51
|
Liu Y, Weng X, Wei M, Yu S, Ding Y, Cheng B. Melatonin alleviates the immune response and improves salivary gland function in primary Sjögren's syndrome. Biochem Pharmacol 2022; 201:115073. [PMID: 35525327 DOI: 10.1016/j.bcp.2022.115073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects exocrine glands and is characterized by sicca syndrome and systemic manifestation. Mounting evidence indicates that circadian clocks are involved in the onset and progression of autoimmune diseases, including rheumatic arthritis, multiple sclerosis, and systemic lupus erythematosus. However, few studies have reported the expression of clock genes in pSS. There is no ideal therapeuticmethod for pSS, the management of pSS is mainly palliative, aims to alleviate sicca symptoms. Melatonin is a neuroendocrine hormone mainly secreted by the pineal gland that plays an important role in the maintenance of the circadian rhythm and immunomodulation. Hence, this study aimed to analyse the circadian expression profile of clock genes in pSS, and further evaluate the therapeutic potential of melatonin in pSS. We discovered a distinct clock gene expression profile in an animal model and in patients with pSS. More importantly, melatonin administration regulated clock gene expression, improved the hypofunction of the salivary glands, and inhibited inflammatory development in animal model of pSS. Our study suggested that the pathogenesis of pSS might correlate with abnormal expression of circadian genes, and that melatonin might be a potential candidate for prevention and treatment of pSS.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Xiuhong Weng
- Department of Stomatology, Zhongnan Hospital of Wuhan University
| | - Mingbo Wei
- Department of Stomatology, Zhongnan Hospital of Wuhan University
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University.
| |
Collapse
|
52
|
De Maria M, Kroll KJ, Yu F, Nouri MZ, Silva-Sanchez C, Perez JG, Moraga Amador DA, Zhang Y, Walsh MT, Denslow ND. Endocrine, immune and renal toxicity in male largemouth bass after chronic exposure to glyphosate and Rodeo®. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106142. [PMID: 35306440 PMCID: PMC9007883 DOI: 10.1016/j.aquatox.2022.106142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 05/03/2023]
Abstract
Glyphosate is the most used herbicide worldwide, with no historical comparison. It is used for genetically modified crops, and particularly in Florida, it is used as a sugar cane ripener. An aquatic formulation (Rodeo®) is used to treat aquatic weeds in waterbodies and drainage canals. Because of its extended use, glyphosate can run off or be sprayed directly into waterbodies, and chronically expose aquatic wildlife. Exposure in animal models has been associated with kidney and liver damage and glyphosate has been suggested as an endocrine disruptor. We exposed adult male largemouth bass for 21 days to two doses of glyphosate and Rodeo® (chemically equivalent concentration of glyphosate) at 0.5 mg L-1 and 10 mg L-1 and to a clean water control (n=4 fish/tank in quadruplicate). Concentrations during the experiment were corroborated with UHPLC-MS/MS. Total RNA was isolated from the trunk kidney and head kidney. RNA-seq was performed for the high doses compared to controls. Transcripts were analyzed with fish and mammalian pathway analyses software. Transcripts mapped to Zebrafish metabolic pathways using PaintOmics showed steroid hormone biosynthesis in the trunk kidney as the most significantly enriched pathway. Steroid hormones were measured in plasma by UHPLC-MS/MS. Total androgens were significantly reduced at 0.5 mg L-1 of glyphosate and at equivalent concentrations in Rodeo® compared to controls. 11-ketotestosterone and estrone concentrations were significantly reduced in all doses. A gene involved in the conversion of testosterone to 11-ketotestosterone was down-regulated by glyphosate. Using the mammalian pathway analysis algorithm, cellular processes associated with T-cell activation/development and intracellular pH were significantly enriched in the trunk kidney by glyphosate and Rodeo® exposure. Endocrine disruption was corroborated at the hormone and gene expression levels. Rodeo® and glyphosate share gene expression pathways, however, Rodeo® had more pronounced effects in largemouth bass.
Collapse
Affiliation(s)
- Maite De Maria
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States.
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL 32611, United States
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Cecilia Silva-Sanchez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Juan Guillermo Perez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - David A Moraga Amador
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL 32611, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL 32611, United States
| | - Mike T Walsh
- Aquatic Animal Health Program, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL 32610, United States
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
53
|
Nam H, Lee Y, Kim B, Lee JW, Hwang S, An HK, Chung KM, Park Y, Hong J, Kim K, Kim EK, Choe HK, Yu SW. Presenilin 2 N141I mutation induces hyperactive immune response through the epigenetic repression of REV-ERBα. Nat Commun 2022; 13:1972. [PMID: 35418126 PMCID: PMC9008044 DOI: 10.1038/s41467-022-29653-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperimmunity drives the development of Alzheimer disease (AD). The immune system is under the circadian control, and circadian abnormalities aggravate AD progress. Here, we investigate how an AD-linked mutation deregulates expression of circadian genes and induces cognitive decline using the knock-in (KI) mice heterozygous for presenilin 2 N141I mutation. This mutation causes selective overproduction of clock gene-controlled cytokines through the DNA hypermethylation-mediated repression of REV-ERBα in innate immune cells. The KI/+ mice are vulnerable to otherwise innocuous, mild immune challenges. The antipsychotic chlorpromazine restores the REV-ERBα level by normalizing DNA methylation through the inhibition of PI3K/AKT1 pathway, and prevents the overexcitation of innate immune cells and cognitive decline in KI/+ mice. These results highlight a pathogenic link between this AD mutation and immune cell overactivation through the epigenetic suppression of REV-ERBα. Hyperimmunity is associated with Alzheimer disease. Here the authors show that the Presenilin 2 N141I mutation causes overproduction of clock-controlled cytokines and memory deficits through suppression of REV-ERBα gene by hypermethylation.
Collapse
Affiliation(s)
- Hyeri Nam
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Younghwan Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Boil Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ji-Won Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seohyeon Hwang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Kyung Min Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngjin Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jihyun Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.,Neurometabolomics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
54
|
Møller SH, Hsueh PC, Yu YR, Zhang L, Ho PC. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging. Cell Metab 2022; 34:378-395. [PMID: 35235773 DOI: 10.1016/j.cmet.2022.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Productive T cell responses to infection and cancer rely on coordinated metabolic reprogramming and epigenetic remodeling among the immune cells. In particular, T cell effector and memory differentiation, exhaustion, and senescence/aging are tightly regulated by the metabolism-epigenetics axis. In this review, we summarize recent advances of how metabolic circuits combined with epigenetic changes dictate T cell fate decisions and shape their functional states. We also discuss how the metabolic-epigenetic axis orchestrates T cell exhaustion and explore how physiological factors, such as diet, gut microbiota, and the circadian clock, are integrated in shaping T cell epigenetic modifications and functionality. Furthermore, we summarize key features of the senescent/aged T cells and discuss how to ameliorate vaccination- and COVID-induced T cell dysfunctions by metabolic modulations. An in-depth understanding of the unexplored links between cellular metabolism and epigenetic modifications in various physiological or pathological contexts has the potential to uncover novel therapeutic strategies for fine-tuning T cell immunity.
Collapse
Affiliation(s)
- Sofie Hedlund Møller
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yi-Ru Yu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
55
|
Taleb Z, Carmona-Alcocer V, Stokes K, Haireek M, Wang H, Collins SM, Khan WI, Karpowicz P. BMAL1 Regulates the Daily Timing of Colitis. Front Cell Infect Microbiol 2022; 12:773413. [PMID: 35223537 PMCID: PMC8863668 DOI: 10.3389/fcimb.2022.773413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Many physiological functions exhibit circadian rhythms: oscillations in biological processes that occur in a 24-hour period. These daily rhythms are maintained through a highly conserved molecular pacemaker known as the circadian clock. Circadian disruption has been proposed to cause increased risk of Inflammatory Bowel Disease (IBD) but the underlying mechanisms remain unclear. Patients with IBD experience chronic inflammation and impaired regeneration of intestinal epithelial cells. Previous animal-based studies have revealed that colitis models of IBD are more severe in mice without a circadian clock but the timing of colitis, and whether its inflammatory and regenerative processes have daily rhythms, remains poorly characterized. We tested circadian disruption using Bmal1-/- mutant mice that have a non-functional circadian clock and thus no circadian rhythms. Dextran Sulfate Sodium (DSS) was used to induce colitis. The disease activity of colitis was found to exhibit time-dependent variation in Bmal1+/+ control mice but is constant and elevated in Bmal1-/- mutants, who exhibit poor recovery. Histological analyses indicate worsened colitis severity in Bmal1-/- mutant colon, and colon infiltration of immune system cells shows a daily rhythm that is lost in the Bmal1-/- mutant. Similarly, epithelial proliferation in the colon has a daily rhythm in Bmal1+/+ controls but not in Bmal1-/- mutants. Our results support a critical role of a functional circadian clock in the colon which drives 24-hour rhythms in inflammation and healing, and whose disruption impairs colitis recovery. This indicates that weakening circadian rhythms not only worsens colitis, but delays healing and should be taken into account in the management of IBD. Recognition of this is important in the management of IBD patients required to do shift work.
Collapse
Affiliation(s)
- Zainab Taleb
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | | | - Kyle Stokes
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Marta Haireek
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Huaqing Wang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Stephen M. Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Waliul I. Khan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
56
|
Cox SL, O'Siorain JR, Fagan LE, Curtis AM, Carroll RG. Intertwining roles of circadian and metabolic regulation of the innate immune response. Semin Immunopathol 2022; 44:225-237. [PMID: 35022891 DOI: 10.1007/s00281-021-00905-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
It has emerged that an interconnected relationship exists between metabolism, circadian rhythms, and the immune system. The relationship between metabolism and circadian rhythms is not that surprising given the necessity to align rhythms of feeding/fasting with activity/rest. Recently, our understanding of the importance of metabolic pathways in terms of immune function, termed immunometabolism, has grown exponentially. It is now appreciated that the time of day during which the innate immune system is challenged strongly conditions the subsequent response. Recent observations have found that many individual components that make up the circadian clock also control aspects of metabolism in innate immune cells to modulate inflammation. This circadian/metabolic axis may be a key factor driving rhythmicity of immune function and circadian disruption is associated with a range of chronic inflammatory diseases such as atherosclerosis, obesity, and diabetes. The field of "circadian immunometabolism" seeks to reveal undiscovered circadian controlled metabolic pathways that in turn regulate immune responses. The innate immune system has been intricately linked to chronic inflammatory diseases, and within the immune system, individual cell types carry out unique roles in inflammation. Therefore, circadian immunometabolism effects are unique to each innate immune cell.
Collapse
Affiliation(s)
- Shannon L Cox
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - James R O'Siorain
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lauren E Fagan
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Richard G Carroll
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
57
|
Mul Fedele ML, Senna CA, Aiello I, Golombek DA, Paladino N. Circadian Rhythms in Bacterial Sepsis Pathology: What We Know and What We Should Know. Front Cell Infect Microbiol 2021; 11:773181. [PMID: 34956930 PMCID: PMC8696002 DOI: 10.3389/fcimb.2021.773181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a syndrome caused by a deregulated host response to infection, representing the primary cause of death from infection. In animal models, the mortality rate is strongly dependent on the time of sepsis induction, suggesting a main role of the circadian system. In patients undergoing sepsis, deregulated circadian rhythms have also been reported. Here we review data related to the timing of sepsis induction to further understand the different outcomes observed both in patients and in animal models. The magnitude of immune activation as well as the hypothermic response correlated with the time of the worst prognosis. The different outcomes seem to be dependent on the expression of the clock gene Bmal1 in the liver and in myeloid immune cells. The understanding of the role of the circadian system in sepsis pathology could be an important tool to improve patient therapies.
Collapse
Affiliation(s)
- Malena Lis Mul Fedele
- Laboratorio de Cronofisiología, Instituto de Investigaciones Biomédicas/Pontificia Universidad Católica Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (UCA-CONICET), Buenos Aires, Argentina
| | - Camila Agustina Senna
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ignacio Aiello
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Andres Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: Natalia Paladino,
| |
Collapse
|
58
|
Timmons GA, Carroll RG, O'Siorain JR, Cervantes-Silva MP, Fagan LE, Cox SL, Palsson-McDermott E, Finlay DK, Vincent EE, Jones N, Curtis AM. The Circadian Clock Protein BMAL1 Acts as a Metabolic Sensor In Macrophages to Control the Production of Pro IL-1β. Front Immunol 2021; 12:700431. [PMID: 34858390 PMCID: PMC8630747 DOI: 10.3389/fimmu.2021.700431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
The transcription factor BMAL1 is a clock protein that generates daily or circadian rhythms in physiological functions including the inflammatory response of macrophages. Intracellular metabolic pathways direct the macrophage inflammatory response, however whether the clock is impacting intracellular metabolism to direct this response is unclear. Specific metabolic reprogramming of macrophages controls the production of the potent pro-inflammatory cytokine IL-1β. We now describe that the macrophage molecular clock, through Bmal1, regulates the uptake of glucose, its flux through glycolysis and the Krebs cycle, including the production of the metabolite succinate to drive Il-1β production. We further demonstrate that BMAL1 modulates the level and localisation of the glycolytic enzyme PKM2, which in turn activates STAT3 to further drive Il-1β mRNA expression. Overall, this work demonstrates that BMAL1 is a key metabolic sensor in macrophages, and its deficiency leads to a metabolic shift of enhanced glycolysis and mitochondrial respiration, leading to a heightened pro-inflammatory state. These data provide insight into the control of macrophage driven inflammation by the molecular clock, and the potential for time-based therapeutics against a range of chronic inflammatory diseases.
Collapse
Affiliation(s)
- George A Timmons
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Richard G Carroll
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James R O'Siorain
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mariana P Cervantes-Silva
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lauren E Fagan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shannon L Cox
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva Palsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Emma E Vincent
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
59
|
Wang X, Li Y, Fu J, Zhou K, Wang T. ARNTL2 is a Prognostic Biomarker and Correlates with Immune Cell Infiltration in Triple-Negative Breast Cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1425-1440. [PMID: 34785930 PMCID: PMC8591114 DOI: 10.2147/pgpm.s331431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is associated with poor prognosis. The aberrant expression of circadian genes contributes to the origin and progression of breast cancer. The present study was designed to explore the potential function and prognosis value of circadian genes in TNBC. Methods The transcriptome data of circadian genes were downloaded from The Cancer Genomic Atlas (TCGA), GSE25066 and GSE31448 datasets. The differential expressed circadian genes between non-TNBC and TNBC patients were analysed by Wilcoxon test. Univariate and multivariate Cox regression analyses were employed to identify the prognostic circadian genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were performed to study the biological functions of ARNTL2. The composition of 22 immune cells in the tumour samples was estimated with CIBERSORT algorithm. The correlations between ARNTL2 expression and tumour-infiltrating immune cells were evaluated by Spearman correlation coefficient. Results A total of 8 circadian genes were found to be differentially expressed between non-TNBC and TNBC, but only ARNTL2 has prognostic value. Multivariate Cox analysis identified that ARNTL2 was an independent prognosis factor for overall survival and relapse-free survival in TNBC patients. Functionally, ARNTL2 was mainly involved in immune response processes such as positive regulation of cytokine production, regulation of innate immune response, and cellular responses to molecules of bacterial origin. High expression of ARNTL2 was positively correlated with activated CD4 memory T cells, activated mast cells, and neutrophil infiltration and the expression of markers of neutrophils (ITGAM), dendritic cells (HLA-DRA, HLA-DPA1, ITGAM), Th1 (IL1B, STAT1), Th2 (IL13), Th17 (STAT3) and mast cells (TPSB2, TPSAB1). Conclusion ARNTL2 may be linked with the functional modulation of the tumour immune microenvironment and serve as a potential biomarker for predicting the prognosis of TNBC patients.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Li
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jianchang Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
60
|
Niu M, Chen P. Crosstalk between gut microbiota and sepsis. BURNS & TRAUMA 2021; 9:tkab036. [PMID: 34712743 PMCID: PMC8547143 DOI: 10.1093/burnst/tkab036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is an overwhelming inflammatory response to microbial infection. Sepsis management remains a clinical challenge. The role of the gut microbiome in sepsis has gained some attention. Recent evidence has demonstrated that gut microbiota regulate host physiological homeostasis mediators, including the immune system, gut barrier function and disease susceptibility pathways. Therefore, maintenance or restoration of microbiota and metabolite composition might be a therapeutic or prophylactic target against critical illness. Fecal microbiota transplantation and supplementation of probiotics are microbiota-based treatment methods that are somewhat limited in terms of evidence-based efficacy. This review focuses on the importance of the crosstalk between the gastrointestinal ecosystem and sepsis to highlight novel microbiota-targeted therapies to improve the outcomes of sepsis treatment.
Collapse
Affiliation(s)
- Mengwei Niu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
61
|
Lang V, Ferencik S, Ananthasubramaniam B, Kramer A, Maier B. Susceptibility rhythm to bacterial endotoxin in myeloid clock-knockout mice. eLife 2021; 10:e62469. [PMID: 34661529 PMCID: PMC8598165 DOI: 10.7554/elife.62469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Local circadian clocks are active in most cells of our body. However, their impact on circadian physiology is still under debate. Mortality by endotoxic (LPS) shock is highly time-of-day dependent and local circadian immune function such as the cytokine burst after LPS challenge has been assumed to be causal for the large differences in survival. Here, we investigate the roles of light and myeloid clocks on mortality by endotoxic shock. Strikingly, mice in constant darkness (DD) show a threefold increased susceptibility to LPS as compared to mice in light-dark conditions. Mortality by endotoxic shock as a function of circadian time is independent of light-dark cycles as well as myeloid CLOCK or BMAL1 as demonstrated in conditional knockout mice. Unexpectedly, despite the lack of a myeloid clock these mice still show rhythmic patterns of pro- and anti-inflammatory cytokines such as TNFα, MCP-1, IL-18, and IL-10 in peripheral blood as well as time-of-day and site-dependent traffic of myeloid cells. We speculate that systemic time-cues are sufficient to orchestrate innate immune response to LPS by driving immune functions such as cell trafficking and cytokine expression.
Collapse
Affiliation(s)
- Veronika Lang
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Sebastian Ferencik
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bharath Ananthasubramaniam
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bert Maier
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
62
|
Ma D, Li X, Wang Y, Cai L, Wang Y. Excessive fat expenditure in cachexia is associated with dysregulated circadian rhythm: a review. Nutr Metab (Lond) 2021; 18:89. [PMID: 34627306 PMCID: PMC8502262 DOI: 10.1186/s12986-021-00616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a progressive metabolic disorder characterized by the excessive depletion of adipose tissue. This hypermetabolic condition has catastrophic impacts on the survival and quality of life for patients suffering from critical illness. However, efficient therapies to prevent adipose expenditure have not been discovered. It has been established that the circadian clock plays an important role in modulating fat metabolic processes. Recently, an increasing number of studies had provided evidence showing that disrupted circadian rhythm leads to insulin resistance and obesity; however, studies analyzing the relationship between circadian misalignment and adipose tissue expenditure in cachexia are scarce. In the present review, we cover the involvement of the circadian clocks in the regulation of adipogenesis, lipid metabolism and thermogenesis as well as inflammation in white and brown adipose tissue. According to the present review, we conclude that circadian clock disruption is associated with lipid metabolism imbalance and elevated adipose tissue inflammation. Moreover, under cachexia conditions, lipid synthesis and storage processes lost rhythm and decreased, while lipolysis and thermogenesis activities remained high for 24 h. Therefore, disordered circadian clock may be responsible for fat expenditure in cachexia by adversely influencing lipid synthesis/ storage/lipolysis/utilization. Further study needs to be performed to explore the direct interaction between circadian clock and fat expenditure in cachexia, it will likely provide potential efficient drugs for the treatment of fat expenditure in cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yongcheng Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
63
|
Chatterjee I, Zhang Y, Zhang J, Lu R, Xia Y, Sun J. Overexpression of Vitamin D Receptor in Intestinal Epithelia Protects Against Colitis via Upregulating Tight Junction Protein Claudin 15. J Crohns Colitis 2021; 15:1720-1736. [PMID: 33690841 PMCID: PMC8495491 DOI: 10.1093/ecco-jcc/jjab044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Dysfunction of the vitamin D receptor [VDR] contributes to the aetiology of IBD by regulating autophagy, immune response, and mucosal permeability. VDR directly controls the paracellular tight junction protein Claudin-2. Claudin-2 and Claudin-15 are unique in maintaining paracellular permeability. Interestingly, claudin-15 mRNA was downregulated in patients with ulcerative colitis. However, the exact mechanism of Claudin-15 regulation in colitis is still unknown. Here, we investigated the protective role of VDR against intestinal inflammation via upregulating Claudin-15. METHODS We analysed the correlation of Claudin-15 with the reduction of VDR in human colitis. We generated intestinal epithelial overexpression of VDR [O-VDR] mice to study the gain of function of VDR in colitis. Intestinal epithelial VDR knockout [VDR∆IEC] mice were used for the loss of function study. Colonoids and SKCO15 cells were used as in vitro models. RESULTS Reduced Claudin-15 was significantly correlated with decreased VDR along the colonic epithelium of human IBD. O-VDR mice showed decreased susceptibility to chemically and bacterially induced colitis and marked increased Claudin-15 expression [both mRNA and protein] in the colon. Correspondingly, colonic Claudin-15 was reduced in VDR∆IEC mice, which were susceptible to colitis. Overexpression of intestinal epithelial VDR and vitamin D treatment resulted in a significantly increased Claudin-15. ChIP assays identified the direct binding of VDR to the claudin-15 promoter, suggesting that claudin-15 is a target gene of VDR. CONCLUSION We demonstrated the mechanism of VDR upregulation of Claudin-15 to protect against colitis. This might enlighten the mechanism of barrier dysfunction in IBD and potential therapeutic strategies to inhibit inflammation.
Collapse
Affiliation(s)
- Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
64
|
Duan J, Greenberg EN, Karri SS, Andersen B. The circadian clock and diseases of the skin. FEBS Lett 2021; 595:2413-2436. [PMID: 34535902 PMCID: PMC8515909 DOI: 10.1002/1873-3468.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Organisms have an evolutionarily conserved internal rhythm that helps them anticipate and adapt to daily changes in the environment. Synchronized to the light-dark cycle with a period of around 24 hours, the timing of the circadian clock is set by light-triggering signals sent from the retina to the suprachiasmatic nucleus. Other inputs, including food intake, exercise, and temperature, also affect clocks in peripheral tissues, including skin. Here, we review the intricate interplay between the core clock network and fundamental physiological processes in skin such as homeostasis, regeneration, and immune- and stress responses. We illustrate the effect of feeding time on the skin circadian clock and skin functions, a previously overlooked area of research. We then discuss works that relate the circadian clock and its disruption to skin diseases, including skin cancer, sunburn, hair loss, aging, infections, inflammatory skin diseases, and wound healing. Finally, we highlight the promise of circadian medicine for skin disease prevention and management.
Collapse
Affiliation(s)
- Junyan Duan
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
| | - Elyse Noelani Greenberg
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine, CA 92697
| | - Satya Swaroop Karri
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Bogi Andersen
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine, CA 92697
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697
| |
Collapse
|
65
|
Choi H, Rao MC, Chang EB. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol 2021; 18:679-689. [PMID: 34002082 PMCID: PMC8521648 DOI: 10.1038/s41575-021-00452-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Certain members of the gut microbiota exhibit diurnal variations in relative abundance and function to serve as non-canonical drivers of host circadian rhythms and metabolism. Also known as microbial oscillators, these microorganisms entrain upon non-photic cues, primarily dietary, to modulate host metabolism by providing input to both circadian clock-dependent and clock-independent host networks. Microbial oscillators are generally promoted by plant-based, low-fat (lean) diets, and most are abolished by low-fibre, high-sugar, high-fat (Western) diets. The changes in microbial oscillators under different diets then affect host metabolism by altering central and peripheral host circadian clock functions and/or by directly affecting other metabolic targets. Here, we review the unique role of the gut microbiota as a non-photic regulator of host circadian rhythms and metabolism. We describe genetic, environmental, dietary and other host factors such as sex and gut immunity that determine the composition and behaviour of microbial oscillators. The mechanisms by which these oscillators regulate host circadian gene expression and metabolic state are further discussed. Because of the gut microbiota's unique role as a non-photic driver of host metabolism and circadian rhythms, the development and clinical application of novel gut microbiota-related diagnostics and therapeutics hold great promise for achieving and maintaining metabolic health.
Collapse
Affiliation(s)
- Hyoann Choi
- Department of Medicine, Knapp Center for Biomedical Discovery, Chicago, IL, USA.,Department of Biological Engineering and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mrinalini C. Rao
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, Chicago, IL, USA.,
| |
Collapse
|
66
|
Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front Cell Infect Microbiol 2021; 11:696554. [PMID: 34595127 PMCID: PMC8476957 DOI: 10.3389/fcimb.2021.696554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
67
|
Cervantes‐Silva MP, Cox SL, Curtis AM. Alterations in mitochondrial morphology as a key driver of immunity and host defence. EMBO Rep 2021; 22:e53086. [PMID: 34337844 PMCID: PMC8447557 DOI: 10.15252/embr.202153086] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles whose architecture changes depending on the cell's energy requirements and other signalling events. These structural changes are collectively known as mitochondrial dynamics. Mitochondrial dynamics are crucial for cellular functions such as differentiation, energy production and cell death. Importantly, it has become clear in recent years that mitochondrial dynamics are a critical control point for immune cell function. Mitochondrial remodelling allows quiescent immune cells to rapidly change their metabolism and become activated, producing mediators, such as cytokines, chemokines and even metabolites to execute an effective immune response. The importance of mitochondrial dynamics in immunity is evident, as numerous pathogens have evolved mechanisms to manipulate host cell mitochondrial remodelling in order to promote their own survival. In this review, we comprehensively address the roles of mitochondrial dynamics in immune cell function, along with modulation of host cell mitochondrial morphology during viral and bacterial infections to facilitate either pathogen survival or host immunity. We also speculate on what the future may hold in terms of therapies targeting mitochondrial morphology for bacterial and viral control.
Collapse
Affiliation(s)
- Mariana P Cervantes‐Silva
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| | - Shannon L Cox
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| | - Annie M Curtis
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
68
|
Pearson JA, Voisey AC, Boest-Bjerg K, Wong FS, Wen L. Circadian Rhythm Modulation of Microbes During Health and Infection. Front Microbiol 2021; 12:721004. [PMID: 34512600 PMCID: PMC8430216 DOI: 10.3389/fmicb.2021.721004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alexander Christopher Voisey
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kathrine Boest-Bjerg
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
69
|
Brooks JF, Behrendt CL, Ruhn KA, Lee S, Raj P, Takahashi JS, Hooper LV. The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell 2021; 184:4154-4167.e12. [PMID: 34324837 PMCID: PMC8967342 DOI: 10.1016/j.cell.2021.07.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.
Collapse
Affiliation(s)
- John F Brooks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Syann Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
70
|
Khodasevich D, Tsui S, Keung D, Skene DJ, Revell V, Martinez ME. Characterizing the modern light environment and its influence on circadian rhythms. Proc Biol Sci 2021; 288:20210721. [PMID: 34284625 PMCID: PMC8292753 DOI: 10.1098/rspb.2021.0721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Humans have largely supplanted natural light cycles with a variety of electric light sources and schedules misaligned with day-night cycles. Circadian disruption has been linked to a number of disease processes, but the extent of circadian disruption among the population is unknown. In this study, we measured light exposure and wrist temperature among residents of an urban area during each of the four seasons, as well as light illuminance in nearby outdoor locations. Daily light exposure was significantly lower for individuals, compared to outdoor light sensors, across all four seasons. There was also little seasonal variation in the realized photoperiod experienced by individuals, with the only significant difference occurring between winter and summer. We tested the hypothesis that differential light exposure impacts circadian phase timing, detected via the wrist temperature rhythm. To determine the influence of light exposure on circadian rhythms, we modelled the impact of morning and night-time light exposure on the timing of the maximum wrist temperature. We found that morning and night-time light exposure had significant but opposing impacts on maximum wrist temperature timing. Our results demonstrate that, within the range of exposure seen in everyday life, night-time light can delay the onset of the maximum wrist temperature, while morning light can lead to earlier onset. Our results demonstrate that humans are minimizing natural seasonal differences in light exposure, and that circadian shifts and disruptions may be a more regular occurrence in the general population than is currently recognized.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Susan Tsui
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Darwin Keung
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Debra J. Skene
- Chronobiology, University of Surrey, Guildford, Surrey, UK
| | - Victoria Revell
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | |
Collapse
|
71
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
72
|
Wyse C, O'Malley G, Coogan AN, McConkey S, Smith DJ. Seasonal and daytime variation in multiple immune parameters in humans: Evidence from 329,261 participants of the UK Biobank cohort. iScience 2021; 24:102255. [PMID: 33817568 PMCID: PMC8010467 DOI: 10.1016/j.isci.2021.102255] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
Seasonal disease outbreaks are perennial features of human infectious disease but the factors generating these patterns are unclear. Here we investigate seasonal and daytime variability in multiple immune parameters in 329,261 participants in UK Biobank and test for associations with a wide range of environmental and lifestyle factors, including changes in day length, outdoor temperature and vitamin D at the time the blood sample was collected. Seasonal patterns were evident in lymphocyte and neutrophil counts, and C-reactive protein CRP, but not monocytes, and these were independent of lifestyle, demographic, and environmental factors. All the immune parameters assessed demonstrated significant daytime variation that was independent of confounding factors. At a population level, human immune parameters vary across season and across time of day, independent of multiple confounding factors. Both season and time of day are fundamental dimensions of immune function that should be considered in all studies of immuno-prophylaxis and disease transmission.
Collapse
Affiliation(s)
- Cathy Wyse
- School of Physiotherapy, Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Mercer Street Lower, Dublin, Ireland
| | - Grace O'Malley
- School of Physiotherapy, Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Mercer Street Lower, Dublin, Ireland
| | - Andrew N. Coogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland
| | - Sam McConkey
- Royal College of Surgeons in Ireland: University of Medicine and Health Science, Dublin, Ireland
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
73
|
Moustafa A. Chronic Exposure to Continuous Brightness or Darkness Modulates Immune Responses and Ameliorates the Antioxidant Enzyme System in Male Rats. Front Vet Sci 2021; 8:621188. [PMID: 33937367 PMCID: PMC8081841 DOI: 10.3389/fvets.2021.621188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/02/2023] Open
Abstract
Circadian rhythms are considered vital regulators of immune functions. This study aims to elucidate the effects of chronic circadian disruption on immune functions, clock genes expression, and antioxidant enzymes levels in lymphoid tissues. Adult male Sprague-Dawley rats were subjected to a normal light/dark cycle or either continuous light (LL) or continuous dark (DD) for 8 weeks. The results demonstrated (1) significant decreases in the circulating levels of interleukin 1β, interleukin 6 and tumor necrosis factor alpha (TNF-α) and significant increases in the levels of interleukin 10, interleukin 12, C-reactive protein (CRP) and corticosterone in both LL and DD groups; (2) upregulation in mRNA expression of core clock genes Cry1, Cry2, Per1, Per2, and Per3 in the spleen of the DD group and downregulation in Cry1 and Cry2 genes in the LL group; (3) elevation of total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), nitric oxide (NO) and the lipid peroxidation marker malondialdehyde (MDA) in the spleen, lymph node and bone marrow of both the LL and DD groups and decreases in the levels of the same markers in the thymus of the LL group; (4) decreased numbers of CD4+ and CD8+ cells in lymphoid tissues of both the LL and the DD groups; (5) reduced platelets count and suppressed immunoglobulin (IgM, IgE) in the LL and DD groups with marked erythropenia and leukocytosis in the DD group. Taken together, circadian misalignment leads to hematological disruptions, dysregulation of clock genes, and inflammatory mediators, which further enhances the antioxidant enzyme system that is crucial for an organism's adaptation to stresses.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
74
|
Serrano-Lopez J, Hegde S, Kumar S, Serrano J, Fang J, Wellendorf AM, Roche PA, Rangel Y, Carrington LJ, Geiger H, Grimes HL, Luther S, Maillard I, Sanchez-Garcia J, Starczynowski DT, Cancelas JA. Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. eLife 2021; 10:e66190. [PMID: 33830019 PMCID: PMC8137144 DOI: 10.7554/elife.66190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Innate immune cellular effectors are actively consumed during systemic inflammation, but the systemic traffic and the mechanisms that support their replenishment remain unknown. Here, we demonstrate that acute systemic inflammation induces the emergent activation of a previously unrecognized system of rapid migration of granulocyte-macrophage progenitors and committed macrophage-dendritic progenitors, but not other progenitors or stem cells, from bone marrow (BM) to regional lymphatic capillaries. The progenitor traffic to the systemic lymphatic circulation is mediated by Ccl19/Ccr7 and is NF-κB independent, Traf6/IκB-kinase/SNAP23 activation dependent, and is responsible for the secretion of pre-stored Ccl19 by a subpopulation of CD205+/CD172a+ conventional dendritic cells type 2 and upregulation of BM myeloid progenitor Ccr7 signaling. Mature myeloid Traf6 signaling is anti-inflammatory and necessary for lymph node myeloid cell development. This report unveils the existence and the mechanistic basis of a very early direct traffic of myeloid progenitors from BM to lymphatics during inflammation.
Collapse
Affiliation(s)
- Juana Serrano-Lopez
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Shailaja Hegde
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sachin Kumar
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Josefina Serrano
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Jing Fang
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ashley M Wellendorf
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Paul A Roche
- Center for Cancer Research, National Cancer InstituteBethesdaUnited States
- Experimental Immunology Branch, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Yamileth Rangel
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | | | - Hartmut Geiger
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Institute of Molecular Medicine, Ulm UniversityUlmGermany
| | - H Leighton Grimes
- Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sanjiv Luther
- Center for Immunity and Infection, Department of Biochemistry, University of LausanneEpalingesSwitzerland
| | - Ivan Maillard
- University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Joaquin Sanchez-Garcia
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Daniel T Starczynowski
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Cancer Biology, University of CincinnatiCincinnatiUnited States
| | - Jose A Cancelas
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
75
|
Tavakoli A, Mirzababaei A, Sajadi F, Mirzaei K. Circulating inflammatory markers may mediate the relationship between low carbohydrate diet and circadian rhythm in overweight and obese women. BMC WOMENS HEALTH 2021; 21:87. [PMID: 33648476 PMCID: PMC7923314 DOI: 10.1186/s12905-021-01240-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Background Low carbohydrate diet (LCD) can improve inflammation and obesity and also circadian rhythm disorders can lead to increased inflammation in obese individuals. The purpose of this study is to evaluate the association between adherence of LCD and circadian rhythm mediated by inflammatory markers including transforming growth factor-β (TGF-β), interleukin-1β (IL-1β) and Galectin-3 in overweight and obese women. Methods 304 women affected by overweight and obesity were enrolled. We evaluated LCD scores by Semi-quantitative food frequency questionnaire (FFQ) of 147 items. The morning-evening questionnaire (MEQ) was applied to evaluate the circadian rhythm. Biochemical parameters such as inflammatory markers and anthropometric components were assessed. Results There was a negative significant correlation between adherence of LCD and circadian rhythm status. In other words, as the LCD scores increased, the odds of circadian rhythm disturbance in intermediate group and morning type persons decreased compared to evening type. It was showed that, IL-1β and Galectin-3 in intermediate and morning type groups, destroyed the significance of this relationship and may be considered as mediating markers. Conclusion Adherence of LCD can improve the circadian rhythm by reducing levels of inflammatory markers and may be considered as a treatment for obesity.
Collapse
Affiliation(s)
- Atefeh Tavakoli
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | - Forough Sajadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran.
| |
Collapse
|
76
|
Abo SMC, Layton AT. Modeling the circadian regulation of the immune system: Sexually dimorphic effects of shift work. PLoS Comput Biol 2021; 17:e1008514. [PMID: 33788832 PMCID: PMC8041207 DOI: 10.1371/journal.pcbi.1008514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/12/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock exerts significance influence on the immune system and disruption of circadian rhythms has been linked to inflammatory pathologies. Shift workers often experience circadian misalignment as their irregular work schedules disrupt the natural light-dark cycle, which in turn can cause serious health problems associated with alterations in genetic expressions of clock genes. In particular, shift work is associated with impairment in immune function, and those alterations are sex-specific. The goal of this study is to better understand the mechanisms that explain the weakened immune system in shift workers. To achieve that goal, we have constructed a mathematical model of the mammalian pulmonary circadian clock coupled to an acute inflammation model in the male and female rats. Shift work was simulated by an 8h-phase advance of the circadian system with sex-specific modulation of clock genes. The model reproduces the clock gene expression in the lung and the immune response to various doses of lipopolysaccharide (LPS). Under normal conditions, our model predicts that a host is more sensitive to LPS at circadian time (CT) CT12 versus CT0 due to a dynamic change of Interleukin 10 (IL-10), an anti-inflammatory cytokine. We identify REV-ERB as a key modulator of IL-10 activity throughout the circadian day. The model also predicts a reversal of the times of lowest and highest sensitivity to LPS, with males and females exhibiting an exaggerated response to LPS at CT0, which is countered by a blunted immune response at CT12. Overall, females produce fewer pro-inflammatory cytokines than males, but the extent of sequelae experienced by males and females varies across the circadian day. This model can serve as an essential component in an integrative model that will yield mechanistic understanding of how shift work-mediated circadian disruptions affect the inflammatory and other physiological responses.
Collapse
Affiliation(s)
- Stéphanie M. C. Abo
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
77
|
Abstract
The circadian clock controls several aspects of mammalian physiology and orchestrates the daily oscillations of biological processes and behavior. Our circadian rhythms are driven by an endogenous central clock in the brain that synchronizes with clocks in peripheral tissues, thereby regulating our immune system and the severity of infections. These rhythms affect the pharmacokinetics and efficacy of therapeutic agents and vaccines. The core circadian regulatory circuits and clock-regulated host pathways provide fertile ground to identify novel antiviral therapies. An increased understanding of the role circadian systems play in regulating virus infection and the host response to the virus will inform our clinical management of these diseases. This review provides an overview of the experimental and clinical evidence reporting on the interplay between the circadian clock and viral infections, highlighting the importance of virus-clock research.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Xiaodong Zhuang
- Xiaodong Zhuang, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK; e-mail:
| |
Collapse
|
78
|
Adams KL, Sun EF, Alaidrous W, de Roode JC. Constant Light and Frequent Schedule Changes Do Not Impact Resistance to Parasites in Monarch Butterflies. J Biol Rhythms 2021; 36:286-296. [PMID: 33445989 DOI: 10.1177/0748730420985312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Organisms have evolved internal biological clocks to regulate their activities based on external environmental cues, such as light, temperature, and food. Environmental disruption of these rhythms, such as caused by constant light or frequent light schedule changes, has been shown to impair development, reduce survival, and increase infection susceptibility and disease progression in numerous organisms. However, the precise role of the biological clock in host-parasite interactions is understudied and has focused on unnatural host-parasite combinations in lab-adapted inbred models. Here, we use the natural interaction between monarch butterflies (Danaus plexippus) and their virulent protozoan parasite, Ophryocystis elektroscirrha, to investigate the effects of constant light and frequent light schedule changes on development, survival, and parasite susceptibility. We show that constant light exposure slows the monarchs' rate of development but does not increase susceptibility to parasitic infection. Furthermore, frequent schedule changes decrease parasite growth, but have no effect on egg-to-adult survival of infected monarchs. Interestingly, these conditions are usually disruptive to the biological clock, but do not significantly impact the clock of monarch larvae. These unexpected findings show that constant light and frequent schedule changes can uncouple host and parasite performance and highlight how natural relationships are needed to expand our understanding of clocks in host-parasite interactions.
Collapse
Affiliation(s)
- Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Wajd Alaidrous
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
79
|
Duez H, Pourcet B. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Front Endocrinol (Lausanne) 2021; 12:630536. [PMID: 33716981 PMCID: PMC7947301 DOI: 10.3389/fendo.2021.630536] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of defense specialized in the clearing of invaders whether foreign elements like microbes or self-elements that accumulate abnormally including cellular debris. Inflammasomes are master regulators of the innate immune system, especially in macrophages, and are key sensors involved in maintaining cellular health in response to cytolytic pathogens or stress signals. Inflammasomes are cytoplasmic complexes typically composed of a sensor molecule such as NOD-Like Receptors (NLRs), an adaptor protein including ASC and an effector protein such as caspase 1. Upon stimulation, inflammasome complex components associate to promote the cleavage of the pro-caspase 1 into active caspase-1 and the subsequent activation of pro-inflammatory cytokines including IL-18 and IL-1β. Deficiency or overactivation of such important sensors leads to critical diseases including Alzheimer diseases, chronic inflammatory diseases, cancers, acute liver diseases, and cardiometabolic diseases. Inflammasomes are tightly controlled by a two-step activation regulatory process consisting in a priming step, which activates the transcription of inflammasome components, and an activation step which leads to the inflammasome complex formation and the subsequent cleavage of pro-IL1 cytokines. Apart from the NF-κB pathway, nuclear receptors have recently been proposed as additional regulators of this pathway. This review will discuss the role of nuclear receptors in the control of the NLRP3 inflammasome and the putative beneficial effect of new modulators of inflammasomes in the treatment of inflammatory diseases including colitis, fulminant hepatitis, cardiac ischemia-reperfusion and brain diseases.
Collapse
|
80
|
Wang XL, Wolff SEC, Korpel N, Milanova I, Sandu C, Rensen PCN, Kooijman S, Cassel JC, Kalsbeek A, Boutillier AL, Yi CX. Deficiency of the Circadian Clock Gene Bmal1 Reduces Microglial Immunometabolism. Front Immunol 2020; 11:586399. [PMID: 33363534 PMCID: PMC7753637 DOI: 10.3389/fimmu.2020.586399] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/06/2020] [Indexed: 01/25/2023] Open
Abstract
Microglia are brain immune cells responsible for immune surveillance. Microglial activation is, however, closely associated with neuroinflammation, neurodegeneration, and obesity. Therefore, it is critical that microglial immune response appropriately adapts to different stressors. The circadian clock controls the cellular process that involves the regulation of inflammation and energy hemostasis. Here, we observed a significant circadian variation in the expression of markers related to inflammation, nutrient utilization, and antioxidation in microglial cells isolated from mice. Furthermore, we found that the core clock gene-Brain and Muscle Arnt-like 1 (Bmal1) plays a role in regulating microglial immune function in mice and microglial BV-2 cells by using quantitative RT-PCR. Bmal1 deficiency decreased gene expression of pro-inflammatory cytokines, increased gene expression of antioxidative and anti-inflammatory factors in microglia. These changes were also observed in Bmal1 knock-down microglial BV-2 cells under lipopolysaccharide (LPS) and palmitic acid stimulations. Moreover, Bmal1 deficiency affected the expression of metabolic associated genes and metabolic processes, and increased phagocytic capacity in microglia. These findings suggest that Bmal1 is a key regulator in microglial immune response and cellular metabolism.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Samantha E. C. Wolff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Nikita Korpel
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Irina Milanova
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Patrick C. N. Rensen
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sander Kooijman
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
81
|
Martchenko A, Martchenko SE, Biancolin AD, Brubaker PL. Circadian Rhythms and the Gastrointestinal Tract: Relationship to Metabolism and Gut Hormones. Endocrinology 2020; 161:5909225. [PMID: 32954405 PMCID: PMC7660274 DOI: 10.1210/endocr/bqaa167] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are 24-hour biological rhythms within organisms that have developed over evolutionary time due to predefined environmental changes, mainly the light-dark cycle. Interestingly, metabolic tissues, which are largely responsible for establishing diurnal metabolic homeostasis, have been found to express cell-autonomous clocks that are entrained by food intake. Disruption of the circadian system, as seen in individuals who conduct shift work, confers significant risk for the development of metabolic diseases such as type 2 diabetes and obesity. The gastrointestinal (GI) tract is the first point of contact for ingested nutrients and is thus an essential organ system for metabolic control. This review will focus on the circadian function of the GI tract with a particular emphasis on its role in metabolism through regulation of gut hormone release. First, the circadian molecular clock as well as the organization of the mammalian circadian system is introduced. Next, a brief overview of the structure of the gut as well as the circadian regulation of key functions important in establishing metabolic homeostasis is discussed. Particularly, the focus of the review is centered around secretion of gut hormones; however, other functions of the gut such as barrier integrity and intestinal immunity, as well as digestion and absorption, all of which have relevance to metabolic control will be considered. Finally, we provide insight into the effects of circadian disruption on GI function and discuss chronotherapeutic intervention strategies for mitigating associated metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Correspondence: P.L. Brubaker, Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada. E-mail:
| |
Collapse
|
82
|
Yin X, Liu Y, Zeb R, Chen F, Chen H, Wang KJ. The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a]pyrene exposure via interference of the circadian rhythm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115437. [PMID: 32866872 DOI: 10.1016/j.envpol.2020.115437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (BaP), a widely existed polycyclic aromatic hydrocarbon pollutant in aquatic environment, has toxic effects on marine animals and their generations, but the intergenerational immunotoxic mechanism underlying has not been clearly understood. In the study, the offspring of marine medaka (oryzias melastigma) which were exposed to 0.5 μg L-1 BaP suffered from circadian rhythm oscillation disorders and severe DNA damage. Many clock-associated genes like per1 were significantly modulated in offspring, both per1 and p53 were significantly inhibited that altered the progression of cell cycle and inhibited DNA repair, which possibly resulted in the increased mortality of offspring. The hypermethylation of the per1 promotor and abnormal levels of N6-methyladenosine (m6A) suggested that the underlying mechanism was probably related to the epigenetic modification. Moreover, the offspring from paternal BaP exposure had more severe DNA damage and a higher degree of hypermethylation than those from maternal exposure. F1 larvae from BaP-exposed parents were more sensitive to BaP exposure, showing that the expression of immune and metabolism-related genes were significantly up-regulated. Taken together, the parental toxicity induced by BaP could be passed to F1 generation and the mechanism underlying was probably associated with a characteristic circadian rhythm disorder.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yong Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiyun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
83
|
Durrington HJ, Krakowiak K, Meijer P, Begley N, Maidstone R, Goosey L, Gibbs JE, Blaikley JF, Gregory LG, Lloyd CM, Loudon ASI, Ray DW. Circadian asthma airway responses are gated by REV-ERBα. Eur Respir J 2020; 56:13993003.02407-2019. [PMID: 32586876 PMCID: PMC7613655 DOI: 10.1183/13993003.02407-2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/06/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND The circadian clock powerfully regulates inflammation and the clock protein REV-ERBα is known to play a key role as a repressor of the inflammatory response. Asthma is an inflammatory disease of the airways with a strong time of day rhythm. Airway hyper-responsiveness (AHR) is a dominant feature of asthma; however, it is not known if this is under clock control. OBJECTIVES To determine if allergy-mediated AHR is gated by the clock protein REV-ERBα. METHODS After exposure to the intra-nasal house dust mite (HDM) allergen challenge model at either dawn or dusk, AHR to methacholine was measured invasively in mice. MAIN RESULTS Wild-type (WT) mice show markedly different time of day AHR responses (maximal at dusk/start of the active phase), both in vivo and ex vivo, in precision cut lung slices. Time of day effects on AHR were abolished in mice lacking the clock gene Rev-erbα, indicating that such effects on asthma response are likely to be mediated via the circadian clock. We suggest that muscarinic receptors one (Chrm 1) and three (Chrm 3) may play a role in this pathway. CONCLUSIONS We identify a novel circuit regulating a core process in asthma, potentially involving circadian control of muscarinic receptor expression, in a REV-ERBα dependent fashion. CLINICAL IMPLICATION These insights suggest the importance of considering the timing of drug administration in clinic trials and in clinical practice (chronotherapy).
Collapse
Affiliation(s)
- Hannah J Durrington
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Wythenshawe Hospital, University Hospital of South Manchester, Manchester University NHS Foundation Trust (MFT), Manchester, UK
| | - Karolina Krakowiak
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter Meijer
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nicola Begley
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert Maidstone
- Division of Informatics, Imaging and Data Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laurence Goosey
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Julie E Gibbs
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - John F Blaikley
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Wythenshawe Hospital, University Hospital of South Manchester, Manchester University NHS Foundation Trust (MFT), Manchester, UK
| | - Lisa G Gregory
- National Heart and Lung Institute, Imperial College, London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College, London, UK
| | - Andrew S I Loudon
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David W Ray
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
84
|
Frazier K, Frith M, Harris D, Leone VA. Mediators of Host–Microbe Circadian Rhythms in Immunity and Metabolism. BIOLOGY 2020; 9:biology9120417. [PMID: 33255707 PMCID: PMC7761326 DOI: 10.3390/biology9120417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Simple Summary Circadian rhythms serve as the body’s internal metronome, driving responses to environmental cues over a 24-h period. Essential to nearly all life forms, the core circadian clock gene network drives physiological outputs associated with metabolic and immune responses. Modern-day disruptions to host circadian rhythms, such as shift work and jet lag, result in aberrant metabolic responses and development of complex diseases, including obesity and Type 2 Diabetes. These complex diseases are also impacted by interactions between gut microbes and the host immune system, driving a chronic low-grade inflammatory response. Gut microbes exhibit circadian dynamics that are closely tied to host circadian networks and disrupting microbial rhythmicity contributes to metabolic diseases. The underlying mediators that drive communication between host metabolism, the immune system, gut microbes, and circadian networks remain unknown, particularly in humans. Here, we explore the current state of knowledge regarding the transkingdom control of circadian networks and discuss gaps and challenges to overcome to push the field forward from the preclinical to clinical setting. Abstract Circadian rhythms are essential for nearly all life forms, mediated by a core molecular gene network that drives downstream molecular processes involved in immune function and metabolic regulation. These biological rhythms serve as the body’s metronome in response to the 24-h light:dark cycle and other timed stimuli. Disrupted circadian rhythms due to drastic lifestyle and environmental shifts appear to contribute to the pathogenesis of metabolic diseases, although the mechanisms remain elusive. Gut microbiota membership and function are also key mediators of metabolism and are highly sensitive to environmental perturbations. Recent evidence suggests rhythmicity of gut microbes is essential for host metabolic health. The key molecular mediators that transmit rhythmic signals between microbes and host metabolic networks remain unclear, but studies suggest the host immune system may serve as a conduit between these two systems, providing homeostatic signals to maintain overall metabolic health. Despite this knowledge, the precise mechanism and communication modalities that drive these rhythms remain unclear, especially in humans. Here, we review the current literature examining circadian dynamics of gut microbes, the immune system, and metabolism in the context of metabolic dysregulation and provide insights into gaps and challenges that remain.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
| | - Mary Frith
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Dylan Harris
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
| | - Vanessa A. Leone
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-262-5551
| |
Collapse
|
85
|
Shimba A, Ikuta K. Control of immunity by glucocorticoids in health and disease. Semin Immunopathol 2020; 42:669-680. [PMID: 33219395 DOI: 10.1007/s00281-020-00827-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
Animals receive environmental stimuli from neural signals in order to produce hormones that control immune responses. Glucocorticoids (GCs) are a group of steroid hormones produced in the adrenal cortex and well-known mediators for the nervous and immune systems. GC secretion is induced by circadian rhythm and stress, and plasma GC levels are high at the active phase of animals and under stress condition. Clinically, GCs are used for allergies, autoimmunity, and chronic inflammation, because they have strong anti-inflammatory effects and induce the apoptosis of lymphocytes. Glucocorticoid receptor (GR) acts as a transcription factor and represses the expression of inflammatory cytokines, chemokines, and prostaglandins by binding to its motif, glucocorticoid-response element, or to other transcription factors. In mice, GR suppresses the antigen-stimulated inflammation mediated by macrophages, dendritic cells, and epithelial cells, and impairs cytotoxic immune responses by downregulating interferon-γ production and inhibiting the development of type-1 helper T cells, CD8+ T cells, and natural killer cells. These immune inhibitory effects prevent lethality by excessive inflammation, but at the same time increase the susceptibility to infection and cancer. GCs can also activate the immune system. The circadian cycle of GC secretion controls the diurnal oscillations of the distribution and response of T cells, thus supporting T cell maintenance and effective immune protection against infection. Moreover, several reports have shown that GR has the potential to enhance the activities of Th2, Th17, and immunoglobulin-producing B cells. Stress has two different effects on immune responses: immune suppression to cause mortality by infection and cancer, and excessive immune activation to induce chronic inflammation and autoimmune disease. Consistently, stress-induced GCs strongly suppress cell-mediated immunity and cause viral infection and tumor development. They may also enhance the development of pathogenic helper T cells and cause tissue damage through neural and intestinal inflammation. Past studies have reported the positive and negative effects of GCs on the immune system. These opposing properties of GCs may regulate the immune balance between the responsiveness to antigens and excessive inflammation in steady-state and stress conditions.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
86
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
87
|
Sertbas M, Ulgen KO. Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens. Front Cell Dev Biol 2020; 8:566702. [PMID: 33251208 PMCID: PMC7673413 DOI: 10.3389/fcell.2020.566702] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogens give rise to a wide range of diseases threatening global health and hence drawing public health agencies' attention to establish preventative and curative solutions. Genome-scale metabolic modeling is ever increasingly used tool for biomedical applications including the elucidation of antibiotic resistance, virulence, single pathogen mechanisms and pathogen-host interaction systems. With this approach, the sophisticated cellular system of metabolic reactions inside the pathogens as well as between pathogen and host cells are represented in conjunction with their corresponding genes and enzymes. Along with essential metabolic reactions, alternate pathways and fluxes are predicted by performing computational flux analyses for the growth of pathogens in a very short time. The genes or enzymes responsible for the essential metabolic reactions in pathogen growth are regarded as potential drug targets, as a priori guide to researchers in the pharmaceutical field. Pathogens alter the key metabolic processes in infected host, ultimately the objective of these integrative constraint-based context-specific metabolic models is to provide novel insights toward understanding the metabolic basis of the acute and chronic processes of infection, revealing cellular mechanisms of pathogenesis, identifying strain-specific biomarkers and developing new therapeutic approaches including the combination drugs. The reaction rates predicted during different time points of pathogen development enable us to predict active pathways and those that only occur during certain stages of infection, and thus point out the putative drug targets. Among others, fatty acid and lipid syntheses reactions are recent targets of new antimicrobial drugs. Genome-scale metabolic models provide an improved understanding of how intracellular pathogens utilize the existing microenvironment of the host. Here, we reviewed the current knowledge of genome-scale metabolic modeling in pathogen cells as well as pathogen host interaction systems and the promising applications in the extension of curative strategies against pathogens for global preventative healthcare.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
88
|
Bilska B, Zegar A, Slominski AT, Kleszczyński K, Cichy J, Pyza E. Expression of antimicrobial peptide genes oscillates along day/night rhythm protecting mice skin from bacteria. Exp Dermatol 2020; 30:1418-1427. [PMID: 33131146 DOI: 10.1111/exd.14229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of the innate immune system and are involved in skin protection against environmental insults and in wound healing. Herein, we assessed the gene expression of chemerin (Rarres2), cathelicidin CRAMP (Camp), and three β-defensins (Defb1, Defb3, and Defb14) in mouse skin during light/dark cycle (LD 12:12) and constant darkness (DD). Next, we examined the survival of bacteria applied on the skin at specific times during the day. We found that the expression of Rarres2, Camp, and Defb1 was the highest at 4 h after the beginning of darkness, during high activity of mice. These rhythms, however, were not maintained under DD in the skin but were present in the liver. This indicated that in the case of skin, a circadian input was masked by daily changes of light in the environment. In contrast, Defb3 and Defb14 showed the highest mRNA levels when the mice slept, and these rhythmic mRNA oscillations were maintained under DD. This shows that Rarres2, Camp, and Defb1 levels in the skin are correlated with high locomotor activity in mice and they are controlled by daily changes of light and dark. Alternatively, oscillations in the mRNA levels of Defb3 and Defb14 seem to protect skin and heal wounds during sleep. These rhythms are maintained under DD, indicating that they are regulated by a circadian clock. Our study suggests that daily AMP expression affects the survival of bacteria on the surface of skin, which depends on the phase of AMP cycling.
Collapse
Affiliation(s)
- Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Aneta Zegar
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| | | | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
89
|
Pearson JA, Wong FS, Wen L. Crosstalk between circadian rhythms and the microbiota. Immunology 2020; 161:278-290. [PMID: 33090484 PMCID: PMC7692254 DOI: 10.1111/imm.13278] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythms influence daily molecular oscillations in gene/protein expression and aspects of biology and physiology, including behaviour, body temperature and sleep–wake cycles. These circadian rhythms have been associated with a number of metabolic, immune and microbial changes that correlate with health and susceptibility to disease, including infection. While light is the main inducer of circadian rhythms, other factors, including the microbiota, can have important effects on peripheral rhythms. The microbiota have been of significant interest to many investigators over the past decade, with the development of molecular techniques to identify large numbers of species and their function. These studies have shown microbial associations with disease susceptibility, and some of these have demonstrated that alterations in microbiota cause disease. Microbial circadian oscillations impact host metabolism and immunity directly and indirectly. Interestingly, microbial oscillations also regulate host circadian rhythms, and the host circadian rhythms in turn modulate microbial composition. Thus, it is of considerable interest and importance to understand the crosstalk between circadian rhythms and microbiota and especially the microbial influences on the host. In this review, we aim to discuss the role of circadian microbial oscillations and how they influence host immunity. In addition, we discuss how host circadian rhythms can also modulate microbial rhythms. We also discuss potential connections between microbes and circadian rhythms and how these may be used therapeutically to maximize clinical success.
Collapse
Affiliation(s)
- James Alexander Pearson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.,Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Florence Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Li Wen
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
90
|
Bellet MM, Pieroni S, Castelli M, Piobbico D, Fallarino F, Romani L, Della-Fazia MA, Servillo G. HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death Dis 2020; 11:865. [PMID: 33060567 PMCID: PMC7567074 DOI: 10.1038/s41419-020-03086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
HOPS/Tmub1 is a ubiquitously expressed transmembrane ubiquitin-like protein that shuttles between nucleus and cytoplasm during cell cycle progression. HOPS causes cell cycle arrest in G0/G1 phase, an event associated to stabilization of p19Arf, an important tumor suppressor protein. Moreover, HOPS plays an important role in driving centrosomal assembly and maintenance, mitotic spindle proper organization, and ultimately a correct cell division. Recently, HOPS has been described as an important regulator of p53, which acts as modifier, stabilizing p53 half-life and playing a key role in p53 mediating apoptosis after DNA damage. NF-κB is a transcription factor with a central role in many cellular events, including inflammation and apoptosis. Our experiments demonstrate that the transcriptional activity of the p65/RelA NF-κB subunit is regulated by HOPS. Importantly, Hops-/- cells have remarkable alterations of pro-inflammatory responses. Specifically, we found that HOPS enhances NF-κB activation leading to increase transcription of inflammatory mediators, through the reduction of IκBα stability. Notably, this effect is mediated by a direct HOPS binding to the E3 ubiquitin ligase TRAF6, which lessens TRAF6 stability ultimately leading increased IKK complex activation. These findings uncover a previously unidentified function of HOPS/Tmub1 as a novel modulator of TRAF6, regulating inflammatory responses driven by activation of the NF-κB signaling pathway. The comprehension on how HOPS/Tmub1 takes part to the inflammatory processes in vivo and whether this function is important in the control of proliferation and tumorigenesis could establish the basis for the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- Marina Maria Bellet
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
91
|
Brooks JF, Hooper LV. Interactions among microbes, the immune system, and the circadian clock. Semin Immunopathol 2020; 42:697-708. [PMID: 33033938 DOI: 10.1007/s00281-020-00820-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
The circadian clock couples physiological processes and behaviors to environmental light cycles. This coupling ensures the synchronization of energetically expensive processes to the time of day at which an organism is most active, thus improving overall fitness. Host immunity is an energetically intensive process that requires the coordination of multiple immune cell types to sense, communicate, and respond to a variety of microorganisms. Interestingly the circadian clock entrains immune cell development, function, and trafficking to environmental light cycles. This entrainment results in the variation of host susceptibility to microbial pathogens across the day-night cycle. In addition, the circadian clock engages in bi-directional communication with the microbiota, resident microorganisms that reside in proximity to the epithelial surfaces of animals. This bi-directional interchange plays an essential role in regulating host immunity and is also pivotal for the circadian control of metabolism. Here, we review the role of the circadian clock in directing host immune programs and consider how commensal and pathogenic microbes impact circadian physiological processes.
Collapse
Affiliation(s)
- John F Brooks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
92
|
Lechasseur A, Huppé CA, Talbot M, Routhier J, Aubin S, Beaulieu MJ, Duchaine C, Marsolais D, Morissette MC. Exposure to nicotine-free and flavor-free e-cigarette vapors modifies the pulmonary response to tobacco cigarette smoke in female mice. Am J Physiol Lung Cell Mol Physiol 2020; 319:L717-L727. [PMID: 32845704 DOI: 10.1152/ajplung.00037.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Most of electronic cigarette (e-cigarette) users are also smoking tobacco cigarettes. Because of the relative novelty of this habit, very little is known on the impact of vaping on pulmonary health, even less on the potential interactions of dual e-cigarette and tobacco cigarette use. Therefore, we used well-established mouse models to investigate the impact of dual exposure to e-cigarette vapors and tobacco cigarette smoke on lung homeostasis. Groups of female BALB/c mice were exposed to room air, tobacco smoke only, nicotine-free flavor-free e-cigarette vapors only or both tobacco smoke and e-cigarette vapors. Moreover, since tobacco smoke and electronic cigarette vapors both affect circadian processes in the lungs, groups of mice were euthanized at two different time points during the day. We found that dual-exposed mice had altered lung circadian gene expression compared with mice exposed to tobacco smoke alone. Dual-exposed mice also had different frequencies of dendritic cells, macrophages, and neutrophils in the lung tissue compared with mice exposed to tobacco smoke alone, an observation also valid for B-lymphocytes and CD4+ and CD8+ T lymphocytes. Exposure to e-cigarette vapors also impacted the levels of immunoglobulins in the bronchoalveolar lavage and serum. Finally, e-cigarette and dual exposures increased airway resistance compared with mice exposed to room air or tobacco smoke alone, respectively. Taken together, these data suggest that e-cigarette vapors, even without nicotine or flavors, could affect how the lungs react to tobacco cigarette smoke exposure in dual users, potentially altering the pathological course triggered by smoking.
Collapse
Affiliation(s)
- Ariane Lechasseur
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Carol-Ann Huppé
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Maude Talbot
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Joanie Routhier
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada
| | - Sophie Aubin
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada
| | | | - Caroline Duchaine
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada.,Departement of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, Quebec, Canada
| | - David Marsolais
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada.,Department of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute-Université Laval, Quebec, Quebec, Canada.,Department of Medicine, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
93
|
Lundy SR, Richardson S, Ramsey A, Ellerson D, Fengxia Y, Onyeabor S, Kirlin W, Thompson W, Black CM, DeBruyne JP, Davidson AJ, Immergluck LC, Blas-Machado U, Eko FO, Igietseme JU, He Q, Omosun YO. Shift work influences the outcomes of Chlamydia infection and pathogenesis. Sci Rep 2020; 10:15389. [PMID: 32958779 PMCID: PMC7505842 DOI: 10.1038/s41598-020-72409-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Shift work, performed by approximately 21 million Americans, is irregular or unusual work schedule hours occurring after 6:00 pm. Shift work has been shown to disrupt circadian rhythms and is associated with several adverse health outcomes and chronic diseases such as cancer, gastrointestinal and psychiatric diseases and disorders. It is unclear if shift work influences the complications associated with certain infectious agents, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility resulting from genital chlamydial infection. We used an Environmental circadian disruption (ECD) model mimicking circadian disruption occurring during shift work, where mice had a 6-h advance in the normal light/dark cycle (LD) every week for a month. Control group mice were housed under normal 12/12 LD cycle. Our hypothesis was that compared to controls, mice that had their circadian rhythms disrupted in this ECD model will have a higher Chlamydia load, more pathology and decreased fertility rate following Chlamydia infection. Results showed that, compared to controls, mice that had their circadian rhythms disrupted (ECD) had higher Chlamydia loads, more tissue alterations or lesions, and lower fertility rate associated with chlamydial infection. Also, infected ECD mice elicited higher proinflammatory cytokines compared to mice under normal 12/12 LD cycle. These results imply that there might be an association between shift work and the increased likelihood of developing more severe disease from Chlamydia infection.
Collapse
Affiliation(s)
- Stephanie R Lundy
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA, 30310, USA
| | - Shakyra Richardson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA, 30310, USA
| | - Anne Ramsey
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Debra Ellerson
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Yan Fengxia
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Sunny Onyeabor
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ward Kirlin
- Department of Pharmacology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Winston Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Carolyn M Black
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Jason P DeBruyne
- Department of Pharmacology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Alec J Davidson
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Lilly C Immergluck
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA, 30310, USA
- Pediatric Clinical & Translational Research Unit, Clinical Research Center, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Uriel Blas-Machado
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA, 30310, USA
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA, 30310, USA
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Qing He
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA, 30310, USA
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA, 30310, USA.
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA.
| |
Collapse
|
94
|
Shimba A, Ikuta K. Glucocorticoids Regulate Circadian Rhythm of Innate and Adaptive Immunity. Front Immunol 2020; 11:2143. [PMID: 33072078 PMCID: PMC7533542 DOI: 10.3389/fimmu.2020.02143] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Animals have evolved circadian rhythms to adapt to the 24-h day-night cycle. Circadian rhythms are controlled by molecular clocks in the brain and periphery, which is driven by clock genes. The circadian rhythm is propagated from the brain to the periphery by nerves and hormones. Glucocorticoids (GCs) are a class of steroid hormones produced by the adrenal cortex under the control of the circadian rhythm and the stress. GCs have both positive and negative effects on the immune system. Indeed, they are well known for their strong anti-inflammatory and immunosuppressive effects. Endogenous GCs inhibit the expression of inflammatory cytokines and chemokines at the active phase of mice, regulating the circadian rhythm of tissue inflammation. In addition, GCs induce the rhythmic expression of IL-7R and CXCR4 on T cells, which supports T cell maintenance and homing to lymphoid tissues. Clock genes and adrenergic neural activity control the T cell migration and immune response. Taken together, circadian factors shape the diurnal oscillation of innate and adaptive immunity. Among them, GCs participate in the circadian rhythm of innate and adaptive immunity by positive and negative effects.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
95
|
Zhang Z, Yu B, Wang X, Luo C, Zhou T, Zheng X, Ding J. Circadian rhythm and atherosclerosis (Review). Exp Ther Med 2020; 20:96. [PMID: 32973945 PMCID: PMC7506962 DOI: 10.3892/etm.2020.9224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is the leading cause of morbidity and mortality worldwide. The underlying pathogenesis involves multiple metabolic disorders, endothelial dysfunction and a maladaptive immune response, and leads to chronic arterial wall inflammation. Numerous normal physiological activities exhibit daily rhythmicity, including energy metabolism, vascular function and inflammatory immunoreactions, and disrupted or misaligned circadian rhythms may promote the progression of atherosclerosis. However, the association between the circadian rhythm and atherosclerosis remains to be fully elucidated. In the present review, the effects of the circadian rhythm on atherosclerosis progression are discussed.
Collapse
Affiliation(s)
- Zaiqiang Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bin Yu
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xinan Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Caiyun Luo
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xiaxia Zheng
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
96
|
Shivshankar P, Fekry B, Eckel-Mahan K, Wetsel RA. Circadian Clock and Complement Immune System-Complementary Control of Physiology and Pathology? Front Cell Infect Microbiol 2020; 10:418. [PMID: 32923410 PMCID: PMC7456827 DOI: 10.3389/fcimb.2020.00418] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian species contain an internal circadian (i.e., 24-h) clock that is synchronized to the day and night cycles. Large epidemiological studies, which are supported by carefully controlled studies in numerous species, support the idea that chronic disruption of our circadian cycles results in a number of health issues, including obesity and diabetes, defective immune response, and cancer. Here we focus specifically on the role of the complement immune system and its relationship to the internal circadian clock system. While still an incompletely understood area, there is evidence that dysregulated proinflammatory cytokines, complement factors, and oxidative stress can be induced by circadian disruption and that these may feed back into the oscillator at the level of circadian gene regulation. Such a feedback cycle may contribute to impaired host immune response against pathogenic insults. The complement immune system including its activated anaphylatoxins, C3a and C5a, not only facilitate innate and adaptive immune response in chemotaxis and phagocytosis, but they can also amplify chronic inflammation in the host organism. Consequent development of autoimmune disorders, and metabolic diseases associated with additional environmental insults that activate complement can in severe cases, lead to accelerated tissue dysfunction, fibrosis, and ultimately organ failure. Because several promising complement-targeted therapeutics to block uncontrolled complement activation and treat autoimmune diseases are in various phases of clinical trials, understanding fully the circadian properties of the complement system, and the reciprocal regulation by these two systems could greatly improve patient treatment in the long term.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rick A. Wetsel
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
97
|
Timmons GA, O'Siorain JR, Kennedy OD, Curtis AM, Early JO. Innate Rhythms: Clocks at the Center of Monocyte and Macrophage Function. Front Immunol 2020; 11:1743. [PMID: 32849621 PMCID: PMC7417365 DOI: 10.3389/fimmu.2020.01743] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
The circadian cycle allows organisms to track external time of day and predict/respond to changes in the external environment. In higher order organisms, circadian rhythmicity is a central feature of innate and adaptive immunity. We focus on the role of the molecular clock and circadian rhythmicity specifically in monocytes and macrophages of the innate immune system. These cells display rhythmicity in their internal functions, such as metabolism and inflammatory mediator production as well as their external functions in pathogen sensing, phagocytosis, and migration. These inflammatory mediators are of clinical interest as many are therapeutic targets in inflammatory disease such as cardiovascular disease, diabetes, and rheumatoid arthritis. Moreover, circadian rhythm disruption is closely linked with increased prevalence of these conditions. Therefore, understanding the mechanisms by which circadian disruption affects monocyte/macrophage function will provide insights into novel therapeutic opportunities for these chronic inflammatory diseases.
Collapse
Affiliation(s)
- George A Timmons
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James R O'Siorain
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oran D Kennedy
- Department of Anatomy and Regenerative Medicine and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James O Early
- Department of Anatomy and Regenerative Medicine and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
98
|
Zhou W, Sonnenberg GF. Activation and Suppression of Group 3 Innate Lymphoid Cells in the Gut. Trends Immunol 2020; 41:721-733. [PMID: 32646594 PMCID: PMC7395873 DOI: 10.1016/j.it.2020.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) have emerged as master regulators of intestinal health and tissue homeostasis in mammals. Through a diverse array of cytokines and cellular interactions, ILC3s crucially orchestrate lymphoid organogenesis, promote tissue protection or regeneration, facilitate antimicrobial responses, and directly regulate adaptive immunity. Further, translational studies have found that ILC3 responses are altered in the intestine of defined patient populations with chronic infectious, inflammatory, or metabolic diseases. Therefore, it is essential to broadly understand the signals that activate, suppress, or fine-tune ILC3s in the gut. Here, we discuss recent exciting advances in this field, integrate them into our current understanding of ILC3 biology, and highlight fundamental gaps in knowledge that require additional investigation.
Collapse
Affiliation(s)
- Wenqing Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
99
|
Diallo AB, Coiffard B, Leone M, Mezouar S, Mege JL. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front Immunol 2020; 11:1457. [PMID: 32733482 PMCID: PMC7363845 DOI: 10.3389/fimmu.2020.01457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
The host defense against pathogens varies among individuals. Among the factors influencing host response, those associated with circadian disruptions are emerging. These latter depend on molecular clocks, which control the two partners of host defense: microbes and immune system. There is some evidence that infections are closely related to circadian rhythms in terms of susceptibility, clinical presentation and severity. In this review, we overview what is known about circadian rhythms in infectious diseases and update the knowledge about circadian rhythms in immune system, pathogens and vectors. This heuristic approach opens a new fascinating field of time-based personalized treatment of infected patients.
Collapse
Affiliation(s)
- Aïssatou Bailo Diallo
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, Hôpital Nord, Médecine Intensive-Réanimation, Marseille, France
| | - Marc Leone
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, CHU Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,AP-HM, UF Immunologie, Marseille, France
| |
Collapse
|
100
|
Hahn J, Günter M, Schuhmacher J, Bieber K, Pöschel S, Schütz M, Engelhardt B, Oster H, Sina C, Lange T, Autenrieth SE. Sleep enhances numbers and function of monocytes and improves bacterial infection outcome in mice. Brain Behav Immun 2020; 87:329-338. [PMID: 31904407 DOI: 10.1016/j.bbi.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 01/21/2023] Open
Abstract
Sleep strongly impacts both humoral and cellular immunity; however, its acute effects on the innate immune defense against pathogens are unclear. Here, we elucidated in mice whether sleep affects the numbers and functions of innate immune cells and their defense against systemic bacterial infection. Sleep significantly increased numbers of classical monocytes in blood and spleen of mice that were allowed to sleep for six hours at the beginning of the normal resting phase compared to mice kept awake for the same time. The sleep-induced effect on classical monocytes was neither caused by alterations in corticosterone nor myelopoiesis, bone marrow egress or death of monocytes and did only partially involve Gαi-protein coupled receptors like chemokine receptor 2 (CCR2), but not the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) or lymphocyte function-associated antigen 1 (LFA-1). Notably, sleep suppressed the expression of the clock gene Arntl in splenic monocytes and the sleep-induced increase in circulating classical monocytes was abrogated in Arntl-deficient animals, indicating that sleep is a prerequisite for clock-gene driven rhythmic trafficking of classical monocytes. Sleep also enhanced the production of reactive oxygen species by monocytes and neutrophils. Moreover, sleep profoundly reduced bacterial load in blood and spleen of mice that were allowed to sleep before systemic bacterial infection and consequently increased survival upon infection. These data provide the first evidence that sleep enhances numbers and function of innate immune cells and therewith strengthens early defense against bacterial pathogens.
Collapse
Affiliation(s)
- Julia Hahn
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany
| | - Manina Günter
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany
| | - Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany; Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Simone Pöschel
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany; Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany
| | - Christian Sina
- Institute for Nutritional Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology & Clinical Immunology, University of Lübeck, 23562 Lübeck, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany; Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|