51
|
Reardon C, McKay DM. TGF-beta suppresses IFN-gamma-STAT1-dependent gene transcription by enhancing STAT1-PIAS1 interactions in epithelia but not monocytes/macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 178:4284-95. [PMID: 17371985 DOI: 10.4049/jimmunol.178.7.4284] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma and TGF-beta are important regulators of mucosal immunity, typically functioning in opposition to each other. In this study, we assessed whether TGF-beta could modulate IFN-gamma-induced STAT1 signaling. Model epithelial cell lines (HEp-2, HT-29, and T84) or monocytes/macrophages (THP-1 cell line, human blood mononuclear cells) were pretreated with TGF-beta (1 ng/ml; 5-60 min), followed by IFN-gamma exposure (20 ng/ml; 30 min), and then STAT1 transcriptional activity, DNA-binding activity, phosphorylation, and methylation were assessed. Some epithelia were transfected with an expression plasmid encoding SMAD7 to block TGF-beta-SMAD signaling. Epithelia, but not macrophages, pretreated with TGF-beta were hyporesponsive to IFN-gamma stimulation as indicated by reduced expression of four STAT1-regulated genes and reduced STAT1 DNA binding on EMSA. However, STAT1 Tyr(701)-, Ser(727) phosphorylation, and nuclear recruitment of STAT1 were not significantly different in IFN-gamma with or without TGF-beta-treated cells, indicating that the effects of TGF-beta are downstream of IFN-gammaR-JAK-STAT1 interaction. The TGF-beta effect was not dependent on ERK1/2, p38, or JNK activation but was prevented by overexpression of the inhibitory SMAD7 protein. Additional studies suggest that TGF-beta blockade of IFN-gamma activity in epithelia is via enhanced sequestering of STAT1 by pre-existing protein inhibitor of activated STAT1. These results demonstrate that TGF-beta rapidly suppresses IFN-gamma-driven STAT1 signaling by reducing DNA binding via promotion of STAT1-protein inhibitor of activated STAT1 interactions and not inhibition of STAT1 activation; an event that may be specific to epithelia and represent a novel mode of action of TGF-beta.
Collapse
Affiliation(s)
- Colin Reardon
- Gastrointestinal Research Group, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada
| | | |
Collapse
|
52
|
Fichtner-Feigl S, Fuss IJ, Young CA, Watanabe T, Geissler EK, Schlitt HJ, Kitani A, Strober W. Induction of IL-13 triggers TGF-beta1-dependent tissue fibrosis in chronic 2,4,6-trinitrobenzene sulfonic acid colitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:5859-70. [PMID: 17442970 DOI: 10.4049/jimmunol.178.9.5859] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To investigate the immunopathogenesis of inflammation-associated fibrosis, we analyzed the chronic colitis and late-developing fibrosis occurring in BALB/c mice administered weekly doses of intrarectal 2,4,6-trinitrobenzene sulfonic acid. We showed first in this model that an initial Th1 response involving IL-12p70 and IFN-gamma subsides after 3 wk to be supplanted by an IL-23/IL-25 response beginning after 4-5 wk. This evolution is followed by gradually increasing production of IL-17 and cytokines ordinarily seen in a Th2 response, particularly IL-13, which reaches a plateau at 8-9 wk. In vitro stimulation studies suggest that this IL-13 production is dependent on IL-23 and IL-25, but not on IL-12p70. We then show that IL-13 production results in the induction of an IL-13R formerly thought to function only as a decoy receptor, IL-13Ralpha(2), and this receptor is critical to the production of TGF-beta(1) and the onset of fibrosis. Thus, if IL-13 signaling through this receptor is blocked by administration of soluble IL-13Ralpha(2)-Fc, or by administration of IL-13Ralpha(2)-specific small interfering RNA, TGF-beta(1) is not produced and fibrosis does not occur. These studies show that in chronic 2,4,6-trinitrobenzene sulfonic acid colitis, fibrosis is dependent on the development of an IL-13 response that acts through a novel cell surface-expressed IL-13R to induce TGF-beta(1). A similar mechanism may obtain in certain forms of human inflammatory bowel disease.
Collapse
Affiliation(s)
- Stefan Fichtner-Feigl
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Karrasch T, Kim JS, Muhlbauer M, Magness ST, Jobin C. Gnotobiotic IL-10-/-;NF-kappa B(EGFP) mice reveal the critical role of TLR/NF-kappa B signaling in commensal bacteria-induced colitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:6522-32. [PMID: 17475882 DOI: 10.4049/jimmunol.178.10.6522] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Commensal bacteria and TLR signaling have been associated with the maintenance of intestinal homeostasis in dextran sodium sulfate-induced intestinal injury. The aim of this study was to determine the in vivo role of TLR/NF-kappaB activation in a model of commensal bacteria-induced T cell-mediated colitis. A NF-kappaB reporter gene mouse (NF-kappaBEGFP) (EGFP, enhanced GFP) was crossed to the colitogenic susceptible strain IL-10-/- and derived into germfree conditions using embryo-transfer technology. Germfree IL-10wt/wt;NF-kappaBEGFP and IL-10-/-;NF-kappaBEGFP mice (wt, wild type) were dual associated with the nonpathogenic commensal bacteria strains Enterococcus faecalis and Escherichia coli. EGFP was detected using macroimaging, confocal microscopy, and flow cytometry. IL-10-/-;MyD88-/- mice were used to assess E. faecalis/E. coli-induced TLR-dependent signaling and IL-23 gene expression. Dual-associated IL-10-/-;NF-kappaBEGFP mice developed severe inflammation by 7 wk. Macroscopic analysis showed elevated EGFP expression throughout the colon of bacteria-associated IL-10-/-;NF-kappaBEGFP mice. Confocal microscopy analysis revealed EGFP-positive enterocytes during the early phase of bacterial colonization (1 wk) in both IL-10wt/wt and IL-10-/- mice, while the signal shifted toward lamina propria T cells, dendritic cells, neutrophils, and macrophages in IL-10-/- mice during colitis (7 wk). The NF-kappaB inhibitor BAY 11-7085 attenuated E. faecalis/E. coli-induced EGFP expression and development of colitis. Additionally, E. faecalis/E. coli-induced NF-kappaB signaling and IL-23 gene expression were blocked in bone marrow-derived dendritic cells derived from IL-10-/-;MyD88-/- mice. We conclude that bacteria-induced experimental colitis involves the activation of TLR-induced NF-kappaB signaling derived mostly from mucosal immune cells. Blocking TLR-induced NF-kappaB activity may represent an attractive strategy to treat immune-mediated intestinal inflammation.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Medicine and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27510, USA
| | | | | | | | | |
Collapse
|
54
|
Werner T, Haller D. Intestinal epithelial cell signalling and chronic inflammation: From the proteome to specific molecular mechanisms. Mutat Res 2007; 622:42-57. [PMID: 17628614 DOI: 10.1016/j.mrfmmm.2007.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Advancing knowledge regarding the cellular mechanisms of intestinal inflammation has led to a better understanding of the disease pathology in patients with inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis. It has become clear from numerous studies that enteric bacteria are a critical component in the development and prevention/treatment of chronic intestinal inflammation. An emerging new paradigm suggests that changes in the homeostasis of bacteria- and host-derived signal transduction at the intestinal epithelial cell (IEC) level may lead to a break in barrier function and the development of adaptive immune disturbances. The functional loss of anti-inflammatory host-derived signals in the gut including the immunosuppressive cytokines Interleukin 10 (IL-10) and transforming growth factor (TGF)-beta are of high relevance to the pathogenesis of IBD. The development of analytical tools including two-dimensional (2D) high-resolution protein separation techniques and peptide mass fingerprinting via high-sensitivity mass-spectrometers (MS) allows the quantitative assessment of protein expression changes in disease-relevant cell types. By using these advanced methods, the characterization of the epithelial cell proteome from murine models of experimental colitis and human IBD patients identified novel disease-related mechanisms with respect to the regulation of the glucose-regulated endoplasmic reticulum stress response protein 78 (grp-78). In conclusion, the identification and functional analysis of differentially expressed proteins in purified intestinal target cell types will help to add important insights to the understanding of the molecular pathogenesis of these immune-mediated chronic intestinal disorders.
Collapse
Affiliation(s)
- Tanja Werner
- Technical University of Munich, Experimental Nutritional Medicine, Else-Kroener-Fresenius-Center, Am Forum 5, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
55
|
Sakuraba H, Ishiguro Y, Yamagata K, Munakata A, Nakane A. Blockade of TGF-beta accelerates mucosal destruction through epithelial cell apoptosis. Biochem Biophys Res Commun 2007; 359:406-12. [PMID: 17560553 DOI: 10.1016/j.bbrc.2007.05.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/05/2007] [Indexed: 02/07/2023]
Abstract
To clarify the protective role of transforming growth factor (TGF)-beta for the intestinal epithelial injury in vivo, the effect of antibodies against TGF-beta on epithelial destruction and apoptosis was assessed in dextran sulfate sodium (DSS)-induced colitis by histological analysis of colonic sections, account of apoptotic epithelial cells. To evaluate the pathways of epithelial apoptosis, we analyzed the activities of caspases, the level of Fas and cellular FLICE-inhibitory protein (cFLIP) expression in epithelial cells. Apoptotic epithelial cells were increased prior to the onset of ulceration in DSS-induced colitis, and the neutralization of TGF-beta exacerbated epithelial apoptosis and histological damage score. The up-regulation of caspase-8 activity and Fas expression and reduced cFLIP expression were observed in intestinal epithelial cells from anti-TGF-beta antibody-treated mice. The present study revealed that suppression of TGF-beta deteriorated epithelial apoptosis, and the increase of apoptotic epithelial cells may amplify the inflammation in gut mucosa.
Collapse
Affiliation(s)
- Hirotake Sakuraba
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | |
Collapse
|
56
|
Huibregtse IL, van Lent AU, van Deventer SJH. Immunopathogenesis of IBD: insufficient suppressor function in the gut? Gut 2007; 56:584-92. [PMID: 17047100 PMCID: PMC1856872 DOI: 10.1136/gut.2006.103523] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/28/2006] [Accepted: 09/30/2006] [Indexed: 12/22/2022]
Affiliation(s)
- I L Huibregtse
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
57
|
Daniel C, Sartory N, Zahn N, Geisslinger G, Radeke HH, Stein JM. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:2458-2468. [PMID: 17277153 DOI: 10.4049/jimmunol.178.4.2458] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the present concepts, the synthetic sphingosine analog of myriocin FTY720 alters migration and homing of lymphocytes via sphingosine 1-phosphate receptors. However, several studies indicate that the immunosuppressive properties of FTY720 may alternatively be due to tolerogenic activities via modulation of dendritic cell differentiation or based on direct effects on CD4(+)CD25(+) regulatory T cells (Treg). As Treg play an important role for the cure of inflammatory colitis, we used the Th1-mediated 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis model to address the therapeutic potential of FTY720 in vivo. A rectal enema of TNBS was given to BALB/c mice. FTY720 was administered i.p. from days 0 to 3 or 3 to 5. FTY720 substantially reduced all clinical, histopathologic, macroscopic, and microscopic parameters of colitis analyzed. The therapeutic effects of FTY720 were associated with a down-regulation of IL-12p70 and subsequent Th1 cytokines. Importantly, FTY720 treatment resulted in a prominent up-regulation of FoxP3, IL-10, TGFbeta, and CTLA4. Supporting the hypothesis that FTY720 directly affects functional activity of CD4(+)CD25(+) Treg, we measured a significant increase of CD25 and FoxP3 expression in isolated lamina propria CD4(+) T cells of FTY720-treated mice. The impact of FTY720 on Treg induction was further confirmed by concomitant in vivo blockade of CTLA4 or IL-10R which significantly abrogated its therapeutic activity. In conclusion, our data provide clear evidence that in addition to its well-established effects on migration FTY720 leads to a specific down-regulation of proinflammatory signals while simultaneously inducing functional activity of CD4(+)CD25(+) Treg. Thus, FTY720 may offer a promising new therapeutic strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Carolin Daniel
- First Department of Internal Medicine, Entwicklung und Sicherheit-ZAFES, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Joshi BH, Hogaboam C, Dover P, Husain SR, Puri RK. Role of interleukin-13 in cancer, pulmonary fibrosis, and other T(H)2-type diseases. VITAMINS AND HORMONES 2006; 74:479-504. [PMID: 17027527 DOI: 10.1016/s0083-6729(06)74019-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-13 plays a major role in various inflammatory diseases including cancer, asthma, and allergy. It mediates a variety of different effects on various cell types including B cells, monocytes, natural killer cells, endothelial cells, and fibroblasts. IL-13 binds to two primary receptor chains IL-13Ralpha1 and IL-13Ralpha2. The IL-13Ralpha2 but not IL-13Ralpha1 chain binds IL-13 with high affinity and is overexpressed in a variety of human cancer cells derived from glioma, squamous cell carcinoma of head and neck, and AIDS-associated Kaposi's sarcoma. We have also demonstrated that IL-13Ralpha2 expression is greatly increased in lung cells when mice were challenged intranasally with bleomycin or Aspergillus fumigatus. In addition, IL-13Ralpha2 increased in surgical lung biopsies from patients with usual interstitial pneumonia, nonspecific interstitial pneumonia, and respiratory bronchiolitic interstitial pneumonia of unknown origin. Based on various studies, it is concluded that IL-13Ralpha2-expressing cells are involved in various pulmonary pathological conditions. In contrast, normal tissues such as brain, lung, endothelial cells, and head and neck tissues express IL-13Ralpha1 chain, but show only marginal expression of IL-13Ralpha2 chain. Thus, IL-13Ralpha2 chain may serve as a novel biomarker for diseased cells such as cancer or fibrosis and a target for receptor-directed therapeutic agents. To target IL-13R, a recombinant fusion protein composed of IL-13 and a derivative of Pseudomonas exotoxin (PE) has been produced. This cytotoxin termed as IL-13PE38QQR or IL-13PE38, or IL-13PE is highly and specifically cytotoxic to a variety of human tumor cell lines. In preclinical models of human glioblastoma, head and neck and AIDS-associated Kaposi's cancer, IL-13PE has been found to have significant antitumor activity at a tolerated dose. Several phase I clinical trials have been completed in patients with recurrent malignant glioma. Recently a phase III clinical trial (PRECISE) in patients with recurrent malignant glioma has been completed recruiting a total of 294 patients. IL-13PE cytotoxin has also shown a significant therapeutic effect in preclinical bleomycin or A. fumigatus or Schistosoma mansoni-induced pulmonary pathology including granulomatous fibrosis in mouse models. A clinical study in these diseases has yet to be initiated.
Collapse
Affiliation(s)
- Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
59
|
Han IK, Kim MY, Byun HM, Hwang TS, Kim JM, Hwang KW, Park TG, Jung WW, Chun T, Jeong GJ, Oh YK. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med (Berl) 2006; 85:75-83. [PMID: 17089096 DOI: 10.1007/s00109-006-0114-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 07/02/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Recently, nasal administration has been studied as a noninvasive route for delivery of plasmid DNA encoding therapeutic or antigenic genes. Here, we examined the brain targeting efficiency and transport pathways of intranasally administered plasmid DNA. Quantitative polymerase chain reaction (PCR) measurements of plasmid DNA in blood and brain tissues revealed that intranasally administered pCMVbeta (7.2 kb) and pN2/CMVbeta (14.1 kb) showed systemic absorption and brain distribution. Following intranasal administration, the beta-galactosidase protein encoded by these plasmids was significantly expressed in brain tissues. Kinetic studies showed that intranasally administered plasmid DNA reached the brain with a 2,595-fold higher efficiency than intravenously administered plasmid DNA did, 10 min post-dose. Over 1 h post-dose, the brain targeting efficiencies were consistently higher for intranasally administered plasmid DNA than for intravenously administered DNA. To examine how plasmid DNA enters the brain and moves to the various regions, we examined tissues from nine brain regions, at 5 and 10 min after intranasal or intravenous administration of plasmid DNA. Intravenously administered plasmid DNA displayed similar levels of plasmid DNA in the nine different regions, whereas, intranasally administered plasmid DNA exhibited different levels of distribution among the regions, with the highest plasmid DNA levels in the olfactory bulb. Moreover, plasmid DNA was mainly detected in the endothelial cells, but not in glial cells. Our results suggest that intranasally applied plasmid DNA may reach the brain through a direct route, possibly via the olfactory bulb, and that the nasal route might be an alternative method for efficiently delivering plasmid DNA to the brain.
Collapse
Affiliation(s)
- In-Kwon Han
- MyGene Bioscience Institute, Kangnam-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Inagaki-Ohara K, Dewi FN, Hisaeda H, Smith AL, Jimi F, Miyahira M, Abdel-Aleem ASF, Horii Y, Nawa Y. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 2006; 74:5292-301. [PMID: 16926423 PMCID: PMC1594832 DOI: 10.1128/iai.02024-05] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eimeria spp. are intracellular protozoa that infect intestinal epithelia of most vertebrates, causing coccidiosis. Intestinal intraepithelial lymphocytes (IEL) that reside at the basolateral site of epithelial cells (EC) have immunoregulatory and immunoprotective roles against Eimeria spp. infection. However, it remains unknown how IEL are involved in the regulation of epithelial barrier during Eimeria sp. infection. Here, we demonstrated two distinct roles of IEL against infection with Eimeria vermiformis, a murine pathogen: production of cytokines to induce protective immunity and expression of junctional molecules to preserve epithelial barrier. The number of IEL markedly increased when oocyst production reached a peak. During infection, IEL increased production of gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) and decreased transforming growth factor beta (TGF-beta) production. Addition of IFN-gamma and TNF-alpha or supernatants obtained from cultured IEL from E. vermiformis-infected mice reduced transepithelial electrical resistance (TER) in a confluent CMT93 cell monolayer, a murine intestine-derived epithelial line, but antibodies against these cytokines suppressed the decline of TER. Moreover, TGF-beta attenuated the damage of epithelial monolayer and changes in TER caused by IFN-gamma and TNF-alpha. The expression of junctional molecules by EC was decreased when IEL produced a high level of IFN-gamma and TNF-alpha and a low level of TGF-beta in E. vermiformis-infected mice. Interestingly, IEL constantly expressed junctional molecules and a coculture of EC with IEL increased TER. These results suggest that IEL play important multifunctional roles not only in protection of the epithelium against E. vermiformis-induced change by cytokine production but also in direct interaction with the epithelial barrier when intra-EC junctions are down-regulated.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Parasitic Diseases Unit, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Bohn E, Bechtold O, Zahir N, Frick JS, Reimann J, Jilge B, Autenrieth IB. Host gene expression in the colon of gnotobiotic interleukin-2-deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: common patterns and bacteria strain specific signatures. Inflamm Bowel Dis 2006; 12:853-62. [PMID: 16954804 DOI: 10.1097/01.mib.0000231574.73559.75] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Specific pathogen-free (SPF), but not germfree (GF), interleukin (IL)-2-deficient (IL-2-/-) mice develop inflammatory bowel disease (IBD) at 10 to 15 weeks of age. Gnotobiotic IL-2-/- mice monocolonized with E. coli mpk develop IBD at 25 to 33 weeks of age but not B. vulgatus mpk, E. coli Nissle 1917, or mice cocolonized with both E. coli mpk and B. vulgatus. METHODS To determine genes regulated by these commensal bacteria, host gene expression in the colon of 8-week-old IL-2-/- mice was compared by using microarrays and semiquantitative reverse-transcription polymerase chain reaction. Colonization with E. coli mpk/B. vulgatus or SPF microbiota altered the gene expression profile more profoundly than monocolonization with either B. vulgatus, E. coli mpk or E. coli Nissle indicating that the complexity of the gene expression pattern is influenced by the diversity of the microbiota. RESULTS A small but distinct group of genes could be defined which might be associated with colitis development. Thus, 8 week old E. coli mpk IL-2-/- mice rone to colitis compared to E. coli Nissle, B. vulgatus and E. coli mpk/B. vulgatus IL-2-/- mice displayed a lower expression of the anti-inflammatory RegIII family genes such as RegIII[gamma] and pancreatitis associated protein (PAP) and peroxisome proliferator-activated receptor-[gamma] regulated genes such as adipsin and adiponectin. CONCLUSION The increased expression of these genes in B. vulgatus colonized mice might be associated with prevention of E. coli mpk triggered colitis in E. coli mpkM/B. vulgatus IL-2-/- mice.
Collapse
Affiliation(s)
- Erwin Bohn
- Institut für Medizinische Mikrobiologie und Hygiene, Universitaetsklinikum Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
62
|
Haller D. Intestinal epithelial cell signalling and host-derived negative regulators under chronic inflammation: to be or not to be activated determines the balance towards commensal bacteria. Neurogastroenterol Motil 2006; 18:184-99. [PMID: 16487409 DOI: 10.1111/j.1365-2982.2006.00762.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advancing knowledge regarding the cellular mechanisms of intestinal inflammation has led to a better understanding of the disease pathology in patients with chronic disorders of the gut including inflammatory bowel disease, coeliac disease, lymphocytic colitis and irritable bowel syndrome. An emerging new paradigm suggests that changes in the homeostasis of bacteria- and host-derived signal transduction at the epithelial cell level may lead to functional and immune disturbances of the intestinal epithelium. It has become clear from numerous studies that enteric bacteria are a critical component in the development and prevention/treatment of chronic intestinal inflammation. Signal-specific activation of mitogen-activated protein kinases (MAPK), interferon-regulated factors (IRF) and the transcription factor NF-kappaB through pattern recognition receptor signalling effectively induce inflammatory defence mechanisms. Unbalanced activation of these innate signalling pathways because of host genetic predispositions and/or the lack of adequate anti-inflammatory feedback mechanisms may turn a physiological response into a pathological situation including failure of bacterial clearance and development of chronic inflammation. Host-derived regulators from the immune and enteric nerve system crosstalk to the innate signalling network of the intestinal epithelium in order to shape the extent and duration of inflammatory processes.
Collapse
Affiliation(s)
- D Haller
- Technical University of Munich, Else-Kroener-Fresenius Centre for Experimental Nutritional Medicine, Freising-Weihenstephan, Germany.
| |
Collapse
|
63
|
Inagaki-Ohara K, Sasaki A, Matsuzaki G, Ikeda T, Hotokezaka M, Chijiiwa K, Kubo M, Yoshida H, Nawa Y, Yoshimura A. Suppressor of cytokine signalling 1 in lymphocytes regulates the development of intestinal inflammation in mice. Gut 2006; 55:212-9. [PMID: 16120757 PMCID: PMC1856512 DOI: 10.1136/gut.2004.062653] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/21/2005] [Accepted: 08/02/2005] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Imbalance between pro- and anti-inflammatory cytokines produced by intestinal T cells induces inflammatory bowel diseases (IBD). However, the importance of regulation of cytokine signalling in IBD has not been fully clarified. We have demonstrated that suppressor of cytokine signalling 1 (SOCS1) is expressed in inflamed tissues in an experimental colitis model. In the present study, we investigated the role of SOCS1 in colitis models to clarify the mechanism of IBD development. METHODS Intestinal T cells in transgenic mice expressing high levels of SOCS1 in lymphocytes (SOCS1Tg mice) were characterised by flow cytometric analysis and cytokine production from intestinal T cells was determined by ELISA. 2,4,6-Trinitrobenzene sulphonic acid (TNBS) induced colitis was induced in SOCS1Tg mice and severity was compared with control littermates by measurement of survival rates. Intracellular signalling was assessed by western blotting analysis. RESULTS SOCS1Tg mice developed colitis spontaneously with age. Young SOCS1Tg mice less than 15 weeks of age, before the onset of colitis, were susceptible to TNBS induced colitis. Intestinal T cells of SOCS1Tg mice showed increased interferon gamma and tumour necrosis factor alpha production and decreased transforming growth factor beta production. Expression of cytotoxic T lymphocyte associated antigen 4 (CTLA-4), a negative regulator of T cell activation, in SOCS1Tg mice was severely impaired at the protein level although mRNA levels of CTLA-4 in SOCS1Tg mice were comparable with those in control mice. CONCLUSIONS Our data suggest that SOCS1 plays an important role in the regulation of colitis by controlling intestinal T cell activation mediated through CTLA-4 expression.
Collapse
Affiliation(s)
- K Inagaki-Ohara
- Parasitic Diseases Unit, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ni Choileain N, Redmond HP. Regulatory T-Cells and Autoimmunity. J Surg Res 2006; 130:124-35. [PMID: 16154142 DOI: 10.1016/j.jss.2005.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/02/2005] [Accepted: 07/10/2005] [Indexed: 12/18/2022]
Abstract
Approximately 20% of the population is affected by autoimmune or inflammatory diseases mediated by an abnormal immune response. A characteristic feature of autoimmune disease is the selective targeting of a single cell type, organ or tissue by certain populations of autoreactive T-cells. Examples of such diseases include rheumatoid arthritis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus (SLE), all of which are characterized by chronic inflammation, tissue destruction and target organ malfunction. Although strong evidence links most autoimmune diseases to specific genes, considerable controversy prevails regarding the role of regulatory T-cell populations in the disease process. These cells are now also believed to play a key role in mediating transplantation tolerance and inhibiting the induction of tumor immunity. Though the concept of therapeutic immune regulation aimed at treating autoimmune pathology has been validated in many animal models, the development of strategies for the treatment of human autoimmune disorders remains in its infancy. The main obstacles to this include the conflicting findings of different model systems, as well as the contrasting functions of regulatory T-cells and cytokines involved in the development of such disorders. This review examines the role of regulatory T-cells in the pathogenesis of autoimmunity and describes the therapeutic potential of these cells for the prevention of immune-mediated pathologies in the future. Although much remains to be learned about such pathologies, a clearer understanding of the mechanisms by which regulatory T-cells function will undoubtedly lead to exciting new possibilities for immunotherapeutics.
Collapse
|
65
|
Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 2005; 12:99-106. [PMID: 16327802 DOI: 10.1038/nm1332] [Citation(s) in RCA: 706] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 10/26/2005] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-13 is a major inducer of fibrosis in many chronic infectious and autoimmune diseases. In studies of the mechanisms underlying such induction, we found that IL-13 induces transforming growth factor (TGF)-beta(1) in macrophages through a two-stage process involving, first, the induction of a receptor formerly considered to function only as a decoy receptor, IL-13Ralpha(2). Such induction requires IL-13 (or IL-4) and tumor necrosis factor (TNF)-alpha. Second, it involves IL-13 signaling through IL-13Ralpha(2) to activate an AP-1 variant containing c-jun and Fra-2, which then activates the TGFB1 promoter. In vivo, we found that prevention of IL-13Ralpha(2) expression reduced production of TGF-beta(1) in oxazolone-induced colitis and that prevention of IL-13Ralpha(2) expression, Il13ra2 gene silencing or blockade of IL-13Ralpha(2) signaling led to marked downregulation of TGF-beta(1) production and collagen deposition in bleomycin-induced lung fibrosis. These data suggest that IL-13Ralpha(2) signaling during prolonged inflammation is an important therapeutic target for the prevention of TGF-beta(1)-mediated fibrosis.
Collapse
Affiliation(s)
- Stefan Fichtner-Feigl
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10-CRC 5W3864, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
66
|
Hoentjen F, Welling GW, Harmsen HJM, Zhang X, Snart J, Tannock GW, Lien K, Churchill TA, Lupicki M, Dieleman LA. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis 2005; 11:977-85. [PMID: 16239843 DOI: 10.1097/01.mib.0000183421.02316.d5] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HLA-B27 transgenic rats develop spontaneous colitis under specific pathogen-free conditions (SPF) but germ-free rats remain disease-free, emphasizing a role for intestinal bacteria in the pathogenesis of chronic intestinal inflammation. Prebiotics are dietary substances that affect the host by stimulating growth and/or activity of potentially health promoting bacteria. The aims of this study were to investigate whether prebiotics can prevent colitis in SPF HLA-B27 rats, and secondly, to explore mechanisms of protection. SPF HLA-B27 transgenic rats received orally the prebiotic combination long-chain inulin and oligofructose (Synergy 1), or not, prior to the development of clinically detectable colitis. After seven weeks, cecal and colonic tissues were collected for gross cecal scores (GCS), histologic inflammatory scores (scale 0-4), and mucosal cytokine measurement. Cecal and colonic contents were collected for analysis of the gut microbiota by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH), and analysis of short-chain fatty acid composition. Prebiotic treatment significantly decreased GCS and inflammatory histologic scores in the cecum and colon. Prebiotic treatment also decreased cecal IL-1beta, but increased cecal TGF-beta concentrations. Inulin/oligofructose altered the cecal and colonic PCR-DGGE profiles, and FISH analysis showed significant increases in cecal Lactobacillus and Bifidobacterium populations after prebiotic treatment compared with water-treated rats. In conclusion, the prebiotic combination Synergy 1 reduced colitis in HLA-B27 transgenic rats, which effect was associated with alterations to the gut microbiota, decreased tissue proinflammatory cytokines and increased immunomodulatory molecules. These results show promise for prebiotics as primary or adjuvant maintenance therapy for chronic inflammatory bowel diseases.
Collapse
Affiliation(s)
- Frank Hoentjen
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Fichtner-Feigl S, Fuss IJ, Preiss JC, Strober W, Kitani A. Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-kappa B decoy oligonucleotides. J Clin Invest 2005; 115:3057-71. [PMID: 16239967 PMCID: PMC1257534 DOI: 10.1172/jci24792] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 07/26/2005] [Indexed: 02/06/2023] Open
Abstract
The Th1 and Th2 T cell responses that underlie inflammatory bowel diseases (IBDs) are likely to depend on NF-kappaB transcriptional activity. We explored this possibility in studies in which we determined the capacity of NF-kappaB decoy oligodeoxynucleotides (decoy ODNs) to treat various murine models of IBD. In initial studies, we showed that i.r. (intrarectal) or i.p. administration of decoy ODNs encapsulated in a viral envelope prevented and treated a model of acute trinitrobenzene sulfonic acid-induced (TNBS-induced) colitis, as assessed by clinical course and effect on Th1 cytokine production. In further studies, we showed that NF-kappaB decoy ODNs were also an effective treatment of a model of chronic TNBS-colitis, inhibiting both the production of IL-23/IL-17 and the development of fibrosis that characterizes this model. Treatment of TNBS-induced inflammation by i.r. administration of NF-kappaB decoy ODNs did not inhibit NF-kappaB in extraintestinal organs and resulted in CD4+ T cell apoptosis, suggesting that such treatment is highly focused and durable. Finally, we showed that NF-kappaB decoy ODNs also prevented and treated oxazolone-colitis and thus affect a Th2-mediated inflammatory process. In each case, decoy administration led to inflammation-clearing effects, suggesting a therapeutic potency applicable to human IBD.
Collapse
Affiliation(s)
- Stefan Fichtner-Feigl
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
68
|
Abstract
Multiple mechanisms of tolerance are induced by oral antigen. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral antigen induces T-helper 2 [interleukin (IL)-4/IL-10] and Th3 [transforming growth factor (TGF)-beta] T cells plus CD4+CD25+ regulatory cells and latency-associated peptide+ T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-beta, cholera toxin B subunit, Flt-3 ligand, and anti-CD40 ligand. Oral (and nasal) antigen administration suppresses animal models of autoimmune diseases including experimental autoimmune encephalitis, uveitis, thyroiditis, myasthenia, arthritis, and diabetes in the non-obese diabetic (NOD) mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, graft rejection, allergy, colitis, stroke, and models of Alzheimer's disease. Oral tolerance has been tested in human autoimmune diseases including multiple sclerosis (MS), arthritis, uveitis, and diabetes and in allergy, contact sensitivity to dinitrochlorobenzene (DNCB), and nickel allergy. Although positive results have been observed in phase II trials, no effect was observed in phase III trials of CII in rheumatoid arthritis or oral myelin and glatiramer acetate (GA) in MS. Large placebo effects were observed, and new trials of oral GA are underway. Oral insulin has recently been shown to delay onset of diabetes in at-risk populations, and confirmatory trials of oral insulin are being planned. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time, and antigen-specific mechanisms of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral), formulation, mucosal adjuvants, combination therapy, and early therapy.
Collapse
Affiliation(s)
- Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andre Pires da Cunha
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry Wu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Hunter MM, Wang A, Hirota CL, McKay DM. Neutralizing anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. THE JOURNAL OF IMMUNOLOGY 2005; 174:7368-75. [PMID: 15905584 DOI: 10.4049/jimmunol.174.11.7368] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is increasing evidence that parasitic helminth infection has the ability to ameliorate other disease conditions. In this study the ability of the rat tapeworm, Hymenolepis diminuta, to modulate dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice is assessed. Mice receiving DNBS (3 mg intrarectally) developed colitis by 72 h after treatment. Mice infected 8 days before DNBS with five H. diminuta larvae were significantly protected from the colitis, as gauged by reduced clinical disease, histological damage scores, and myeloperoxidase levels. This anticolitic effect was dependent on a viable infection and helminth rejection, because no benefit was observed in mice given killed larvae or in infected STAT6 knockout mice or rats, neither of which eliminate H. diminuta. The anticolitic effect of H. diminuta was associated with increased colonic IL-10 mRNA and stimulated splenocytes from H. diminuta- plus DNBS-treated mice produced more IL-10 than splenocytes from DNBS-only treated mice. Coadministration of an anti-IL-10 Ab blocked the anticolitic effect of prophylactic H. diminuta infection. Also, mice infected 48 h after DNBS treatment showed an enhanced recovery response. Finally, using a model of OVA hypersensitivity, we found no evidence of concomitant H. diminuta infection enhancing enteric responsiveness to subsequent ex vivo OVA challenge. The data show that a viable infection of H. diminuta in a nonpermissive system exerts a profound anticolitic effect (both prophylactically and as a treatment) that is mediated at least in part via IL-10 and does not predispose to enhanced sensitivity to bystander proteins.
Collapse
Affiliation(s)
- Meaghan M Hunter
- Intestinal Disease Research Program, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
70
|
Lin JT, Martin SL, Xia L, Gorham JD. TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. THE JOURNAL OF IMMUNOLOGY 2005; 174:5950-8. [PMID: 15879087 DOI: 10.4049/jimmunol.174.10.5950] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta1 plays a critical role in restraining pathogenic Th1 autoimmune responses in vivo, but the mechanisms that mediate TGF-beta1's suppressive effects on CD4(+) T cell expression of IFN-gamma expression remain incompletely understood. To evaluate mechanisms by which TGF-beta1 inhibits IFN-gamma expression in CD4(+) T cells, we primed naive wild-type murine BALB/c CD4(+) T cells in vitro under Th1 development conditions in the presence or the absence of added TGF-beta1. We found that the presence of TGF-beta1 during priming of CD4(+) T cells suppressed both IFN-gamma expression during priming as well as the development of Th1 effector cells expressing IFN-gamma at a recall stimulation. TGF-beta1 inhibited the development of IFN-gamma-expressing cells in a dose-dependent fashion and in the absence of APC, indicating that TGF-beta1 can inhibit Th1 development by acting directly on the CD4(+) T cell. During priming, TGF-beta1 strongly inhibited the expression of both T-bet (T box expressed in T cells) and Stat4. We evaluated the importance of these two molecules in the suppression of IFN-gamma expression at the two phases of Th1 responses. Enforced expression of T-bet by retrovirus prevented TGF-beta1's inhibition of Th1 development, but did not prevent TGF-beta1's inhibition of IFN-gamma expression at priming. Conversely, enforced expression of Stat4 partly prevented TGF-beta1's inhibition of IFN-gamma expression during priming, but did not prevent TGF-beta1's inhibition of Th1 development. These data show that TGF-beta1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4(+) T cells at priming and at recall.
Collapse
Affiliation(s)
- Jack T Lin
- Department of Microbiology and Immunology and The Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
71
|
Wu JY, Jin Y, Edwards RA, Zhang Y, Finegold MJ, Wu MX. Impaired TGF-beta responses in peripheral T cells of G alpha i2-/- mice. THE JOURNAL OF IMMUNOLOGY 2005; 174:6122-8. [PMID: 15879107 DOI: 10.4049/jimmunol.174.10.6122] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Null mutation of heterotrimeric G protein alpha2 inhibitory subunit (Galphai2) induces Th1-skewed hyperimmune responses in the colon, leading to chronic colitis and the development of colonic adenocarcinoma. However, the underlying molecular mechanisms and cellular basis, in particular, for the role of Galphai2 in regulating immune responses, are poorly understood. We show here that peripheral T cells from Galphai2-deficient mice do not respond normally to the inhibitory effects of TGF-beta on proliferation and cytokine production, revealing a previously unappreciated cross-talk between these two signaling pathways. Lack of Galphai2 resulted in decreased phosphorylation of Smad2 and Smad3 in T cells at the basal levels as well as at the late but not early phase of TGF-beta stimulation, which appears to be ascribed to differential expression of neither cell surface TGF-beta receptors nor Smad7. The altered phosphorylation of Smad proteins involves phospholipase C-mediated signaling, a downstream signaling molecule of Galphai2, because phospholipase C inhibitors could restore Smad2 and Smad3 phosphorylation in Galphai2(-/-) T cells at levels comparable to that in wild-type T cells. Moreover, adoptive transfer of Galphai2-deficient T cells into immunocompromised mice rendered an otherwise resistant mouse strain susceptible to trinitrobenzesulfonic acid-induced colitis, suggesting that an impaired response of Galphai2-deficient T cells to TGF-beta may be one of the primary defects accounting for the observed colonic Th1-skewed hyperimmune responses. These findings shed new lights on the molecular and cellular basis of how Galphai2 down-regulates immune responses, contributing to the maintenance of mucosal tolerance.
Collapse
Affiliation(s)
- Jim Y Wu
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
72
|
Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, Sime PJ, Gauldie J, Collins SM. TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol 2005; 289:G116-28. [PMID: 15778431 DOI: 10.1152/ajpgi.00051.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crohn's disease (CD) is a chronic, relapsing inflammatory bowel disease, characterized by transmural inflammation. In CD, the recurrent inflammatory injury and tissue repair that occurs in the intestine can progress uncontrollably, leading to the proliferation of mesenchymal cells as well as fibrosis, characterized by excessive extracellular matrix deposition. These processes thicken the bowel wall, reducing flexibility, and often culminate in obstructive strictures. Because no effective measures are currently available to specifically treat or prevent intestinal stricturing, we sought to gain a better understanding of its pathogenesis by developing a mouse model of intestinal fibrosis. Because transforming growth factor (TGF)-beta1 can mediate both fibrosis and mesenchymal cell proliferation; we studied the effects of delivering adenoviral vectors encoding spontaneously active TGF-beta1 into the colons of mice. We first demonstrated that enema delivery of marker adenoviral vectors led to the transfection of the colonic epithelium and transient transgene expression. Histologically, control vectors caused an acute inflammatory response, involving the recruitment of neutrophils and mononuclear cells into the colonic lamina propria; however, infection caused little if any fibrosis. In contrast, the TGF-beta1 vector caused a more severe and prolonged inflammatory response as well as localized collagen deposition, leading to severe and progressive fibrosis. This was accompanied by the emergence of cells with a myofibroblast phenotype. Ultimately the fibrosis resulted in many of the TGF-beta1-transfected mice developing profound colonic obstruction. Through adenoviral gene transfer technology, we describe a novel mouse model of colitis and implicate TGF-beta1 in the pathogenesis of obstructive intestinal fibrosis.
Collapse
Affiliation(s)
- Bruce A Vallance
- Division of Gastroenterology, British Columbia's Children's Hospital, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Hino A, Fukuyama S, Kataoka K, Kweon MN, Fujihashi K, Kiyono H. Nasal IL-12p70 DNA Prevents and Treats Intestinal Allergic Diarrhea. THE JOURNAL OF IMMUNOLOGY 2005; 174:7423-32. [PMID: 15905591 DOI: 10.4049/jimmunol.174.11.7423] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OVA-induced allergic diarrhea occurs as a consequence of over-expression of Th1 inhibitory IL-12p40 monomers and homodimers in the large intestine, establishing a dominant Th2-type environment. In this study, we demonstrate that intranasally administered murine IL-12p70 naked DNA expression plasmids resulted in the synthesis of corresponding cytokine in the large intestinal CD11c(+) dendritic cells, leading to the inhibition of Ag-specific Th2-type response for the prevention of allergic diarrhea and the suppression of clinical symptoms including OVA-specific IgE Ab synthesis. The nasal IL-12p70 DNA treatment proved effective even after the establishment of allergic diarrhea. These results suggest that the mucosal administration of naked IL-12p70 DNA plasmid should be considered as a possible preventive and therapeutic treatment for Th2 cell-mediated food allergic diseases in the intestinal tract.
Collapse
Affiliation(s)
- Ayako Hino
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Kesisoglou F, Zimmermann EM. Novel drug delivery strategies for the treatment of inflammatory bowel disease. Expert Opin Drug Deliv 2005; 2:451-63. [PMID: 16296767 DOI: 10.1517/17425247.2.3.451] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) encompasses two idiopathic inflammatory diseases of the intestinal tract: Crohn's disease and ulcerative colitis. Existing therapy for IBD consists mainly of orally or rectally administered small drug molecules, such as 5-aminosalicylates and corticosteroids, or potent systemic immune suppressants. IBD presents a challenging target for drug delivery, particularly by the oral route, as, contrary to most therapeutic regimens, minimal systemic absorption and maximal intestinal wall drug levels are desired. Several delivery strategies are employed to achieve this goal, including the chemical modification of the drug molecules, the use of controlled- and delayed-release formulations and the use of bioadhesive particles. The goal of this review is to summarise existing IBD therapy and examine novel approaches in intestinal drug delivery.
Collapse
Affiliation(s)
- Filippos Kesisoglou
- University of Michigan Department of Pharmaceutical Sciences, College of Pharmacy, Ann Arbor, MI 48109-1065, USA
| | | |
Collapse
|
75
|
Fahlén L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, Powrie F. T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. ACTA ACUST UNITED AC 2005; 201:737-46. [PMID: 15753207 PMCID: PMC2212836 DOI: 10.1084/jem.20040685] [Citation(s) in RCA: 385] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD4+CD25+ regulatory T (T reg) cells play a pivotal role in control of the immune response. Transforming growth factor-β (TGF-β) has been shown to be required for T reg cell activity; however, precisely how it is involved in the mechanism of suppression is poorly understood. Using the T cell transfer model of colitis, we show here that CD4+CD45RBhigh T cells that express a dominant negative TGF-β receptor type II (dnTβRII) and therefore cannot respond to TGF-β, escape control by T reg cells in vivo. CD4+CD25+ T reg cells from the thymus of dnTβRII mice retain the ability to inhibit colitis, suggesting that T cell responsiveness to TGF-β is not required for the development or peripheral function of thymic-derived T reg cells. In contrast, T reg cell activity among the peripheral dnTβRII CD4+CD25+ population is masked by the presence of colitogenic effector cells that cannot be suppressed. Finally, we show that CD4+CD25+ T reg cells develop normally in the absence of TGF-β1 and retain the ability to suppress colitis in vivo. Importantly, the function of TGF-β1−/− T reg cells was abrogated by anti–TGF-β monoclonal antibody, indicating that functional TGF-β can be provided by a non–T reg cell source.
Collapse
Affiliation(s)
- Linda Fahlén
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK
| | | | | | | | | | | | | |
Collapse
|
76
|
Sakuraba H, Ishiguro Y, Yamagata K, Tagawa YI, Iwakura Y, Sekikawa K, Munakata A, Nakane A. Transforming growth factor-{beta} regulates susceptibility of epithelial apoptosis in murine model of colitis. Ann N Y Acad Sci 2005; 1029:382-4. [PMID: 15681787 DOI: 10.1196/annals.1309.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transforming growth factor (TGF)-beta has a key role in intestinal homeostasis. Our present data suggest that TGF-beta, which was constitutively expressed by lamina propria mononuclear cells and epithelium, affected epithelial cells. Abnormal suppression of TGF-beta could enhance the sensitivity of epithelial cells to apoptosis associated with interferon-gamma in DSS-induced colitis.
Collapse
Affiliation(s)
- Hirotake Sakuraba
- First Department of Internal Medicine, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. IL-10 gene-deficient mice lack TGF-beta/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis. THE JOURNAL OF IMMUNOLOGY 2005; 174:2990-9. [PMID: 15728512 DOI: 10.4049/jimmunol.174.5.2990] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nonpathogenic enteric bacterial species initiate and perpetuate experimental colitis in IL-10 gene-deficient mice (IL-10(-/-)). Bacteria-specific effects on the epithelium are difficult to dissect due to the complex nature of the gut microflora. We showed that IL-10(-/-) mice compared with wild-type mice fail to inhibit proinflammatory gene expression in native intestinal epithelial cells (IEC) after the colonization with colitogenic Gram-positive Enterococcus faecalis. Interestingly, proinflammatory gene expression was transient after 1 wk of E. faecalis monoassociation in IEC from wild-type mice, but persisted after 14 wk of bacterial colonization in IL-10(-/-) mice. Accordingly, wild-type IEC expressed phosphorylated NF-kappaB subunit RelA (p65) and phosphorylated Smad2 only at day 7 after bacterial colonization, whereas E. faecalis-monoassociated IL-10(-/-) mice triggered persistent RelA, but no Smad2 phosphorylation in IEC at days 3, 7, 14, and 28. Consistent with the induction of TLR2-mediated RelA phosphorylation and proinflammatory gene expression in E. faecalis-stimulated cell lines, TLR2 protein expression was absent after day 7 from E. faecalis-monoassociated wild-type mice, but persisted in IL-10(-/-) IEC. Of note, TGF-beta1-activated Smad signaling was associated with the loss of TLR2 protein expression and the inhibition of NF-kappaB-dependent gene expression in IEC lines. In conclusion, E. faecalis-monoassociated IL-10(-/-), but not wild-type mice lack protective TGF-beta/Smad signaling and fail to inhibit TLR2-mediated proinflammatory gene expression in the intestinal epithelium, suggesting a critical role for IL-10 and TGF-beta in maintaining normal epithelial cell homeostasis in the interplay with commensal enteric bacteria.
Collapse
Affiliation(s)
- Pedro A Ruiz
- Centre for Nutrition and Food Research, Immunobiology of Nutrition, Technical University of Munich, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
78
|
Newman R, Cuan N, Hampartzoumian T, Connor SJ, Lloyd AR, Grimm MC. Vasoactive intestinal peptide impairs leucocyte migration but fails to modify experimental murine colitis. Clin Exp Immunol 2005; 139:411-20. [PMID: 15730386 PMCID: PMC1809308 DOI: 10.1111/j.1365-2249.2005.02673.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inflammatory bowel diseases are chronic inflammatory disorders of the gastrointestinal tract. Vasoactive intestinal peptide (VIP) is a neuropeptide with known anti-inflammatory activity. We have demonstrated previously that administration of VIP inhibits leucocyte migration in a murine model of delayed-type hypersensitivity, and anti-inflammatory efficacy is supported by other studies. The aim of this study was to investigate the VIP effects in a murine model of intestinal inflammation. Colitis was induced in BALB/c mice by a 2.5 mg enema of 2,4,6-trinitrobenzenesulphonic acid (TNBS) and the mice were killed on day 7. Mice were administered either a 3-day (therapeutic) or 7-day (prophylactic) constant infusion of VIP by subcutaneously implanted mini-osmotic pumps, or intraperitoneal (i.p.) injection of VIP on alternate days over 7 days. Clinical disease scores, weight changes, histopathology of colon tissues, plasma VIP levels, cytokine levels and chemotaxis of peripheral blood mononuclear cells were evaluated. After administration of TNBS, mice quickly developed severe colitis accompanied by dramatic body weight loss (20% by day 6) and high mortality (30%). Prophylactic treatment using high-dose VIP abrogated leucocyte chemotaxis; however, it failed to ameliorate the weight loss and mortality. Moreover, VIP delivered either by constant infusion or i.p. failed to modify the clinical, histological or cytokine markers of disease. Our studies show that, despite an ability to inhibit chemokine-induced chemotaxis of mononuclear cells, VIP was unable to modulate TNBS-induced colitis. This contrasts with the efficacy of VIP in models of mild inflammatory disease and suggests that VIP is unlikely to provide a useful model for novel anti-IBD therapy.
Collapse
Affiliation(s)
- R Newman
- Department of Medicine, St George Clinical School, Kogarah, NSW, Australia
| | | | | | | | | | | |
Collapse
|
79
|
Castagliuolo I, Beggiao E, Brun P, Barzon L, Goussard S, Manganelli R, Grillot-Courvalin C, Palù G. Engineered E. coli delivers therapeutic genes to the colonic mucosa. Gene Ther 2005; 12:1070-8. [PMID: 15815705 DOI: 10.1038/sj.gt.3302493] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Taking advantage of the proximity of bowel mucosa to luminal bacteria, we have attempted to deliver a therapeutic gene to the colonic mucosa by oral administration of an invasive and non-pathogenic Escherichia coli. E. coli diamenopimelate (dap) auxotroph, harboring plasmid pGB2Omegainv-hly, express the inv gene from Yersinia pseudotubercolosis that confers the ability to invade nonprofessional phagocytic cells and the hly gene from Listeria monocytogenes that allows expression of lystreriolysin O, a perforin cytolysin able to perfore phagosomal membranes. This bacterial vector invades and transfers functional DNA to epithelial cells in vitro. We have shown that this strain carrying a therapeutic gene (pC1OmegaTGF-beta1) can significantly reduce the severity of experimental colitis in mice. However, as a consequence of mucosal barrier disruption during colitis, vector-specific mRNA transcripts could be recovered from the colon and also from extra-colonic tissues. We therefore replaced the constitutive CMV promoter in pC1OmegaTGF-beta1 by the inflammation-inducible interleukin-8 promoter generating plasmid pC1OmegaTGF-beta1IND. Plasmid-specific TGF-beta1 mRNA transcripts were detectable in mouse CMT-93 epithelial cells incubated with E. coli BM2710/pGB2Omegainv-hly carrying pC1OmegaTGF-beta1IND following exposure to inflammatory cytokines. Furthermore, the transcripts were detectable only within inflamed tissues and the therapeutic effects were comparable to those in animals treated with E. coli BM2710/pGB2Omegainv-hly+pC1OmegaTGF-beta1. In summary, engineered enteric bacteria can efficiently deliver in vivo therapeutic genes to the intact intestinal mucosa and regulation expression of the therapeutic gene by an inflammation-inducible promoter prevents its dissemination during colitis.
Collapse
Affiliation(s)
- I Castagliuolo
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Scherf W, Burdach S, Hansen G. Reduced expression of transforming growth factor beta 1 exacerbates pathology in an experimental asthma model. Eur J Immunol 2005; 35:198-206. [PMID: 15593298 DOI: 10.1002/eji.200425209] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Allergic asthma is characterized by airway hyperreactivity (AHR), eosinophilic airway inflammation and elevated serum IgE levels. T-helper 2 (Th2) cells play a critical role in the pathogenesis of asthma, but the immunological mechanisms that inhibit Th2 cell function in vivo are not well understood. Conflicting results regarding the protective role of Th1 cytokines and TGF-beta in asthma have been reported. To further investigate the role of TGF-beta(1 )in asthma, we examined mice heterozygous for deletion of the TGF-beta(1) gene (TGF-beta(1) (+/-) mice) in a murine asthma model. While TGF-beta(1) (+/-) mice seem phenotypically normal, they express only about 30% of wild type TGF-beta(1) protein levels as shown before. The reduced expression of TGF-beta(1) is accompanied by a strikingly increased eosinophilic inflammation and mucus secretion in response to ovalbumin (OVA) sensitization. Moreover, TGF-beta(1) (+/-) mice develop significantly enhanced Th2-cytokine levels, decreased IFN-gamma production and increased levels of OVA-specific IgE in serum. In contrast, AHR in response to methacholine is not altered significantly. Our data demonstrate that reduced expression of TGF-beta(1) exacerbates pathology in an experimental asthma model and support the view that the elevated levels of TGF-beta(1) in asthmatic airways might be, at least in part, a result of anti-inflammatory compensation by this cytokine.
Collapse
Affiliation(s)
- Wiebke Scherf
- Department of Pediatrics, Division of Allergy and Pulmonology, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | | | | |
Collapse
|
81
|
|
82
|
Strober W, Fuss I, Boirivant M, Kitani A. Insights into the Mechanism of Oral Tolerance Derived from the Study of Models of Mucosal Inflammation. Ann N Y Acad Sci 2004; 1029:115-31. [PMID: 15681751 DOI: 10.1196/annals.1309.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Murine models of mucosal inflammation are frequently due to the inability of the mouse to mount a regulatory T cell response. To the extent that such responses arise from oral tolerance mechanisms, these models provide a unique way of studying oral tolerance. In this paper we focus on the regulatory cells generated in two of the most well-studied of such models, the cell-transfer model and the TNBS-colitis model. Our analysis leads to the view that regulatory cells generated by the oral tolerance seen in mucosal inflammation are, at least in part, cells that recognize self-antigens or antigens in the mucosal microflora whose effector function relies on the expression of TGF-beta.
Collapse
Affiliation(s)
- Warren Strober
- The Mucosal Immunity Section, Laboratory of Host Defense, NIAID, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
83
|
Wengrower D, Zanninelli G, Zannineli G, Pappo O, Latella G, Sestieri M, Villanova A, Faitelson Y, Pines M, Goldin E. Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis 2004; 10:536-45. [PMID: 15472513 DOI: 10.1097/00054725-200409000-00007] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS There is a body of evidence to suggest that the local activation of angiotensin II (ANG II) plays a pivotal role in fibrogenic response involving the kidney, heart, lung, pancreas and liver. In such conditions, fibrosis is mediated, at least partially, through ANG II induction of the cytokine transforming growth factor-beta1 (TGF-beta1). Both ANG II and TGF-beta1 also seem to be involved in intestinal fibrosis and stenosis, particularly in Crohn's disease. The aim of the present study was, firstly, to determine the effects of the angiotensin-converting enzyme inhibitor, captopril, on colonic fibrosis in experimental colitis in rats and, secondly, to check the role of TGF-beta1 on these effects. METHODS Colitis was induced in rats by intracolonic administration of TNBS. Colonic fibrosis was assessed 21 days later by macroscopic and microscopic evaluation. Levels of collagen alpha1 gene expression, hydroxyproline, angiotensin II and TGF-beta1 proteins, and TGF-beta1 mRNA were measured on the colonic tissue. RESULTS In chronic colitis, captopril significantly reduced the score of macroscopic and histologic lesions, as well as the colonic tissue levels of collagen alpha1, hydroxyproline, ANG II and TGF-beta1 proteins, and TGF-beta1 mRNA. CONCLUSIONS These data demonstrate for the first time that the prophylactic administration of captopril is effective in preventing colonic fibrosis in TNBS-induced colitis. The antifibrotic action of captopril could be due to the blockade of TGFbeta-1 overexpression, and/or to a direct down-regulation of TGFbeta-1 transcript.
Collapse
Affiliation(s)
- Dov Wengrower
- Department of Gastroenterology, Hadassah University Hospital, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Dieleman LA, Hoentjen F, Qian BF, Sprengers D, Tjwa E, Torres MF, Torrice CD, Sartor RB, Tonkonogy SL. Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats. Clin Exp Immunol 2004; 136:30-9. [PMID: 15030511 PMCID: PMC1808999 DOI: 10.1111/j.1365-2249.2004.02410.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Germ-free HLA-B27 transgenic (TG) rats do not develop colitis, but colonization with specific pathogen-free (SPF) bacteria induces colitis accompanied by immune activation. To study host-dependent immune responses to commensal caecal bacteria we investigated cytokine profiles in mesenteric lymph node (MLN) cells from HLA-B27 TG versus nontransgenic (non-TG) littermates after in vitro stimulation with caecal bacterial lysates (CBL). Supernatants from CBL-stimulated unseparated T- or B- cell-depleted MLN cells from HLA-B27 TG and non-TG littermates were analysed for IFN-gamma, IL-12, TNF, IL-10 and TGF-beta production. Our results show that unfractionated TG MLN cells stimulated with CBL produced more IFN-gamma, IL-12 and TNF than did non-TG MLN cells. In contrast, CBL-stimulated non-TG MLN cells produced more IL-10 and TGF-beta. T cell depletion abolished IFN-gamma and decreased IL-12 production, but did not affect IL-10 and TGF-beta production. Conversely, neither IL-10 nor TGF-beta was produced in cultures of B cell-depleted MLN. In addition, CD4(+) T cells enriched from MLN of HLA-B27 TG but not from non-TG rats produced IFN-gamma when cocultured with CBL-pulsed antigen presenting cells from non-TG rats. Interestingly, IL-10 and TGF-beta, but not IFN-gamma, IL-12 and TNF were produced by MLN cells from germ-free TG rats. These results indicate that the colitis that develops in SPF HLA-B27 TG rats is accompanied by activation of IFN-gamma-producing CD4(+) T cells that respond to commensal bacteria. However, B cell cytokine production in response to components of commensal intestinal microorganisms occurs in the absence of intestinal inflammation.
Collapse
Affiliation(s)
- L A Dieleman
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Tokumasa A, Katsuno T, Tanaga TS, Yokote K, Saito Y, Suzuki Y. Reduction of Smad3 accelerates re-epithelialization in a murine model of colitis. Biochem Biophys Res Commun 2004; 317:377-83. [PMID: 15063768 DOI: 10.1016/j.bbrc.2004.03.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 12/22/2022]
Abstract
To determine the role of Smad3 in re-epithelialization and inflammation, experimental colitis was induced in Smad3 heterozygous mice and their wild-type littermates by single intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) in ethanol. The area of epithelial deficiency was significantly reduced in the heterozygotes on the 4th-6th day after TNBS administration as compared to the controls although the number of inflammatory cells in the colonic mucosa in the heterozygotes and their wild-type littermates varied similarly throughout the course of colitis. Proliferation of the intestinal epithelium in the heterozygotes was significantly accelerated as compared to that in the wild-type controls on the 1st and 2nd days after TNBS administration. These results suggest that reduction of Smad3 significantly accelerates re-epithelialization of the intestinal mucosa without enhancing inflammation. Suppression of TGF-beta1 induction in the colonic mucosa of the heterozygotes may lead to a higher level of proliferation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Atsuko Tokumasa
- Clinical Cell Biology (F5), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ward, Chiba-City 260-8670, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Barbey C, Donatelli-Dufour N, Batard P, Corradin G, Spertini F. Intranasal treatment with ovalbumin but not the major T cell epitope ovalbumin 323-339 generates interleukin-10 secreting T cells and results in the induction of allergen systemic tolerance. Clin Exp Allergy 2004; 34:654-62. [PMID: 15080822 DOI: 10.1111/j.1365-2222.2004.1929.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nasal administration of major peptide T cell epitopes gives contradictory data on the induction of peripheral tolerance. OBJECTIVE To compare the prophylactic effect of intranasal treatment (INT) on the development of an allergic response, using either ovalbumin (OVA) or its major T cell epitope OVA 323-339 (OVAp). METHODS BALB/c mice were treated intranasally with OVA or OVAp and subsequently immunized s.c. with OVA. Anti-OVA-specific antibody, T cell proliferation and cytokine responses were analysed. In an adoptive transfer model using OVAp specific TCR transgenic (Tg) T cells from D011.10 mice, in vivo tracking and characterization of transferred T cells in the cervical, inguinal and bronchial lymph nodes (BLN) and in the spleen were determined by FACS analysis. RESULTS Prophylactic INT with OVA induced T cell tolerance towards subsequent OVA s.c. immunizations, inhibiting OVA specific T cell proliferation, IgE and IgG1 production, in contrast to INT with OVAp, which was unable to induce tolerance. In vivo analysis of transferred OVA-specific TCR Tg T cells showed that INT with OVA induced a preferential activation of T cells in BLN, as opposed to a broad, systemic activation with OVAp. In vivo, OVAp INT led to faster and more sustained cell division cycles than OVA INT. Ex vivo, tolerance to OVA was associated with the generation of IL-10 secreting CD4(+) T cells in BLN of OVA-treated mice only. CONCLUSION INT with OVA but not with OVAp led to regional (as opposed to systemic) T cell activation and the induction of IL-10 secreting CD4(+) T cells in BLN, potentially critical steps in the induction of T cell-specific tolerance via the nasal route.
Collapse
Affiliation(s)
- C Barbey
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
87
|
Abstract
OBJECTIVE To report femur fracture as a complication of canine total hip replacement (THR) and to report the incidence, predisposing factors, treatment options, and outcome. STUDY DESIGN Prospective clinical study. ANIMALS Twenty-two client-owned dogs with 24 femoral fractures occurring during or after THR. METHODS Cemented THR (BioMedtrix, Boonton, NJ) was performed. Medical records and radiographs were used to identify dogs that had femur fracture and to identify risk factors. Follow-up was obtained until dog death or study end. RESULTS The overall incidence of femur fracture after THR was 2.9%. Femoral fractures occurred intraoperatively, immediately postoperatively, and up to 2196 days after THR. In 17 dogs, fractures resulted from a traumatic event. Osteopathy was present at THR in 5 dogs; all developed femoral fissures during reaming. Three dogs had fractures associated with cortical thinning secondary to aseptic loosening. Fracture treatment included euthanasia (1 dog), strict confinement (3 dogs), full cerclage wires on long oblique fractures (3 dogs), or plate and screw fixation (10 with, and 7 without, cerclage wires). All fractures extended near the distal tip of the femoral stem and all aggressively treated fractures healed. CONCLUSIONS Predisposing risk factors for femur fracture after THR include osteopathy and iatrogenic fissures created during reaming. Trauma, excessive load concentration, and increased torque can lead to mid-diaphyseal fracture near the end of the femoral stem. Fracture did not disrupt THR implants. Cement fracture exposing the tip of the femoral stem did not affect fracture healing or rehabilitation. Immediate plate and screw fixation resulted in the most favorable outcome; healing occurred in 6-10 weeks. CLINICAL RELEVANCE Femur fractures that occur after THR should be repaired using plate and screw fixation augmented with cerclage wire when needed. Forces on fissures should be neutralized to prevent propagation and fracture. Owners of high-risk patients (old dogs with osteopathies or previous hip surgery) should be counseled before THR. The prognosis is excellent when fractures are treated correctly.
Collapse
Affiliation(s)
- William D Liska
- Gulf Coast Veterinary Specialists, 1111 West Loop South, Houston, TX 77027, USA.
| |
Collapse
|
88
|
van Montfrans C, te Velde AA, van Deventer SJH, Rodriguez Pena MS. Gene therapy in the treatment of intestinal inflammation. Int J Colorectal Dis 2004; 19:79-86. [PMID: 12827411 DOI: 10.1007/s00384-003-0501-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2003] [Indexed: 02/04/2023]
Abstract
BACKGROUND Local expression of anti-inflammatory or immunoregulatory genes may offer an alternative treatment of gastrointestinal inflammation. DISCUSSION We review the basic requirements for gene therapy, the possible routes of delivery, and the different strategies for specific targeting focusing on gastrointestinal inflammation.
Collapse
Affiliation(s)
- Catherine van Montfrans
- Department of Experimental Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
89
|
Adams VC, Hunt JRF, Martinelli R, Palmer R, Rook GAW, Brunet LR. Mycobacterium vaccae
induces a population of pulmonary CD11c+
cells with regulatory potential in allergic mice. Eur J Immunol 2004; 34:631-638. [PMID: 14991592 DOI: 10.1002/eji.200324659] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hygiene hypothesis proposes that common, harmless microorganisms, present throughout our evolutionary history, have helped to develop immunoregulatory mechanisms that prevent inappropriate immune responses by the host. Using a mouse model of allergic pulmonary inflammation, we report that treatment with an ubiquitous saprophytic mycobacterium, Mycobacterium vaccae, significantly reduces allergic inflammation by decreasing type 2 responses such as eosinophilia and IL-4 expression. Rather than observing an increase in type-1 cytokine expression, we found elevated production of IL-10 in the lungs suggesting a role for regulatory T cells. Since induction of these cells may be dependent on APC, we investigated the effects of M. vaccae treatment on pulmonary CD11c+ cells. Increased levels of IL-10, TGF-beta and IFN-alpha mRNA were detected in CD11c+ cells from M. vaccae-treated allergic mice. We propose that M. vaccae-induced CD11c+ cells have a potential regulatory role at the site of inflammation through their secretion of immunomodulatory cytokines.
Collapse
Affiliation(s)
- Victoria C Adams
- University College London, Department of Medical Microbiology, Windeyer Institute of Medical Sciences, London, GB
| | | | | | | | - Graham A W Rook
- University College London, Department of Medical Microbiology, Windeyer Institute of Medical Sciences, London, GB
| | | |
Collapse
|
90
|
Haller D, Jobin C. Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr 2004; 38:123-36. [PMID: 14734871 DOI: 10.1097/00005176-200402000-00004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dirk Haller
- Center for Nutrition and Food Research, Immunobiolgy of Nutrition, Technical University of Munich, Germany
| | | |
Collapse
|
91
|
Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M. The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 2004; 15:61-76. [PMID: 14746814 DOI: 10.1016/j.cytogfr.2003.11.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that modulates the function of several adaptive immunity-related cells. Although generally considered an immunosuppressive molecule, IL-10 possesses immunostimulatory properties in several in vitro and in vivo models. These very different outcomes are believed to depend upon experimental conditions, the dominant immune effector mediating a given immune response, the timing of IL-10 production/administration, and IL-10 dose and/or location of expression. In the present work, we review the current knowledge regarding IL-10 activity on adaptive immunity related cells, emphasize new insights on IL-10 molecular/cellular targets, and summarize the available data on the relationship between IL-10 and some pathological conditions (e.g. infectious diseases, autoimmunity, allergy, cancer and transplantation) involving adaptive immunity.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Oncological and Surgical Sciences, University of Padova, Clinica Chirurgica II, Via Giustiniani, 2, 35128 Padova, Italy.
| | | | | | | | | |
Collapse
|
92
|
Abstract
AMA are detected in the serum of 92% to 95% of patients with PBC using indirect immunofluorescent methods. AIC is the term used to describe the 5% to 8% of AMA-negative PBC patients who uniformly have ANA and SMA. Recent applications of more sensitive and specific tests to detect serum AMA have shown that most, if not all, patients with AIC actually do have AMA. Emerging evidence that AMA and mitochondrial autoantigens play important roles in the immunopathogenesis of NSDC also suggests that AIC and PBC are likely to be a single disease, exhibiting variation in the types of autoantibodies and in both the concentrations and immunoglobulin isotypes of AMA.
Collapse
Affiliation(s)
- John M Vierling
- Center for Liver Diseases and Transplantation, Los Angeles, CA 90048, USA.
| |
Collapse
|
93
|
Zhang-Hoover J, Stein-Streilein J. Tolerogenic APC Generate CD8+ T Regulatory Cells That Modulate Pulmonary Interstitial Fibrosis. THE JOURNAL OF IMMUNOLOGY 2003; 172:178-85. [PMID: 14688324 DOI: 10.4049/jimmunol.172.1.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transforming growth factor-beta2-treated Ag-pulsed APC mimic APC from the immune privileged eye, and provide signals that generate regulatory T (Tr) cells and mediate peripheral tolerance. We postulated that TGF-beta2-treated Ag-pulsed APC (tolerogenic APC (tol-APC)) might also orchestrate regulation of immune mediated pathogenesis in nonimmune privileged tissues such as the lung. We used an adoptive transfer model of autoimmune pulmonary interstitial fibrosis called hapten immune pulmonary interstitial fibrosis (ADT-HIPIF) in this study. Mice that received 2,4,6-trinitrobenzene sulfonic acid-sensitized cells and challenged (intratracheally) with the hapten developed pulmonary interstitial fibrosis. However, transfer (i.v.) of TGF-beta2-treated 2,4,6-trinitrobenzene sulfonic acid-pulsed bone marrow-derived APC (tol-APC) to experimental mice 1 day after intratracheal challenge reduced the collagen deposition in the interstitium of the lung that usually follows challenge. Furthermore, ADT-HIPIF mice that received tol-APC developed Ag-specific efferent CD8+ Tr cells. Adoptive transfer of the Tr cells to another set of presensitized mice mediated suppression of the efferent phase of Th1 immune response and the subsequent immune dependent pulmonary interstitial fibrosis. Thus, tol-APC induced efferent CD8+ Tr cells in immune mice, and the regulation of the immune response limited the development of autoimmune pulmonary fibrosis in sensitized and pulmonary-challenged mice. Because ADT-HIPIF shares etiological and pathological characteristics with a variety of human immune inflammatory conditions in the lung that eventuate into interstitial fibrosis, these studies provide insight into potential therapy to alter the course of pulmonary fibrosis in humans.
Collapse
Affiliation(s)
- Jie Zhang-Hoover
- Schepens Eye Research Institute and Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
94
|
Liu SP, Dong WG, Wu DF, Luo HS, Yu JP. Protective effect of angelica sinensis polysaccharide on experimental immunological colon injury in rats. World J Gastroenterol 2003; 9:2786-90. [PMID: 14669334 PMCID: PMC4612053 DOI: 10.3748/wjg.v9.i12.2786] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of angelica sinensis polysaccharide (ASP) on immunological colon injury and its mechanisms in rats.
METHODS: Immunological colitis model of rats was induced by intracolon enema with 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) and ethanol. The experimental animals were randomly divided into normal control, model control, 5-aminosalicylic acid therapy groups and three doses of ASP therapy groups. The 6 groups were treated intracolonically with normal saline, normal saline, 5-aminosalicylic acid (100 mg·kg-1), and ASP daily (8: 00 am) at the doses of 200, 400 and 800 mg·kg-1 respectively for 21 days 7 d following induction of colitis. The rat colon mucosa damage index (CMDI), the histopathological score (HS), the score of occult blood test (OBT), and the colonic MPO activity were evaluated. The levels of SOD, MDA, NO, TNF-α, IL-2 and IL-10 in colonic tissues were detected biochemically and immunoradiometrically. The expressions of TGF-β and EGF in colonic tissues were also determined immunochemically.
RESULTS: Enhanced colonic mucosal injury, inflammatory response and oxidative stress were observed in colitis rats, which manifested as significant increases of CMDI, HS, OBT, MPO activity, MDA and NO contents, as well as the levels of TNF-α and IL-2 in colonic tissues, although colonic TGF-β protein expression, SOD activity and IL-10 content were significantly decreased compared with the normal control (P < 0.01). However, these parameters were found to be significantly ameliorated in colitis rats treated intracolicly with ASP at the doses of 400 and 800 mg·kg-1 (P < 0.05-0.01). Meantime, colonic EGF protein expression in colitis rats was remarkably up-regulated.
CONCLUSION: ASP has a protective effect on immunological colon injury induced by TNBS and ethanol enema in rats, which was propably due to the mechanism of antioxidation, immunomodulation and promotion of wound repair.
Collapse
Affiliation(s)
- Shao-Ping Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | | | | | | | | |
Collapse
|
95
|
Castagliuolo I, Brun P, Tormen D, Palò G. Lymphocytes endowed with colon-selective homing and engineered to produce TGF-beta1 prevent the development of dinitrobenzene sulphonic acid colitis. Eur J Gastroenterol Hepatol 2003; 15:1257-65. [PMID: 14624147 DOI: 10.1097/00042737-200312000-00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Gene therapy is an attractive approach to the treatment of inflammatory diseases. However, the lack of tissue targeting of available vectors jeopardizes their clinical use. AIMS Since alpha4beta7 integrin mediates lymphocyte homing to the intestinal mucosa, we tested the possibility of in-vitro engineering alpha4beta7-bearing lymphocytes to restrict the production of a therapeutic cytokine, transforming growth factor (TGF)-beta1, to within the colonic mucosa. METHODS Lymphocytes were isolated from colonic lamina propria or spleen and transfected with either pC1 or pC1/TGF-beta1. RESULTS Transfected spleen and lamina propria cells released TGF-beta1 for up to 5 days in vitro and administration of 107 spleen cells, but not 106 lamina propria or spleen cells, to normal mice caused a significant rise in circulating TGF-beta1. Following intrarectal injection of dinitrobenzene sulphonic acid, intraperitoneal administration of lamina propria or spleen cells transfected with pC1/TGF-beta1, but not pC1, significantly reduced colitis-associated body weight loss, colonic myeloperoxidase (MPO) activity, interleukin-1beta levels, and macroscopic and microscopic inflammatory damage. Vector-specific TGF-beta1 mRNA transcripts were detectable in the colon and liver following injection of lamina propria lymphocytes, and in the spleen, liver and colon following administration of spleen lymphocytes. Incubation of pC1/TGF-beta1-transfected lamina propria lymphocytes with anti-alpha4beta7 integrin antibody blocked their protective effects and caused the disappearance of vector-specific TGF-beta1 transcripts from the colonic mucosa. CONCLUSION We conclude that lymphocytes are an efficient vehicle for transient gene therapy and that cells bearing alpha4beta7 integrins preferentially deliver therapeutic genes to the colonic mucosa.
Collapse
Affiliation(s)
- Ignazio Castagliuolo
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy.
| | | | | | | |
Collapse
|
96
|
Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W. Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. ACTA ACUST UNITED AC 2003; 198:1179-88. [PMID: 14557415 PMCID: PMC2194234 DOI: 10.1084/jem.20030917] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interleukin (IL)-10 and transforming growth factor (TGF)-β1 are suppressor cytokines that frequently occur together during a regulatory T cell response. Here we used a one gene doxycycline (Dox)-inducible plasmid encoding TGF-β1 to analyze this association and test its utility. In initial studies, we showed that intranasal administration of this plasmid (along with Dox) led to the appearance of TGF-β1–producing cells (in spleen and lamina propria) and the almost concomitant appearance of IL-10–producing cells. Moreover, we showed that these cells exert Dox-regulated suppression of the T helper cell (Th)1-mediated inflammation in trinitrobenzene sulfonic acid colitis. In subsequent in vitro studies using retroviral TGF-β1 expression, we established that IL-10 production by Th1 cells occurs after exposure to TGF-β1 from either an endogenous or exogenous source. In addition, using a self-inactivating retrovirus luciferase reporter construct we showed that TGF-β1 induces Smad4, which then binds to and activates the IL-10 promoter. Furthermore, intranasal TGF-β1 plasmid administration ameliorates bleomycin-induced fibrosis in wild-type but not IL-10–deficient mice, strongly suggesting that the amelioration is IL-10 dependent and that IL-10 protects mice from TGF-β1–mediated fibrosis. Taken together, these findings suggest that the induction of IL-10 by TGF-β1 is not fortuitous, but instead fulfills important requirements of TGF-β1 function after its secretion by regulatory T cells.
Collapse
Affiliation(s)
- Atsushi Kitani
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N238, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
The T helper lymphocyte is responsible for orchestrating the appropriate immune response to a wide variety of pathogens. The recognition of the polarized T helper cell subsets Th1 and Th2 has led to an understanding of the role of these cells in coordinating a variety of immune responses, both in responses to pathogens and in autoimmune and allergic disease. Here, we discuss the mechanisms that control lineage commitment to the Th1 phenotype. What has recently emerged is a rich understanding of the cytokines, receptors, signal transduction pathways, and transcription factors involved in Th1 differentiation. Although the picture is still incomplete, the basic pathways leading to Th1 differentiation can now be understood in in vitro and a number of infection and disease models.
Collapse
Affiliation(s)
- Susanne J Szabo
- Department of Immunology and Infectious Diseases, Harvard School of Public Health Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
98
|
Asseman C, Read S, Powrie F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:971-8. [PMID: 12847269 DOI: 10.4049/jimmunol.171.2.971] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) regulatory T cells have been shown to prevent intestinal inflammation; however, it is not known whether they act to prevent the priming of colitogenic T cells or actively control these cells as part of the memory T cell pool. In this study, we describe the presence of colitogenic Th1 cells within the CD4(+)CD45RB(low) population. These pathogenic cells enrich within the CD25(-) subset and are not recent thymic emigrants. CD4(+)CD45RB(low) cells from germfree mice were significantly reduced in their ability to transfer colitis to immune deficient recipients, suggesting the presence of commensal bacteria in the donor mice drives colitogenic T cells into the Ag-experienced/memory T cell pool. This potentially pathogenic population of Ag-experienced T cells is subject to T cell-mediated regulation in vivo by both CD4(+)CD25(+) and CD4(+)CD25(-) cells in an IL-10-dependent manner. Furthermore, administration of an anti-IL-10R mAb to unmanipulated adult mice was sufficient to induce the development of colitis. Taken together, these data indicate that colitogenic Th1 cells enter into the Ag-experienced pool in normal mice, but that their function is controlled by regulatory T cells and IL-10. Interestingly, IL-10 was not absolutely required for CD4(+)CD25(+) T cell-mediated inhibition of colitis induced by transfer of naive CD4(+)CD45RB(high) cells, suggesting a differential requirement for IL-10 in the regulation of naive and Ag-experienced T cells.
Collapse
|
99
|
Abstract
The animal models of inflammatory bowel disease provide a framework to define the immunopathogenesis of intestinal inflammation. Studies in these models support the hypothesis that exaggerated immune responses to normal enteric microflora are involved in the initiation and perpetuation of chronic intestinal inflammation. A major pathway involves development of acquired immune responses by the interactions of CD4+ T-cell receptor alphabeta T cells with antigen-presenting cells (dendritic cells). Immunoregulatory cells, including Tr1 cells, Th3 cells, and CD4+ CD25+ T cells and B cells, directly or indirectly affect the T-cell receptor alphabeta T cell-induced immune responses and bridge innate and acquired immunity. The study of these complicated immune networks provides the rationale for the development of new therapeutic interventions in inflammatory bowel disease.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Pathology, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, U.S.A
| | | | | |
Collapse
|
100
|
Abstract
The inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis, are chronic inflammatory disorders of the gastrointestinal tract. Enormous progress has been made recently in understanding the pathogenesis of these diseases. Through the study of patients and mouse models, it has emerged that Crohn's disease is driven by the production of interleukin-12 (IL-12) and interferon-gamma (IFN-gamma), whereas ulcerative colitis is probably driven by the production of IL-13. A second area of progress is in the identification of specific genetic abnormalities that are responsible for disease. The most important finding is the identification of mutations in the gene that encodes NOD2 (nucleotide-binding oligomerization domain 2) protein in a subgroup of patients with Crohn's disease. Here, we discuss these recent findings and the implications for therapy.
Collapse
Affiliation(s)
- Gerd Bouma
- The Mucosal Immunity Section, National Institutes of Health, Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institutes of Allergy and Infectious Diseases, 10 Center Drive, Room 11N238, Bethesda, Maryland 20892, USA
| | | |
Collapse
|