51
|
Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J, Kauffman LR, Shidham A, Croce CM. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009; 114:1374-1382. [PMID: 19520806 PMCID: PMC2727407 DOI: 10.1182/blood-2009-05-220814] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022] Open
Abstract
We showed that Emicro-MiR-155 transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma. Most of these leukemias start at approximately 9 months irrespective of the mouse strain. They are preceded by a polyclonal pre-B-cell proliferation, have variable clinical presentation, are transplantable, and develop oligo/monoclonal expansion. In this study, we show that in these transgenic mice the B-cell precursors have the highest MiR-155 transgene expression and are at the origin of the leukemias. We determine that Src homology 2 domain-containing inositol-5-phosphatase (SHIP) and CCAAT enhancer-binding protein beta (C/EBPbeta), 2 important regulators of the interleukin-6 signaling pathway, are direct targets of MiR-155 and become gradually more down-regulated in the leukemic than in the preleukemic mice. We hypothesize that miR-155, by down-modulating Ship and C/EBPbeta, initiates a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic leukemia/high-grade lymphoma.
Collapse
Affiliation(s)
- Stefan Costinean
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Locke NR, Patterson SJ, Hamilton MJ, Sly LM, Krystal G, Levings MK. SHIP Regulates the Reciprocal Development of T Regulatory and Th17 Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:975-83. [DOI: 10.4049/jimmunol.0803749] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
53
|
Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009. [PMID: 19520806 DOI: 10.1182/blood-2009- 05-220814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We showed that Emicro-MiR-155 transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma. Most of these leukemias start at approximately 9 months irrespective of the mouse strain. They are preceded by a polyclonal pre-B-cell proliferation, have variable clinical presentation, are transplantable, and develop oligo/monoclonal expansion. In this study, we show that in these transgenic mice the B-cell precursors have the highest MiR-155 transgene expression and are at the origin of the leukemias. We determine that Src homology 2 domain-containing inositol-5-phosphatase (SHIP) and CCAAT enhancer-binding protein beta (C/EBPbeta), 2 important regulators of the interleukin-6 signaling pathway, are direct targets of MiR-155 and become gradually more down-regulated in the leukemic than in the preleukemic mice. We hypothesize that miR-155, by down-modulating Ship and C/EBPbeta, initiates a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic leukemia/high-grade lymphoma.
Collapse
|
54
|
Abstract
MicroRNA-155 (miR-155) has emerged as a critical regulator of immune cell development, function, and disease. However, the mechanistic basis for its impact on the hematopoietic system remains largely unresolved. Because miRNAs function by repressing specific mRNAs through direct 3'UTR interactions, we have searched for targets of miR-155 implicated in the regulation of hematopoiesis. In the present study, we identify Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1) as a direct target of miR-155, and, using gain and loss of function approaches, show that miR-155 represses SHIP1 through direct 3'UTR interactions that have been highly conserved throughout evolution. Repression of endogenous SHIP1 by miR-155 occurred following sustained over-expression of miR-155 in hematopoietic cells both in vitro and in vivo, and resulted in increased activation of the kinase Akt during the cellular response to LPS. Furthermore, SHIP1 was also repressed by physiologically regulated miR-155, which was observed in LPS-treated WT versus miR-155(-/-) primary macrophages. In mice, specific knockdown of SHIP1 in the hematopoietic system following retroviral delivery of a miR-155-formatted siRNA against SHIP1 resulted in a myeloproliferative disorder, with striking similarities to that observed in miR-155-expressing mice. Our study unveils a molecular link between miR-155 and SHIP1 and provides evidence that repression of SHIP1 is an important component of miR-155 biology.
Collapse
|
55
|
Leung WH, Tarasenko T, Bolland S. Differential roles for the inositol phosphatase SHIP in the regulation of macrophages and lymphocytes. Immunol Res 2009; 43:243-51. [PMID: 18989630 PMCID: PMC2807985 DOI: 10.1007/s12026-008-8078-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The SH2 domain-containing inositol 5'-phosphatase (SHIP) negatively regulates antigen, cytokine, and Fc receptor signaling pathways in immune cells. Our knowledge of the function of SHIP largely derives from in vitro studies that utilized SHIP-deficient cell lines and immune cells isolated from SHIP null mice. To avoid the pleiotropic effects observed in mice with germline deletion of SHIP, we have used the Cre-lox system to generate SHIP conditional knockout mice with deletion in specific immune cell populations. In this review we summarize our observations from mice with deletion of SHIP in lymphocyte and macrophage lineages and contrast them with earlier data gathered by the analysis of SHIP null mice.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn drive, Twinbrook 2, Room 217, Rockville, MD 20852, USA
| | | | | |
Collapse
|
56
|
Abstract
SH2-domain-containing inositol 5'-phosphatase-1 (SHIP) deficiency significantly increases the number of hematopoietic stem cells (HSCs) present in the bone marrow (BM). However, the reconstitution capacity of these HSCs is severely impaired, suggesting that SHIP expression might be an intrinsic requirement for HSC function. To further examine this question, we developed a model in which SHIP expression is ablated in HSCs while they are resident in a SHIP-competent milieu. In this setting, we find that long-term repopulation by SHIP-deficient HSCs is not compromised. Moreover, SHIP-deficient HSCs from this model repopulate at levels comparable with wild-type HSCs upon serial transfer. However, when HSCs from mice with systemic ablation of SHIP are transplanted, they are functionally compromised for repopulation. These findings demonstrate that SHIP is not an intrinsic requirement for HSC function, but rather that SHIP is required for the BM milieu to support functionally competent HSCs. Consistent with these findings, cells that comprise the BM niche express SHIP and SHIP deficiency profoundly alters their function.
Collapse
|
57
|
Cady CT, Rice JS, Ott VL, Cambier JC. Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. Immunol Rev 2008; 224:44-57. [PMID: 18759919 PMCID: PMC2968700 DOI: 10.1111/j.1600-065x.2008.00663.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous autoimmune and inflammatory disorders stem from the dysregulation of hematopoietic cell activation. The activity of inositol lipid and protein tyrosine phosphatases, and the receptors that recruit them, is critical for prevention of these disorders. Balanced signaling by inhibitory and activating receptors is now recognized to be an important factor in tuning cell function and inflammatory potential. In this review, we provide an overview of current knowledge of membrane proximal events in signaling by inhibitory/regulatory receptors focusing on structural and functional characteristics of receptors and their effectors Src homology 2 (SH2) domain-containing tyrosine phosphatase 1 and SH2 domain-containing inositol 5-phosphatase-1. We review use of new strategies to identify novel regulatory receptors and effectors. Finally, we discuss complementary actions of paired inhibitory and activating receptors, using Fc gammaRIIA and Fc gammaRIIB regulation human basophil activation as a prototype.
Collapse
Affiliation(s)
- Carol T. Cady
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - Jeffrey S. Rice
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - Vanessa L. Ott
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - John C. Cambier
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| |
Collapse
|
58
|
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway plays a critical role in the development, activation, and homeostasis of T cells by modulating the expression of survival and mitogenic factors in response to a variety of stimuli. Ligation of the antigen receptor, costimulatory molecules, and cytokine receptors activate PI3K, resulting in the production of the lipid second messenger phosphatidylinositol-3,4,5-triphosphate (PIP(3)). A number of molecules help to regulate the activity of this pathway, including the lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10). By limiting the amount of PIP(3) available within the cell, PTEN directly opposes PI3K activity and influences the selection of developing thymocytes as well as the activation requirements of mature T cells. T cells with unchecked PI3K activity, as a result of PTEN deficiency, contribute to the development of both autoimmune disease and lymphoma. This review dissects our current understanding of PI3K and PTEN and discusses why appropriate balance of these molecules is necessary to maintain normal T-cell responses.
Collapse
Affiliation(s)
- Jodi L Buckler
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
59
|
Kamen LA, Levinsohn J, Cadwallader A, Tridandapani S, Swanson JA. SHIP-1 increases early oxidative burst and regulates phagosome maturation in macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7497-505. [PMID: 18490750 PMCID: PMC2913413 DOI: 10.4049/jimmunol.180.11.7497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P(2)), has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates the generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking, and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5)P(3) to PI(3,4)P(2) on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1 deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3'-phosphoinositide composition.
Collapse
Affiliation(s)
- Lynn A Kamen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
60
|
Abstract
Inositol phospholipid signaling pathways have begun to emerge as important players in stem cell biology and bone marrow transplantation [1-4]. The SH2-containing Inositol Phosphatase (SHIP) is among the enzymes that can modify endogenous mammalian phosphoinositides. SHIP encodes an isoform specific to pluripotent stem (PS) cells [5,6] plays a role in hematopoietic stem (HS) cell biology [7,8] and allogeneic bone marrow (BM) transplantation [1,2,9,10]. Here I discuss our current understanding of the cell and molecular pathways that SHIP regulates that influence PS/HS cell biology and BM transplantation. Genetic models of SHIP-deficiency indicate this enzyme is a potential molecular target to enhance both autologous and allogeneic BM transplantation. Thus, strategies to reversibly target SHIP expression and their potential application to stem cell therapies and allogeneic BMT are also discussed.
Collapse
Affiliation(s)
- William G Kerr
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute and the Depts. of Biology and Molecular Medicine, University of South Florida, 12902 Magnolia Ave., Tampa, FL 33612, USA.
| |
Collapse
|
61
|
Tarasenko T, Dean JA, Bolland S. FcgammaRIIB as a modulator of autoimmune disease susceptibility. Autoimmunity 2007; 40:409-17. [PMID: 17729034 DOI: 10.1080/08916930701464665] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies are secreted to recognize and in some cases directly neutralize pathogens. Another important means by which they are essential components of the immune system is through binding to Fc receptors. Effector responses triggered by antibody binding of Fc receptors affect a host of important cellular responses such as phagocytosis, inflammatory cytokine release, antigen presentation, and regulation of humoral responses. A crucial check on this antibody-mediated signal is through the inhibitory receptor, FcgammaRIIB. In this review we discuss how dysregulation of FcgammaRIIB can result in a lowered threshold for autoimmunity in mice and humans. We close with a discussion of the potential for applying these findings to immunotherapy.
Collapse
Affiliation(s)
- Tatyana Tarasenko
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, Rockville, MD 20852, USA
| | | | | |
Collapse
|
62
|
Abstract
Activation of the phosphoinositide 3-kinase (PI3K) pathway promotes proliferation and survival in many different cell types of the immune system. PI3K acts downstream of receptors that mediate proliferation and survival in T cells, and required roles for individual class I PI3K catalytic isoforms have been established. Interestingly, mice with either augmented or diminished PI3K activity in T cells develop lymphoproliferation and signs of autoimmunity. Here, we summarize our current knowledge of mouse strains with hyperactive or reduced PI3K, different isoforms of class I PI3K in T cell-mediated immunity and autoimmunity, and the therapeutic implications for modulating this pathway for treatment of various autoimmune diseases.
Collapse
Affiliation(s)
- Jean S Oak
- Department of Molecular Biology and Biochemistry, Center for Immunology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
63
|
Abstract
SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase-1], an inositol 5-phosphatase expressed in haemopoietic cells, acts by hydrolysing the 5-phosphates from PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4), thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathway. SHIP1 plays a major role in inhibiting proliferation of myeloid cells. As a result, SHIP1(-/-) mice have an increased number of neutrophils and monocytes/macrophages due to enhanced survival and proliferation of their progenitors. Although SHIP1 contributes to PtdIns(3,4,5)P(3) metabolism in T-lymphocytes, its exact role in this cell type is much less explored. Jurkat cells have recently emerged as an interesting tool to study SHIP1 function in T-cells because they do not express SHIP1 at the protein level, thereby allowing reintroduction experiments in a relatively easy-to-use system. Data obtained from SHIP1 reintroduction have revealed that SHIP1 not only acts as a negative player in T-cell lines proliferation, but also regulates critical pathways, such as NF-kappaB (nuclear factor kappaB) activation, and also appears to remarkably inhibit T-cell apoptosis. On the other hand, experiments using primary T-cells from SHIP1(-/-) mice have highlighted a new role for SHIP1 in regulatory T-cell development, but also emphasize that this protein is not required for T-cell proliferation. In support of these results, SHIP1(-/-) mice are lymphopenic, suggesting that SHIP1 function in T-cells differs from its role in the myeloid lineage.
Collapse
Affiliation(s)
- G Gloire
- GIGA, Virology and Immunology Unit, B34, University of Liège, 4000 Liège, Belgium.
| | | | | |
Collapse
|
64
|
Blero D, Payrastre B, Schurmans S, Erneux C. Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch 2007; 455:31-44. [PMID: 17605038 DOI: 10.1007/s00424-007-0304-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 12/18/2022]
Abstract
Phosphoinositide phosphatases dephosphorylate the three positions (D-3, 4 and 5) of the inositol ring of the poly-phosphoinositides. They belong to different families of enzymes. The PtdIns(3,4)P(2) 4-phosphatase family, the tumour suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN), SAC1 domain phosphatases and myotubularins belong to the tyrosine protein phosphatases superfamily. They share the presence of a conserved cysteine residue in the consensus CX(5)RT/S. Another family consists of the inositol polyphosphate 5-phosphatase isoenzymes. The importance of these phosphoinositide phosphatases in cell regulation is illustrated by multiple examples of their implications in human diseases such as Lowe syndrome, X-linked myotubular myopathy, cancer, diabetes or bacterial infection.
Collapse
Affiliation(s)
- Daniel Blero
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070, Brussels, Belgium
| | | | | | | |
Collapse
|
65
|
Tarasenko T, Kole HK, Chi AW, Mentink-Kane MM, Wynn TA, Bolland S. T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc Natl Acad Sci U S A 2007; 104:11382-7. [PMID: 17585010 PMCID: PMC2040907 DOI: 10.1073/pnas.0704853104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 5'-phosphoinositol phosphatase SHIP negatively regulates signaling pathways triggered by antigen, cytokine and Fc receptors in both lymphocytes and myeloid cells. Mice with germ-line (null) deletion of SHIP develop a myeloproliferative-like syndrome that causes early lethality. Lymphocyte anomalies have been observed in SHIP-null mice, but it is unclear whether they are due to an intrinsic requirement of SHIP in these cells or a consequence of the severe myeloid pathology. To precisely address the function of SHIP in T cells, we have generated mice with T cell-specific deletion of SHIP. In the absence of SHIP, we found no differences in thymic selection or in the activation state and numbers of regulatory T cells in the periphery. In contrast, SHIP-deficient T cells do not skew efficiently to Th2 in vitro. Mice with T cell-specific deletion of SHIP show poor antibody responses on Alum/NP-CGG immunization and diminished Th2 cytokine production when challenged with Schistosoma mansoni eggs. The failure to skew to Th2 responses may be the consequence of increased basal levels of the Th1-associated transcriptional factor T-bet, resulting from enhanced sensitivity to cytokine-mediated T-bet induction. SHIP-deficient CD8(+) cells show enhanced cytotoxic responses, consistent with elevated T-bet levels in these cells. Overall our experiments indicate that in T cells SHIP negatively regulates cytokine-mediated activation in a way that allows effective Th2 responses and limits T cell cytotoxicity.
Collapse
Affiliation(s)
| | | | | | - Margaret M. Mentink-Kane
- Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Thomas A. Wynn
- Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Silvia Bolland
- Laboratories of *Immunogenetics and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
66
|
Paraiso KHT, Ghansah T, Costello A, Engelman RW, Kerr WG. Induced SHIP deficiency expands myeloid regulatory cells and abrogates graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2007; 178:2893-900. [PMID: 17312133 DOI: 10.4049/jimmunol.178.5.2893] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Graft-vs-host disease (GVHD) is the leading cause of treatment-related death in allogeneic bone marrow (BM) transplantation. Immunosuppressive strategies to control GVHD are only partially effective and often lead to life-threatening infections. We previously showed that engraftment of MHC-mismatched BM is enhanced and GVHD abrogated in recipients homozygous for a germline SHIP mutation. In this study, we report the development of a genetic model in which SHIP deficiency can be induced in adult mice. Using this model, we show that the induction of SHIP deficiency in adult mice leads to a rapid and significant expansion of myeloid suppressor cells in peripheral lymphoid tissues. Consistent with expansion of myeloid suppressor cells, splenocytes and lymph node cells from adult mice with induced SHIP deficiency are significantly compromised in their ability to prime allogeneic T cell responses. These results demonstrate that SHIP regulates homeostatic signals for these immunoregulatory cells in adult physiology. Consistent with these findings, induction of SHIP deficiency before receiving a T cell-replete BM graft abrogates acute GVHD. These findings indicate strategies that target SHIP could increase the efficacy and utility of allogeneic BM transplantation, and thereby provide a curative therapy for a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Kim H T Paraiso
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Avenue, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
67
|
Abstract
p62(dok) and Dok-3 are members of the Dok family of adaptors found in B cells, with the former cloned as a substrate of the p210(bcr/abl) oncoprotein in Ph + chronic myelogenous leukemia. A role for p62(dok) in FcgammaRIIB-mediated negative regulation of B-cell proliferation had been established previously. Here, we generated Dok-3(-/-) mice to assess the function of Dok-3 in B cells. Mice lacking Dok-3 have normal B-cell development but possess higher level of IgM antibodies in their sera. In comparison to wild-type mice, Dok-3(-/-) mice mounted significantly enhanced humoral immune responses to T cell-independent type I and II antigens. Dok-3-deficient B cells hyperproliferated, exhibited elevated level of calcium signaling as well as enhanced activation of NF-kappaB, JNK, and p38MAPK in response to B-cell receptor (BCR) engagement. In the absence of Dok-3, the localization of the inhibitory phosphatase SHIP-1 to the plasma membrane is intact while its phosphorylation is compromised, suggesting that Dok-3 could function to facilitate or sustain the activation of SHIP-1. The phenotype and responses of Dok-3(-/-) mice and B cells could be differentiated from those of the Dok-1(-/-) counterparts. Hence, we propose that Dok-3 plays a distinct and nonredundant role in the negative regulation of BCR signaling.
Collapse
Affiliation(s)
- Chee-Hoe Ng
- Laboratory of Molecular and Cellular Immunology, Biomedical Sciences Institutes, Agency for Science, Technology and Research, Proteos, Singapore
| | | | | |
Collapse
|
68
|
Downes CP, Ross S, Maccario H, Perera N, Davidson L, Leslie NR. Stimulation of PI 3-kinase signaling via inhibition of the tumor suppressor phosphatase, PTEN. ACTA ACUST UNITED AC 2006; 47:184-94. [PMID: 17343901 DOI: 10.1016/j.advenzreg.2006.12.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Peter Downes
- Division of Molecular Physiology, Faculty of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | | | | | | | | | | |
Collapse
|
69
|
Oh SY, Zheng T, Bailey ML, Barber DL, Schroeder JT, Kim YK, Zhu Z. Src homology 2 domain-containing inositol 5-phosphatase 1 deficiency leads to a spontaneous allergic inflammation in the murine lung. J Allergy Clin Immunol 2006; 119:123-31. [PMID: 17208593 PMCID: PMC4757810 DOI: 10.1016/j.jaci.2006.08.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 06/22/2006] [Accepted: 08/07/2006] [Indexed: 01/13/2023]
Abstract
BACKGROUND Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP-1) controls the intracellular level of the phosphoinositide 3-kinase product phosphotidylinositol-3,4,5-trisphosphate and functions as a negative regulator of cytokine and immune receptor signaling. Emerging evidence suggests that the phosphoinositide 3-kinase pathway might be involved in allergic inflammation in the lung. However, the functional relevance of SHIP-1 in the T(H)2 activation pathway has not been established. SHIP-1(-/-) mice have spontaneous myeloproliferative inflammation in the lung, the nature of which has not been elucidated. We hypothesized that SHIP-1 plays an important role as a regulator in pulmonary allergic inflammation and in maintaining lung homeostasis. OBJECTIVE To test our hypothesis, we characterized the pulmonary phenotype of SHIP-1(-/-) mice. RESULTS Analyses of lung histopathology and bronchoalveolar lavage cellularity revealed that the majority of SHIP-1(-/-) mice had progressive and severe pulmonary inflammation of macrophages, lymphocytes, neutrophils, and eosinophils; mucous hyperplasia; airway epithelial hypertrophy; and subepithelial fibrosis. These pathologic changes were accompanied by exaggerated production of T(H)2 cytokines and chemokines, including IL-4, IL-13, eotaxin, and monocyte chemoattractant protein 1, in the lung. Furthermore, the number of mast cells significantly increased, and many of these cells were undergoing degranulation, which was correlated with increased content and spontaneous release of histamine in the lung tissue of SHIP-1(-/-) mice. CONCLUSION These findings provide strong evidence that mice lacking SHIP-1 have an allergic inflammation in the lung, suggesting that SHIP-1 plays an important role in regulating the T(H)2 signaling pathway and in maintaining lung homeostasis. CLINICAL IMPLICATIONS SHIP-1 as a regulator might be a potential therapeutic target for controlling allergic inflammation in diseases such as asthma.
Collapse
Affiliation(s)
- Sun-Young Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore
| | - Tao Zheng
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore
| | - Monica L. Bailey
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, Toronto
| | - Dwayne L. Barber
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, Toronto
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore
| | - Yoon-Keun Kim
- Department of Internal Medicine, Institute of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul
| | - Zhou Zhu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
70
|
Kashiwada M, Cattoretti G, McKeag L, Rouse T, Showalter BM, Al-Alem U, Niki M, Pandolfi PP, Field EH, Rothman PB. Downstream of Tyrosine Kinases-1 and Src Homology 2-Containing Inositol 5′-Phosphatase Are Required for Regulation of CD4+CD25+ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2006; 176:3958-65. [PMID: 16547230 DOI: 10.4049/jimmunol.176.7.3958] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein, downstream of tyrosine kinases-1 (Dok-1), and the phosphatase SHIP are both tyrosine phosphorylated in response to T cell stimulation. However, a function for these molecules in T cell development has not been defined. To clarify the role of Dok-1 and SHIP in T cell development in vivo, we compared the T cell phenotype of wild-type, Dok-1 knockout (KO), SHIP KO, and Dok-1/SHIP double-knockout (DKO) mice. Dok-1/SHIP DKO mice were runted and had a shorter life span compared with either Dok-1 KO or SHIP KO mice. Thymocyte numbers from Dok-1/SHIP DKO mice were reduced by 90%. Surface expression of both CD25 and CD69 was elevated on freshly isolated splenic CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO, suggesting these cells were constitutively activated. However, these T cells did not proliferate or produce IL-2 after stimulation. Interestingly, the CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO mice produced higher levels of TGF-beta, expressed Foxp3, and inhibited IL-2 production by CD3-stimulated CD4(+)CD25(-) T cells in vitro. These findings suggest Dok-1 and SHIP function in pathways that influence regulatory T cell development.
Collapse
Affiliation(s)
- Masaki Kashiwada
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Desponts C, Hazen AL, Paraiso KHT, Kerr WG. SHIP deficiency enhances HSC proliferation and survival but compromises homing and repopulation. Blood 2006; 107:4338-45. [PMID: 16467196 PMCID: PMC1464834 DOI: 10.1182/blood-2005-12-5021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The SH2 domain-containing inositol 5'-phosphatase-1 (SHIP) has the potential to modulate multiple signaling pathways downstream of receptors that impact hematopoietic stem cell (HSC) biology. Therefore, we postulated that SHIP might play an important role in HSC homeostasis and function. Consistent with this hypothesis, HSC proliferation and numbers are increased in SHIP(-/-) mice. Despite expansion of the compartment, SHIP(-/-) HSCs exhibit reduced capacity for long-term repopulation. Interestingly, we observe that SHIP(-/-) stem/progenitor cells home inefficiently to bone marrow (BM), and consistent with this finding, have reduced surface levels of both CXCR4 and vascular cell adhesion marker-1 (VCAM-1). These studies demonstrate that SHIP is critical for normal HSC function, homeostasis, and homing.
Collapse
Affiliation(s)
- Caroline Desponts
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
72
|
Abstract
The activation threshold of cells in the immune system is often tuned by cell surface molecules. The Fc receptors expressed on various hematopoietic cells constitute critical elements for activating or downmodulating immune responses and combines humoral and cell-mediated immunity. Thus, Fc receptors are the intelligent sensors of the immune status in the individual. However, impaired regulation by Fc receptors will lead to unresponsiveness or hyperreactivity to foreign as well as self-antigens. Murine models for autoimmune disease indicate the indispensable roles of the inhibitory Fc receptor in the suppression of such disorders, whereas activating-type FcRs are crucial for the onset and exacerbation of the disease. The development of many autoimmune diseases in humans may be caused by impairment of the human Fc receptor regulatory system. This review is aimed at providing a current overview of the mechanism of Fc receptor-based immune regulation and the possible scenario of how autoimmune disease might result from their dysfunction.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology and CREST Program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
73
|
Allam A, Marshall AJ. Role of the adaptor proteins Bam32, TAPP1 and TAPP2 in lymphocyte activation. Immunol Lett 2005; 97:7-17. [PMID: 15626471 DOI: 10.1016/j.imlet.2004.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 01/13/2023]
Abstract
Adaptor proteins play critical roles in lymphocyte activation by mediating intermolecular interactions and assembling signaling complexes at the activated plasma membrane. Bam32/DAPP1 and the related adaptor proteins TAPP1 and TAPP2 were identified by multiple groups about 5 years ago and considerable progress has been made in elucidating the structure, interaction partners and function of these molecules. These cytoplasmic adaptor proteins are recruited to the plasma membrane through interaction of their PH domains with the lipid products of phosphatidylinositol 3-kinases. They share a unique mode of regulation in that they bind with high affinity to phosphatidylinositol-3,4-bisphosphate and their recruitment is enhanced rather than inhibited by the lipid phosphatase SHIP. Two knockout mouse studies and several gain-and-loss of function studies in cell lines have recently been published, demonstrating multiple functions of Bam32 in B cell activation. Bam32 is required for biological responses including B cell antigen receptor (BCR)-induced proliferation and antibody responses to type II T-independent antigens. Bam32 regulates multiple BCR signaling events including activation of the mitogen activated protein kinases ERK and JNK, remodeling of the actin cytoskeleton through the GTPase Rac1 and BCR internalization. Several studies have emerged suggesting that TAPP1 and TAPP2 may play roles in B and T cell activation; however, the biological functions regulated by these molecules remain to be defined. Here we will comprehensively review the available data on the structure and function of Bam32, TAPP1 and TAPP2 and present an integrated working model for Bam32 function in B cell activation and a general model for distinct effector pathways of PI 3-kinases.
Collapse
Affiliation(s)
- Atef Allam
- Department of Immunology, University of Manitoba, 611 Basic Medical Sciences Building, 730 William Avenue, Winnipeg, Man., R3E-0W3, Canada
| | | |
Collapse
|
74
|
Leslie N, Downes C. PTEN function: how normal cells control it and tumour cells lose it. Biochem J 2005; 382:1-11. [PMID: 15193142 PMCID: PMC1133909 DOI: 10.1042/bj20040825] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/10/2004] [Accepted: 06/11/2004] [Indexed: 01/26/2023]
Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a PI (phosphoinositide) 3-phosphatase that can inhibit cellular proliferation, survival and growth by inactivating PI 3-kinase-dependent signalling. It also suppresses cellular motility through mechanisms that may be partially independent of phosphatase activity. PTEN is one of the most commonly lost tumour suppressors in human cancer, and its deregulation is also implicated in several other diseases. Here we discuss recent developments in our understanding of how the cellular activity of PTEN is regulated, and the closely related question of how this activity is lost in tumours. Cellular PTEN function appears to be regulated by controlling both the expression of the enzyme and also its activity through mechanisms including oxidation and phosphorylation-based control of non-substrate membrane binding. Therefore mutation of PTEN in tumours disrupts not only the catalytic function of PTEN, but also its regulatory aspects. However, although mutation of PTEN is uncommon in many human tumour types, loss of PTEN expression seems to be more frequent. It is currently unclear how these tumours lose PTEN expression in the absence of mutation, and while some data implicate other potential tumour suppressors and oncogenes in this process, this area seems likely to be a key focus of future research.
Collapse
Affiliation(s)
- Nick R. Leslie
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- email
| | - C. Peter Downes
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- email
| |
Collapse
|
75
|
Ghansah T, Paraiso KHT, Highfill S, Desponts C, May S, McIntosh JK, Wang JW, Ninos J, Brayer J, Cheng F, Sotomayor E, Kerr WG. Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. THE JOURNAL OF IMMUNOLOGY 2005; 173:7324-30. [PMID: 15585856 DOI: 10.4049/jimmunol.173.12.7324] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previously we demonstrated that SHIP(-/-) mice accept allogeneic bone marrow transplants (BMT) without significant acute graft-vs-host disease (GvHD). In this study we show that SHIP(-/-) splenocytes and lymph node cells are poor stimulators of allogeneic T cell responses that cause GvHD. Intriguingly, SHIP(-/-) splenocytes prime naive T cell responses to peptide epitopes, but, conversely, are partially impaired for priming T cell responses to whole Ag. However, dendritic cells (DC) purified from SHIP(-/-) splenocytes prime T cell responses to allogeneic targets, peptide epitopes, and whole Ag as effectively as SHIP(+/+) DC. These findings point to an extrinsic effect on SHIP(-/-) DC that impairs priming of allogeneic T cell responses. Consistent with this extrinsic effect, we found that a dramatic expansion of myeloid suppressor cells in SHIP(-/-) mice impairs priming of allogeneic T cells. These findings suggest that SHIP expression or its activity could be targeted to selectively compromise T cell responses that mediate GvHD and graft rejection.
Collapse
Affiliation(s)
- Tomar Ghansah
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, and Department of Interdisciplinary Oncology, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Tomlinson MG, Heath VL, Turck CW, Watson SP, Weiss A. SHIP Family Inositol Phosphatases Interact with and Negatively Regulate the Tec Tyrosine Kinase. J Biol Chem 2004; 279:55089-96. [PMID: 15492005 DOI: 10.1074/jbc.m408141200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tec family of protein-tyrosine kinases (PTKs), that includes Tec, Itk, Btk, Bmx, and Txk, plays an essential role in phospholipase Cgamma (PLCgamma) activation following antigen receptor stimulation. This function requires activation of phosphatidylinositol 3-kinase (PI 3-kinase), which promotes Tec membrane localization through phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) generation. The mechanism of negative regulation of Tec family PTKs is poorly understood. In this study, we show that the inositol 5' phosphatases SHIP1 and SHIP2 interact preferentially with Tec, compared with other Tec family members. Four lines of evidence suggest that SHIP phosphatases are negative regulators of Tec. First, SHIP1 and SHIP2 are potent inhibitors of Tec activity. Second, inactivation of the Tec SH3 domain, which is necessary and sufficient for SHIP binding, generates a hyperactive form of Tec. Third, SHIP1 inhibits Tec membrane localization. Finally, constitutively targeting Tec to the membrane relieves SHIP1-mediated inhibition. These data suggest that SHIP phosphatases can interact with and functionally inactivate Tec by de-phosphorylation of local PtdIns 3,4,5-P(3) and inhibition of Tec membrane localization.
Collapse
Affiliation(s)
- Michael G Tomlinson
- Department of Medicine and Howard Hughes Medical Institute, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
77
|
Nakamura A, Takai T. A role of FcgammaRIIB in the development of collagen-induced arthritis. Biomed Pharmacother 2004; 58:292-8. [PMID: 15194165 DOI: 10.1016/j.biopha.2004.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Indexed: 11/30/2022] Open
Abstract
Immune inhibitory receptors play an important role in the maintenance of adequate activation threshold of various cells in our immune system. The inhibitory Fc receptor, type IIB Fc receptor for IgG (FcgammaRIIB), is one of the critical molecules for the regulation of immune responses through antibodies. Analysis of murine models indicates that FcgammaRIIB plays an essential role in the suppression of various autoimmune disorders. Recent studies reveal the novel regulatory role of FcgammaR in the development of collagen-induced arthritis (CIA), an animal model relevant to human rheumatoid arthritis (RA). This review provides an overview of FcgammaRIIB-mediated immune regulation, highlighting the implication of FcgammaRIIB in the selection of peripheral B cell development during the CIA course.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Experimental Immunology and CREST program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Seiryo 4-1, Sendai 980-8575, Japan
| | | |
Collapse
|
78
|
Moody JL, Jirik FR. Compound heterozygosity for Pten and SHIP augments T-dependent humoral immune responses and cytokine production by CD(4+) T cells. Immunology 2004; 112:404-12. [PMID: 15196208 PMCID: PMC1782497 DOI: 10.1111/j.1365-2567.2004.01901.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Tight regulation of the phosphatidylinositiol 3-kinase (PI3K) pathway is essential not only for normal immune system development and responsiveness, but also in the prevention of immunopathology. Indeed, unchecked activation of the PI3K pathway in T cells induces lymphoproliferation and systemic autoimmunity. Evaluating the importance of threshold levels of two key PI3K pathway phosphoinositol phosphatases, we previously reported that mice heterozygous for both Pten and SHIP develop a more rapid progression of a lymphoproliferative autoimmune syndrome than do Pten(+\-) mice. Investigating the basis for this difference, we now describe a quantitative and qualitative difference in the antibody responses of C57BL\6 Pten(+\-) SHIP(+\-) mice upon challenge with a T-dependent antigen. Suspecting that this phenotypic difference might be the result, at least in part, of a T-helper cell defect, an in vitro analysis of anti-CD3/interleukin (IL)-2-expanded CD4(+) T cells was performed. After stimulation with anti-CD3, cells from mice heterozygous for both Pten and SHIP exhibited a striking increase in IL-4 secretion (> 10-fold), without a corresponding increase in T helper 2 (Th2) cell numbers being evident by intracellular staining for this cytokine. Modest increases were also seen for both IL-13 and IFN-gamma. Perhaps in keeping with this abnormal in vitro cytokine profile, IgG1 serum levels were significantly elevated in young C57BL\6 Pten(+\-) SHIP(+\-) mice. Thus, the relative levels of Pten and SHIP appear to be key variables in CD4(+) T-cell function, primarily via their ability to regulate IL-4 production.
Collapse
Affiliation(s)
- J L Moody
- Department of Biochemistry and Molecular Biology, and Joint Injury and Arthritis Research Group, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
79
|
Fang H, Pengal RA, Cao X, Ganesan LP, Wewers MD, Marsh CB, Tridandapani S. Lipopolysaccharide-Induced Macrophage Inflammatory Response Is Regulated by SHIP. THE JOURNAL OF IMMUNOLOGY 2004; 173:360-6. [PMID: 15210794 DOI: 10.4049/jimmunol.173.1.360] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS stimulates monocytes/macrophages through TLR4, resulting in the activation of a series of signaling events that potentiate the production of inflammatory mediators. Recent reports indicated that the inflammatory response to LPS is diminished by PI3K, through the activation of the serine/threonine kinase Akt. SHIP is an inositol phosphatase that can reverse the activation events initiated by PI3K, including the activation of Akt. However, it is not known whether SHIP is involved in TLR4 signaling. In this study, we demonstrate that LPS stimulation of Raw 264.7 mouse macrophage cells induces the association of SHIP with lipid rafts, along with IL-1R-associated kinase. In addition, SHIP is tyrosine phosphorylated upon LPS stimulation. Transient transfection experiments analyzing the function of SHIP indicated that overexpression of a wild-type SHIP, but not the SHIP Src homology 2 domain-lacking catalytic activity, up-regulates NF-kappaB-dependent gene transcription in response to LPS stimulation. These results suggest that SHIP positively regulates LPS-induced activation of Raw 264.7 cells. To test the validity of these observations in primary macrophages, LPS-induced events were compared in bone marrow macrophages derived from SHIP(+/+) and SHIP(-/-) mice. Results indicated that LPS-induced MAPK phosphorylation is enhanced in SHIP(+/+) cells, whereas Akt phosphorylation is enhanced in SHIP(-/-) cells compared with SHIP(+/+) cells. Finally, LPS-induced TNF-alpha and IL-6 production was significantly lower in SHIP(-/-) bone marrow-derived macrophages. These results are the first to demonstrate a role for SHIP in TLR4 signaling, and propose that SHIP is a positive regulator of LPS-induced inflammation.
Collapse
Affiliation(s)
- Huiqing Fang
- Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Robson JD, Davidson D, Veillette A. Inhibition of the Jun N-terminal protein kinase pathway by SHIP-1, a lipid phosphatase that interacts with the adaptor molecule Dok-3. Mol Cell Biol 2004; 24:2332-43. [PMID: 14993273 PMCID: PMC355862 DOI: 10.1128/mcb.24.6.2332-2343.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dok-3 is a Dok-related adaptor expressed in B cells and macrophages. Previously, we reported that Dok-3 is an inhibitor of B-cell activation in A20 B cells and that it associates with SHIP-1, a 5' inositol-specific lipid phosphatase, as well as Csk, a negative regulator of Src kinases. Here, we demonstrate that Dok-3 suppresses B-cell activation by way of its interaction with SHIP-1, rather than Csk. Our biochemical analyses showed that the Dok-3-SHIP-1 complex acts by selectively inhibiting the B-cell receptor (BCR)-evoked activation of the Jun N-terminal protein kinase (JNK) cascade without affecting overall protein tyrosine phosphorylation or activation of previously described SHIP-1 targets like Btk and Akt/PKB. Studies of B cells derived from SHIP-1-deficient mice showed that BCR-triggered activation of JNK is enhanced in the absence of SHIP-1, implying that the Dok-3-SHIP-1 complex (or a related mechanism) is a physiological negative regulator of the JNK cascade in normal B cells. Together, these data elucidate the mechanism by which Dok-3 inhibits B-cell activation. Furthermore, they provide evidence that SHIP-1 can be a negative regulator of JNK signaling in B cells.
Collapse
Affiliation(s)
- Jeffrey D Robson
- Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W 1R7
| | | | | |
Collapse
|
81
|
Brauweiler AM, Cambier JC. Autonomous SHIP-dependent FcγR signaling in pre-B cells leads to inhibition of cell migration and induction of cell death. Immunol Lett 2004; 92:75-81. [PMID: 15081530 DOI: 10.1016/j.imlet.2003.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 11/21/2003] [Indexed: 11/23/2022]
Abstract
Mature B cells express a single immunoglobulin Fc receptor, FcgammaRIIB, that functions to block downstream signaling by co-aggregated antigen receptors. Co-aggregation of receptors is essential because BCR activated kinases must phosphorylate FcgammaRIIB to recruit SHIP and mediate inhibitory signals. Pre-B cells also express FcgammaRIIB, but since they do not yet express antigen receptor, it is unclear when they are activated physiologically. Here, we demonstrate that aggregation of the FcR on pre-B cells leads to potent inhibitory signaling. Aggregation of the FcR alone leads to downstream effects including the induction of cell death and the blockade of SDF-1 induced migration. The biochemical circuitry that mediates this response is unique because although SHIP is required for this signaling and is phosphorylated upon receptor aggregation, this occurs in the absence of FcgammaRIIB phosphorylation. Results indicate that immune complexes may inhibit B cell production in the bone marrow by antigen non-specific mechanisms.
Collapse
Affiliation(s)
- Anne M Brauweiler
- Integrated Department of Immunology, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | |
Collapse
|
82
|
Nakamura K, Kouro T, Kincade PW, Malykhin A, Maeda K, Coggeshall KM. Src homology 2-containing 5-inositol phosphatase (SHIP) suppresses an early stage of lymphoid cell development through elevated interleukin-6 production by myeloid cells in bone marrow. ACTA ACUST UNITED AC 2004; 199:243-54. [PMID: 14718513 PMCID: PMC1797415 DOI: 10.1084/jem.20031193] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Src homology (SH)2–containing inositol 5-phosphatase (SHIP) negatively regulates a variety of immune responses through inhibitory immune receptors. In SHIP−/− animals, we found that the number of early lymphoid progenitors in the bone marrow was significantly reduced and accompanied by expansion of myeloid cells. We exploited an in vitro system using hematopoietic progenitors that reproduced the in vivo phenotype of SHIP−/− mice. Lineage-negative marrow (Lin−) cells isolated from wild-type mice failed to differentiate into B cells when cocultured with those of SHIP−/− mice. Furthermore, culture supernatants of SHIP−/− Lin− cells suppressed the B lineage expansion of wild-type lineage-negative cells, suggesting the presence of a suppressive cytokine. SHIP−/− Lin− cells contained more IL-6 transcripts than wild-type Lin− cells, and neutralizing anti–IL-6 antibody rescued the B lineage expansion suppressed by the supernatants of SHIP−/− Lin− cells. Finally, we found that addition of recombinant IL-6 to cultures of wild-type Lin− bone marrow cells reproduced the phenotype of SHIP−/− bone marrow cultures: suppression of B cell development and expansion of myeloid cells. The results identify IL-6 as an important regulatory cytokine that can suppress B lineage differentiation and drive excessive myeloid development in bone marrow.
Collapse
Affiliation(s)
- Koji Nakamura
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
83
|
Helgason CD, Antonchuk J, Bodner C, Humphries RK. Homeostasis and regeneration of the hematopoietic stem cell pool are altered in SHIP-deficient mice. Blood 2003; 102:3541-7. [PMID: 12855581 DOI: 10.1182/blood-2002-12-3939] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SH2-containing inositol 5-phosphatase (SHIP) is an important negative regulator of cytokine and immune receptor signaling. SHIP-deficient mice have a number of hematopoietic perturbations, including enhanced cytokine responsiveness. Because cytokines play an important role in the maintenance/expansion of the primitive hematopoietic cell pool, we investigated the possibility that SHIP also regulates the properties of cells in these compartments. Primitive hematopoietic cells were evaluated in SHIP-deficient mice and wild-type littermate controls using the colony-forming unit-spleen (CFU-S) and competitive repopulating unit (CRU) assays for multipotent progenitors and long-term lympho-myeloid repopulating cells, respectively. Absence of SHIP was found to affect homeostasis of CFU-S and CRU compartments. Numbers of primitive cells were increased in extramedullary sites such as the spleen of SHIP-deficient mice, although total body numbers were not significantly changed. In vivo cell cycle status of the CRU compartment was further evaluated using 5-fluorouracil (5-FU). SHIP-deficient CRUs were more sensitive to 5-FU killing, indicating a higher proliferative cell fraction. More strikingly, SHIP was found to regulate the ability of primitive cells to regenerate in vivo, as CRU recovery was approximately 30-fold lower in mice that received transplants of SHIP-deficient cells compared with controls. These results support a major role for SHIP in modulating pathways important in homeostasis and regeneration of hematopoietic stem cells, and emphasize the importance of negative cytokine regulation at the earliest stages of hematopoiesis.
Collapse
Affiliation(s)
- Cheryl D Helgason
- Department of Cancer Endocrinology, British Columbia Cancer Agency, 601 W 10th Ave, Vancouver, British Columbia Canada V5Z 1L3.
| | | | | | | |
Collapse
|
84
|
Beckhove P, Schütz F, Diel IJ, Solomayer EF, Bastert G, Foerster J, Feuerer M, Bai L, Sinn HP, Umansky V, Schirrmacher V. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer 2003; 105:444-53. [PMID: 12712433 DOI: 10.1002/ijc.11125] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe a new human tumor xenotransplant animal model that is highly efficient for engraftment, does not need host conditioning and is suitable for in vivo studies of human tumors. Pieces of 61 freshly operated primary breast tumors were implanted into 172 irradiated and 228 nonconditioned NOD/Scid mice. A high mortality was observed in irradiated but not in nonconditioned recipients. More than 90% of analyzed implanted breast cancer specimens engrafted in the NOD/Scid mice irrespective of pretreatment. The tumors were vascularized within 3 days of implantation and maintained original histomorphology as well as expression patterns of tumor markers (cytokeratin and MUC1) and cytokines (tumor necrosis factor alpha (TNF-alpha), interleukin-4 (IL-4) and IL-10) released by adjacent stromal cells. A majority of tumors grew slowly, locally infiltrating host tissue, whereas some grew aggressively, developing large, fatal tumor masses and metastases within regional lymph nodes. Tumor progression in mice correlated with stage, grade, proliferation index and hormone receptor status of primary tumors. The reproducible growth behavior and preservation of characteristic features suggest that this new xenotransplant model is relevant and can be recommended for testing new anticancer therapies.
Collapse
Affiliation(s)
- Philipp Beckhove
- Division of Cellular Immunology, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany. P.Beckhove2dkfz-heidelberg.de
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Seiffert M, Custodio JM, Wolf I, Harkey M, Liu Y, Blattman JN, Greenberg PD, Rohrschneider LR. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol Cell Biol 2003; 23:2415-24. [PMID: 12640125 PMCID: PMC150735 DOI: 10.1128/mcb.23.7.2415-2424.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.
Collapse
Affiliation(s)
- Martina Seiffert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Saito T, Yamasaki S. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 2003; 192:143-60. [PMID: 12670402 DOI: 10.1034/j.1600-065x.2003.00022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antigen recognition by the T cell receptor (TCR) complex induces the formation of a TCR signalosome by recruiting various signaling molecules, generating the recognition signals for T cell activation. The activation status and functional outcome are positively and negatively regulated by dynamic organization of the signalosome and by costimulation signals. We have studied the negative regulation of T cell activation, particularly through inhibitory adapters and costimulation receptors that are little expressed in resting cells but are induced upon T cell activation. We described Grb-associated binder 2 (Gab2) and cytotoxic T lymphocyte antigen-4 (CTLA-4) as a representative inhibitory adapter and a negative costimulation receptor, respectively, both of which exhibit negative feedback. Gab2 functions as a signal branch for activation vs. inhibition, as phosphorylation of either Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) or Gab2 by zeta-associated protein of 70 kDa (ZAP-70) determines the fate of the response. As a professional inhibitory receptor, CTLA-4 inhibits T cell response by competition of ligand binding with positive costimulator receptor CD28, and also induces inhibitory signaling. The trafficking and the cell surface expression of CTLA-4 are dynamically regulated and induced. CTLA-4 is accumulated in lysosomes and secreted to the T cell-APC contact site upon TCR stimulation. As T cell activation proceeds, these inhibitory adapters and costimulation receptors are induced and suppress/regulate the responses as negative feedback.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | |
Collapse
|
87
|
Seminario MC, Wange RL. Lipid phosphatases in the regulation of T cell activation: living up to their PTEN-tial. Immunol Rev 2003; 192:80-97. [PMID: 12670397 DOI: 10.1034/j.1600-065x.2003.00013.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The initiating events associated with T activation in response to stimulation of the T cell antigen receptor (TCR) and costimulatory receptors, such as CD28, are intimately associated with the enzymatically catalyzed addition of phosphate not only to key tyrosine, threonine and serine residues in proteins but also to the D3 position of the myo-inositol ring of phosphatidylinositol (PtdIns). This latter event is catalyzed by the lipid kinase phosphoinositide 3-kinase (PI3K). The consequent production of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 serves both to recruit signaling proteins to the plasma membrane and to induce activating conformational changes in proteins that contain specialized domains for the binding of these phospholipids. The TCR signaling proteins that are subject to regulation by PI3K include Akt, phospholipase Cgamma1 (PLCgamma1), protein kinase C zeta (PKC-zeta), Itk, Tec and Vav, all of which play critical roles in T cell activation. As is the case for phosphorylation of protein substrates, the phosphorylation of PtdIns is under dynamic regulation, with the D3 phosphate being subject to hydrolysis by the 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), thereby placing PTEN in direct opposition to PI3K. In this review we consider recent data concerning how PTEN may act in regulating the process of T cell activation.
Collapse
Affiliation(s)
- Maria-Cristina Seminario
- Laboratory of Cellular and Molecular Biology, National Institutes on Aging/IRP/NIH/DHHS, Baltimore, MD 21224, USA.
| | | |
Collapse
|
88
|
Anzelon AN, Wu H, Rickert RC. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat Immunol 2003; 4:287-94. [PMID: 12563260 DOI: 10.1038/ni892] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 01/13/2003] [Indexed: 11/09/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) phosphatase serve essential functions in the regulation of cell growth, differentiation and survival by modulating intracellular phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) concentrations. Here we show that the conditional deletion of Pten in B cells led to the preferential generation of marginal zone (MZ) B cells and B1 cells. PTEN-deficient B cells were hyperproliferative in response to mitogenic stimuli, and exhibited a lower threshold for activation through the B cell antigen receptor. Inactivation of PTEN rescued germinal center, MZ B and B1 cell formation in CD19-/- mice, arguing that recruitment and activation of PI3K are the dominant roles for CD19 in these B cell subpopulations. These findings establish the central role of PI-3,4,5-P3 regulation in the differentiation of peripheral B cell subsets.
Collapse
Affiliation(s)
- Amy N Anzelon
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0322, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
89
|
Affiliation(s)
- Nicholas R Pritchard
- Cambridge Institute for Medical Research and the Department of Medicine, Wellcome Trust/MRC Building, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
90
|
Moody JL, Pereira CG, Magil A, Fritzler MJ, Jirik FR. Loss of a single allele of SHIP exacerbates the immunopathology of Pten heterozygous mice. Genes Immun 2003; 4:60-6. [PMID: 12595903 DOI: 10.1038/sj.gene.6363903] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) has emerged as a critical component of multiple immune system intracellular signalling pathways. The levels and relative ratios of PI3K products, phosphatidylinositol (3,4) bisphosphate (PI(3,4)P(2)) and phosphatidylinositol (3,4,5) trisphosphate (PIP(3)), are regulated by inositol phosphatases such as Pten and SHIP. Interestingly, mice heterozygous for Pten, a 3'-inositol phosphatase, develop a progressive lymphoproliferative syndrome with autoimmune features. Given the importance of PIP(3) species in regulating immune responses, we hypothesized that heterozygosity for the 5'-inositol phosphatase SHIP might exacerbate the autoimmune phenotype of Pten(+/-) mice. In keeping with this, mice heterozygous for both Pten and SHIP developed lymphoproliferation, hypergammaglobulinaemia, autoantibody titres and renal pathology that were more severe than that of Pten(+/-) mice. These results suggest that the relative levels of phosphatidylinositol phosphatases are likely critical to immune system homeostasis and they also highlight the potential for gene dosage effects in regulating susceptibility and/or severity of autoimmunity.
Collapse
Affiliation(s)
- J L Moody
- Centre for Molecular Medicine and Therapeutics, British Columbia Research Institute for Children's and Women's Health, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | |
Collapse
|
91
|
Abstract
The lymphocyte's decision between tolerance and immunity/autoimmunity is regulated at many levels. Two important parameters in this decision are the maturation state of the antigen presenting cells (APCs) and the amount of self antigen that is detected by the immune system. Maturation of APCs occurs as a consequence of signals received by the innate immune system and may lead to the breakdown of tolerance. Particularly relevant to this process are the Toll-like receptors and mechanisms of cross presentation of self antigens. In addition, genetic alterations in a variety of cell surface receptors, signalling components and regulators of apoptosis/survival can break tolerance and lead to autoimmunity in vivo.
Collapse
Affiliation(s)
- Pamela S Ohashi
- University Health Network, Ontario Cancer Institute, Toronto, Canada.
| | | |
Collapse
|
92
|
Abstract
Recent evidence indicates that B cells are instructed continuously by B-cell receptor (BCR) signals to make crucial cell-fate decisions at several checkpoints during their development. Targeted disruption of BCR signalling components leads to distinct blocks in B-cell maturation, which indicates that key kinases and adaptors fine-tune BCR signalling to direct appropriate cell fates. Recent progress in unravelling the molecular mechanisms of the BCR signalling pathways has helped to clarify how BCR signals regulate the proliferation, survival and apoptosis of developing B cells.
Collapse
Affiliation(s)
- Hiroaki Niiro
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
93
|
Tridandapani S, Wang Y, Marsh CB, Anderson CL. Src homology 2 domain-containing inositol polyphosphate phosphatase regulates NF-kappa B-mediated gene transcription by phagocytic Fc gamma Rs in human myeloid cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4370-8. [PMID: 12370370 DOI: 10.4049/jimmunol.169.8.4370] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
FcgammaR-mediated phagocytosis is accompanied by the generation of tissue-damaging products such as inflammatory cytokines and reactive oxygen species. Hence, the phagocytic response must be a tightly regulated process. Recent studies have established that clustering FcgammaR on human myeloid cells causes tyrosine phosphorylation of Src homology 2 domain-containing inositol polyphosphate phosphatase (SHIP). However, it is not known how these immunoreceptor tyrosine-based activation motif (ITAM)-bearing phagocytic FcgammaR activate SHIP, or whether the activation of SHIP by ITAMs has any functional relevance. Experiments addressing the mechanism of SHIP association with ITAMs have been done in in vitro systems using phosphopeptides. In this study we undertook to dissect the molecular mechanism by which SHIP associates with the native ITAM-FcgammaR and becomes phosphorylated. In this report we provide evidence that first, SHIP is indeed phosphorylated by ITAM-FcgammaR, using cell systems that lack FcgammaRIIb expression; second, coimmunoprecipitation experiments demonstrate that SHIP associates with native ITAM-bearing FcgammaRIIa in vivo; and third, phosphorylation of SHIP by FcgammaRIIa is inhibited by overexpressing either the SHIP Src homology 2 domain or a dominant negative mutant of Shc. In contrast, SHIP phosphorylation was not inhibited by a dominant negative mutant of Grb2. We extend these observations to show that SHIP activation by ITAM-FcgammaR down-regulates NF-kappaB-induced gene transcription. These findings both provide a molecular mechanism for SHIP association with native ITAM-bearing receptors and demonstrate that SHIP association with ITAM-FcgammaR serves to regulate gene expression during the phagocytic process.
Collapse
Affiliation(s)
- Susheela Tridandapani
- Department of Internal Medicine, Heart and Lung Research Institute, Room 405D, Ohio State University, 473 West Twelfth Avenue, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
94
|
Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A, Humphries LA, Rawlings D, Reynolds H, Vigorito E, Turner M. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 2002; 196:753-63. [PMID: 12235209 PMCID: PMC2194055 DOI: 10.1084/jem.20020805] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 07/22/2002] [Accepted: 08/07/2002] [Indexed: 12/11/2022] Open
Abstract
Mice lacking the p110delta catalytic subunit of phosphatidylinositol 3-kinase have reduced numbers of B1 and marginal zone B cells, reduced levels of serum immunoglobulins, respond poorly to immunization with type II thymus-independent antigen, and are defective in their primary and secondary responses to thymus-dependent antigen. p110delta(-/-) B cells proliferate poorly in response to B cell receptor (BCR) or CD40 signals in vitro, fail to activate protein kinase B, and are prone to apoptosis. p110delta function is required for BCR-mediated calcium flux, activation of phosphlipaseCgamma2, and Bruton's tyrosine kinase. Thus, p110delta plays a critical role in B cell homeostasis and function.
Collapse
Affiliation(s)
- Elizabeth Clayton
- Laboratory of Lymphocyte Signaling and Development, Molecular Immunology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Yamada T, Zhu D, Saxon A, Zhang K. CD45 controls interleukin-4-mediated IgE class switch recombination in human B cells through its function as a Janus kinase phosphatase. J Biol Chem 2002; 277:28830-5. [PMID: 11994288 DOI: 10.1074/jbc.m201781200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD45 plays a critical regulatory role in receptor signaling through its protein tyrosine phosphatase and Janus kinase (JAK) phosphatase activities. To investigate whether CD45 also plays a regulatory role in Ig class switching in human B cells, we examined the effects of CD45 triggering on Ig class switching to IgE and its relationship with CD45 JAK phosphatase activity. Anti-CD45 triggering of CD45 significantly inhibited interleukin-4 + anti-CD40-induced switch recombination in a switch recombination vector assay in stably transfected Ramos 2G6 human B cells, as well as Ig epsilon germ-line transcription and Smu-Sepsilon switch recombination in primary human B cells. These negative regulatory effects on Ig class switching were concomitant with the ability of CD45 to dephosphorylate the induced phosphorylation of JAK1, JAK3, and signal transducer and activator of transcription 6, but not on stress-activated/mitogen-activated protein kinases. We also showed that phosphorylated JAK1 and JAK3 were directly dephosphorylated by recombinant CD45 in vitro. These results indicate that CD45 is able to function as JAK phosphatase in human B cells and that this activity is directly associated with the negative regulation of the class switch recombination to IgE. CD45 may be an appropriate target drug for modulating IgE in allergic diseases.
Collapse
Affiliation(s)
- Takechiyo Yamada
- Hart and Louis Laboratory, Division of Clinical Immunology, Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1680, USA
| | | | | | | |
Collapse
|
96
|
Choi Y, Zhang J, Murga C, Yu H, Koller E, Monia BP, Gutkind JS, Li W. PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Oncogene 2002; 21:5289-300. [PMID: 12149650 DOI: 10.1038/sj.onc.1205650] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 05/03/2002] [Accepted: 05/07/2002] [Indexed: 02/07/2023]
Abstract
Expression of PTEN tumor suppressor gene has been known to dephosphorylate the phosphatidylinositol 3' kinase (PI3K) products on the 3 prime inositol ring, resulting in reduced Akt activation. Loss of PTEN expression in OPM2 and delta47 human myeloma lines led to high Akt activity toward insulin-like growth factor I (IGF-I). In contrast, mouse plasma cell tumor (PCT) lines, expressing wild type PTEN, did not respond to IGF-I for Akt activation. We demonstrated here that endogenous PTEN played a negative role in controlling Akt activity in both mouse PCT and NIH3T3 fibroblast lines by using anti-sense oligonucleotides against PTEN. To determine the role of src-homology 2-containing inositol 5' phosphatase (SHIP) in regulating the PI3K/Akt pathway, we manipulated its expression by down-regulation and overexpression in myeloma, PCT and NIH3T3 lines and analysed Akt activation. Our results showed that SHIP, unlike PTEN, did not affect Akt activity in all systems analysed, despite its ability to dephosphorylate a PI3K product. Although SHIP2 expression resulted in suppression of interleukin-6-mediated mitogen-activated protein kinase activation, expression of SHIP and SHIP2 in a PTEN-null myeloma line did not suppress Akt activity. Biologically, expression of only PTEN, but not SHIP and SHIP2, resulted in growth inhibition and increased apoptosis in OPM2 myeloma line. Together, our results have established the role of PTEN, but not SHIP and SHIP2, in negatively regulating the PI3K/Akt cascade and in myeloma leukemogenesis.
Collapse
Affiliation(s)
- Yong Choi
- Lomabardi Cancer Center, Georgetown University Medical Center, Washington, District of Colombia 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology, Japan Science and Technology Corporation, Institute of Development, Ageing and Cancer, Tohoku University, Seiryo, Sendai, Japan.
| |
Collapse
|
98
|
Marshall AJ, Krahn AK, Ma K, Duronio V, Hou S. TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol 2002; 22:5479-91. [PMID: 12101241 PMCID: PMC133950 DOI: 10.1128/mcb.22.15.5479-5491.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/26/2001] [Accepted: 04/30/2002] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of two signal transduction proteins related to Bam32, known as TAPP1 and TAPP2. Bam32, TAPP1, and TAPP2 share several characteristics, including small size (32 to 47 kDa), lack of enzymatic domains, high conservation between humans and mice, and the presence of pleckstrin homology (PH) domains near their C termini which contain the 3-phosphoinositide-binding motif. Unlike Bam32, the N-terminal regions of TAPP1 and TAPP2 contain a second PH domain. TAPP1 and TAPP2 transcripts are expressed in a variety of tissues including lymphoid tissues. Using live-cell imaging, we demonstrate that TAPP1 and TAPP2 are recruited to the plasma membrane of BJAB human B-lymphoma cells upon activation through the B-cell antigen receptor (BCR). The C-terminal PH domain is necessary and sufficient for BCR-induced membrane recruitment of both TAPP1 and TAPP2. Blockade of phosphatidylinositol 3-kinase (PI3K) activity completely abolished BCR-induced recruitment of TAPP1 and TAPP2, while expression of active PI3K is sufficient to drive constitutive membrane localization of TAPP1 and TAPP2. TAPP1 and TAPP2 preferentially accumulate within ruffled, F-actin-rich areas of plasma membrane, suggesting a potential role in PI3K-driven cytoskeletal reorganization. Like Bam32, BCR-driven TAPP1 and TAPP2 recruitment is a relatively slow and sustained response, in contrast to Btk recruitment and Ca(2+) mobilization responses, which are rapid and transient. Consistent with recent studies indicating that Bam32, TAPP1, and TAPP2 can bind to PI(3,4)P(2), we find that membrane recruitment correlates well with production of PI(3,4)P(2) but not with that of PI(3,4,5)P(3). Our results indicate that TAPP1 and TAPP2 are direct targets of PI3K signaling that are recruited into plasma membranes with distinctive delayed kinetics and accumulate within F-actin-rich membrane ruffles. We postulate that the TAPPs function to orchestrate cellular responses during the sustained phase of signaling.
Collapse
Affiliation(s)
- Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3.
| | | | | | | | | |
Collapse
|
99
|
Kurosaki T, Okada T. Regulation of phospholipase C-gamma2 and phosphoinositide 3-kinase pathways by adaptor proteins in B lymphocytes. Int Rev Immunol 2002; 20:697-711. [PMID: 11913946 DOI: 10.3109/08830180109045586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The importance of phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC)-gamma2 in B cell function and development has been highlighted by gene targeting experiments in mice. In fact, these knockout mice exhibit a profound inhibition of proliferative responses upon B cell receptor (BCR) engagement. The molecular connections between these effectors and upstream tyrosine kinases such as Syk have been studied intensively in the past few years. This mechanism involves the action of cytoplasmic adaptor molecules, which participate in forming multicomponent signaling complexes, thereby directing the appropriate subcellular localization of effector enzymes. In addition to these cytoplasmic adaptor proteins, cell surface coreceptors can be viewed as transmembrane adaptor proteins, because coreceptors can also change the localization of effector enzymes, which in turn modulates the BCR-initiated signals.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan.
| | | |
Collapse
|
100
|
Affiliation(s)
- Igor Vivanco
- Department of Medicine and Molecular Biology Institute, UCLA School of Medicine, 11-935 Factor Building, 10833 LeConte Avenue, Los Angeles, California 90095, USA
| | | |
Collapse
|