | - Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Victoria H J Roberts
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR
| | - Christopher M Novak
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ahmet A Baschat
- Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Terry K Morgan
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR
| | - Miles J Novy
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR
| | - Juha P Räsänen
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR; University of Helsinki, Helsinki, Finland
| | - Antonio E Frias
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
81
|
Rodrigues de Sousa J, Azevedo RDSDS, Quaresma JAS, Vasconcelos PFDC. The innate immune response in Zika virus infection. Rev Med Virol 2020; 31:e2166. [PMID: 32926478 DOI: 10.1002/rmv.2166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/06/2022]
Abstract
Zika virus (ZIKV; Flaviviridae, Flavivirus) was discovered in 1947 in Uganda, Africa, from the serum of a sentinel Rhesus monkey (Macaca mulatta). It is an enveloped, positive-sense, single-stranded RNA virus, which encodes a single polyprotein that is cleaved into 10 individual proteins. In 2015, the Zika-epidemic in Brazil was marked mainly by the exponential growth of microcephaly cases and other congenital defects. With regard to host-pathogen relationships, understanding the role of the immune response in the pathogenesis ZIKV infection is challenging. The innate immune response is the first-line immunological defence, in which pathogen-associated molecular patterns are recognized by pattern-recognition receptors that trigger macrophages, dendritic cells, natural killer cells and endothelial cells to produce several mediators, which modulate viral replication and immune evasion. In this review, we have summarized current knowledge on the innate immune response against ZIKV.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Brazil.,Universidade do Estado do Pará, Belém, Brazil
| | | | - Juarez Antônio Simões Quaresma
- Universidade do Estado do Pará, Belém, Brazil.,Departamento de Patologia, Instituto Evandro Chagas, Ananindeua, Brazil.,Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Brazil.,Universidade do Estado do Pará, Belém, Brazil
| |
Collapse
|
82
|
Abstract
The use of contrast agents as signal enhancers during ultrasound improves visualization and the diagnostic utility of this technology in medical imaging. Although widely used in many disciplines, contrast ultrasound is not routinely implemented in obstetrics, largely due to safety concerns of administered agents for pregnant women and the limited number of studies that address this issue. Here the microbubble characteristics that make them beneficial for enhancement of the blood pool and the quantification of real-time imaging are reviewed. Literature from pregnant animal model studies and safety assessments are detailed, and the potential for contrast-enhanced ultrasound to provide clinically relevant data and benefit our understanding of early placental development and detection of placental dysfunction is discussed.
Collapse
|
83
|
Ashary N, Bhide A, Chakraborty P, Colaco S, Mishra A, Chhabria K, Jolly MK, Modi D. Single-Cell RNA-seq Identifies Cell Subsets in Human Placenta That Highly Expresses Factors Driving Pathogenesis of SARS-CoV-2. Front Cell Dev Biol 2020; 8:783. [PMID: 32974340 PMCID: PMC7466449 DOI: 10.3389/fcell.2020.00783] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Infection by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) results in the novel coronavirus disease COVID-19, which has posed a serious threat globally. Infection of SARS-CoV-2 during pregnancy is associated with complications such as preterm labor and premature rupture of membranes, and a proportion of neonates born to infected mothers are also positive for the virus. During pregnancy, the placental barrier protects the fetus from pathogens and ensures healthy development. To predict if the placenta is permissive to SARS-CoV-2, we utilized publicly available single-cell RNA-seq data to identify if the placental cells express the necessary factors required for infection. SARS-CoV-2 binding receptor ACE2 and the S protein priming protease TMPRSS2 are co-expressed by a subset of syncytiotrophoblasts (STB) in the first trimester and extravillous trophoblasts (EVT) in the second trimester human placenta. In addition, the non-canonical receptor BSG/CD147 and other proteases (CTSL, CTSB, and FURIN) are detected in most of the placental cells. Other coronavirus family receptors (ANPEP and DPP4) were also expressed in the first and second trimester placental cells. Additionally, the term placenta of multiple species including humans expressed ACE2, DPP4, and ANPEP along with the viral S protein proteases. The ACE2- and TMPRSS2-positive (ACE2 + TMPRSS2 +) placental subsets expressed mRNA for proteins involved in viral budding and replication. These cells also had the mRNA for proteins that physically interact with SARS-CoV-2 in host cells. Further, we discovered unique signatures of genes in ACE2 + TMPRSS2 + STBs and EVTs. The ACE2 + TMPRSS2 + STBs are highly differentiated cells and express genes involving mitochondrial metabolism and glucose transport. The second trimester ACE2 + TMPRSS2 + EVTs are enriched for markers of endovascular trophoblasts. Both these subtypes abundantly expressed genes in the Toll-like receptor pathway. The second trimester EVTs are also enriched for components of the JAK-STAT pathway that drives inflammation. We carried out a systematic review and identified that in 12% of pregnant women with COVID-19, the placenta was infected with SARS-CoV-2, and the virus was detected in STBs. To conclude, herein we have uncovered the cellular targets for SARS-CoV-2 entry and have shown that these cells can potentially drive viremia in the developing human placenta. Our results provide a basic framework toward understanding the paraphernalia involved in SARS-CoV-2 infections in pregnancy.
Collapse
Affiliation(s)
- Nancy Ashary
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Priyanka Chakraborty
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Stacy Colaco
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Karisma Chhabria
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| |
Collapse
|
84
|
Schmidt JK, Mean KD, Puntney RC, Alexander ES, Sullivan R, Simmons HA, Zeng X, Weiler AM, Friedrich TC, Golos TG. Zika virus in rhesus macaque semen and reproductive tract tissues: a pilot study of acute infection†. Biol Reprod 2020; 103:1030-1042. [PMID: 32761051 DOI: 10.1093/biolre/ioaa137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/09/2019] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Although sexual transmission of Zika virus (ZIKV) is well-documented, the viral reservoir(s) in the male reproductive tract remains uncertain in humans and immune-intact animal models. We evaluated the presence of ZIKV in a rhesus macaque pilot study to determine persistence in semen, assess the impact of infection on sperm functional characteristics, and define the viral reservoir in the male reproductive tract. Five adult male rhesus monkeys were inoculated with 105 PFU of Asian-lineage ZIKV isolate PRVABC59, and two males were inoculated with the same dose of African-lineage ZIKV DAKAR41524. Viremia and viral RNA (vRNA) shedding in semen were monitored, and a cohort of animals were necropsied for tissue collection to assess tissue vRNA burden and histopathology. All animals exhibited viremia for limited periods (1-11 days); duration of shedding did not differ significantly between viral isolates. There were sporadic low levels of vRNA in the semen from some, but not all animals. Viral RNA levels in reproductive tract tissues were also modest and present in the epididymis in three of five cases, one case in the vas deferens, but not detected in testis, seminal vesicles or prostate. ZIKV infection did not impact semen motility parameters as assessed by computer-assisted sperm analysis. Despite some evidence of prolonged ZIKV RNA shedding in human semen and high tropism of ZIKV for male reproductive tract tissues in mice deficient in Type 1 interferon signaling, in the rhesus macaques assessed in this pilot study, we did not consistently find ZIKV RNA in the male reproductive tract.
Collapse
Affiliation(s)
- Jenna K Schmidt
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Riley C Puntney
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Ruth Sullivan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, Madison, WI, USA.,Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, Madison, WI, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
85
|
Immune outcomes of Zika virus infection in nonhuman primates. Sci Rep 2020; 10:13069. [PMID: 32747639 PMCID: PMC7400481 DOI: 10.1038/s41598-020-69978-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
Although the Zika virus (ZIKV) epidemic is subsiding, immune responses that are important for controlling acute infection have not been definitively characterized. Nonhuman primate (NHP) models were rapidly developed to understand the disease and to test vaccines, and these models have since provided an understanding of the immune responses that correlate with protection during natural infection and vaccination. Here, we infected a small group of male rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques with a minimally passaged Brazilian ZIKV isolate and used multicolor flow cytometry and transcriptional profiling to describe early immune patterns following infection. We found evidence of strong innate antiviral responses together with induction of neutralizing antibodies and T cell responses. We also assessed the relative importance of CD8 T cells in controlling infection by carrying out CD8 T cell depletion in an additional two animals of each species. CD8 depletion appeared to dysregulate early antiviral responses and possibly increase viral persistence, but the absence of CD8 T cells ultimately did not impair control of the virus. Together, these data describe immunological trends in two NHP species during acute ZIKV infection, providing an account of early responses that may be important in controlling infection.
Collapse
|
86
|
Goldenberg JM, Berthusen AJ, Cárdenas-Rodríguez J, Pagel MD. Differentiation of Myositis-Induced Models of Bacterial Infection and Inflammation with T 2-Weighted, CEST, and DCE-MRI. ACTA ACUST UNITED AC 2020; 5:283-291. [PMID: 31572789 PMCID: PMC6752290 DOI: 10.18383/j.tom.2019.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We used T2 relaxation, chemical exchange saturation transfer (CEST), and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) to assess whether bacterial infection can be differentiated from inflammation in a myositis-induced mouse model. We measured the T2 relaxation time constants, %CEST at 5 saturation frequencies, and area under the curve (AUC) from DCE-MRI after maltose injection from infected, inflamed, and normal muscle tissue models. We applied principal component analysis (PCA) to reduce dimensionality of entire CEST spectra and DCE signal evolutions, which were analyzed using standard classification methods. We extracted features from dimensional reduction as predictors for machine learning classifier algorithms. Normal, inflamed, and infected tissues were evaluated with H&E and gram-staining histological studies, and bacterial-burden studies. The T2 relaxation time constants and AUC of DCE-MRI after injection of maltose differentiated infected, inflamed, and normal tissues. %CEST amplitudes at −1.6 and −3.5 ppm differentiated infected tissues from other tissues, but these did not differentiate inflamed tissue from normal tissue. %CEST amplitudes at 3.5, 3.0, and 2.5 ppm, AUC of DCE-MRI for shorter time periods, and relative Ktrans and kep values from DCE-MRI could not differentiate tissues. PCA and machine learning of CEST-MRI and DCE-MRI did not improve tissue classifications relative to traditional analysis methods. Similarly, PCA and machine learning did not further improve tissue classifications relative to T2 MRI. Therefore, future MRI studies of infection models should focus on T2-weighted MRI and analysis of T2 relaxation times.
Collapse
Affiliation(s)
- Joshua M Goldenberg
- Department of Pharmaceutical Sciences, University of Arizona, Tucson, AZ.,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
87
|
Gardinali NR, Marchevsky RS, Oliveira JM, Pelajo-Machado M, Kugelmeier T, Castro MP, Silva ACA, Pinto DP, Fonseca LB, Vilhena LS, Pereira HM, Lima SMB, Miranda EH, Trindade GF, Linhares JHR, Silva SA, Melgaço JG, Alves AMB, Moran J, Silva MCC, Soares-Bezerra RJ, Soriano A, Bentes GA, Bottino FO, Salvador Castro Faria SB, Nudelman RF, Lopes CAA, Perea JAS, Sarges K, Andrade MCR, Motta MCVA, Freire MS, Souza TML, Schmidt-Chanasit J, Pinto MA. Sofosbuvir shows a protective effect against vertical transmission of Zika virus and the associated congenital syndrome in rhesus monkeys. Antiviral Res 2020; 182:104859. [PMID: 32649965 DOI: 10.1016/j.antiviral.2020.104859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The outbreaks of Zika virus (ZIKV) infection in Brazil, 2015-2016, were associated with severe congenital malformations. Our translational study aimed to test the efficacy of the antiviral agent sofosbuvir (SOF) against vertical transmission of ZIKV and the associated congenital syndrome (CZS), using a rhesus monkey model. Eight pregnant macaques were successfully infected during the organogenesis phase with a Brazilian ZIKV strain; five of them received SOF from two to fifteen days post-infection. Both groups of dams showed ZIKV-associated clinical signals, detectable ZIKV RNA in several specimens, specific anti-ZIKV IgM and IgG antibodies, and maternal neutralizing antibodies. However, malformations occurred only among non-treated dam offspring. Compared to non-treated animals, all SOF-treated dams had a shorter ZIKV viremia and four of five neonates had undetectable ZIKV RNA in blood and tissue samples. These results support further clinical evaluations aiming for the prevention of CZS.
Collapse
Affiliation(s)
- Noemi R Gardinali
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Renato S Marchevsky
- Laboratório de Neurovirulência, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Jaqueline M Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Marcelo Pelajo-Machado
- Laboratório de Patologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Tatiana Kugelmeier
- Instituto de Ciência e Tecnologia em Biomodelos, Fundação Oswaldo Cruz, Avenida Brasil 4365, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Marcio P Castro
- Centro de Diagnóstico Veterinário (CEVET), Avenida Rui Barbosa 29, Niterói, RJ, Brazil
| | - Aline C A Silva
- Serviço de Equivalência e Farmacocinética (SEFAR), Vice-Presidência de Produção e Inovação em Saúde (VPPIS), Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Douglas P Pinto
- Serviço de Equivalência e Farmacocinética (SEFAR), Vice-Presidência de Produção e Inovação em Saúde (VPPIS), Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Lais B Fonseca
- Serviço de Equivalência e Farmacocinética (SEFAR), Vice-Presidência de Produção e Inovação em Saúde (VPPIS), Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Leandro S Vilhena
- Serviço de Equivalência e Farmacocinética (SEFAR), Vice-Presidência de Produção e Inovação em Saúde (VPPIS), Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Heliana M Pereira
- Serviço de Equivalência e Farmacocinética (SEFAR), Vice-Presidência de Produção e Inovação em Saúde (VPPIS), Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Sheila M B Lima
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Emily H Miranda
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Gisela F Trindade
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - José H R Linhares
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Stephanie A Silva
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Juliana Gil Melgaço
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Ada M B Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Julio Moran
- Dr. Julio Moran Laboratories, Vordergrüt 30, Herrliberg, Zurich, Switzerland
| | - Maria C C Silva
- Laboratório de Biologia Molecular de Patógenos, Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, São Bernardo Do Campo, SP, Brazil
| | - Rômulo J Soares-Bezerra
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Andreza Soriano
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Gentil A Bentes
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Fernanda O Bottino
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Sarah Beatriz Salvador Castro Faria
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Rafael F Nudelman
- Instituto de Ciência e Tecnologia em Biomodelos, Fundação Oswaldo Cruz, Avenida Brasil 4365, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Claudia A A Lopes
- Instituto de Ciência e Tecnologia em Biomodelos, Fundação Oswaldo Cruz, Avenida Brasil 4365, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Javier A S Perea
- Instituto de Ciência e Tecnologia em Biomodelos, Fundação Oswaldo Cruz, Avenida Brasil 4365, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Klena Sarges
- Instituto de Ciência e Tecnologia em Biomodelos, Fundação Oswaldo Cruz, Avenida Brasil 4365, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Márcia C R Andrade
- Instituto de Ciência e Tecnologia em Biomodelos, Fundação Oswaldo Cruz, Avenida Brasil 4365, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Márcia C V A Motta
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Marcos S Freire
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Thiago M L Souza
- Instituto Nacional de Ciência e Tecnologia de Gestão da Inovação em Doenças Negligenciadas (INCT/IDN), Centro de Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg, Germany
| | - Marcelo A Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
88
|
Winkler CW, Evans AB, Carmody AB, Peterson KE. Placental Myeloid Cells Protect against Zika Virus Vertical Transmission in a Rag1-Deficient Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:143-152. [PMID: 32493813 PMCID: PMC8328348 DOI: 10.4049/jimmunol.1901289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/04/2020] [Indexed: 11/19/2022]
Abstract
The ability of Zika virus (ZIKV) to cross the placenta and infect the fetus is a key mechanism by which ZIKV causes microcephaly. How the virus crosses the placenta and the role of the immune response in this process remain unclear. In the current study, we examined how ZIKV infection affected innate immune cells within the placenta and fetus and whether these cells influenced virus vertical transmission (VTx). We found myeloid cells were elevated in the placenta of pregnant ZIKV-infected Rag1-/- mice treated with an anti-IFNAR Ab, primarily at the end of pregnancy as well as transiently in the fetus several days before birth. These cells, which included maternal monocyte/macrophages, neutrophils, and fetal myeloid cells contained viral RNA and infectious virus, suggesting they may be infected and contributing to viral replication and VTx. However, depletion of monocyte/macrophage myeloid cells from the dam during ZIKV infection resulted in increased ZIKV infection in the fetus. Myeloid cells in the fetus were not depleted in this experiment, likely because of an inability of liposome particles containing the cytotoxic drug to cross the placenta. Thus, the increased virus infection in the fetus was not the result of an impaired fetal myeloid response or breakdown of the placental barrier. Collectively, these data suggest that monocyte/macrophage myeloid cells in the placenta play a significant role in inhibiting ZIKV VTx to the fetus, possibly through phagocytosis of virus or virus-infected cells.
Collapse
Affiliation(s)
- Clayton W Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Alyssa B Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| |
Collapse
|
89
|
Haddow AD, Perez-Sautu U, Wiley MR, Miller LJ, Kimmel AE, Principe LM, Wollen-Roberts SE, Shamblin JD, Valdez SM, Cazares LH, Pratt WD, Rossi FD, Lugo-Roman L, Bavari S, Palacios GF, Nalca A, Nasar F, Pitt MLM. Modeling mosquito-borne and sexual transmission of Zika virus in an enzootic host, the African green monkey. PLoS Negl Trop Dis 2020; 14:e0008107. [PMID: 32569276 PMCID: PMC7343349 DOI: 10.1371/journal.pntd.0008107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/08/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023] Open
Abstract
Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.
Collapse
Affiliation(s)
- Andrew D. Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Unai Perez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Michael R. Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lynn J. Miller
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Adrienne E. Kimmel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lucia M. Principe
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Suzanne E. Wollen-Roberts
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Joshua D. Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Stephanie M. Valdez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lisa H. Cazares
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - William D. Pratt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Franco D. Rossi
- Aerobiology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Luis Lugo-Roman
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gustavo F. Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Aysegul Nalca
- Aerobiology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - M. Louise M. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| |
Collapse
|
90
|
Jaeger AS, Weiler AM, Moriarty RV, Rybarczyk S, O'Connor SL, O'Connor DH, Seelig DM, Fritsch MK, Friedrich TC, Aliota MT. Spondweni virus causes fetal harm in Ifnar1 -/- mice and is transmitted by Aedes aegypti mosquitoes. Virology 2020; 547:35-46. [PMID: 32560903 PMCID: PMC7246013 DOI: 10.1016/j.virol.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023]
Abstract
Spondweni virus (SPONV) is the most closely related known flavivirus to Zika virus (ZIKV). Its pathogenic potential and vector specificity have not been well defined. SPONV has been found predominantly in Africa, but was recently detected in a pool of Culex quinquefasciatus mosquitoes in Haiti. Here we show that SPONV can cause significant fetal harm, including demise, comparable to ZIKV, in a mouse model of vertical transmission. Following maternal inoculation, we detected infectious SPONV in placentas and fetuses, along with significant fetal and placental histopathology, together suggesting vertical transmission. To test vector competence, we exposed Aedes aegypti and Culex quinquefasciatus mosquitoes to SPONV-infected bloodmeals. Aedes aegypti could efficiently transmit SPONV, whereas Culex quinquefasciatus could not. Our results suggest that SPONV has the same features that made ZIKV a public health risk.
Collapse
Affiliation(s)
- Anna S Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, United States
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, United States
| | - Ryan V Moriarty
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, United States
| | - Sierra Rybarczyk
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, United States
| | - Shelby L O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, United States; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, United States; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
| | - Davis M Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, Twin Cities, United States
| | - Michael K Fritsch
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, United States; Department of Pathobiological Sciences, University of Wisconsin-Madison, United States
| | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, United States.
| |
Collapse
|
91
|
Maternal Zika Virus (ZIKV) Infection following Vaginal Inoculation with ZIKV-Infected Semen in Timed-Pregnant Olive Baboons. J Virol 2020; 94:JVI.00058-20. [PMID: 32188737 PMCID: PMC7269433 DOI: 10.1128/jvi.00058-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) infection is now firmly linked to congenital Zika syndrome (CZS), including fetal microcephaly. While Aedes species of mosquito are the primary vector for ZIKV, sexual transmission of ZIKV is a significant route of infection. ZIKV has been documented in human, mouse, and nonhuman primate (NHP) semen. It is critical to establish NHP models of the vertical transfer of ZIKV that recapitulate human pathogenesis. We hypothesized that vaginal deposition of ZIKV-infected baboon semen would lead to maternal infection and vertical transfer in the olive baboon (Papio anubis). Epidemiological studies suggest an increased rate of CZS in the Americas compared to the original link to CZS in French Polynesia; therefore, we also compared the French Polynesian (FP) ZIKV isolate to the Puerto Rican (PR) isolate. Timed-pregnant baboons (n = 6) were inoculated via vaginal deposition of baboon semen containing 106 focus-forming units (FFU) of ZIKV (n = 3 for FP isolate H/PF/2013; n = 3 for PR isolate PRVABC59) at midgestation (86 to 95 days of gestation [dG]; term, 183 dG) on day 0 (all dams) and then at 7-day intervals through 3 weeks. Maternal blood, saliva, and cervicovaginal wash (CVW) samples were obtained. Animals were euthanized at 28 days (n = 5) or 39 days (n = 1) after the initial inoculation, and maternal/fetal tissues were collected. Viremia was achieved in 3/3 FP ZIKV-infected dams and 2/3 PR ZIKV-infected dams. ZIKV RNA was detected in CVW samples of 5/6 dams. ZIKV RNA was detected in lymph nodes but not the ovaries, uterus, cervix, or vagina in FP isolate-infected dams. ZIKV RNA was detected in lymph nodes (3/3), uterus (2/3), and vagina (2/3) in PR isolate-infected dams. Placenta, amniotic fluid, and fetal tissues were ZIKV RNA negative in the FP isolate-infected dams, whereas 2/3 PR isolate-infected dam placentas were ZIKV RNA positive. We conclude that ZIKV-infected semen is a means of ZIKV transmission during pregnancy in primates. The PR isolate appeared more capable of widespread dissemination to tissues, including reproductive tissues and placenta, than the FP isolate.IMPORTANCE Zika virus remains a worldwide health threat, with outbreaks still occurring in the Americas. While mosquitos are the primary vector for the spread of the virus, sexual transmission of Zika virus is also a significant means of infection, especially in terms of passage from an infected to an uninfected partner. While sexual transmission has been documented in humans, and male-to-female transmission has been reported in mice, ours is the first study in nonhuman primates to demonstrate infection via vaginal deposition of Zika virus-infected semen. The latter is important since a recent publication indicated that human semen inhibited, in a laboratory setting, Zika virus infection of reproductive tissues. We also found that compared to the French Polynesian isolate, the Puerto Rican Zika virus isolate led to greater spread throughout the body, particularly in reproductive tissues. The American isolates of Zika virus appear to have acquired mutations that increase their efficacy.
Collapse
|
92
|
Wang X, Cuzon Carlson VC, Studholme C, Newman N, Ford MM, Grant KA, Kroenke CD. In utero MRI identifies consequences of early-gestation alcohol drinking on fetal brain development in rhesus macaques. Proc Natl Acad Sci U S A 2020; 117:10035-10044. [PMID: 32312804 PMCID: PMC7211988 DOI: 10.1073/pnas.1919048117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One factor that contributes to the high prevalence of fetal alcohol spectrum disorder (FASD) is binge-like consumption of alcohol before pregnancy awareness. It is known that treatments are more effective with early recognition of FASD. Recent advances in retrospective motion correction for the reconstruction of three-dimensional (3D) fetal brain MRI have led to significant improvements in the quality and resolution of anatomical and diffusion MRI of the fetal brain. Here, a rhesus macaque model of FASD, involving oral self-administration of 1.5 g/kg ethanol per day beginning prior to pregnancy and extending through the first 60 d of a 168-d gestational term, was utilized to determine whether fetal MRI could detect alcohol-induced abnormalities in brain development. This approach revealed differences between ethanol-exposed and control fetuses at gestation day 135 (G135), but not G110 or G85. At G135, ethanol-exposed fetuses had reduced brainstem and cerebellum volume and water diffusion anisotropy in several white matter tracts, compared to controls. Ex vivo electrophysiological recordings performed on fetal brain tissue obtained immediately following MRI demonstrated that the structural abnormalities observed at G135 are of functional significance. Specifically, spontaneous excitatory postsynaptic current amplitudes measured from individual neurons in the primary somatosensory cortex and putamen strongly correlated with diffusion anisotropy in the white matter tracts that connect these structures. These findings demonstrate that exposure to ethanol early in gestation perturbs development of brain regions associated with motor control in a manner that is detectable with fetal MRI.
Collapse
Affiliation(s)
- Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97214
| | - Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Colin Studholme
- Biomedical Image Computing Group, Department of Pediatrics, University of Washington, Seattle, WA 98105
- Department of Bioengineering, University of Washington, Seattle, WA 98105
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006;
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97214
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
93
|
Simanjuntak Y, Ko HY, Lee YL, Yu GY, Lin YL. Preventive effects of folic acid on Zika virus-associated poor pregnancy outcomes in immunocompromised mice. PLoS Pathog 2020; 16:e1008521. [PMID: 32392268 PMCID: PMC7241851 DOI: 10.1371/journal.ppat.1008521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection may lead to congenital microcephaly and pregnancy loss in pregnant women. In the context of pregnancy, folic acid (FA) supplementation may reduce the risk of abnormal pregnancy outcomes. Intriguingly, FA may have a beneficial effect on the adverse pregnancy outcomes associated with ZIKV infection. Here, we show that FA inhibits ZIKV replication in human umbilical vein endothelial cells (HUVECs) and a cell culture model of blood-placental barrier (BPB). The inhibitory effect of FA against ZIKV infection is associated with FRα-AMPK signaling. Furthermore, treatment with FA reduces pathological features in the placenta, number of fetal resorptions, and stillbirths in two mouse models of in utero ZIKV transmission. Mice with FA treatment showed lower viral burden and better prognostic profiles in the placenta including reduced inflammatory response, and enhanced integrity of BPB. Overall, our findings suggest the preventive role of FA supplementation in ZIKV-associated abnormal pregnancy and warrant nutritional surveillance to evaluate maternal FA status in areas with active ZIKV transmission.
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
94
|
The involvement of annexin A1 in human placental response to maternal Zika virus infection. Antiviral Res 2020; 179:104809. [PMID: 32360947 DOI: 10.1016/j.antiviral.2020.104809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/02/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
The association of Zika virus infection (ZIKV) with congenital malformation and neurological sequelae brought a significant global concern. Recent studies have shown that maternal viral infection leads to inflammation in the placental tissue. In this context, the antiinflammatory protein annexin 1 (ANXA1) has a major determination of the resolution of inflammation and it has been positively associated with antiparasitic activity in infected placental explants. Although these effects have been explored to some degree, ANXA1 expression and potential properties have not yet been fully elucidated in placentas infected with ZIKV. This study was conducted to evaluate the histopathology, inflammatory process and elucidate if ANXA1 were differently expressed in placentas of ZIKV-infected mothers. Three classification groups were used in this study: Neg/Neg (mother and placenta negative for the virus), Pos/Neg (infected mother, but no virus detected in placenta) and Pos/Pos (mother and placenta infected with ZIKV). ANXA1 was expressed in syncytiotrophoblast cells of all studied groups, and its expression was decreased in Pos/Neg group, which displayed also an increase of the inflammatory response, as evinced from the recruitment of inflammatory cells, increased levels of placenta cytokines, and evidence of impaired tissue repair. The presence of ZIKV in placentas of Pos/Pos group shows structural alterations, including detachment and disorganization of the trophoblastic epithelium. In summary, our results suggest that maternal infection with ZIKV, even without direct tissue infection, leads to a placental inflammatory response probably related to the modulation of ANXA1. After placental infection, structural changes - including inflammatory cells influx - are observed leading to placental dysfunction and reduced fetal weight. Our study sheds additional light on the outcomes of ZIKV infection in trophoblast and reveals a potential involvement of ANXA1 in the placental biology.
Collapse
|
95
|
Wang X, Zheng B, Ashraf U, Zhang H, Cao C, Li Q, Chen Z, Imran M, Chen H, Cao S, Ye J. Artemisinin inhibits the replication of flaviviruses by promoting the type I interferon production. Antiviral Res 2020; 179:104810. [PMID: 32360948 DOI: 10.1016/j.antiviral.2020.104810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022]
Abstract
Flaviviruses are considered to be major emerging human pathogens globally. Currently available anti-flavivirus approaches are ineffective, thus there is a desperate need for broad-spectrum drugs that can be active against existing and emerging flaviviruses. Artemisinin has been found to cause an antiviral effect against several viruses; however, its antiviral effect against flaviviruses remains unexplored. Here the antiviral activity of artemisinin against flaviviruses such as JEV, DENV, and ZIKV was evaluated by measuring the hallmark features of virus replication both in vitro and in vivo. Mechanistically, the artemisinin-induced antiviral effect was associated with enhanced host type I interferon response. The blocking of interferon signaling inhibited the artemisinin-induced interferon-stimulated genes expression and rescued the artemisinin-suppressed virus replication. This study demonstrated for the first time the antiviral activity of artemisinin against flaviviruses with a novel antiviral mechanism. The therapeutic application of artemisinin may constitute a broad-spectrum approach to cure infections caused by flaviviruses.
Collapse
Affiliation(s)
- Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Bohan Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Chen Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Muhammad Imran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
96
|
Schwarz ER, Oliveira LJ, Bonfante F, Pu R, Pozor MA, Maclachlan NJ, Beachboard S, Barr KL, Long MT. Experimental Infection of Mid-Gestation Pregnant Female and Intact Male Sheep with Zika Virus. Viruses 2020; 12:v12030291. [PMID: 32156037 PMCID: PMC7150993 DOI: 10.3390/v12030291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus that causes birth defects, persistent male infection, and sexual transmission in humans. The purpose of this study was to continue the development of an ovine ZIKV infection model; thus, two experiments were undertaken. In the first experiment, we built on previous pregnant sheep experiments by developing a mid-gestation model of ZIKV infection. Four pregnant sheep were challenged with ZIKV at 57–64 days gestation; two animals served as controls. After 13–15 days (corresponding with 70–79 days of gestation), one control and two infected animals were euthanized; the remaining animals were euthanized at 20–22 days post-infection (corresponding with 77–86 days of gestation). In the second experiment, six sexually mature, intact, male sheep were challenged with ZIKV and two animals served as controls. Infected animals were serially euthanized on days 2–6 and day 9 post-infection with the goal of isolating ZIKV from the male reproductive tract. In the mid-gestation study, virus was detected in maternal placenta and spleen, and in fetal organs, including the brains, spleens/liver, and umbilicus of infected fetuses. Fetuses from infected animals had visibly misshapen heads and morphometrics revealed significantly smaller head sizes in infected fetuses when compared to controls. Placental pathology was evident in infected dams. In the male experiment, ZIKV was detected in the spleen, liver, testes/epididymides, and accessory sex glands of infected animals. Results from both experiments indicate that mid-gestation ewes can be infected with ZIKV with subsequent disruption of fetal development and that intact male sheep are susceptible to ZIKV infection and viral dissemination and replication occurs in highly vascular tissues (including those of the male reproductive tract).
Collapse
Affiliation(s)
- Erika R. Schwarz
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Lilian J. Oliveira
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Francesco Bonfante
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Instituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Ruiyu Pu
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Malgorzata A. Pozor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - N. James Maclachlan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Sarah Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Kelli L. Barr
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76798, USA;
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
- Correspondence:
| |
Collapse
|
97
|
da Silva FC, Magaldi FM, Sato HK, Bevilacqua E. Yellow Fever Vaccination in a Mouse Model Is Associated With Uninterrupted Pregnancies and Viable Neonates Except When Administered at Implantation Period. Front Microbiol 2020; 11:245. [PMID: 32153534 PMCID: PMC7044120 DOI: 10.3389/fmicb.2020.00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
The potential risk of yellow fever (YF) infection in unvaccinated pregnant women has aroused serious concerns. In this study, we evaluated the effect of the YF vaccine during gestation using a mouse model, analyzing placental structure, immunolocalization of the virus antigen, and viral activity at the maternal-fetal barrier and in the maternal liver and fetus. The YF vaccine (17DD) was administered subcutaneously at a dose of 2.0 log10 PFU to CD-1 mice on gestational days (gd) 0.5, 5.5, and 11.5 (n = 5–10/group). The control group received sterile saline (n = 5–10/group). Maternal liver, implantation sites with fetus, and placentas were collected on gd18.5. The numbers of implantation sites, reabsorbed embryos, and stillborn fetuses were counted, and placentas and live fetuses were weighed. Tissues (placenta, fetuses, and liver) of vaccinated pregnant mice on gd5.5 (n = 15) were paraffin-embedded in 10% buffered-formalin and collected in TRIzol for immunolocalization of YF vaccine virus and PCR, respectively. PCR products were also subjected to automated sequence analysis. Fetal growth restriction (p < 0.0001) and a significant decrease in fetal viability (p < 0.0001) occurred only when the vaccine was administered on gd5.5. In stillbirths, the viral antigen was consistently immunolocalized at the maternal-fetal barrier and in fetal organs, suggesting a transplacental transfer. In stillbirths, RNA of the vaccine virus was also detected by reverse transcriptase-PCR indicating viral activity in the maternal liver and fetal tissues. In conclusion, the findings of this study in the mouse suggest that vaccination did not cause adverse outcomes with respect to fetal development except when administered during the early gestational stage, indicating the implantation period as a susceptible period in which the YF vaccine virus might interfere with pregnancy.
Collapse
Affiliation(s)
- Fernanda C da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda M Magaldi
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helena K Sato
- Secretaria do Estado de São Paulo, Epidemiological Surveillance Center, Department of Health, São Paulo, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
98
|
Steinbach RJ, Haese NN, Smith JL, Colgin LMA, MacAllister RP, Greene JM, Parkins CJ, Kempton JB, Porsov E, Wang X, Renner LM, McGill TJ, Dozier BL, Kreklywich CN, Andoh TF, Grafe MR, Pecoraro HL, Hodge T, Friedman RM, Houser LA, Morgan TK, Stenzel P, Lindner JR, Schelonka RL, Sacha JB, Roberts VHJ, Neuringer M, Brigande JV, Kroenke CD, Frias AE, Lewis AD, Kelleher MA, Hirsch AJ, Streblow DN. A neonatal nonhuman primate model of gestational Zika virus infection with evidence of microencephaly, seizures and cardiomyopathy. PLoS One 2020; 15:e0227676. [PMID: 31935257 PMCID: PMC6959612 DOI: 10.1371/journal.pone.0227676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impairment. Previous studies of Zika virus in pregnant rhesus macaques (Macaca mulatta) have described injury to the developing fetus and pregnancy loss, but neonatal outcomes following fetal Zika virus exposure have yet to be characterized in nonhuman primates. Herein we describe the presentation of rhesus macaque neonates with a spectrum of clinical outcomes, including one infant with CZS-like symptoms including cardiomyopathy, motor delay and seizure activity following maternal infection with Zika virus during the first trimester of pregnancy. Further characterization of this neonatal nonhuman primate model of gestational Zika virus infection will provide opportunities to evaluate the efficacy of pre- and postnatal therapeutics for gestational Zika virus infection and CZS.
Collapse
Affiliation(s)
- Rosemary J. Steinbach
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Jessica L. Smith
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lois M. A. Colgin
- Division of Comparative Medicine, Pathology Services Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Rhonda P. MacAllister
- Division of Comparative Medicine, Clinical Medicine Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Justin M. Greene
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Christopher J. Parkins
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - J. Beth Kempton
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Edward Porsov
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaojie Wang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lauren M. Renner
- Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Trevor J. McGill
- Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Brandy L. Dozier
- Division of Comparative Medicine, Clinical Medicine Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Takeshi F. Andoh
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Marjorie R. Grafe
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Heidi L. Pecoraro
- Veterinary Diagnostic Services Department, North Dakota State University, Fargo, North Dakota, United States of America
| | - Travis Hodge
- Division of Comparative Medicine, Time Mated Breeding Services Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Robert M. Friedman
- Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Lisa A. Houser
- Division of Comparative Medicine, Behavioral Services Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Terry K. Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Peter Stenzel
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan R. Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert L. Schelonka
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Victoria H. J. Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Martha Neuringer
- Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John V. Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Christopher D. Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Antonio E. Frias
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Anne D. Lewis
- Division of Comparative Medicine, Pathology Services Unit, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Meredith A. Kelleher
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Alec J. Hirsch
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Daniel Neal Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
99
|
Zimmerman MG, Wrammert J, Suthar MS. Cross-Reactive Antibodies during Zika Virus Infection: Protection, Pathogenesis, and Placental Seeding. Cell Host Microbe 2020; 27:14-24. [PMID: 31917957 PMCID: PMC7802743 DOI: 10.1016/j.chom.2019.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Humoral immunity is an essential component of the protective immune response to flavivirus infection. Typically, primary infection generates a robust neutralizing antibody response that mediates viral control and protection. It is becoming increasingly apparent that secondary infection with a closely related flavivirus strain can result in immunological cross-reactivity; however, the consequences to infection outcome remain controversial. Since its introduction to Brazil in 2015, Zika virus (ZIKV) has caused an epidemic of fetal congenital malformations within the Americas. Because ZIKV is a mosquito-borne flavivirus with a high degree of sequence and structural homology to Dengue virus (DENV), the role of immunological cross-reactivity in ZIKV and DENV infections has become a great concern. In this review, we highlight contemporary findings that implicate a role for flavivirus antibodies in mediating protection, contributing to pathogenesis, and seeding the human placenta.
Collapse
Affiliation(s)
- Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
100
|
Forster D, Schwarz JH, Brosinski K, Kalinke U, Sutter G, Volz A. Obstetric Ultrasonography to Detect Fetal Abnormalities in a Mouse Model for Zika Virus Infection. Viruses 2020; 12:v12010072. [PMID: 31936159 PMCID: PMC7019633 DOI: 10.3390/v12010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023] Open
Abstract
In 2015 Zika virus (ZIKV) emerged for the first time in South America. The following ZIKV epidemic resulted in the appearance of a clinical phenotype with microcephaly and other severe malformations in newborns. So far, mechanisms of ZIKV induced damage to the fetus are not completely understood. Previous data suggest that ZIKV may bypass the placenta to reach the fetus. Thus, animal models for ZIKV infection are important to facilitate studies about ZIKV infection during pregnancy. Here, we used ultrasound based imaging (USI) to characterize ZIKV induced pathogenesis in the pregnant Type I interferon receptor-deficient (IFNAR-/-) mouse model. Based on USI we suggest the placenta to be a primary target organ of ZIKV infection enabling ZIKV spreading to the fetus. Moreover, in addition to direct infection of the fetus, the placental ZIKV infection may cause an indirect damage to the fetus through reduced uteroplacental perfusion leading to intrauterine growth retardation (IUGR) and fetal complications as early as embryonic day (ED) 12.5. Our data confirmed the capability of USI to characterize ZIKV induced modifications in mouse fetuses. Data from further studies using USI to monitor ZIKV infections will contribute to a better understanding of ZIKV infection in pregnant IFNAR-/- mice.
Collapse
Affiliation(s)
- Dominik Forster
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Jan Hendrik Schwarz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Katrin Brosinski
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research Braunschweig and the Hannover Medical School, 30625 Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany
- Correspondence: ; Tel.: +49-89-2180-2612
| |
Collapse
|