51
|
Wang SS, Diao WZ, Yang X, Qiao Z, Wang M, Acharya BR, Zhang W. Arabidopsis thaliana CML25 mediates the Ca(2+) regulation of K(+) transmembrane trafficking during pollen germination and tube elongation. PLANT, CELL & ENVIRONMENT 2015; 38:2372-86. [PMID: 25923414 DOI: 10.1111/pce.12559] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/09/2015] [Indexed: 05/10/2023]
Abstract
The concentration alteration of cytosolic-free calcium ([Ca(2+) ]cyt ) is a well-known secondary messenger in plants and plays important roles during pollen grain germination and tube elongation. Here we demonstrate that CML25, a member of calmodulin-like proteins, has Ca(2+) -binding activity and plays a role in pollen grain germination, tube elongation and seed setting. CML25 transcript was abundant in mature pollen grains and pollen tubes, and its product CML25 protein was primarily directed to the cytoplasm. Two independent CML25 loss-of-function T-DNA insertion mutants suffered a major reduction in both the rate of pollen germination and the elongation of the pollen tube. Also, pollen grains of cml25 mutants were less sensitive to the external K(+) and Ca(2+) concentration than wild-type pollen. The disruption of CML25 increased the [Ca(2+) ]cyt in both the pollen grain and the pollen tube, which in turn impaired the Ca(2+) -dependent inhibition of whole-cell inward K(+) currents in protoplasts prepared from these materials (pollen grain and pollen tube). Complementation of cml25-1 mutant resulted in the recovery of wild-type phenotype. Our findings indicate that CML25 is an important transducer in the Ca(2+) -mediated regulation of K(+) influx during pollen germination and tube elongation.
Collapse
Affiliation(s)
- Shuang-Shuang Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wen-Zhu Diao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xue Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
- College of Technological Gardening, Shandong Yingcai University, Jinan, 250104, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Biswa R Acharya
- Department of Biology, Pennsylvania State University University Park, State College, PA, 16802, USA
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
52
|
Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 2015; 5:3129. [PMID: 24451849 DOI: 10.1038/ncomms4129] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/17/2013] [Indexed: 11/09/2022] Open
Abstract
In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca(2+)-dependent process involving Ca(2+) channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.
Collapse
Affiliation(s)
- Qiaohong Duan
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2]
| | - Daniel Kita
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [3] [4]
| | - Eric A Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Mini Aggarwal
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Plant Biology Graduate Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Laura Gates
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2]
| | - Hen-Ming Wu
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Alice Y Cheung
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [3] Plant Biology Graduate Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| |
Collapse
|
53
|
Toda K, Hirata K, Masuda R, Yasui T, Yamada T, Takahashi K, Nagaya T, Hajika M. Relationship between Mutations of the Pectin Methylesterase Gene in Soybean and the Hardness of Cooked Beans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8870-8. [PMID: 26332752 DOI: 10.1021/acs.jafc.5b02896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hardness of cooked soybeans [Glycine max (L). Merr.] is an important attribute in food processing. We found one candidate gene, Glyma03g03360, to be associated with the hardness of cotyledons of cooked soybeans, based on a quantitative trait locus and fine-scale mapping analyses using a recombinant inbred line population developed from a cross between two Japanese cultivars, "Natto-shoryu" and "Hyoukei-kuro 3". Analysis of the DNA sequence of Glyma03g03360, a pectin methylesterase gene homologue, revealed three patterns of mutations, two of which result in truncated proteins and one of which results in an amino acid substitution. The truncated proteins are presumed to lack the enzymatic activity of Glyma03g03360. We classified 24 cultivars into four groups based on the sequence of Glyma03g03360. The texture analysis using the 22 cultivars grown in different locations indicated that protein truncation of Glyma03g03360 resulted in softer cotyledons of cooked soybeans, which was further confirmed by texture analysis performed using F2 populations of a cross between "Enrei" and "LD00-3309", and between "Satonohohoemi" and "Sakukei 98". A positive correlation between hardness and calcium content implies the possible effect of calcium binding to pectins on the hardness of cooked soybean cotyledons.
Collapse
Affiliation(s)
- Kyoko Toda
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Kaori Hirata
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Ryoichi Masuda
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Takeshi Yasui
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Tetsuya Yamada
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Koji Takahashi
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Taiko Nagaya
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Makita Hajika
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| |
Collapse
|
54
|
Pietruszka M, Haduch-Sendecka A. Ion Frequency Landscape in Growing Plants. PLoS One 2015; 10:e0138839. [PMID: 26445131 PMCID: PMC4596807 DOI: 10.1371/journal.pone.0138839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/03/2015] [Indexed: 11/22/2022] Open
Abstract
It has been interesting that nearly all of the ion activities that have been analysed thus far have exhibited oscillations that are tightly coupled to growth. Here, we present discrete Fourier transform (DFT) spectra with a finite sampling of tip-growing cells and organs that were obtained from voltage measurements of the elongating coleoptiles of maize in situ. The electromotive force (EMF) oscillations (~ 0.1 μV) were measured in a simple but highly sensitive resistor-inductor circuit (RL circuit), in which the solenoid was initially placed at the tip of the specimen and then was moved thus changing its position in relation to growth (EMF can be measured first at the tip, then at the sub-apical part and finally at the shank). The influx- and efflux-induced oscillations of Ca2+, along with H+, K+ and Cl- were densely sampled (preserving the Nyquist theorem in order to 'grasp the structure' of the pulse), the logarithmic amplitude of pulse spectrum was calculated, and the detected frequencies, which displayed a periodic sequence of pulses, were compared with the literature data. A band of life vital individual pulses was obtained in a single run of the experiment, which not only allowed the fundamental frequencies (and intensities of the processes) to be determined but also permitted the phase relations of the various transport processes in the plasma membrane and tonoplast to be established. A discrete (quantised) frequency spectrum was achieved for a growing plant for the first time, while all of the metabolic and enzymatic functions of the life cell cycle were preserved using this totally non-invasive treatment.
Collapse
Affiliation(s)
- Mariusz Pietruszka
- Department of Plant Physiology, Faculty of Biology and Environment Protection, University of Silesia, Katowice, Poland
| | - Aleksandra Haduch-Sendecka
- Department of Plant Physiology, Faculty of Biology and Environment Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
55
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
56
|
Moes D, Hoffmann C, Dieterle M, Moreau F, Neumann K, Papuga J, Furtado AT, Steinmetz A, Thomas C. The pH sensibility of actin-bundling LIM proteins is governed by the acidic properties of their C-terminal domain. FEBS Lett 2015; 589:2312-9. [PMID: 26226417 DOI: 10.1016/j.febslet.2015.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 11/22/2022]
Abstract
Actin-bundling Arabidopsis LIM proteins are subdivided into two subfamilies differing in their pH sensitivity. Widely-expressed WLIMs are active under low and high physiologically-relevant pH conditions, whereas pollen-enriched PLIMs are inactivated by pH values above 6.8. By a domain swapping approach we identified the C-terminal (Ct) domain of PLIMs as the domain responsible for pH responsiveness. Remarkably, this domain conferred pH sensitivity to LIM proteins, when provided "in trans" (i.e., as a single, independent, peptide), indicating that it operates through the interaction with another domain. An acidic 6xc-Myc peptide functionally mimicked the Ct domain of PLIMs and efficiently inhibited LIM actin bundling activity under high pH conditions. Together, our data suggest a model where PLIMs are regulated by an intermolecular interaction between their acidic Ct domain and another, yet unidentified, domain.
Collapse
Affiliation(s)
- Danièle Moes
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Céline Hoffmann
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Monika Dieterle
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Flora Moreau
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Katrin Neumann
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Jessica Papuga
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Angela Tavares Furtado
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - André Steinmetz
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Clément Thomas
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
57
|
Yan S, McLamore ES, Dong S, Gao H, Taguchi M, Wang N, Zhang T, Su X, Shen Y. The role of plasma membrane H(+) -ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:638-49. [PMID: 26088926 DOI: 10.1111/tpj.12915] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/09/2015] [Indexed: 05/19/2023]
Abstract
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H(+) , Ca(2+) and K(+) in guard cells of wild-type (Col-0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1-1 and the PM H(+) -ATPase mutants aha1-6 and aha1-7, using a non-invasive micro-test technique. We showed that MeJA induced transmembrane H(+) efflux, Ca(2+) influx and K(+) efflux across the PM of Col-0 guard cells. However, this ion transport was abolished in coi1-1 guard cells, suggesting that MeJA-induced transmembrane ion flux requires COI1. Furthermore, the H(+) efflux and Ca(2+) influx in Col-0 guard cells was impaired by vanadate pre-treatment or PM H(+) -ATPase mutation, suggesting that the rapid H(+) efflux mediated by PM H(+) -ATPases could function upstream of the Ca(2+) flux. After the rapid H(+) efflux, the Col-0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H(+) -ATPase was reduced. Finally, the elevation of cytosolic Ca(2+) concentration and the depolarized PM drive the efflux of K(+) from the cell, resulting in loss of turgor and closure of the stomata.
Collapse
Affiliation(s)
- Suli Yan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Eric S McLamore
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shanshan Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Haibo Gao
- College of Life Science, Linyi University, Linyi, 276005, China
| | - Masashige Taguchi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ningning Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Ting Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohua Su
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
58
|
Suwińska A, Lenartowski R, Smoliński DJ, Lenartowska M. Molecular evidence that rough endoplasmic reticulum is the site of calreticulin translation in Petunia pollen tubes growing in vitro. PLANT CELL REPORTS 2015; 34:1189-99. [PMID: 25732863 PMCID: PMC4464644 DOI: 10.1007/s00299-015-1777-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE In germinating pollen grains and growing pollen tubes, CRT is translated on ER membrane-bound ribosomes in the regions where its activity is required for stabilization of tip-focused Ca (2+) gradient. Pollen tube growth requires coordination of signaling, exocytosis, and actin cytoskeletal organization. Many of these processes are thought to be controlled by finely tuned regulation of cytoplasmic Ca(2+) in discrete regions of the tube cytoplasm. Most notably, a mechanism must function to maintain a steep gradient of Ca(2+) that exists at the tip of growing pollen tube. Several pieces of evidence point to calreticulin (CRT) as a key Ca(2+)-binding/-buffering protein involved in pollen germination and pollen tube growth. We previously hypothesized that in germinating pollen and growing tubes, CRT is translated on the ribosomes associated with endoplasmic reticulum (ER) in the regions where its activity might be required. In this report, we have addressed this idea by identifying the sites where CRT mRNA, CRT protein, 18S rRNA, and rough ER are localized in Petunia pollen tubes. We observed all four components in the germinal aperture of pollen grains and in subapical regions of elongating tubes. These results seem to support our idea that CRT is translated on ER membrane-bound ribosomes during pollen germination and pollen tube growth. In elongated pollen tubes, we found CRT mainly localized in the subapical zone, where ER and Golgi stacks are abundant. In eukaryotic cells, these organelles serve as mobile intracellular stores of easily releasable Ca(2+), which can be buffered by proteins such as CRT. Therefore, we postulate that subapical-localized CRT is involved in pollen tube growth by maintaining the stable tip-focused Ca(2+) gradient and thus modulating local Ca(2+) concentration within the tube cytoplasm.
Collapse
Affiliation(s)
- Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz Jan Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
59
|
Chen J, Gutjahr C, Bleckmann A, Dresselhaus T. Calcium signaling during reproduction and biotrophic fungal interactions in plants. MOLECULAR PLANT 2015; 8:595-611. [PMID: 25660409 DOI: 10.1016/j.molp.2015.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 05/25/2023]
Abstract
Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.
Collapse
Affiliation(s)
- Junyi Chen
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Caroline Gutjahr
- Faculty of Biology Genetics, Biocenter Martinsried, University of Munich (LMU), Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
60
|
Safiarian MJ, Pertl-Obermeyer H, Lughofer P, Hude R, Bertl A, Obermeyer G. Lost in traffic? The K(+) channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. FRONTIERS IN PLANT SCIENCE 2015; 6:47. [PMID: 25713578 PMCID: PMC4322604 DOI: 10.3389/fpls.2015.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 05/26/2023]
Abstract
Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. Complementation of K(+) uptake deficient yeast mutants was only successful when the entire LilKT1 C-terminus was replaced by the AKT1 C-terminus. No signals were observed in the plasma membrane (PM) of pollen tubes after expression of fluorescence-tagged LilKT1 nor were any LilKT1-derived peptides detectable in the pollen PM by mass spectrometry analysis. In contrast, fluorescent LilKT1 partly co-localized with the lily PM H(+) ATPase LilHA2 in the PM of tobacco leaf cells, but exhibited a punctual fluorescence pattern and also sub-plasma membrane localization. Thus, incorporation of LilKT1 into the pollen PM seems tighter controlled than in other cells with still unknown trafficking signals in LilKT1's C-terminus, resulting in channel densities below detection limits. This highly controlled incorporation might have physiological reasons: an uncontrolled number of K(+) inward channels in the pollen PM will give an increased water influx due to the raising cytosolic K(+) concentration, and finally, causing the tube to burst.
Collapse
Affiliation(s)
- Minou J. Safiarian
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
- Plant Systems Biology, University of HohenheimStuttgart, Germany
| | - Peter Lughofer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Rene Hude
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Adam Bertl
- Yeast Membrane Biology, Department of Biology, Darmstadt University of TechnologyDarmstadt, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
61
|
Hepler PK, Winship LJ. The pollen tube clear zone: clues to the mechanism of polarized growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:79-92. [PMID: 25431342 DOI: 10.1111/jipb.12315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/24/2014] [Indexed: 05/08/2023]
Abstract
Pollen tubes usually exhibit a prominent region at their apex called the "clear zone" because it lacks light refracting amyloplasts. A robust, long clear zone often associates with fast growing pollen tubes, and thus serves as an indicator of pollen tube health. Nevertheless we do not understand how it arises or how it is maintained. Here we review the structure of the clear zone, and attempt to explain the factors that contribute to its formation. While amyloplasts and vacuolar elements are excluded from the clear zone, virtually all other organelles are present including secretory vesicles, mitochondria, Golgi dictyosomes, and the endoplasmic reticulum (ER). Secretory vesicles aggregate into an inverted cone appressed against the apical plasma membrane. ER elements move nearly to the extreme apex, whereas mitochondria and Golgi dictyosomes move less far forward. The cortical actin fringe assumes a central position in the control of clear zone formation and maintenance, given its role in generating cytoplasmic streaming. Other likely factors include the tip-focused calcium gradient, the apical pH gradient, the influx of water, and a host of signaling factors (small G-proteins). We think that the clear zone is an emergent property that depends on the interaction of several factors crucial for polarized growth.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | | |
Collapse
|
62
|
Sanati Nezhad A, Packirisamy M, Geitmann A. Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:185-95. [PMID: 25041411 DOI: 10.1111/tpj.12613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 05/06/2023]
Abstract
The pollen tube is the most rapidly growing cell in the plant kingdom and has the function to deliver the sperm cells for fertilization. The growing tip region of the cell behaves in a chemotropic manner to respond to the guidance cues emitted by the pistil and the female gametophyte, but how it perceives and responds to these directional triggers is virtually unknown. Quantitative assessment of chemotropic behavior can greatly be enhanced by the administration of pharmacological or other biologically active agents at subcellular precision, which is a technical challenge when the target area moves as it grows. We developed a laminar flow based microfluidic device that allows for continuous administration of two different solutions with a movable interface that permits the dynamic targeting of the growing pollen tube apex over prolonged periods of time. Asymmetric administration of calcium revealed that rather than following the highest calcium concentration as would be expected with simple chemotropic behavior, the pollen tube of Camellia targets an optimal concentration suggesting the presence of two superimposed mechanisms. Subcellular application of pectin methyl esterase (PME), an enzyme that modifies the growth behavior by rigidifying the pollen tube cell wall, caused the tube to turn away from the agent - providing important evidence for a previously proposed conceptual model of the growth mechanism.
Collapse
Affiliation(s)
- Amir Sanati Nezhad
- Optical-Bio Microsystems Laboratory, Mechanical Engineering, Concordia University, 1515 St. Catherine St., West, Montreal, QC, H3G 1M8, Canada
| | | | | |
Collapse
|
63
|
Abstract
Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.
Collapse
Affiliation(s)
- A Sanati Nezhad
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| |
Collapse
|
64
|
Abstract
The pollen tube represents a model system for the study of tip growth, and the root provides a valuable system to study gene and signalling networks in plants. In the present article, using the two systems as examples, we discuss how to elucidate the regulation of complex signalling systems in plant cells. First, we discuss how hormones and related genes in plant root development form a complex interacting network, and their activities are interdependent. Therefore their roles in root development must be analysed as an integrated system, and elucidation of the regulation of each component requires the adaptation of a novel modelling methodology: regulation analysis. Secondly, hydrodynamics, cell wall and ion dynamics are all important properties that regulate plant cell growth. We discuss how regulation analysis can be applied to study the regulation of hydrodynamics, cell wall and ion dynamics, using pollen tube growth as a model system. Finally, we discuss future prospects for elucidating the regulation of complex signalling systems in plant cells.
Collapse
|
65
|
Liu J, Hussey PJ. Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics, cell wall and ion dynamics. FRONTIERS IN PLANT SCIENCE 2014; 5:392. [PMID: 25157262 PMCID: PMC4127481 DOI: 10.3389/fpls.2014.00392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/22/2014] [Indexed: 05/30/2023]
Abstract
Hydrodynamics, cell wall and ion dynamics are all important properties that regulate pollen tube growth. Currently, the two main pollen tube growth models, the cell wall model and the hydrodynamic model do not appear to be reconcilable. Here we develop an integrative model for pollen tube growth and show that our model reproduces key experimental observations: (1) that the hypertonic condition leads to a much longer oscillatory period and that the hypotonic condition halves the oscillatory period; (2) that oscillations in turgor are experimentally undetectable; (3) that increasing the extracellular calcium concentration or decreasing the pH decreases the growth oscillatory amplitude; (4) that knockout of Raba4d, a member of the Rab family of small GTPase proteins, decreases pollen tube length after germination for 24 h. Using the model generated here, we reveal that (1) when cell wall extensibility is large, pollen tube may sustain growth at different volume changes and maintain relatively stable turgor; (2) turgor increases if cell wall extensibility decreases; (3) increasing turgor due to decrease in osmolarity in the media, although very small, increases volume change. However, increasing turgor due to decrease in cell wall extensibility decreases volume change. In this way regulation of pollen tube growth by turgor is context dependent. By changing the osmolarity in the media, the main regulatory points are extracellular osmolarity for water flow and turgor for the volume encompassed by the cell wall. However, if the viscosity of cell wall changes, the main regulatory points are turgor for water flow and wall extensibility for the volume encompassed by the cell wall. The novel methodology developed here reveals the underlying context-dependent regulatory principle of pollen tube growth.
Collapse
Affiliation(s)
- Junli Liu
- School of Biological and Biomedical Sciences, Durham UniversityDurham, UK
| | - Patrick J. Hussey
- School of Biological and Biomedical Sciences, Durham UniversityDurham, UK
| |
Collapse
|
66
|
Tang W, He Y, Tu L, Wang M, Li Y, Ruan YL, Zhang X. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. PLANT MOLECULAR BIOLOGY 2014; 85:613-25. [PMID: 24890373 DOI: 10.1007/s11103-014-0208-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/26/2014] [Indexed: 05/02/2023]
Abstract
Cotton fiber is a single cell that differentiates from the ovule epidermis and undergoes synchronous elongation with high secretion and growth rate. Apart from economic importance, cotton fiber provides an excellent single-celled model for studying mechanisms of cell-growth. Annexins are Ca(2+)- and phospholipid-binding proteins that have been reported to be localized in multiple cellular compartments and involved in control of vesicle secretions. Although several annexins have been found to be highly expressed in elongating cotton fibers, their functional roles in fiber development remain unknown. Here, 14 annexin family members were identified from the fully sequenced diploid G. raimondii (D5 genome), half of which were expressed in fibers of the cultivated tetraploid species G. hirsutum (cv. YZ1). Among them, GhAnn2 from the D genome of the tetraploid species displayed high expression level in elongating fiber. The expression of GhAnn2 could be induced by some phytohormones that play important roles in fiber elongation, such as IAA and GA3. RNAi-mediated down-regulation of GhAnn2 inhibited fiber elongation and secondary cell wall synthesis, resulting in shorter and thinner mature fibers in the transgenic plants. Measurement with non-invasive scanning ion-selective electrode revealed that the rate of Ca(2+) influx from extracellular to intracellular was decreased at the fiber cell apex of GhAnn2 silencing lines, in comparison to that in the wild type. These results indicate that GhAnn2 may regulate fiber development through modulating Ca(2+) fluxes and signaling.
Collapse
Affiliation(s)
- Wenxin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
67
|
Pertl-Obermeyer H, Schulze WX, Obermeyer G. In vivo cross-linking combined with mass spectrometry analysis reveals receptor-like kinases and Ca2+ signalling proteins as putative interaction partners of pollen plasma membrane H+ ATPases. J Proteomics 2014; 108:17-29. [DOI: 10.1016/j.jprot.2014.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
68
|
Wu J, Qin X, Tao S, Jiang X, Liang YK, Zhang S. Long-chain base phosphates modulate pollen tube growth via channel-mediated influx of calcium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:507-516. [PMID: 24905418 DOI: 10.1111/tpj.12576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Long-chain base phosphates (LCBPs) have been correlated with amounts of crucial biological processes ranging from cell proliferation to apoptosis in animals. However, their functions in plants remain largely unknown. Here, we report that LCBPs, sphingosine-1-phosphate (S1P) and phytosphingosine-1-phosphate (Phyto-S1P), modulate pollen tube growth in a concentration-dependent bi-phasic manner. The pollen tube growth in the stylar transmitting tissue was promoted by SPHK1 overexpression (SPHK1-OE) but dampened by SPHK1 knockdown (SPHK1-KD) compared with wild-type of Arabidopsis; however, there was no detectable effect on in vitro pollen tube growth caused by misexpression of SPHK1. Interestingly, exogenous S1P or Phyto-S1P applications could increase the pollen tube growth rate in SPHK1-OE, SPHK1-KD and wild-type of Arabidopsis. Calcium ion (Ca(2+) )-imaging analysis showed that S1P triggered a remarkable increase in cytosolic Ca(2+) concentration in pollen. Extracellular S1P induced hyperpolarization-activated Ca(2+) currents in the pollen plasma membrane, and the Ca(2+) current activation was mediated by heterotrimeric G proteins. Moreover, the S1P-induced increase of cytosolic free Ca(2+) inhibited the influx of potassium ions in pollen tubes. Our findings suggest that LCBPs functions in a signaling cascade that facilitates Ca(2+) influx and modulates pollen tube growth.
Collapse
Affiliation(s)
- Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
69
|
Zhu J, Wu X, Yuan S, Qian D, Nan Q, An L, Xiang Y. Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking. PLoS One 2014; 9:e102407. [PMID: 25019283 PMCID: PMC4097066 DOI: 10.1371/journal.pone.0102407] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022] Open
Abstract
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative "linker" between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.
Collapse
Affiliation(s)
- Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaorong Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shunjie Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
70
|
Zhou Q, Jia J, Huang X, Yan X, Cheng L, Chen S, Li X, Peng X, Liu G. The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics 2014; 15:399. [PMID: 24886329 PMCID: PMC4045969 DOI: 10.1186/1471-2164-15-399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/09/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many Poaceae species show a gametophytic self-incompatibility (GSI) system, which is controlled by at least two independent and multiallelic loci, S and Z. Until currently, the gene products for S and Z were unknown. Grass SI plant stigmas discriminate between pollen grains that land on its surface and support compatible pollen tube growth and penetration into the stigma, whereas recognizing incompatible pollen and thus inhibiting pollination behaviors. Leymus chinensis (Trin.) Tzvel. (sheepgrass) is a Poaceae SI species. A comprehensive analysis of sheepgrass stigma transcriptome may provide valuable information for understanding the mechanism of pollen-stigma interactions and grass SI. RESULTS The transcript abundance profiles of mature stigmas, mature ovaries and leaves were examined using high-throughput next generation sequencing technology. A comparative transcriptomic analysis of these tissues identified 1,025 specifically or preferentially expressed genes in sheepgrass stigmas. These genes contained a significant proportion of genes predicted to function in cell-cell communication and signal transduction. We identified 111 putative transcription factors (TFs) genes and the most abundant groups were MYB, C2H2, C3H, FAR1, MADS. Comparative analysis of the sheepgrass, rice and Arabidopsis stigma-specific or preferential datasets showed broad similarities and some differences in the proportion of genes in the Gene Ontology (GO) functional categories. Potential SI candidate genes identified in other grasses were also detected in the sheepgrass stigma-specific or preferential dataset. Quantitative real-time PCR experiments validated the expression pattern of stigma preferential genes including homologous grass SI candidate genes. CONCLUSIONS This study represents the first large-scale investigation of gene expression in the stigmas of an SI grass species. We uncovered many notable genes that are potentially involved in pollen-stigma interactions and SI mechanisms, including genes encoding receptor-like protein kinases (RLK), CBL (calcineurin B-like proteins) interacting protein kinases, calcium-dependent protein kinase, expansins, pectinesterase, peroxidases and various transcription factors. The availability of a pool of stigma-specific or preferential genes for L. chinensis offers an opportunity to elucidate the mechanisms of SI in Poaceae.
Collapse
Affiliation(s)
- Qingyuan Zhou
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Junting Jia
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xing Huang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | | | - Liqin Cheng
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Shuangyan Chen
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xiaoxia Li
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Xianjun Peng
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Gongshe Liu
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| |
Collapse
|
71
|
Lang V, Pertl-Obermeyer H, Safiarian MJ, Obermeyer G. Pump up the volume - a central role for the plasma membrane H(+) pump in pollen germination and tube growth. PROTOPLASMA 2014; 251:477-88. [PMID: 24097309 DOI: 10.1007/s00709-013-0555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 05/10/2023]
Abstract
The plasma membrane H(+) ATPase is a member of the P-ATPase family transporting H(+) from the cytosol to the extracellular space and thus energizing the plasma membrane for the uptake of ions and nutrients. As a housekeeping gene, this protein can be detected in almost every plant cell including the exclusive expression of specific isoforms in pollen grains and tubes where its activity is a prerequisite for successful germination and growth of pollen tubes. This review summarizes the current knowledge on pollen PM H(+) ATPases and hypothesizes a central role for pollen-specific isoforms of this protein in tube growth. External as well as cytosolic signals from signal transduction and metabolic pathways are integrated by the PM H(+) ATPase and directly translated to tube growth rates, allocating the PM H(+) ATPase to an essential node in the signalling network of pollen tubes in their race to the ovule.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
72
|
Tang W, Tu L, Yang X, Tan J, Deng F, Hao J, Guo K, Lindsey K, Zhang X. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. THE NEW PHYTOLOGIST 2014; 202:509-520. [PMID: 24443839 DOI: 10.1111/nph.12676] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/09/2013] [Indexed: 05/18/2023]
Abstract
Fiber elongation is the key determinant of fiber quality and output in cotton (Gossypium hirsutum). Although expression profiling and functional genomics provide some data, the mechanism of fiber development is still not well understood. Here, a gene encoding a calcium sensor, GhCaM7, was isolated based on its high expression level relative to other GhCaMs in fiber cells at the fast elongation stage. The level of expression of GhCaM7 in the wild-type and the fuzzless/lintless mutant correspond to the presence and absence, respectively, of fiber initials. Overexpressing GhCaM7 promotes early fiber elongation, whereas GhCaM7 suppression by RNAi delays fiber initiation and inhibits fiber elongation. Reactive oxygen species (ROS) play important roles in early fiber development. ROS induced by exogenous hydrogen peroxide (H2 O2 ) and Ca(2+) starvation promotes early fiber elongation. GhCaM7 overexpression fiber cells show increased ROS concentrations compared with the wild-type, while GhCaM7 RNAi fiber cells have reduced concentrations. Furthermore, we show that H2 O2 enhances Ca(2+) influx into the fiber and feedback-regulates the expression of GhCaM7. We conclude that GhCaM7, Ca(2+) and ROS are three important regulators involved in early fiber elongation. GhCaM7 might modulate ROS production and act as a molecular link between Ca(2+) and ROS signal pathways in early fiber development.
Collapse
Affiliation(s)
- Wenxin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiafu Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fenglin Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Juan Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Keith Lindsey
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
73
|
Zhou L, Lan W, Jiang Y, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. MOLECULAR PLANT 2014; 7:369-76. [PMID: 24121288 DOI: 10.1093/mp/sst125] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calcium, as a ubiquitous second messenger, plays essential roles in tip-growing cells, such as animal neurons, plant pollen tubes, and root hairs. However, little is known concerning the regulatory mechanisms that code and decode Ca(2+) signals in plants. The evidence presented here indicates that a calcium-dependent protein kinase, CPK32, controls polar growth of pollen tubes. Overexpression of CPK32 disrupted the polar growth along with excessive Ca(2+) accumulation in the tip. A search of downstream effector molecules for CPK32 led to identification of a cyclic nucleotide-gated channel, CNGC18, as an interacting partner for CPK32. Co-expression of CPK32 and CNGC18 resulted in activation of CNGC18 in Xenopus oocytes where expression of CNGC18 alone did not exhibit significant calcium channel activity. Overexpression of CNGC18 produced a growth arrest phenotype coupled with accumulation of calcium in the tip, similar to that induced by CPK32 overexpression. Co-expression of CPK32 and CNGC18 had a synergistic effect leading to more severe depolarization of pollen tube growth. These results provide a potential feed-forward mechanism in which calcium-activated CPK32 activates CNGC18, further promoting calcium entry during the elevation phase of Ca(2+) oscillations in the polar growth of pollen tubes.
Collapse
Affiliation(s)
- Liming Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
74
|
Nezhad AS, Packirisamy M, Geitmann A. Applications of microfluidics for studying growth mechanisms of tip growing pollen tubes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:6175-6178. [PMID: 25571407 DOI: 10.1109/embc.2014.6945039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pollen tube, the fastest tip growing plant cell, plays essential role in life cycle of flowering plants. It is extremely sensitive to external cues and this makes it as a suitable cellular model for characterizing the cell response to the influence of various signals involved in cellular growth metabolism. For in-vitro study of pollen tube growth, it is essential to provide an environment the mimics the internal microenvironment of pollen tube in flower. In this context, microfluidic platforms take advantage of miniaturization for handling small volume of liquids, providing a closed environment for in-vitro single cell analysis, and characterization of cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, and reduced cost and experimental times. Here, we review the recent applications of microfluidic devices for investigating several aspects of biology of pollen tube elongation.
Collapse
|
75
|
Scherer GFE, Quader H. Increased endocytosis of fluorescent phospholipid in tobacco pollen in microgravity and inhibition by verapamil. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:107-12. [PMID: 23890120 DOI: 10.1111/plb.12061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Gravity sensing in plants occurs in specialised tissues, like in the columella in root tips or the endodermis in shoots. Generally, dense organelles, acting as statoliths, are thought to interact with the cytosekeleton and ion channels in gravitropism. We examined the possibility that tobacco pollen tubes (Nicotiana sylvestris) having an elaborate cytoskeleton could perceive gravity through interaction of the cytoskeleton and the endomembrane system and organelles. Using lipid endocytosis as a quantitative parameter, we show that endocytosis is increased transiently in microgravity within 3 min. This increase is inhibited by the calcium blocker verapamil, suggesting that calcium is lowered in the tip, which is known to increase endocytosis in the pollen tube.
Collapse
Affiliation(s)
- G F E Scherer
- Leibniz University Hannover, Institute for Ornamentals and Woody Plants Science, Abt. Molecular Developmental Physiology, Hannover, Germany
| | | |
Collapse
|
76
|
Song Y, Ma K, Ci D, Zhang Z, Zhang D. Biochemical, physiological and gene expression analysis reveals sex-specific differences in Populus tomentosa floral development. PHYSIOLOGIA PLANTARUM 2014; 150:18-31. [PMID: 23773142 DOI: 10.1111/ppl.12078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/22/2013] [Accepted: 05/02/2013] [Indexed: 05/23/2023]
Abstract
The productivity, distribution and population structure of poplar are affected by temperature transitions. Poplar floral buds develop in a fluctuating environment and the molecular basis of temperature-dependent flowering regulation has been extensively studied, but little is known about how sex-specific floral bud development responds to temperature transitions. Here, morphological observations indicated that floral bud growth rates were affected by maximum and minimum air temperature at the later stages of enlargement (stage 4) and later stage of dormancy (stage 8), respectively. We investigated the physiological, biochemical and gene expression changes in floral development and in response to temperature treatment (heat and chilling stress). Male floral buds showed more adverse effects than female floral buds under temperature treatment. Temperature treatment experiments revealed that temperature treatment significantly increased catalase, peroxidase, superoxide dismutase activities and transcription of related genes in female floral buds, whereas malondialdehyde (MDA) significantly increased only in males. Soluble sugars and protein increased both in female and male floral buds but were higher in males. Temperature treatment also caused significant increases in Ca(2+) content and transcription of genes related to calcium transport in female flowers. These results revealed sex-specific floral developmental responses to seasonal temperature transitions and suggest that in Populus tomentosa, female floral buds possess better mechanisms for environment adaptation than do males.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing , 100083, P. R. China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing , 100083, P. R. China
| | | | | | | | | |
Collapse
|
77
|
Pietruszka M. Pressure-induced cell wall instability and growth oscillations in pollen tubes. PLoS One 2013; 8:e75803. [PMID: 24260097 PMCID: PMC3833986 DOI: 10.1371/journal.pone.0075803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/18/2013] [Indexed: 11/19/2022] Open
Abstract
In the seed plants, the pollen tube is a cellular extension that serves as a conduit through which male gametes are transported to complete fertilization of the egg cell. It consists of a single elongated cell which exhibits characteristic oscillations in growth rate until it finally bursts, completing its function. The mechanism behind the periodic character of the growth has not been fully understood. In this paper we show that the mechanism of pressure--induced symmetry frustration occurring in the wall at the transition-perimeter between the cylindrical and approximately hemispherical parts of the growing pollen tube, together with the addition of cell wall material, is sufficient to release and sustain mechanical self-oscillations and cell extension. At the transition zone, where symmetry frustration occurs and one cannot distinguish either of the involved symmetries, a kind of 'superposition state' appears where either single or both symmetry(ies) can be realized by the system. We anticipate that testifiable predictions made by the model (f is proportional to √P) may deliver, after calibration, a new tool to estimate turgor pressure P from oscillation frequency f of the periodically growing cell. Since the mechanical principles apply to all turgor regulated walled cells including those of plant, fungal and bacterial origin, the relevance of this work is not limited to the case of the pollen tube.
Collapse
Affiliation(s)
- Mariusz Pietruszka
- Faculty of Biology and Environment Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
78
|
Nezhad AS, Packirisamy M, Bhat R, Geitmann A. In Vitro Study of Oscillatory Growth Dynamics of Camellia Pollen Tubes in Microfluidic Environment. IEEE Trans Biomed Eng 2013; 60:3185-93. [DOI: 10.1109/tbme.2013.2270914] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
79
|
Lampugnani ER, Moller IE, Cassin A, Jones DF, Koh PL, Ratnayake S, Beahan CT, Wilson SM, Bacic A, Newbigin E. In vitro grown pollen tubes of Nicotiana alata actively synthesise a fucosylated xyloglucan. PLoS One 2013; 8:e77140. [PMID: 24116212 PMCID: PMC3792914 DOI: 10.1371/journal.pone.0077140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Nicotiana alata pollen tubes are a widely used model for studies of polarized tip growth and cell wall synthesis in plants. To better understand these processes, RNA-Seq and de novo assembly methods were used to produce a transcriptome of N. alata pollen grains. Notable in the reconstructed transcriptome were sequences encoding proteins that are involved in the synthesis and remodelling of xyloglucan, a cell wall polysaccharide previously not thought to be deposited in Nicotiana pollen tube walls. Expression of several xyloglucan-related genes in actively growing pollen tubes was confirmed and xyloglucan epitopes were detected in the wall with carbohydrate-specific antibodies: the major xyloglucan oligosaccharides found in N. alata pollen grains and tubes were fucosylated, an unusual structure for the Solanaceae, the family to which Nicotiana belongs. Finally, carbohydrate linkages consistent with xyloglucan were identified chemically in the walls of N. alata pollen grains and pollen tubes grown in culture. The presence of a fucosylated xyloglucan in Nicotiana pollen tube walls was thus confirmed. The consequences of this discovery to models of pollen tube growth dynamics and more generally to polarised tip-growing cells in plants are discussed.
Collapse
Affiliation(s)
| | - Isabel E. Moller
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Cassin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel F. Jones
- Department of Botany, La Trobe University, Bundoora, Victoria, Australia
| | - Poh Ling Koh
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Sunil Ratnayake
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Cherie T. Beahan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah M. Wilson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Antony Bacic
- Bio21 Institute for Molecular Science & Biotechnology, University of Melbourne, Victoria, Australia
| | - Ed Newbigin
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
80
|
Martins TV, Evans MJ, Woolfenden HC, Morris RJ. Towards the Physics of Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2013; 2:541-88. [PMID: 27137393 PMCID: PMC4844391 DOI: 10.3390/plants2040541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/21/2022]
Abstract
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew J Evans
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh C Woolfenden
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
81
|
Chaturvedi P, Taguchi M, Burrs SL, Hauser BA, Salim WWAW, Claussen JC, McLamore ES. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. PLANTA 2013; 238:599-614. [PMID: 23846103 DOI: 10.1007/s00425-013-1926-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7-15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757-1764, 2006; Van Breusegem et al., Plant Sci 161:405-414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.
Collapse
Affiliation(s)
- P Chaturvedi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Hepler PK, Rounds CM, Winship LJ. Control of cell wall extensibility during pollen tube growth. MOLECULAR PLANT 2013; 6:998-1017. [PMID: 23770837 PMCID: PMC4043104 DOI: 10.1093/mp/sst103] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics. We think that the actin cytoskeleton, in particular the apical cortical actin fringe, directs the flow of vesicles to the apical domain, where they fuse with the plasma membrane and contribute their contents to the expanding cell wall. While pH gradients, as generated by a proton-ATPase located on the plasma membrane along the side of the clear zone, may regulate rapid actin turnover and new polymerization in the fringe, the tip-focused calcium gradient biases secretion towards the polar axis. The recent data showing that exocytosis of new wall material precedes and predicts the process of cell elongation provide support for the idea that the intussusception of newly secreted pectin contributes to decreases in apical wall viscosity and to cell expansion. Other prime factors will be the localization and activity of the enzyme pectin methyl-esterase, and the chelation of calcium by pectic acids. Finally, we acknowledge a role for reactive oxygen species in the control of wall viscosity.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
83
|
Abstract
Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
84
|
Dong X, Wang D, Liu P, Li C, Zhao Q, Zhu D, Yu J. Zm908p11, encoded by a short open reading frame (sORF) gene, functions in pollen tube growth as a profilin ligand in maize. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2359-72. [PMID: 23676884 PMCID: PMC3654424 DOI: 10.1093/jxb/ert093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Double fertilization of flowering plants depends on the targeted transportation of sperm to the embryo sac by the pollen tube. Currently, little is known about the underlying molecular mechanisms that regulate pollen germination and pollen tube growth in maize (Zea mays). Here, a maize pollen-predominant gene Zm908, with several putative short open reading frames (sORFs), was isolated and characterized. The longest ORF of Zm908 encodes a small protein of 97 amino acids. This was designated as Zm908p11 and is distributed throughout the maize pollen tube. Western blot detected the small peptide in mature pollen. Quantitative reverse transcription-PCR and northern blot analysis revealed that Zm908p11 was expressed predominantly in mature pollen grains. Ectopic overexpression of full-length Zm908 and Zm908p11 in tobacco resulted in defective pollen, while transgenic tobacco plants with a site-specific mutation or a frameshift mutation of Zm908p11 showed normal pollen development. Overexpression of Zm908p11 in maize decreased pollen germination efficiency. Maize pollen cDNA library screening and protein-protein interaction assays demonstrated that Zm908p11 interacts with maize profilin 1 (ZmPRO1). A microarray analysis identified 273 up-regulated and 203 down-regulated genes in the overexpressing transgenic Zm908p11 pollen. Taken together, these results indicate that Zm908 functions as Zm908p11, and binds to profilins as a novel ligand, with a required role during pollen tube growth in maize. Accordingly, a model is proposed for the role of Zm908p11 during pollen tube growth in maize.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Present address: Department of Biology, Emory University, Atlanta, GA 30322, USA
- Present address: Laboratory of Plant Molecular Biology, Rockefeller University, NY 10065, USA
- Present address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Dongxue Wang
- Present address: Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Peng Liu
- Present address: Laboratory of Plant Molecular Biology, Rockefeller University, NY 10065, USA
| | - Chengxia Li
- Present address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Qian Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Present address: Department of Biology, Emory University, Atlanta, GA 30322, USA
- Present address: Laboratory of Plant Molecular Biology, Rockefeller University, NY 10065, USA
- Present address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Dengyun Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Present address: Department of Biology, Emory University, Atlanta, GA 30322, USA
- Present address: Laboratory of Plant Molecular Biology, Rockefeller University, NY 10065, USA
- Present address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jingjuan Yu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C, Routier-Kierzkowska AL, Boisson-Dernier A, Ringli C, Nelson BJ, Smith RS, Grossniklaus U. The pollen tube: a soft shell with a hard core. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:617-27. [PMID: 23106269 DOI: 10.1111/tpj.12061] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 05/19/2023]
Abstract
Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20-90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.
Collapse
Affiliation(s)
- Hannes Vogler
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH 8008, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, Wu WH. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. THE PLANT CELL 2013; 25:649-61. [PMID: 23449501 PMCID: PMC3608784 DOI: 10.1105/tpc.112.103184] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/03/2013] [Accepted: 02/07/2013] [Indexed: 05/18/2023]
Abstract
Potassium (K(+)) influx into pollen tubes via K(+) transporters is essential for pollen tube growth; however, the mechanism by which K(+) transporters are regulated in pollen tubes remains unknown. Here, we report that Arabidopsis thaliana Ca(2+)-dependent protein kinase11 (CPK11) and CPK24 are involved in Ca(2+)-dependent regulation of the inward K(+) (K(+)in) channels in pollen tubes. Using patch-clamp analysis, we demonstrated that K(+)in currents of pollen tube protoplasts were inhibited by elevated [Ca(2+)]cyt. However, disruption of CPK11 or CPK24 completely impaired the Ca(2+)-dependent inhibition of K(+)in currents and enhanced pollen tube growth. Moreover, the cpk11 cpk24 double mutant exhibited similar phenotypes as the corresponding single mutants, suggesting that these two CDPKs function in the same signaling pathway. Bimolecular fluorescence complementation and coimmunoprecipitation experiments showed that CPK11 could interact with CPK24 in vivo. Furthermore, CPK11 phosphorylated the N terminus of CPK24 in vitro, suggesting that these two CDPKs work together as part of a kinase cascade. Electrophysiological assays demonstrated that the Shaker pollen K(+)in channel is the main contributor to pollen tube K(+)in currents and acts as the downstream target of the CPK11-CPK24 pathway. We conclude that CPK11 and CPK24 together mediate the Ca(2+)-dependent inhibition of K(+)in channels and participate in the regulation of pollen tube growth in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
87
|
Xu XH, Wang F, Chen H, Sun W, Zhang XS. Transcript profile analyses of maize silks reveal effective activation of genes involved in microtubule-based movement, ubiquitin-dependent protein degradation, and transport in the pollination process. PLoS One 2013; 8:e53545. [PMID: 23301084 PMCID: PMC3536752 DOI: 10.1371/journal.pone.0053545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/30/2012] [Indexed: 12/20/2022] Open
Abstract
Pollination is the first crucial step of sexual reproduction in flowering plants, and it requires communication and coordination between the pollen and the stigma. Maize (Zea mays) is a model monocot with extraordinarily long silks, and a fully sequenced genome, but little is known about the mechanism of its pollen-stigma interactions. In this study, the dynamic gene expression of silks at four different stages before and after pollination was analyzed. The expression profiles of immature silks (IMS), mature silks (MS), and silks at 20 minutes and 3 hours after pollination (20MAP and 3HAP, respectively) were compared. In total, we identified 6,337 differentially expressed genes in silks (SDEG) at the four stages. Among them, the expression of 172 genes were induced upon pollination, most of which participated in RNA binding, processing and transcription, signal transduction, and lipid metabolism processes. Genes in the SDEG dataset could be divided into 12 time-course clusters according to their expression patterns. Gene Ontology (GO) enrichment analysis revealed that many genes involved in microtubule-based movement, ubiquitin-mediated protein degradation, and transport were predominantly expressed at specific stages, indicating that they might play important roles in the pollination process of maize. These results add to current knowledge about the pollination process of grasses and provide a foundation for future studies on key genes involved in the pollen-silk interaction in maize.
Collapse
Affiliation(s)
- Xiao Hui Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hao Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wei Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
88
|
Hashida SN, Takahashi H, Takahara K, Kawai-Yamada M, Kitazaki K, Shoji K, Goto F, Yoshihara T, Uchimiya H. NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination. MOLECULAR PLANT 2013; 6:216-25. [PMID: 22907882 DOI: 10.1093/mp/sss071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the nicotinamide nucleotides NAD(H) and NADP(H) are essential for various metabolic reactions that play major roles in maintenance of cellular homeostasis, the significance of NAD biosynthesis is not well understood. Here, we investigated the dynamics of pollen nicotinamide nucleotides in response to imbibition, a representative germination cue. Metabolic analysis with capillary electrophoresis electrospray ionization mass spectrometry revealed that excess amount of NAD+ is accumulated in freshly harvested dry pollen, whereas it dramatically decreased immediately after contact with water. Importantly, excess of NAD+ impaired pollen tube growth. Moreover, NAD+ accumulation was retained after pollen was imbibed in the presence of NAD+-consuming reaction inhibitors and pollen germination was greatly retarded. Pollen deficient in the nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) gene, encoding a key enzyme in NAD biosynthesis, and a lack of NAD+ accumulation in the gametophyte, showed precocious pollen tube germination inside the anther locule and vigorous tube growth under high-humidity conditions. Hence, the accumulation of excess NAD+ is not essential for pollen germination, but instead participates in regulating the timing of germination onset. These results indicate that NAD+ accumulation acts to negatively regulate germination and a decrease in NAD+ plays an important role in metabolic state transition.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Institute of Molecular and Cellular Biosciences-IMCB, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Lamport DTA, Várnai P. Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. THE NEW PHYTOLOGIST 2013; 197:58-64. [PMID: 23106282 DOI: 10.1111/nph.12005] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/15/2012] [Indexed: 05/18/2023]
Abstract
Arabinogalactan glycoproteins (AGPs) are implicated in virtually all aspects of plant growth and development, yet their precise role remains unknown. Classical AGPs cover the plasma membrane and are highly glycosylated by numerous acidic arabinogalactan polysaccharides O-linked to hydroxyproline. Their heterogeneity and complexity hindered a structural approach until the recent determination of a highly conserved repetitive consensus structure for a 15-sugar residue arabinogalactan subunit with paired glucuronic carboxyls. Based on NMR data and molecular dynamics simulations, we identify these carboxyls as potential intramolecular Ca(2+)-binding sites. Using rapid ultrafiltration assays and mass spectrometry, we verified that AGPs bind Ca(2+) tightly (K(d) ~ 6.5 μM) and stoichiometrically at pH 5. Ca(2+) binding is reversible in a pH-dependent manner. As typical AGPs contain c. 30 Ca(2+)-binding subunits and are bulk components of the periplasm, they represent a Ca(2+) capacitor discharged at low pH by stretch-activated plasma membrane H(+)-ATPases, hence a substantial source of cytosolic Ca(2+). We propose that these Ca(2+) waves prime the 'calcium oscillator', a signal generator essential to the global Ca(2+) signalling pathway of green plants.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Péter Várnai
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
90
|
Abstract
As one of the most important mineral nutrient elements, potassium (K(+)) participates in many plant physiological processes and determines the yield and quality of crop production. In this review, we summarize K(+) signaling processes and K(+) transport regulation in higher plants, especially in plant responses to K(+)-deficiency stress. Plants perceive external K(+) fluctuations and generate the initial K(+) signal in root cells. This signal is transduced into the cytoplasm and encoded as Ca(2+) and reactive oxygen species signaling. K(+)-deficiency-induced signals are subsequently decoded by cytoplasmic sensors, which regulate the downstream transcriptional and posttranslational responses. Eventually, plants produce a series of adaptive events in both physiological and morphological alterations that help them survive K(+) deficiency.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Center of Plant Gene Research (Beijing), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
91
|
Steinhorst L, Kudla J. Calcium - a central regulator of pollen germination and tube growth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1573-81. [PMID: 23072967 DOI: 10.1016/j.bbamcr.2012.10.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 12/30/2022]
Abstract
Pollen tubes grow rapidly by very fast rates and reach extended lengths to bring about fertilization during plant reproduction. The pollen tube grows exclusively at its tip. Fundamental for such local, tip-focused growth are the presence of internal gradients and transmembrane fluxes of ions. Consequently, vegetative pollen tube cells are an excellent single cell model system to investigate cell biological processes of vesicle transport, cytoskeleton reorganization and regulation of ion transport. The second messenger Ca(2+) has emerged as a central and crucial modulator that not only regulates but also integrates the coordination each of these processes. In this review we reflect on recent advances in our understanding of the mechanisms of Ca(2+) function in pollen tube growth, focusing on its role in basic cellular processes such as control of cell growth, vesicular transport and intracellular signaling by localized gradients of second messengers. In particular we discuss new insights into the identity and role of Ca(2+) conductive ion channels and present experimental addressable hypotheses about their regulation. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | | |
Collapse
|
92
|
Xu XH, Chen H, Sang YL, Wang F, Ma JP, Gao XQ, Zhang XS. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. BMC Genomics 2012; 13:294. [PMID: 22748054 PMCID: PMC3416702 DOI: 10.1186/1471-2164-13-294] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world's most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. RESULTS Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. CONCLUSIONS Many of the novel genes uncovered in this study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk.
Collapse
Affiliation(s)
- Xiao Hui Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hao Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ya Lin Sang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jun Ping Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
93
|
COLAÇO R, MORENO N, FEIJÓ J. On the fast lane: mitochondria structure, dynamics and function in growing pollen tubes. J Microsc 2012; 247:106-18. [DOI: 10.1111/j.1365-2818.2012.03628.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
94
|
Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A, Duncan R, Gilroy S, Kang S. Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca(2+) signatures associated with polarized growth, development, and pathogenesis. Fungal Genet Biol 2012; 49:589-601. [PMID: 22683653 DOI: 10.1016/j.fgb.2012.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Hill AE, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y. An osmotic model of the growing pollen tube. PLoS One 2012; 7:e36585. [PMID: 22615784 PMCID: PMC3353927 DOI: 10.1371/journal.pone.0036585] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip.
Collapse
Affiliation(s)
- Adrian E Hill
- Department of Physiology, Cambridge University, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
96
|
Wang XF, Armbruster WS, Huang SQ. Extra-gynoecial pollen-tube growth in apocarpous angiosperms is phylogenetically widespread and probably adaptive. THE NEW PHYTOLOGIST 2012; 193:253-260. [PMID: 21955061 DOI: 10.1111/j.1469-8137.2011.03912.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• Fusion of floral carpels (syncarpy) in angiosperms is thought to have allowed for significant improvements in offspring quantity and quality in syncarpous species over gymnosperms and apocarpous (free-carpelled) angiosperms. Given the disadvantages of apocarpy, it remains an evolutionary puzzle why many angiosperm lineages with free carpels (apocarpy) have been so successful and why some lineages show reversals to apocarpy. • To investigate whether some advantages of syncarpy may accrue in other ways to apocarpous species, we reviewed previous studies of pollen-tube growth in apocarpous species and also documented pollen-tube growth in nine additional apocarpous species in six families. • Anatomical studies of a scattering of apocarpous paleodicots, monocots, and eudicots show that, after transiting the style, 'extra' pollen tubes exit fully fertilized carpels and grow to other carpels with unfertilized ovules. In many species this occurs via openings in the simple carpels, as we report here for Sagittaria potamogetifolia, Sagittaria pygmaea, Sedum lineare, and Schisandra sphenanthera. • The finding that extra-gynoecial pollen-tube growth is widespread in apocarpous species eliminates the possibility of a major fitness cost of apocarpy relative to syncarpy and may help to explain the persistence of, and multiple reversals to, apocarpy in the evolutionary history of angiosperms.
Collapse
Affiliation(s)
- Xiao-Fan Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
- Department of Biology, NTNU, N-7491 Trondheim, Norway
| | | |
Collapse
|
97
|
Qin Y, Wysocki RJ, Somogyi A, Feinstein Y, Franco JY, Tsukamoto T, Dunatunga D, Levy C, Smith S, Simpson R, Gang D, Johnson MA, Palanivelu R. Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:800-15. [PMID: 21801250 PMCID: PMC3225508 DOI: 10.1111/j.1365-313x.2011.04729.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultra-high resolution electrospray ionization (ESI), Fourier-transform ion cyclotron resonance (FT-ICR) and MS/MS techniques to accurately determine the mass (202.126 Da) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 μm stimulated approximately 50% germination) and elicit accession-specific response. Although N-methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen.
Collapse
Affiliation(s)
- Yuan Qin
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Ronald J Wysocki
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Arpad Somogyi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Yelena Feinstein
- Arizona Proteomics Consortium, University of Arizona, Tucson, AZ 85721, USA
| | - Jessica Y Franco
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Tatsuya Tsukamoto
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Clara Levy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, U.S.A
| | - Steven Smith
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
| | | | - David Gang
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, U.S.A
| | | |
Collapse
|
98
|
Palanivelu R, Tsukamoto T. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:96-113. [PMID: 23801670 DOI: 10.1002/wdev.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube's journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube-pistil interactions.
Collapse
|
99
|
Zienkiewicz K, Rejón JD, Suárez C, Castro AJ, de Dios Alché J, Rodríguez García MI. Whole-organ analysis of calcium behaviour in the developing pistil of olive (Olea europaea L.) as a tool for the determination of key events in sexual plant reproduction. BMC PLANT BIOLOGY 2011; 11:150. [PMID: 22050767 PMCID: PMC3228850 DOI: 10.1186/1471-2229-11-150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/03/2011] [Indexed: 05/15/2023]
Abstract
BACKGROUND The pistil is a place where multiple interactions between cells of different types, origin, and function occur. Ca(2+) is one of the key signal molecules in plants and animals. Despite the numerous studies on Ca(2+) signalling during pollen-pistil interactions, which constitute one of the main topics of plant physiology, studies on Ca(2+) dynamics in the pistil during flower formation are scarce. The purpose of this study was to analyze the contents and in situ localization of Ca(2+) at the whole-organ level in the pistil of olive during the whole course of flower development. RESULTS The obtained results showed significant changes in Ca(2+) levels and distribution during olive pistil development. In the flower buds, the lowest levels of detectable Ca(2+) were observed. As flower development proceeded, the Ca(2+) amount in the pistil successively increased and reached the highest levels just after anther dehiscence. When the anthers and petals fell down a dramatic but not complete drop in calcium contents occurred in all pistil parts. In situ Ca(2+) localization showed a gradual accumulation on the stigma, and further expansion toward the style and the ovary after anther dehiscence. At the post-anthesis phase, the Ca(2+) signal on the stigmatic surface decreased, but in the ovary a specific accumulation of calcium was observed only in one of the four ovules. Ultrastructural localization confirmed the presence of Ca(2+) in the intracellular matrix and in the exudate secreted by stigmatic papillae. CONCLUSIONS This is the first report to analyze calcium in the olive pistil during its development. According to our results in situ calcium localization by Fluo-3 AM injection is an effective tool to follow the pistil maturity degree and the spatial organization of calcium-dependent events of sexual reproduction occurring in developing pistil of angiosperms. The progressive increase of the Ca(2+) pool during olive pistil development shown by us reflects the degree of pistil maturity. Ca(2+) distribution at flower anthesis reflects the spatio-functional relationship of calcium with pollen-stigma interaction, progamic phase, fertilization and stigma senescence.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gargarina 9, 87-100, Toruń, Poland
| | - Juan D Rejón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Cynthia Suárez
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Antonio J Castro
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María Isabel Rodríguez García
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
100
|
Tavares B, Dias PN, Domingos P, Moura TF, Feijó JA, Bicho A. Calcium-regulated anion channels in the plasma membrane of Lilium longiflorum pollen protoplasts. THE NEW PHYTOLOGIST 2011; 192:45-60. [PMID: 21668885 DOI: 10.1111/j.1469-8137.2011.03780.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
• Currents through anion channels in the plasma membrane of Lilium longiflorum pollen grain protoplasts were studied under conditions of symmetrical anionic concentrations by means of patch-clamp whole-cell configuration. • With Cl(-) -based intra- and extracellular solutions, three outward-rectifying anion conductances, I(Cl1) , I(Cl2) and I(Cl3) , were identified. These three activities were discriminated by differential rundown behaviour and sensitivity to 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), which could not be attributed to one or more channel types. All shared strong outward rectification, activated instantaneously and displayed a slow time-dependent activation for positive potentials. All showed modulation by intracellular calcium ([Ca(2+) ](in) ), increasing intensity from 6.04 nM up to 0.5 mM (I(Cl1) ), or reaching a maximum value with 8.50 μM (I(Cl2) and I(Cl3) ). • After rundown, the anionic currents measured using NO(3) (-) -based solutions were indistinguishable, indicating that the permeabilities of the channels for Cl(-) and NO(3) (-) are similar. Additionally, unitary anionic currents were measured from outside-out excised patches, confirming the presence of individual anionic channels. • This study shows for the first time the presence of a large anionic conductance across the membrane of pollen protoplasts, resulting from the presence of Ca(2+) -regulated channels. A similar conductance was also found in germinated pollen. We hypothesize that these putative channels may be responsible for the large anionic fluxes previously detected by means of self-referencing vibrating probes.
Collapse
Affiliation(s)
- Bárbara Tavares
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Pedro Nuno Dias
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Patrícia Domingos
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Teresa Fonseca Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Alberto Feijó
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Ana Bicho
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
| |
Collapse
|