51
|
Abstract
Atherosclerotic cardiovascular disease is a major cause of morbidity and mortality in the Western world. Despite tremendous strides in understandings its pathogenesis, it still remains a challenge because of gaps in our understanding of its initiation, progression and complications leading to the clinical syndromes of angina, acute coronary syndrome, cerebrovascular disease and peripheral vascular disease. Recent studies have provided impetus on the shift from models of atherosclerosis based on cellular interactions to models where the important role of extracellular matrix is recognized. Proteoglycans, especially those belonging to the small leucine-rich proteoglycan family of which decorin is a representative example, have come under close scrutiny for their role in atherogenesis. There is evidence from in vitro and in vivo animal models as well as humans to suggest an important role of decorin in attenuating progression of atherosclerosis. Decorin distribution in different blood vessels has been shown to inversely correlate with the tendency to develop atherosclerosis. Decorin seems to interact closely with different cellular components of the plaque milieu, thereby suggesting its role in influencing atherogenesis at different steps. Here we review the current understanding of the role of decorin in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Singla
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
52
|
Arterial stiffness, pulse pressure, and cardiovascular disease—Is it possible to break the vicious circle? Atherosclerosis 2011; 218:263-71. [DOI: 10.1016/j.atherosclerosis.2011.04.039] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 01/02/2023]
|
53
|
Tan KT, Baildam AD, Juma A, Milner CM, Day AJ, Bayat A. Hyaluronan, TSG-6, and inter-α-inhibitor in periprosthetic breast capsules: reduced levels of free hyaluronan and TSG-6 expression in contracted capsules. Aesthet Surg J 2011; 31:47-55. [PMID: 21239672 PMCID: PMC3428900 DOI: 10.1177/1090820x10391778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The exact mechanism of capsular contracture (CC) is still unknown. The covalent modification of hyaluronan (HA) with the heavy chains (HC) of inter-α-inhibitor (IαI) has been identified as an important pathway in inflammation and tissue remodeling, where HC·HA formation is catalyzed by TSG-6 (the protein product of tumor necrosis factor stimulated gene-6). OBJECTIVE The authors quantitatively assess the correlation between severity of CC (measured by Baker grade) and expression of HA, TSG-6, and IαI (ie, the polypeptides HC1, HC2, and bikunin) in periprosthetic breast capsules. METHODS Immunofluorescent staining for HA, TSG-6, HC1, HC2, and bikunin was carried out on periprosthetic breast capsules (n = 7) of each Baker grade from four anatomical locations. Quantitative analysis was performed to identify differences in staining intensity. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to determine differences in TSG-6 gene expression levels. RESULTS Severity of contracture was associated with reduced staining for both free HA (Pearson correlation coefficient, r = -0.645, P < .001) and TSG-6 (r = -0.642, P = .002). RT-qPCR showed a significant negative correlation between severity of contracture and TSG-6 gene expression levels (r = -0.750, P = .001). CONCLUSIONS The negative correlation between TSG-6 expression levels and severity of CC suggests a possible protective role for TSG-6 in the context of CC formation, and this may have a clinically relevant role in prevention of breast CC.
Collapse
Affiliation(s)
- Kian T Tan
- National Institute for Health Research and Plastic & Reconstructive Surgery Research, University of Manchester, 131 Princess Street, Manchester, UK
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
C-peptide, historically considered a biologically inactive peptide, has been shown to exert insulin-independent biological effects on a number of cells proving itself as a bioactive peptide with anti-inflammatory properties. Type 1 diabetic patients typically lack C-peptide, and are at increased risk of developing both micro- and macrovascular complications, which account for significant morbidity and mortality in this population. Inflammatory mechanisms play a pivotal role in vascular disease. Inflammation and hyperglycemia are major components in the development of vascular dysfunction in type 1 diabetes. The anti-inflammatory properties of C-peptide discovered to date are at the level of the vascular endothelium, and vascular smooth muscle cells exposed to a variety of insults. Additionally, C-peptide has shown anti-inflammatory properties in models of endotoxic shock and type 1 diabetes-associated encephalopathy. Given the anti-inflammatory properties of C-peptide, one may speculate dual hormone replacement therapy with both insulin and C-peptide in patients with type 1 diabetes may be warranted in the future to decrease morbidity and mortality in this population.
Collapse
Affiliation(s)
- Jaime Haidet
- Division of Endocrinology, Metabolism, and Diabetes Mellitus, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
55
|
Armbruster C, Schneider M, Schumann S, Gamerdinger K, Cuevas M, Rausch S, Baaken G, Guttmann J. Characteristics of highly flexible PDMS membranes for long-term mechanostimulation of biological tissue. J Biomed Mater Res B Appl Biomater 2009; 91:700-705. [PMID: 19572293 DOI: 10.1002/jbm.b.31446] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Measurement of mechanical properties of soft biological tissue remains a challenging task in mechanobiology. Recently, we presented a bioreactor for simultaneous mechanostimulation and analysis of the mechanical properties of soft biological tissue samples. In this bioreactor, the sample is stretched via deflection of a flexible membrane. It was found that the use of highly compliant membranes increases accuracy of measurements. Here, we describe the production process and characteristics of thin and flexible membranes of polydimethylsiloxane (PDMS) designed to improve the signal-to-noise ratio of our bioreactor. By a spin-coating process, PDMS membranes were built by polymerization of a two component elastomer. The influence of resin components proportion, rotation duration, and speed of the spinning were related to the membrane mechanics. Membranes of 22 mm inner diameter and 33 to 36 microm thickness at homogeneous profiles were produced. Isolated rat diaphragms served as biological tissue samples. Mechanical properties of the membranes remained constant during 24 h of mechanostimulation. In contrast, time- and strain-dependent mechanical properties of the diaphragms were found.
Collapse
Affiliation(s)
- Caroline Armbruster
- Division for Experimental Anesthesiology, University Medical Center Freiburg, Baden-Württemberg, Germany
| | - Matthias Schneider
- Division for Experimental Anesthesiology, University Medical Center Freiburg, Baden-Württemberg, Germany
| | - Stefan Schumann
- Division for Experimental Anesthesiology, University Medical Center Freiburg, Baden-Württemberg, Germany
| | - Katharina Gamerdinger
- Division for Experimental Anesthesiology, University Medical Center Freiburg, Baden-Württemberg, Germany
| | - Maximiliano Cuevas
- Clinical Sensoring and Monitoring, Medical Theoretical Center, Dresden University of Technology, Saxony, Germany
| | - Sophie Rausch
- Institute for Computational Mechanics, Technische Universität München, Bavaria, Germany
| | - Gerhard Baaken
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Baden-Württemberg, Germany
| | - Josef Guttmann
- Division for Experimental Anesthesiology, University Medical Center Freiburg, Baden-Württemberg, Germany
| |
Collapse
|
56
|
Yang SNY, Osman N, Burch ML, Little PJ. Factors affecting proteoglycan synthesis and structure that modify the interaction with lipoproteins. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
57
|
Jankowski P, Bilo G, Kawecka-Jaszcz K. The pulsatile component of blood pressure – Its role in the pathogenesis of atherosclerosis. Blood Press 2009; 16:238-45. [PMID: 17852092 DOI: 10.1080/08037050701428166] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pulse pressure (PP) is traditionally believed to increase cardiovascular risk because of an increase in afterload leading to left ventricular hypertrophy. It has also been emphasized that low diastolic blood pressure, being in part responsible for high PP, leads to an impairment of myocardial perfusion with all its adverse consequences. More recently, however, a direct role of pulsatile blood pressure changes in the pathogenesis of atherosclerosis and its complications has become better known. Experimental studies indicate that there is a cause-and-effect type of relationship between the pulsatile component of blood pressure and atherosclerotic process. A significant relationship between the parameters of the pulsatile blood pressure component and the extent of coronary atherosclerosis was also demonstrated. Currently the presence of a bidirectional link between atherosclerosis and PP is commonly postulated, meaning that an increased PP may be both a cause and an effect of atherosclerosis. This may result in a vicious circle wherein the pulsatile blood pressure component induces/enhances the development of atherosclerosis, which in its turn reduces the arterial compliance and enhances pulse wave reflection, thereby leading to an increase in PP. Currently new drug classes are being investigated, which might reduce the pulsatile blood pressure component without changing mean blood pressure level. Their clinical usefulness should become known over the next few years.
Collapse
Affiliation(s)
- Piotr Jankowski
- I Department of Cardiology and Hypertension, Collegium Medicum Jagiellonian University, Kraków, Poland.
| | | | | |
Collapse
|
58
|
Abstract
An important factor in the transition from an open to a closed circulatory system was a change in vessel wall structure and composition that enabled the large arteries to store and release energy during the cardiac cycle. The component of the arterial wall in vertebrates that accounts for these properties is the elastic fiber network organized by medial smooth muscle. Beginning with the onset of pulsatile blood flow in the developing aorta, smooth muscle cells in the vessel wall produce a complex extracellular matrix (ECM) that will ultimately define the mechanical properties that are critical for proper function of the adult vascular system. This review discusses the structural ECM proteins in the vertebrate aortic wall and will explore how the choice of ECM components has changed through evolution as the cardiovascular system became more advanced and pulse pressure increased. By correlating vessel mechanics with physiological blood pressure across animal species and in mice with altered vessel compliance, we show that cardiac and vascular development are physiologically coupled, and we provide evidence for a universal elastic modulus that controls the parameters of ECM deposition in vessel wall development. We also discuss mechanical models that can be used to design better tissue-engineered vessels and to test the efficacy of clinical treatments.
Collapse
Affiliation(s)
- Jessica E Wagenseil
- Department of Biomedical Engineering, Saint Louis University, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
59
|
Zhu H, Ding Z, Piana RN, Gehrig TR, Friedman MH. Cataloguing the geometry of the human coronary arteries: a potential tool for predicting risk of coronary artery disease. Int J Cardiol 2009; 135:43-52. [PMID: 18597872 PMCID: PMC2759354 DOI: 10.1016/j.ijcard.2008.03.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/26/2008] [Accepted: 03/01/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND The non-uniform distribution of atherosclerosis in the human vasculature suggests that local fluid dynamics or wall mechanics may be involved in atherogenesis. Thus certain aspects of vascular geometry, which mediates both fluid dynamics and wall mechanics, might be risk factors for coronary atherosclerosis. Cataloguing the geometry of normal human coronary arteries and its variability is a first step toward identifying specific geometric features that increase vascular susceptibility to the disease. METHODS Images of angiographically normal coronary arteries, including 32 left anterior descending (LAD) and 35 right coronary arteries (RCA), were acquired by clinical biplane cineangiography from 52 patients. The vessel axes in end diastole were reconstructed and geometric parameters that included measures of curvature, torsion and tortuosity were quantified for the proximal, middle and distal segments of the arteries. RESULTS Statistical analysis shows that (1) in the LAD, curvature, torsion and tortuosity are generally highest in the distal portion, (2) in the RCA, these parameters are smallest in the middle segment, (3) the LAD exhibits significant higher torsion than the RCA (P < 0.005), and (4) >80% of the variability of coronary arterial geometry can be expressed in terms of two factors, one dominated by the curvature measures and tortuosity, and the other emphasizing the torsion parameters. CONCLUSIONS This study has comprehensively documented the normal arterial geometry of the LAD and RCA in end diastole. This information may be used to guide the identification of geometric features that might be atherogenic risk factors.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Biomedical Engineering, Duke University, USA
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University Medical Center, USA
| | - Robert N. Piana
- Cardiovascular Division, Vanderbilt University Medical Center, USA
| | - Thomas R. Gehrig
- Division of Cardiovascular Medicine, Duke University Medical Center, Durham, USA
| | | |
Collapse
|
60
|
Grover-Páez F, Zavalza-Gómez AB. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res Clin Pract 2009; 84:1-10. [PMID: 19185380 DOI: 10.1016/j.diabres.2008.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 09/03/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED The endothelium plays an integral role in the regulation of vascular tone, platelet activity, leukocyte adhesion, and thrombosis and is intimately involved in the development of atherosclerosis. Endothelial dysfunction has been observed in patients with established coronary artery disease or coronary risk factors, both in the coronary and peripheral vasculature. Therapeutic interventions with lipid-lowering drugs, ACE inhibitors, physical activity, and antioxidant agents have been shown to improve endothelial function in coronary and peripheral vessels. This systemic manifestation and improvement of endothelial function suggests that a common mechanism may contribute to endothelial dysfunction in the coronary and peripheral circulation. TARGET AUDIENCE Internist, Cardiologists, Family physicians. LEARNING OBJECTIVES After completion of this article, the reader should be able to define the participation of cardiovascular risk factors in the various complications associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Fernando Grover-Páez
- Division of Research, Hospital of Obstetrics and Gynecology at Western Medical National Center, Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico.
| | | |
Collapse
|
61
|
Gupta V, Tseng H, Lawrence BD, Jane Grande-Allen K. Effect of cyclic mechanical strain on glycosaminoglycan and proteoglycan synthesis by heart valve cells. Acta Biomater 2009; 5:531-40. [PMID: 19004676 DOI: 10.1016/j.actbio.2008.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
Heart valves are presumed to remodel their extracellular matrix upon application of mechanical strains. In this study, we investigated the effect of cyclic tensile strain on valvular interstitial cells' synthesis of glycosaminoglycans (GAGs) and proteoglycans (PGs), which are altered during myxomatous degeneration. Interstitial cells were isolated from mitral valve leaflets and chordate, and seeded separately within three-dimensional collagen gels. Cell-seeded collagen gels were then subjected to cyclic strains of 2%, 5% or 10% at 1.16 Hz for 48 h using a custom-built stretching device. The application of cyclic strains reduced the total GAGs retained within collagen gels in a magnitude-dependent manner for both leaflet and chordal cells. With increasing strain magnitude, however, secretion of total GAGs into the medium was reduced for leaflet cells and elevated for chordal cells. Retention of 4-sulfated GAGs increased with increasing strain magnitude for both cell types; for the chordal samples, retention of 6-sulfated GAGs was reduced at higher strain magnitudes. Compared to statically constrained or unconstrained conditions, the application of cyclic strain reduced the secretion of 6-sulfated GAGs by both cell types, and elevated secretion of 4-sulfated GAGs by leaflet cells only. Retention of the PG biglycan and secretion of the PG decorin was significantly reduced at 10% strain compared to 2% strain. In addition, there were numerous differences in the strain-dependent retention and secretion of GAGs and PGS within the leaflet and chordal groups. These results demonstrate that GAG and PG synthesis by VICs is regulated by cyclic stretching conditions.
Collapse
|
62
|
Central blood pressure and hypertension: role in cardiovascular risk assessment. Clin Sci (Lond) 2009; 116:273-82. [DOI: 10.1042/cs20080072] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the differences between central and peripheral BP (blood pressure) have been known for decades, the consequences of decision-making based on peripheral rather than central BP have only recently been recognized. The influence of cyclic stretch (owing to cyclic changes in BP) on the aortic wall in atherosclerosis has been documented at every stage of its development. Apart from mediating atherosclerosis progression and plaque instability, the pulsatile component of BP is the main mechanism leading to plaque rupture and, consequently, to acute coronary syndromes and other vascular complications. The principal goal of the present review is to evaluate the role of central BP measurements, principally systolic and pulse pressure, for cardiovascular risk assessment. Recent findings suggest that the pulsatile component of BP (when represented by central pulse pressure or central pulsatility) is one of the most important factors determining event-free survival. Results of several prospective studies (using both invasive and non-invasive measurements of central BP) indicate not only an independent predictive value of central pulse pressure, but also its advantage over brachial pressure. Recent evidence suggests that some antihypertensive drugs can influence central BP more consistently when compared with peripheral BP. This is especially true for agents acting on the renin–angiotensin system. Nevertheless, large prospective studies aiming at the comparison of the predictive value of peripheral and central BP in the general population, as well as studies comparing the effectiveness of hypertension management based on peripheral compared with central BP measurements, are needed before algorithms based on central BP can be recommended for clinical practice.
Collapse
|
63
|
Wanner IB, Deik A, Torres M, Rosendahl A, Neary JT, Lemmon VP, Bixby JL. A new in vitro model of the glial scar inhibits axon growth. Glia 2008; 56:1691-709. [PMID: 18618667 PMCID: PMC3161731 DOI: 10.1002/glia.20721] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes respond to central nervous system (CNS) injury with reactive astrogliosis and participate in the formation of the glial scar, an inhibitory barrier for axonal regeneration. Little is known about the injury-induced mechanisms underlying astrocyte reactivity and subsequent development of an axon-inhibitory scar. We combined two key aspects of CNS injury, mechanical trauma and co-culture with meningeal cells, to produce an in vitro model of the scar from cultures of highly differentiated astrocytes. Our model displayed widespread morphological signs of astrocyte reactivity, increases in expression of glial fibrillary acidic protein (GFAP), and accumulation of GFAP in astrocytic processes. Expression levels of scar-associated markers, phosphacan, neurocan, and tenascins, were also increased. Importantly, neurite growth from various CNS neuronal populations was significantly reduced when neurons were seeded on the scar-like cultures, compared with growth on cultures of mature astrocytes. Quantification of neurite growth parameters on the scar model demonstrated significant reductions in neuronal adhesion and neurite lengths. Interestingly, neurite outgrowth of postnatal neurons was reduced to a greater extent than that of embryonic neurons, and outgrowth inhibition varied among neuronal populations. Scar-like reactive sites and neurite-inhibitory patches were found throughout these cultures, creating a patchwork of growth-inhibitory areas mimicking a CNS injury site. Thus, our model showed relevant aspects of scar formation and produced widespread inhibition of axonal regeneration; it should be useful both for examining mechanisms underlying scar formation and to assess various treatments for their potential to improve regeneration after CNS injury. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ina B Wanner
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
64
|
Milewicz DM, Guo DC, Tran-Fadulu V, Lafont AL, Papke CL, Inamoto S, Kwartler CS, Pannu H. Genetic Basis of Thoracic Aortic Aneurysms and Dissections: Focus on Smooth Muscle Cell Contractile Dysfunction. Annu Rev Genomics Hum Genet 2008; 9:283-302. [DOI: 10.1146/annurev.genom.8.080706.092303] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dianna M. Milewicz
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| | - Dong-Chuan Guo
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| | - Van Tran-Fadulu
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| | - Andrea L. Lafont
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| | - Christina L. Papke
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| | - Sakiko Inamoto
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| | - Carrie S. Kwartler
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| | - Hariyadarshi Pannu
- Department of Internal Medicine, University of Texas, Houston, Texas 77030;
| |
Collapse
|
65
|
Adiponectin as an inducer of decorin synthesis in cultured vascular smooth muscle cells. Life Sci 2008; 83:447-52. [DOI: 10.1016/j.lfs.2008.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 11/21/2022]
|
66
|
Gupta V, Werdenberg JA, Lawrence BD, Mendez JS, Stephens EH, Grande-Allen KJ. Reversible secretion of glycosaminoglycans and proteoglycans by cyclically stretched valvular cells in 3D culture. Ann Biomed Eng 2008; 36:1092-103. [PMID: 18425579 PMCID: PMC10593145 DOI: 10.1007/s10439-008-9501-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 04/09/2008] [Indexed: 12/11/2022]
Abstract
Mitral valve leaflets and chordae have been shown to contain different amounts and proportions of glycosaminoglycans (GAGs) and proteoglycans (PGs) corresponding to in vivo normal or diseased cyclic strain patterns. To understand the effect of cyclic strains on GAG/PG synthesis by valvular interstitial cells (VICs) isolated from valve leaflet and chordae separately, porcine VICs were seeded within collagen gels and alternately stretched or relaxed for 24 h periods for one week in a custom-designed tissue engineering bioreactor. We found cyclic-stretch-induced upregulation of total GAGs and of individual GAG classes secreted into the culture medium. Leaflet cells showed a delayed response to stretching compared to chordal cells, but altered the proportions of various GAG classes they secreted during the culture duration. Decorin and biglycan PGs were slightly responsive to stretch. We demonstrated that mechanical stretch and relaxation conditions reversibly regulate GAG and PG production in a novel 3D model of valve tissues. This is the first study using cyclic strains to modulate GAG/PG synthesis by valve cells and our results may have implications for the remodeling of the mitral valve as well as other tissues.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Bioengineering, Rice University, Houston, Texas, USA 77251-1892
| | | | - Brian D. Lawrence
- Department of Biomedical Engineering, University of Toledo, Toledo, OH, USA 43606-3390
| | - Joe S. Mendez
- Department of Bioengineering, Rice University, Houston, Texas, USA 77251-1892
| | | | | |
Collapse
|
67
|
Ferdous Z, Lazaro LD, Iozzo RV, Höök M, Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices. Biomaterials 2008; 29:2740-8. [PMID: 18394699 PMCID: PMC2391259 DOI: 10.1016/j.biomaterials.2008.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/18/2008] [Indexed: 11/15/2022]
Abstract
Cyclic strain evokes the expression of the small leucine-rich proteoglycans decorin and biglycan in 2D cultures and native tissues. However, strain-dependent expression of these proteoglycans has not been demonstrated in engineered tissues. We hypothesized that the absence of decorin may compromise the effect of cyclic strain on the development of engineered tissues. Thus, we investigated the contribution of decorin to tissue organization in cyclically strained collagen gels relative to statically cultured controls. Decorin null (Dcn(-/-)) and wild-type murine embryonic fibroblasts were seeded within collagen gels and mechanically conditioned using a Flexcell Tissue Train culture system. After 8 days, the cyclically strained samples demonstrated greater collagen fibril density, proteoglycan content, and material strength for both cell types. On the other hand, increases in cell density, collagen fibril diameter, and biglycan expression were observed only in the cyclically strained gels seeded with Dcn(-/-) cells. Although cyclic strain caused an elevation in proteoglycan expression regardless of cell type, the type of proteoglycan differed between groups: the Dcn(-/-) cell-seeded gels produced an excess of biglycan not found in the wild-type controls. These results suggest that decorin-mediated tissue organization is strongly dependent upon tissue type and mechanical environment.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
68
|
Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 2008; 79:14-23. [DOI: 10.1093/cvr/cvn099] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
69
|
Chapman MJ, Sposito AC. Hypertension and dyslipidaemia in obesity and insulin resistance: Pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacol Ther 2008; 117:354-73. [DOI: 10.1016/j.pharmthera.2007.10.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 01/12/2023]
|
70
|
Gupta V, Werdenberg JA, Mendez JS, Jane Grande-Allen K. Influence of strain on proteoglycan synthesis by valvular interstitial cells in three-dimensional culture. Acta Biomater 2008; 4:88-96. [PMID: 17928282 DOI: 10.1016/j.actbio.2007.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 11/29/2022]
Abstract
Differently loaded regions of the mitral valve contain distinct amounts and types of proteoglycans (PGs); these PG profiles are altered in abnormal loading and disease conditions. We developed an in vitro three-dimensional model to analyze PGs secreted by valvular interstitial cells (VICs) isolated from distinct regions of porcine mitral valves (leaflet or chordae) and subjected to either biaxial or uniaxial mechanical constraints. In addition, the PGs, DNA and collagen content of the collagen gels was monitored over time. All three PGs previously found in heart valves (decorin, biglycan and versican) were present in the collagen gels and the conditioned medium. Compared to unconstrained gels, the constrained collagen gels (whether biaxially or uniaxially loaded) retained more decorin and biglycan but less versican. However, the conditioned medium from constrained collagen gels contained higher amounts of all three PGs than did medium from unconstrained gels. Constrained collagen gels containing leaflet cells retained more decorin and biglycan than did those containing chordal cells. DNA content was maintained early in the culture period but was reduced by 55-80% after 7 days, whereas PG synthesis increased over time. At the end of the culture period, the cell density was highest in the biaxial region of gels seeded with leaflet cells. In contrast, collagen content in both constrained and unconstrained gels remained consistent over culture duration. This study provides valuable information about the role of applied loading on proteoglycan segregation, which should aid in tissue engineering applications and for understanding valve biology and pathology.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Bioengineering, Rice University, Houston, TX 77251-1892, USA
| | | | | | | |
Collapse
|
71
|
Evanko SP, Tammi MI, Tammi RH, Wight TN. Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev 2007; 59:1351-65. [PMID: 17804111 PMCID: PMC2174428 DOI: 10.1016/j.addr.2007.08.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/25/2007] [Accepted: 08/01/2007] [Indexed: 12/12/2022]
Abstract
Hyaluronan is a multifunctional glycosaminoglycan that forms the structural basis of the pericellular matrix. Hyaluronan is extruded directly through the plasma membrane by one of three hyaluronan synthases and anchored to the cell surface by the synthase or cell surface receptors such as CD44 or RHAMM. Aggregating proteoglycans and other hyaluronan-binding proteins, contribute to the material and biological properties of the matrix and regulate cell and tissue function. The pericellular matrix plays multiple complex roles in cell adhesion/de-adhesion, and cell shape changes associated with proliferation and locomotion. Time-lapse studies show that pericellular matrix formation facilitates cell detachment and mitotic cell rounding. Hyaluronan crosslinking occurs through various proteins, such as tenascin, TSG-6, inter-alpha-trypsin inhibitor, pentraxin and TSP-1. This creates higher order levels of structured hyaluronan that may regulate inflammation and other biological processes. Microvillous or filopodial membrane protrusions are created by active hyaluronan synthesis, and form the scaffold of hyaluronan coats in certain cells. The importance of the pericellular matrix in cellular mechanotransduction and the response to mechanical strain are also discussed.
Collapse
Affiliation(s)
- Stephen P. Evanko
- The Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9 Avenue, Seattle, WA 98101, USA
| | - Markku I. Tammi
- Department of Anatomy, Kuopio University, FIN-70211 Kuopio, Finland
| | - Raija H. Tammi
- Department of Anatomy, Kuopio University, FIN-70211 Kuopio, Finland
| | - Thomas N. Wight
- The Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9 Avenue, Seattle, WA 98101, USA
| |
Collapse
|
72
|
Ateshian GA. On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 2007; 6:423-45. [PMID: 17206407 PMCID: PMC3834581 DOI: 10.1007/s10237-006-0070-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 12/06/2006] [Indexed: 11/30/2022]
Abstract
Mixture theory, which can combine continuum theories for the motion and deformation of solids and fluids with general principles of chemistry, is well suited for modeling the complex responses of biological tissues, including tissue growth and remodeling, tissue engineering, mechanobiology of cells and a variety of other active processes. A comprehensive presentation of the equations of reactive mixtures of charged solid and fluid constituents is lacking in the biomechanics literature. This study provides the conservation laws and entropy inequality, as well as interface jump conditions, for reactive mixtures consisting of a constrained solid mixture and multiple fluid constituents. The constituents are intrinsically incompressible and may carry an electrical charge. The interface jump condition on the mass flux of individual constituents is shown to define a surface growth equation, which predicts deposition or removal of material points from the solid matrix, complementing the description of volume growth described by the conservation of mass. A formulation is proposed for the reference configuration of a body whose material point set varies with time. State variables are defined which can account for solid matrix volume growth and remodeling. Constitutive constraints are provided on the stresses and momentum supplies of the various constituents, as well as the interface jump conditions for the electrochemical potential of the fluids. Simplifications appropriate for biological tissues are also proposed, which help reduce the governing equations into a more practical format. It is shown that explicit mechanisms of growth-induced residual stresses can be predicted in this framework.
Collapse
Affiliation(s)
- Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, 500 West 120th St., MC4703, 220 S.W. Mudd, New York, NY 10027, USA.
| |
Collapse
|
73
|
Ferdous Z, Grande-Allen KJ. Utility and control of proteoglycans in tissue engineering. ACTA ACUST UNITED AC 2007; 13:1893-904. [PMID: 17518731 DOI: 10.1089/ten.2006.0056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review addresses various methods of integrating proteoglycans (PGs) into the design of engineered tissues and provides insight for designing tissue-engineered disease models that leverage current knowledge of PG biology. Even though PGs show immense possibilities in tissue-engineering applications, they have seldom been used to their full potential. The most common tissue-engineering application of PGs has been in scaffolds (matrigels and collagen-chondroitin sulfate matrices), in which PGs or their glycosaminoglycan (GAG) chains are incorporated into the scaffold to promote cell growth, tissue remodeling, and intracellular signaling. In addition, many studies have reported the total amount of PGs synthesized within engineered tissues but have not delineated which specific PGs or GAG classes are involved in engineered tissue development. In native tissues, various PGs are dynamically and differentially regulated to achieve specific biophysical and biological functions, such as compressibility and transparency. Therefore, the targeted modulation of specific PGs (via exogenous addition, endogenous stimulation with growth factors, or mechanical stimulation) may help engineered tissues to achieve native tissue properties. The PG composition of engineered tissues could also be modified to achieve disease models in vitro and thus provide a way to study the effect of external agents on PG-related disease mechanisms.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Bioengineering, Rice University, Houston, Texas 77251-1892, USA
| | | |
Collapse
|
74
|
Kolodgie FD, Burke AP, Nakazawa G, Virmani R. Is Pathologic Intimal Thickening the Key to Understanding Early Plaque Progression in Human Atherosclerotic Disease? Arterioscler Thromb Vasc Biol 2007; 27:986-9. [PMID: 17442894 DOI: 10.1161/atvbaha.0000258865.44774.41] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 2007; 27:1159-65. [PMID: 17303781 DOI: 10.1161/atvbaha.106.134080] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The present study was designed to clarify the morphological features of early human atherosclerosis and to determine whether specific extracellular matrix proteoglycans play a role in early atherogenesis. METHODS AND RESULTS Step and serial sections were obtained from right coronary arteries with no or early atherosclerosis. Atherosclerosis was classified into 4 grades according to the amount of lipid deposition. Coronary arteries with Grade 0 showed diffuse intimal thickening (DIT) with no lipid deposits. The extracellular matrix proteoglycans, biglycan and decorin, were localized in the outer layer of DIT. Most cases of Grade 1 and Grade 2 exhibited fatty streaks with extracellular lipids colocalizing with biglycan and decorin in the outer layer of the intima. As lipid grades increased, macrophages increased in number and were present in the deeper layers. Most cases of Grade 3 exhibited pathologic intimal thickening (PIT) with extracellular lipids underneath a layer of foam cell macrophages. CONCLUSIONS In early human coronary atherosclerosis, fatty streaks develop via extracellular deposition of lipids associated with specific types of proteoglycans in the outer layer of preexisting DIT. As the amount of the lipid increases in fatty streaks, macrophages infiltrate toward the deposited lipid to form PIT with foam cells.
Collapse
|
76
|
Burke AP, Kolodgie FD, Virmani R. Coronary Disease in Women. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
77
|
Kalea AZ, Lamari FN, Theocharis AD, Schuschke DA, Karamanos NK, Klimis-Zacas DJ. Dietary manganese affects the concentration, composition and sulfation pattern of heparan sulfate glycosaminoglycans in Sprague-Dawley rat aorta. Biometals 2006; 19:535-46. [PMID: 16937260 DOI: 10.1007/s10534-005-5893-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 12/13/2005] [Indexed: 11/30/2022]
Abstract
We examined the effect of dietary Mn on the composition and structure of heparan sulfate (HS) glycosaminoglycans (GAGs) of rat aorta. Animals were randomly assigned to either a Mn deficient (MnD), adequate (MnA) or supplemented (MnS) diet (Mn<1, 10-15 and 45-50 ppm, respectively). After 15 weeks, aortic tissue GAGs were isolated with papain digestion, alkaline borohydride treatment and anion-exchange chromatography. Cellulose acetate electrophoresis and treatment of the fractions with specific lyases revealed the presence of three GAG populations, i.e. hyaluronan (HA), heparan sulfate (HS) and galactosaminoglycans (GalAGs). Disaccharide composition of the HS fractions was determined by HPCE following treatment with heparin lyases I, II and III. In MnS aortas we observed increased concentration of total GalAGs and decreased concentration of HS and HA, when compared to MnA aortas. Aortas from MnD and MnA rats appeared to have similar distribution of individual GAGs. Heparan sulfate chains of MnS aortas contained higher (41%) concentration of non-sulfated units compared to MnA ones. Variable amounts of trisulfated and disulfated units were found only in MnD and MnA groups but not in MnS. Our results demonstrate that HS biosynthesis in the rat aorta undergoes marked structural modifications that depend upon dietary Mn intake. The reduced expression and undersulfation of HSPGs with Mn supplementation might indicate a reduced ability of vascular cells to interact with biologically active molecules such as growth factors. Alterations in cell-membrane binding ability to a variety of extracellular ligands might affect signal-transduction pathways and arterial functional properties.
Collapse
Affiliation(s)
- Anastasia Z Kalea
- Department of Food Science and Human Nutrition, University of Maine, Orono, 04469, USA
| | | | | | | | | | | |
Collapse
|
78
|
Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic Drift in Human Tenocyte Culture. ACTA ACUST UNITED AC 2006; 12:1843-9. [PMID: 16889514 DOI: 10.1089/ten.2006.12.1843] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tendon ruptures are increasingly common, repair can be difficult, and healing is poorly understood. Tissue engineering approaches often require expansion of cell numbers to populate a construct, and maintenance of cell phenotype is essential for tissue regeneration. Here, we characterize the phenotype of human Achilles tenocytes and assess how this is affected by passaging. Tenocytes, isolated from tendon samples from 6 patients receiving surgery for rupture of the Achilles tendon, were passaged 8 times. Proliferation rates and cell morphology were recorded at passages 1, 4, and 8. Total collagen, the ratio of collagen types I and III, and decorin were used as indicators of matrix formation, and expression of the integrin beta1 subunit as a marker of cell-matrix interactions. With increasing passage number, cells became more rounded, were more widely spaced at confluence, and confluent cell density declined from 18,700/cm2 to 16,100/cm2 ( p = 0.009). No change to total cell layer collagen was observed but the ratio of type III to type I collagen increased from 0.60 at passage 1 to 0.89 at passage 8 ( p < 0.001). Decorin expression significantly decreased with passage number, from 22.9 +/- 3.1 ng/ng of DNA at passage 1, to 9.1 +/- 1.8 ng/ng of DNA at passage 8 ( p < 0.001). Integrin expression did not change. We conclude that the phenotype of tenocytes in culture rapidly drifts with progressive passage.
Collapse
Affiliation(s)
- L Yao
- Department of Orthopaedic Surgery, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | |
Collapse
|
79
|
Yao L, Bestwick C, Bestwick L, Maffulli N, Aspden R. Phenotypic Drift in Human Tenocyte Culture. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/ten.2006.12.ft-90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
80
|
Cluff AH, Byström B, Klimaviciute A, Dahlqvist C, Cebers G, Malmström A, Ekman-Ordeberg G. Prolonged labour associated with lower expression of syndecan 3 and connexin 43 in human uterine tissue. Reprod Biol Endocrinol 2006; 4:24. [PMID: 16674815 PMCID: PMC1475867 DOI: 10.1186/1477-7827-4-24] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 05/04/2006] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Prolonged labour is associated with greater morbidity and mortality for mother and child. Connexin 43 is a major myometrial gap junction protein found in human myometrium. Syndecan 3 seems to prevail in the human uterus among heparan sulphate proteoglycans, showing the most significant increase during labour. The aims of the present study were to investigate syndecan 3 and connexin 43 mRNA expressions and protein distributions in human uterine tissue during normal and prolonged labour. METHODS Uterine isthmic biopsies were collected from non-pregnant (n = 7), term pregnant women not in labour (n = 14), in normal labour (n = 7) and in prolonged labour (n = 7). mRNA levels of syndecan 3 and connexin 43 were determined by real time RT-PCR. The localization and expression were demonstrated by immunohistochemistry and confocal microscopy. RESULTS In women with prolonged labour, the mRNA expressions of syndecan 3 and Connexin 43 were considerably lower than the expression level at normal labour (p < 0.05). In term-pregnant tissue, the expression of syndecan 3 and connexin 43 did not differ significantly compared to non-pregnant and normal labour. The immunoreactivity of syndecan 3 was strong at normal labour, in contrast to prolonged labour, where both a weaker expression and an irregular distribution were detected. The immunoreactivity of connexin 43 increased until term and further stronger staining occurred at normal labour. At prolonged labour, the immunoreactivity was weaker and more unevenly distributed. At labour, a co-localization of syndecan 3 and connexin 43 could be demonstrated in the smooth muscle by confocal microscopy. CONCLUSION The high expression of syndecan 3 and connexin 43 and their co-localization to the smooth muscle bundles during normal labour, together with the significant reduction in prolonged labour, may indicate a role for these proteins in the co-ordination of myometrial contractility.
Collapse
Affiliation(s)
- Ann Hjelm Cluff
- Department of Woman and Child Health, Division for Obstetrics and Gynaecology, Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| | - Birgitta Byström
- Department of Woman and Child Health, Division for Obstetrics and Gynaecology, Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| | - Aurelija Klimaviciute
- Department of Woman and Child Health, Division for Obstetrics and Gynaecology, Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| | - Camilla Dahlqvist
- Department of Experimental Medical Science, C13 BMC, Lund University, S-221 84 Lund, Sweden
| | - Gvido Cebers
- Department of Clinical Neuroscience, Division of Drug Dependent Research, Karolinska Institute, S-171 76 Stockholm, Sweden
| | - Anders Malmström
- Department of Experimental Medical Science, C13 BMC, Lund University, S-221 84 Lund, Sweden
| | - Gunvor Ekman-Ordeberg
- Department of Woman and Child Health, Division for Obstetrics and Gynaecology, Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| |
Collapse
|
81
|
Le Bellego F, Plante S, Chakir J, Hamid Q, Ludwig MS. Differences in MAP kinase phosphorylation in response to mechanical strain in asthmatic fibroblasts. Respir Res 2006; 7:68. [PMID: 16643666 PMCID: PMC1459148 DOI: 10.1186/1465-9921-7-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 04/27/2006] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mechanical strain alters protein expression. It results in phosphorylation of MAP kinases and up-regulation of extracellular matrix proteins. We investigated whether phosphorylation of MAP kinase family members was increased in response to mechanical strain in fibroblasts from asthmatic patients (AF) and normal controls (NF), and whether phosphorylation of these signaling molecules would be different in the two cell populations. METHODS Fibroblasts were obtained from mild, atopic asthmatics and non-atopic volunteers using endobronchial biopsy. Cells were grown on flexible, collagen I-coated membranes, and subjected to mechanical strain (Flexercell). MAP kinase phosphorylation was measured at baseline, and during one hour of strain. We also examined the effect of strain on proteoglycan production. RESULTS At baseline, there was increased phosphorylation of ERK1/2 and p38, and decreased phosphorylation of JNK in AF vs NF. During strain in NF, p38 phosphorylation was increased. Conversely in AF, strain resulted in an increase in JNK phosphorylation, had no effect on phosphorylation of p38, and resulted in a decrease in ERK1/2 phosphorylation. There was a significant increase in versican protein production after 24 h strain in both AF and NF. JNK inhibition reversed the strain-induced increase in versican in NF, but had no effect in AF. CONCLUSION These results show that there are phenotypic differences in MAP kinase phosphorylation in AF vs NF, and that different signaling pathways are involved in transducing mechanical stimuli in these two populations of cells.
Collapse
Affiliation(s)
- Frédérique Le Bellego
- Meakins-Christie Laboratories, McGill University Hospital Center, Montreal, Quebec, Canada
| | - Sophie Plante
- Centre de Recherche, Hôpital Laval – Institut Universitaire de Cardiologie et de Pneumologie, Sainte-Foy, Quebec, Canada
| | - Jamila Chakir
- Centre de Recherche, Hôpital Laval – Institut Universitaire de Cardiologie et de Pneumologie, Sainte-Foy, Quebec, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories, McGill University Hospital Center, Montreal, Quebec, Canada
| | - Mara S Ludwig
- Meakins-Christie Laboratories, McGill University Hospital Center, Montreal, Quebec, Canada
| |
Collapse
|
82
|
Kaperonis EA, Liapis CD, Kakisis JD, Dimitroulis D, Papavassiliou VG. Inflammation and Atherosclerosis. Eur J Vasc Endovasc Surg 2006; 31:386-93. [PMID: 16359887 DOI: 10.1016/j.ejvs.2005.11.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 11/02/2005] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this article is to discuss the role of inflammation in atherosclerosis. SUMMARY An initial chemical, mechanical or immunological insult induces endothelial dysfunction. This triggers a cascade of inflammatory reactions, in which monocytes, macrophages, T lymphocytes and vascular smooth muscle cells participate. Leukocyte adhesion molecules, cytokines, growth factors and metalloproteinases participate in all stages of atherogenesis. Almost all of the traditional risk factors for atherosclerosis are associated with and participate in the inflammatory process. Many infectious agents, mainly Chlamydia pneumoniae, have been proposed as potential triggers of the cascade. The immune system has been implicated in plaque formation, through the activation of cellular and humoral immunity against innate or microbial heat shock protein 60. Methods of detection of systemic or local plaque inflammation have been developed and research is being conducted on the potential use of anti-inflammatory and antibiotic drugs in atherosclerosis.
Collapse
Affiliation(s)
- E A Kaperonis
- Second Department of Propedeutic Surgery, Laiko Hospital, Athens University Medical School, 85 G. Zografou Str., 15772 Athens, Greece.
| | | | | | | | | |
Collapse
|
83
|
Wang JHC, Thampatty BP. An introductory review of cell mechanobiology. Biomech Model Mechanobiol 2006; 5:1-16. [PMID: 16489478 DOI: 10.1007/s10237-005-0012-z] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 12/08/2005] [Indexed: 11/30/2022]
Abstract
Mechanical loads induce changes in the structure, composition, and function of living tissues. Cells in tissues are responsible for these changes, which cause physiological or pathological alterations in the extracellular matrix (ECM). This article provides an introductory review of the mechanobiology of load-sensitive cells in vivo, which include fibroblasts, chondrocytes, osteoblasts, endothelial cells, and smooth muscle cells. Many studies have shown that mechanical loads affect diverse cellular functions, such as cell proliferation, ECM gene and protein expression, and the production of soluble factors. Major cellular components involved in the mechanotransduction mechanisms include the cytoskeleton, integrins, G proteins, receptor tyrosine kinases, mitogen-activated protein kinases, and stretch-activated ion channels. Future research in the area of cell mechanobiology will require novel experimental and theoretical methodologies to determine the type and magnitude of the forces experienced at the cellular and sub-cellular levels and to identify the force sensors/receptors that initiate the cascade of cellular and molecular events.
Collapse
Affiliation(s)
- J H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, 210 Lothrop St. BST, E1640, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
84
|
Abstract
Although the need for a functional arterial replacement is clear, the lower blood flow velocities of small-diameter arteries like the coronary artery have led to the failure of synthetic materials that are successful for large-diameter grafts. Although autologous vessels remain the standard for small diameter grafts, many patients do not have a vessel suitable for use because of vascular disease, amputation, or previous harvest. As a result, tissue engineering has emerged as a promising approach to address the shortcomings of current therapies. Investigators have explored the use of arterial tissue cells or differentiated stem cells combined with various types of natural and synthetic scaffolds to make tubular constructs and subject them to chemical and/or mechanical stimulation in an attempt to develop a functional small-diameter arterial replacement graft with varying degrees of success. Here, we review the progress in all these major facets of the field.
Collapse
Affiliation(s)
- Brett C Isenberg
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
85
|
Chen B, Wen Y, Zhang Z, Guo Y, Warrington JA, Polan ML. Microarray analysis of differentially expressed genes in vaginal tissues from women with stress urinary incontinence compared with asymptomatic women. Hum Reprod 2006; 21:22-9. [PMID: 16126751 DOI: 10.1093/humrep/dei276] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The pathophysiology of pelvic floor dysfunction resulting in stress urinary incontinence (SUI) in women is complex. Evidence suggests that there is also a genetic predisposition towards SUI. We sought to identify differentially expressed genes involved in extracellular matrix (ECM) metabolism in vaginal tissues from women with SUI in the secretory phase of menses compared with asymptomatic women. METHODS Tissue samples were taken from the periurethral vaginal wall of five pairs of premenopausal, age-matched SUI and continent women and subjected to microarray analysis using the GeneChip Human Genome U133 oligonucleotide chip set. RESULTS Extensive statistical analyses generated a list of 79 differentially expressed genes. Elafin, keratin 16, collagen type XVII and plakophilin 1 were consistently identified as up-regulated ECM genes. Elafin, a serine protease inhibitor involved in the elastin degradation pathway and wound healing, was expressed in pelvic fibroblasts and confirmed by Western blot, quantitative competitive PCR and immunofluorescence cell staining. CONCLUSIONS Genes involved in elastin metabolism were differentially expressed in vaginal tissue from women with SUI, suggesting that elastin remodelling may be important in the molecular aetiology of SUI.
Collapse
Affiliation(s)
- Bertha Chen
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Götting C, Hendig D, Adam A, Schön S, Schulz V, Szliska C, Kuhn J, Kleesiek K. Elevated xylosyltransferase I activities in pseudoxanthoma elasticum (PXE) patients as a marker of stimulated proteoglycan biosynthesis. J Mol Med (Berl) 2005; 83:984-92. [PMID: 16133423 DOI: 10.1007/s00109-005-0693-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a hereditary disorder of the connective tissue characterized by extracellular matrix alterations with elastin fragmentation and excessive proteoglycan deposition. Xylosyltransferase I (XT-I, E.C. 2.4.2.26) is the initial enzyme in the biosynthesis of the glycosaminoglycan chains in proteoglycans and has been shown to be a marker of tissue remodeling processes. Here, we investigated for the first time serum XT-I activities in a large cohort of German PXE patients and their unaffected relatives. XT-I activities were measured in serum samples from 113 Caucasian patients with PXE and 103 unaffected first-degree family members. The occurrence of the frequent ABCC6 gene mutation c.3421C>T (R1141X) and the hypertension-associated genetic variants T174M and M235T in the angiotensinogen (AGT) gene were determined. Serum XT-I activities in male and female PXE patients were significantly increased compared to unaffected family members (male patients, mean value 0.96 mU/l, SD 0.37; male relatives, 0.78 mU/l, SD 0.29; female patients, 0.91 mU/l, SD 0.31; female relatives, 0.76 mU/l, SD 0.34; p<0.05). The mean XT-I activities in PXE patients with hypertension were 24% higher than in patients without increased blood pressure (p<0.05). The AGT T174M and M235T frequencies were not different in hypertensive PXE patients, normotensive PXE patients, family members or blood donors. Our data show that the altered proteoglycan biosynthesis in PXE patients is closely related to an increased XT-I activity in blood. Serum XT-I, the novel fibrosis marker, may be useful for the assessment of extracellular matrix alterations and disease activity in PXE.
Collapse
Affiliation(s)
- Christian Götting
- Institut für Laboratoriums-und Transfusionsmedizin, Herz-und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Kuznetsova SA, Day AJ, Mahoney DJ, Rugg MS, Mosher DF, Roberts DD. The N-terminal module of thrombospondin-1 interacts with the link domain of TSG-6 and enhances its covalent association with the heavy chains of inter-alpha-trypsin inhibitor. J Biol Chem 2005; 280:30899-908. [PMID: 16006654 PMCID: PMC1351260 DOI: 10.1074/jbc.m500701200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We recently found that leukocytes from thrombospondin-1 (TSP1)-deficient mice exhibit significant reductions in cell surface CD44 relative to those from wild type mice. Because TSG-6 modulates CD44-mediated cellular interactions with hyaluronan, we examined the possibility that TSP1 interacts with TSG-6. We showed that recombinant full-length human TSG-6 (TSG-6Q) and the Link module of TSG-6 (Link_TSG6) bind 125I-TSP1 with comparable affinities. Trimeric recombinant constructs containing the N-modules of TSP1 or TSP2 inhibit binding of TSP1 to TSG-6Q and Link_TSG6, but other recombinant regions of TSP1 do not. Therefore, the N-modules of both TSP1 and TSP2 specifically recognize the Link module of TSG-6. Heparin, which binds to these domains of both proteins, strongly inhibits binding of TSP1 to Link_TSG6 and TSG-6Q, but hyaluronan does not. Inhibition by heparin results from its binding to TSP1, because heparin also inhibits TSP1 binding to Link_TSG6 mutants deficient in heparin binding. Removal of bound Ca2+ from TSP1 reduces its binding to full-length TSG-6. Binding of TSP1 to Link_TSG6, however, is enhanced by chelating divalent cations. In contrast, divalent cations do not influence binding of the N-terminal region of TSP1 to TSG-6Q. This implies that divalent cation dependence is due to conformational effects of calcium-binding to the C-terminal domains of TSP1. TSP1 enhances covalent modification of the inter-alpha-trypsin inhibitor by TSG-6 and transfer of its heavy chains to hyaluronan, suggesting a physiological function of TSP1 binding to TSG-6 in regulation of hyaluronan metabolism at sites of inflammation.
Collapse
Affiliation(s)
- Svetlana A. Kuznetsova
- From the Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Anthony J. Day
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; and the
| | - David J. Mahoney
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; and the
| | - Marilyn S. Rugg
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; and the
| | - Deane F. Mosher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - David D. Roberts
- From the Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
88
|
Orlandi A, Ciucci A, Ferlosio A, Pellegrino A, Chiariello L, Spagnoli LG. Increased expression and activity of matrix metalloproteinases characterize embolic cardiac myxomas. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1619-28. [PMID: 15920147 PMCID: PMC1602416 DOI: 10.1016/s0002-9440(10)62472-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor embolism occurs in 30 to 50% of all cases of cardiac myxoma, but the causes are still uncertain. Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade the extracellular matrix (ECM) and play a crucial role in plaque instability and aortic aneurysm development, in addition to cancer and heart failure. To determine whether MMP activity contributes to tumor embolism, we examined 27 left atrium-sided myxomas, 10 of which showed clinical signs of peripheral embolism. Immunohistochemistry (in all cases) and Western blotting, and in situ and in-gel zymography (in four embolic and six nonembolic consecutive tumors) demonstrated higher expression and activity of MT1-MMP, pro-MMP-2, and pro-MMP-9 in embolic myxomas, whereas pro-MMP-1, MMP-3, and TIMP-1 levels were similar to those of nonembolic tumors. Reverse transcriptase-polymerase chain reaction demonstrated that increased MMP activity was due, at least in part, to increased transcription and that TIMP-2 transcripts increased in embolic myxomas. In vitro, embolic tumor cells retained higher MT1-MMP and pro-MMP-2 levels in basal conditions and after stimulation with interleukin-1beta and interleukin-6. Increased MMP synthesis and release correlated with enhanced ECM degradation products containing glycosaminoglycan chains in embolic myxoma tissue. Our results strongly suggest that MMP overexpression may contribute to an excessive degradation of tumor ECM and increase the risk of embolism in cardiac myxomas.
Collapse
Affiliation(s)
- Augusto Orlandi
- Department of Anatomic Pathology, Tor Vergata University of Rome Via Montpellier 1, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
89
|
Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C. Roles of Hemodynamic Forces in Vascular Cell Differentiation. Ann Biomed Eng 2005; 33:772-9. [PMID: 16078617 DOI: 10.1007/s10439-005-3310-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The pulsatile nature of blood flow is a key stimulus for the modulation of vascular cell differentiation. Within the vascular media, physiologic stress is manifested as cyclic strain, while in the lumen, cells are subjected to shear stress. These two respective biomechanical forces influence the phenotype and degree of differentiation or proliferation of smooth muscle cells and endothelial cells within the human vasculature. Elucidation of the effect of these mechanical forces on cellular differentiation has led to a surge of research into this area because of the implications for both the treatment of atherosclerotic disease and the future of vascular tissue engineering. The use of mechanical force to directly control vascular cell differentiation may be utilized as an invaluable engineering tool in the future. However, an understanding of the role of hemodynamics in vascular cell differentiation and proliferation is critical before application can be realized. Thus, this review will provide a current perspective on the latest research and controversy behind the role of hemodynamic forces for vascular cell differentiation and phenotype modulation. Furthermore, this review will illustrate the application of hemodynamic force for vascular tissue engineering and explicate future directions for research.
Collapse
Affiliation(s)
- Gordon M Riha
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
90
|
Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Chau AH, Kim LA, Kamm RD. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 2005; 3:17-32. [PMID: 15300454 DOI: 10.1007/s10237-004-0046-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Finite element simulations of fluid-solid interactions were used to investigate inter-individual variations in flow dynamics and wall mechanics at the carotid artery bifurcation, and its effects on atherogenesis, in three healthy humans (normal volunteers: NV1, NV2, NV4). Subject-specific calculations were based on MR images of structural anatomy and ultrasound measurements of flow at domain boundaries. For all subjects, the largest contiguous region of low wall shear stress (WSS) occurred at the carotid bulb, WSS was high (6-10 Pa) at the apex, and a small localized region of WSS > 10 Pa occurred close to the inner wall of the external carotid artery (ECA). NV2 and NV4 had a "spot" of low WSS distal to the bifurcation at the inner wall of the ECA. Low WSS patches in the common carotid artery (CCA) were contiguous with the carotid bulb low WSS region in NV1 and NV2, but not in NV4. In all three subjects, areas of high oscillatory shear index (OSI) were confined to regions of low WSS. Only NV4 exhibited high levels of OSI on the external adjoining wall of the ECA and CCA. For all subjects, the maximum wall shear stress temporal gradient (WSSTG) was highest at the flow divider (reaching 1,000 Pa/s), exceeding 300 Pa/s at the walls connecting the ECA and CCA, but remaining below 250 Pa/s outside of the ECA. In all subjects, (maximum principle) cyclic strain (CS) was greatest at the apex (NV1: 14%; NV2: 11%; NV4: 6%), and a second high CS region occurred at the ECA-CCA adjoining wall (NV1: 11%, NV2: 9%, NV4: 5%). Wall deformability was included in one simulation (NV2) to verify that it had little influence on the parameters studied. Location and magnitude of low WSS were similar, except for the apex (differences of up to 25%). Wall distensibility also influenced OSI, doubling it in most of the CCA, separating the single high OSI region of the carotid bulb into two smaller regions, and shrinking the ECA internal and external walls' high OSI regions. These observations provide further evidence that significant intra-subject variability exists in those factors thought to impact atherosclerosis.
Collapse
Affiliation(s)
- H F Younis
- Department of Mechanical Engineering and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Kaplan-Albuquerque N, Bogaert YE, Van Putten V, Weiser-Evans MC, Nemenoff RA. Patterns of gene expression differentially regulated by platelet-derived growth factor and hypertrophic stimuli in vascular smooth muscle cells: markers for phenotypic modulation and response to injury. J Biol Chem 2005; 280:19966-76. [PMID: 15774477 DOI: 10.1074/jbc.m500917200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In vascular smooth muscle cells (VSMC), platelet-derived growth factor (PDGF) suppresses expression of multiple smooth muscle contractile proteins, useful markers of differentiation. Conversely, hypertrophic agents induce expression of these genes. The goal of this study was to employ genomic approaches to identify classes of genes differentially regulated by PDGF and hypertrophic stimuli. Changes in gene expression were determined using Affymetrix RAE-230 GeneChips in rat aortic VSMC stimulated with PDGF. For comparison with a model hypertrophic stimulus, a microarray was performed with VSMC stably expressing constitutively active Galpha(16), which strongly induces smooth muscle marker expression. We identified 75 genes whose expression was increased by exposure to PDGF and decreased by expression of Galpha(16) and 97 genes whose expression was decreased by PDGF and increased by Galpha(16). These genes included many smooth muscle-specific proteins; several extracellular matrix, cytoskeletal, and chemotaxis-related proteins; cell signaling molecules; and transcription factors. Changes in gene expression for many of these were confirmed by PCR or immunoblotting. The contribution of signaling pathways activated by PDGF to the gene expression profile was examined in VSMC stably expressing gain-of-function H-Ras or myristoylated Akt. Among the genes that were confirmed to be differentially regulated were CCAAT/enhancer-binding protein delta, versican, and nexilin. All of these genes also had altered expression in injured aortas, consistent with a role for PDGF in the response of injured VSMC. These data indicate that genes that are differentially regulated by PDGF and hypertrophic stimuli may represent families of genes and potentially be biomarkers for vascular injury.
Collapse
MESH Headings
- Animals
- Cell Size
- Cells, Cultured
- GTP-Binding Protein alpha Subunits, Gq-G11
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Genetic Markers
- Heterotrimeric GTP-Binding Proteins/genetics
- Heterotrimeric GTP-Binding Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Platelet-Derived Growth Factor/pharmacology
- Rats
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
|
93
|
Rahmani M, Read JT, Carthy JM, McDonald PC, Wong BW, Esfandiarei M, Si X, Luo Z, Luo H, Rennie PS, McManus BM. Regulation of the versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells. J Biol Chem 2005; 280:13019-28. [PMID: 15668231 DOI: 10.1074/jbc.m411766200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proteoglycan versican is pro-atherogenic and central to vascular injury and repair events. We identified the signaling pathways and promoter elements involved in regulation of versican expression in vascular smooth muscle cells. Phosphatidylinositol 3-kinase inhibitor, LY294002, significantly decreased versican-luciferase (Luc) promoter activity and endogenous mRNA levels. We further examined the roles of protein kinase B and glycogen synthase kinase (GSK)-3beta, downstream effectors of phosphatidylinositol 3-kinase, in the regulation of versican transcription. Co-transfection of dominant negative and constitutively active protein kinase B constructs with a versican-Luc construct decreased and increased promoter activity, respectively. Inhibition of GSK-3beta activity by LiCl augmented accumulation of beta-catenin and caused induction of versican-Luc activity as well as versican mRNA levels. Beta-catenin has no DNA binding domain, therefore it cannot directly induce transcription of the versican promoter. Software analysis of the versican promoter revealed two potential binding sites for T-cell factors (TCFs), proteins that confer transcriptional activation of beta-catenin. Electrophoretic mobility shift and supershift assays revealed specific binding of human TCF-4 and beta-catenin to oligonucleotides corresponding to a potential TCF binding site in the versican promoter. In addition to binding assays, we directly assessed the dependence of versican promoter activity on TCF binding sites. Site-directed mutagenesis of the TCF site located -492 bp relative to the transcription start site markedly diminished versican-Luc activity. Co-transfection of TCF-4 with versican-Luc did not increase promoter activity, but addition of beta-catenin and TCF-4 significantly stimulated basal versican promoter activity. Our findings suggest that versican transcription is predominantly mediated by the GSK-3beta pathway via the beta-catenin-TCF transcription factor complex in smooth muscle cells, wherein such regulation contributes to the normal or aberrant formation of provisional matrix in vascular injury and repair events.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Binding Sites
- Cell Line, Tumor
- Chondroitin Sulfate Proteoglycans/biosynthesis
- Chondroitin Sulfate Proteoglycans/genetics
- Chromones/pharmacology
- Cytoskeletal Proteins/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Deletion
- Gene Expression Regulation
- Genes, Reporter
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Immunoblotting
- Lectins, C-Type
- Lithium Chloride/pharmacology
- Luciferases/metabolism
- Lymphoid Enhancer-Binding Factor 1
- Models, Genetic
- Morpholines/pharmacology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Oligonucleotides/chemistry
- Phosphoinositide-3 Kinase Inhibitors
- Promoter Regions, Genetic
- Protein Binding
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- RNA/metabolism
- RNA, Messenger/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Versicans
- Wound Healing
- beta Catenin
Collapse
Affiliation(s)
- Maziar Rahmani
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Yamamoto C, Wakata T, Fujiwara Y, Kaji T. Induction of synthesis of a large heparan sulfate proteoglycan, perlecan, by thrombin in cultured human coronary smooth muscle cells. Biochim Biophys Acta Gen Subj 2004; 1722:92-102. [PMID: 15716125 DOI: 10.1016/j.bbagen.2004.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 11/22/2004] [Accepted: 11/23/2004] [Indexed: 11/20/2022]
Abstract
The accumulation of extracellular matrix components such as proteoglycans is a hallmark of an atherosclerotic lesion. A large heparan sulfate proteoglycan, perlecan, dramatically increases in the advanced lesion, and vascular smooth muscle cells are the cell type responsible for the accumulation. In this study, we investigated the effects of thrombin on the proteoglycan synthesis in cultured human coronary smooth muscle cells to determine the interrelationship between the accumulation of proteoglycans and the procoagulant state of blood in atherosclerosis. The cells were metabolically labeled with [(35)S]sulfate or (35)S-labeled amino acids in the presence of thrombin, and the labeled proteoglycans were characterized by Sepharose CL-4B molecular sieve chromatography and DEAE-Sephacel ion-exchange chromatography. The glycosaminoglycan M(r) and composition were analyzed by Sepharose CL-6B chromatography, and the core protein M(r) was determined by SDS-polyacrylamide gel electrophoresis before and after digestion with chondroitinase ABC or papain. The results indicate that thrombin increases the cell layer-associated heparan sulfate proteoglycan with a core protein size of approximately 400 kDa without any change in the length of the glycosaminoglycan chains when the cell density is high. The heparan sulfate proteoglycan was identified as perlecan by Western blot analysis. In addition, quantitative reverse transcription-polymerase chain reaction showed that thrombin elevated the steady-state level of perlecan mRNA but not that of versican, decorin, and syndecan-1 mRNAs, although that of biglycan mRNA was moderately elevated. Furthermore, the percentage of disaccharide units that compose perlecan heparan sulfate chains remained unaffected by thrombin. Therefore, it is suggested that thrombin induces the perlecan core protein synthesis without influencing the formation of the heparan sulfate chains in human coronary smooth muscle cells at a high cell density. The regulation of proteoglycan synthesis by thrombin may be involved in the accumulation of perlecan in advanced lesions of atherosclerosis.
Collapse
Affiliation(s)
- Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | | | | | | |
Collapse
|
95
|
Arciniegas E, Neves CY, Candelle D, Parada D. Differential versican isoforms and aggrecan expression in the chicken embryo aorta. ACTA ACUST UNITED AC 2004; 279:592-600. [PMID: 15224401 DOI: 10.1002/ar.a.20042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the family of large chondroitin sulfate proteoglycans (CSPGs), such as versican and aggrecan, are involved in early heart development, and in the development and progression of atherosclerosis and restenosis. Given the important roles played by versican and aggrecan in such processes, we sought to determine whether these molecules are present in the aortic wall during the advanced stages of chicken embryo development and the endothelial-mesenchymal transformation (EMT). Immunolabeling of serial cryosections revealed versican immunoreactivity around the cells within the intimal thickening, and the cells organized in lamellar and interlamellar cell layers. In contrast, a weak aggrecan immunoreactivity was limited to the cells arranged into lamellar and interlamellar cell layers. Immunolabeling also demonstrated that V2 is the main versican isoform present at the intimal thickening. According to immunoblotting analysis, the aggrecan content was very low in all stages examined, and two versican isoforms (V0 and V2) were present at day 14 of development. We also investigated whether versican isoforms were present during EMT in vitro. Versican immunoreactivity was detected in patches of endothelial cells; in the detaching and migrating cells, and the extracellular matrix (ECM) deposited by them; and in cells that had acquired mesenchymal characteristics. These data indicate that versican and aggrecan have different spatial and temporal patterns of expression, and they have different functions during remodeling of the aortic wall. Also, the different immunoreactivity and immunolocalization patterns observed for versican both in vivo and in vitro, in addition to being associated with the presence of different versican isoforms, may be related to the predominance of the V2 isoform during intimal thickening formation and EMT.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Laboratorio de Microscopía Electrónica, Servicio Autónomo Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW Considerable evidence suggests that the subendothelial retention of atherogenic lipoproteins is a key early step in atherogenesis. In humans and experimental animals, elevated levels of plasma lipoproteins are associated with increased atherosclerosis, and lipoproteins with higher affinity for arterial proteoglycans are more atherogenic. Here we discuss the molecular mechanisms underlying lipoprotein retention in the arterial wall and how this interaction can be modulated. RECENT FINDINGS Functional proteoglycan binding sites in lipoproteins containing apolipoprotein B have been identified and shown to have atherogenic potential in vivo. In addition to apolipoprotein B, novel bridging molecules, those that can interact with both proteoglycans and lipoproteins, have been identified that mediate the retention of atherogenic particles in the vessel wall. The interaction between lipoproteins and proteoglycans can be enhanced by the modification of lipoproteins in the circulation and in the arterial wall, by alterations in the subendothelium, and by changes in proteoglycan synthesis that result in a more atherogenic profile. The retention of atherogenic lipoproteins is a potential target for therapies to reverse atherosclerosis, and in-vitro studies have identified compounds that decrease the affinity of proteoglycans for lipoproteins. SUMMARY Considerable progress has been made in understanding the association between lipoproteins and cardiovascular disease. This review highlights the importance of the interaction between lipoproteins and the arterial matrix.
Collapse
Affiliation(s)
- Maria Gustafsson
- Wallenberg Laboratory for Cardiovascular Research and the Cardiovascular Institute, The Sahlgrenska Academy at Göteborg University, 413 45 Göteborg, Sweden.
| | | |
Collapse
|
97
|
Kolodgie FD, Burke AP, Wight TN, Virmani R. The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture. Curr Opin Lipidol 2004; 15:575-82. [PMID: 15361794 DOI: 10.1097/00041433-200410000-00012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Although fibrous cap rupture is the primary cause of coronary thrombosis, plaque erosion is responsible for 30%-40% of acute thrombotic events. The interface of the eroded surface involves a denuded endothelium allowing direct contact of the platelet/fibrin thrombus with the underlying lesion. This review discusses the putative role of extracellular matrix molecules, in particular proteoglycans/hyaluronan, in the development of acute coronary thrombosis associated with erosion. RECENT FINDINGS The plaque/thrombus interface in erosion presents a unique surface since it consists of predominantly SMCs and proteoglycans with minimal or no inflammation. The lack of significant inflammation raises the possibility that erosion represents chronic wounding rather than true atherogenesis. The abundance of proteoglycan and hyaluronan matrix suggests their potential role in the development of thrombosis. Matrix changes may contribute to endothelial loss, the magnitude of the thrombotic event, or both. Versican facilitates platelet adhesion at low shear and cooperates with collagen to promote platelet aggregation. Further, versican may, in part, regulate water content and in turn support coagulation because water-dependent functionality of anticoagulation molecules. Finally, experimental models of plaque erosion are currently being developed guided by the premise that the loss of surface endothelium together with other procoagulant factors may underlie the development of platelet-rich thrombi. SUMMARY The loss of endothelium and exposure of a potentially procoagulant versican-hyaluronan matrix may be largely responsible for plaque erosion. The development of relevant animal models should allow further insight into the pathophysiology of coronary thrombosis in the absence of rupture.
Collapse
Affiliation(s)
- Frank D Kolodgie
- Department of Cardiovascular Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA
| | | | | | | |
Collapse
|
98
|
Chan R, Chau A, Karl W, Nadkarni S, Khalil A, Iftimia N, Shishkov M, Tearney G, Kaazempur-Mofrad M, Bouma B. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. OPTICS EXPRESS 2004; 12:4558-72. [PMID: 19484007 DOI: 10.1364/opex.12.004558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present a novel multi-resolution variational framework for vascular optical coherence elastography (OCE). This method exploits prior information about arterial wall biomechanics to produce robust estimates of tissue velocity and strain, reducing the sensitivity of conventional tracking methods to both noise- and strain-induced signal decorrelation. The velocity and strain estimation performance of this new estimator is demonstrated in simulated OCT image sequences and in benchtop OCT scanning of a vascular tissue sample.
Collapse
|
99
|
Affiliation(s)
- M V Podgoreanu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
100
|
Narita Y, Hata KI, Kagami H, Usui A, Ueda M, Ueda Y. Novel Pulse Duplicating Bioreactor System for Tissue-Engineered Vascular Construct. ACTA ACUST UNITED AC 2004; 10:1224-33. [PMID: 15363178 DOI: 10.1089/ten.2004.10.1224] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell culture in a biomimetic environment is known to improve the mechanical endurance of tissue-engineered cardiovascular components. Our goal was to generate a bioreactor that can reproduce a wide range of pulsatile flows with a completely physiological pressure profile. The morphology and biochemical properties of tissue-engineered products were also studied to test the usefulness of this novel bioreactor. The combination of an outflow valve, compliance chamber, and resistant clamps together with a balloon pumping system was able to successfully reproduce both physiological systolic and diastolic pressures. The compliance chamber was especially effective in transforming the original peaky pressure waveform into a physiological pressure profile. The tissues, cultured under a physiological pressure waveform with pulsatile flow, presented widely distributed cells in close contact with each other. They also showed significantly higher cell numbers, total protein content, and proteoglycan-glycosaminoglycan content than cultured tissues under a peaky pressure wave or under static conditions. This new bioreactor system is suitable for evaluating a favorable environment for tissue-engineered cardiovascular components.
Collapse
Affiliation(s)
- Yuji Narita
- Department of Cardiothoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|