51
|
Xie Y, Wang C, Zhao D, Wang C, Li C. Dietary Proteins Regulate Serotonin Biosynthesis and Catabolism by Specific Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5880-5890. [PMID: 32363863 DOI: 10.1021/acs.jafc.0c00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
More than 90% of serotonin is produced in the intestine. Previous studies have shown that different protein diets significantly affect serum serotonin levels. Here, the colonic microbiota and intestinal serotonin were measured to elaborate how protein diets affect serotonin production in a mouse model. The emulsion-type sausage protein and cooked pork protein diets increased the mRNA levels of tryptophan hydroxylase 1 (Tph1) and monoamine oxidase A (Maoa) and serotonin level as well but reduced the number of enterochromaffin cells. However, the soy protein diet increased the number of enterochromaffin cells and Tph1 mRNA level but decreased the Maoa mRNA level and the serotonin content. Specific gut microbes that responded to dietary changes and affected the content of short-chain fatty acids were significantly related to serotonin-associated biomarkers. These results suggest that dietary proteins may regulate serotonin biosynthesis and catabolism by altering specific gut microbes.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chong Wang
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chao Wang
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Joint International Research Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, Nanjing 210095, P. R. China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
52
|
Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J Affect Disord 2020; 268:188-200. [PMID: 32174477 DOI: 10.1016/j.jad.2020.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/16/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Depressed patients present increased plasma levels of lipopolysaccharide (LPS) and neuroinflammatory alterations. Here, we determined the neuroimmune effects of different classes of ADs by using the LPS inflammatory model of depression. METHODS Male rats received amitriptyline (AMI) a tricyclic, S-citalopram (ESC) a selective serotonin reuptake inhibitor, tranylcypromine (TCP) a monoamine oxidase inhibitor, vortioxetine (VORT) a multimodal AD or saline for ten days. One-hour after the last AD administration, rats were exposed to LPS 0.83 mg/kg or saline and 24 h later were tested for depressive-like behavior. Plasma corticosterone, brain levels of nitrite, pro- and anti-inflammatory cytokines, phospho-cAMP Response Element-Binding Protein (CREB) and nuclear factor (NF)-kB p 65 were determined. RESULTS LPS induced despair-like, impaired motivation/self-care behavior and caused anhedonia. All ADs prevented LPS-induced despair-like behavior, but only VORT rescued impaired self-care behavior. All ADs prevented LPS-induced increase in brain pro-inflammatory cytokines [interleukin (IL)-1β and IL-6] and T-helper 1 cytokines [tumor necrosis factor (TNF)-α and interferon-γ]. VORT increased striatal and hypothalamic IL-4 levels. All ADs prevented LPS-induced neuroendocrine alterations represented by increased levels of hypothalamic nitrite and plasma corticosterone response. VORT and ESC prevented LPS-induced increase in NF-kBp65 hippocampal expression, while ESC, TCP and VORT, but not IMI, prevented the alterations in phospho-CREB expression. LIMITATIONS LPS model helps to understand depression in a subset of depressed patients with immune activation. The levels of neurotransmitters were not determined. CONCLUSION This study provides new evidence for the immunomodulatory effects of ADs, and shows a possible superior anti-inflammatory profile of TCP and VORT.
Collapse
|
53
|
Martins AM, Ascenso A, Ribeiro HM, Marto J. The Brain-Skin Connection and the Pathogenesis of Psoriasis: A Review with a Focus on the Serotonergic System. Cells 2020; 9:E796. [PMID: 32224981 PMCID: PMC7226493 DOI: 10.3390/cells9040796] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a common non-communicable chronic immune-mediated skin disease, affecting approximately 125 million people in the world. Its pathogenesis results from a combination of genetic and environmental factors. The pathogenesis of psoriasis seems to be driven by the interaction between innate immune cells, adaptive immune cells and keratinocytes, in a process mediated by cytokines (including interleukins (IL)-6, IL-17 and IL-22, interferon and tumor necrosis factor) and other signaling molecules. This leads to an inflammatory process with increased proliferation of epidermal cells, neo-angiogenesis and infiltration of dendritic cells in the skin. Dysfunctional de novo glucocorticoid synthesis in psoriatic keratinocytes and the skin microbiome have also been suggested as mediators in the pathogenesis of this disease. To understand psoriasis, it is essential to comprehend the processes underlying the skin immunity and neuroendocrinology. This review paper focuses on the skin as a neuroendocrine organ and summarizes what is known about the skin immune system, the brain-skin connection and the role played by the serotonergic system in skin. Subsequently, the alterations of neuroimmune processes and of the serotonergic system in psoriatic skin are discussed, as well as, briefly, the genetic basis of psoriasis.
Collapse
Affiliation(s)
| | | | | | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (A.M.M.); (A.A.); (H.M.R.)
| |
Collapse
|
54
|
Bruschetta G, D'Ascola A, Medica P, Ferlazzo AM. Physical Exercise Affects Serotoninergic System in Horse Leukocytes. J Equine Vet Sci 2020; 88:102969. [PMID: 32303327 DOI: 10.1016/j.jevs.2020.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) may induce metabolic effects in different cell types, including leukocytes. In horses, 5-HT is involved in physiological and behavioral functions. Physical exercise is known to increase the amounts of 5-HT both in brain and periphery, but so far, the signal mechanism in response to exercise is not known. The aim of the study was to investigate the effect of a racehorse intensive training session on plasma 5-HT levels, serotonin transporter (SERT), 5HT1A, 5-HT2A, 5-HT1B, 5-HT7 receptor, interleukin-1 beta, and tumor necrosis factor-alpha expression in horse peripheral blood mononuclear cells (PBMC). In particular, the research was carried out on 12 trained horses performing daily training. Plasma 5-HT levels were analyzed in platelet-poor plasma fraction by enzyme-linked immunosorbent assay at T0, T1, and T2 (pretraining, 30 minutes post-training, and 2 hours post-training session), respectively. Peripheral blood mononuclear cells were isolated to perform real-time polymerase chain reaction for the evaluation of SERT, 5-HT receptor, and cytokine mRNA levels. The results showed significantly increased levels of plasma 5-HT, 5HT1A, and 5-HT2A and significantly decreased levels of SERT, 5-HT1B, 5-HT7, and both cytokine mRNAs in PBMC at T1, compared with T0 and T2. The results were confirmed by in vitro experiment. Training may induce a lower degree of 5-HT storage and, therefore, a higher plasma 5-HT concentrations. Leukocyte 5-HT receptor mRNAs seem strongly influenced by the exercise. Observed changes suggest a transient neuroendocrinological response to the exercise. A better understanding of the influence of physical exercise on serotoninergic system could have potential application for the implementation of training protocols in racing horses.
Collapse
Affiliation(s)
- Giuseppe Bruschetta
- Department of Veterinary Sciences, Biochemistry Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Physiology Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Alida Maria Ferlazzo
- Department of Veterinary Sciences, Biochemistry Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy.
| |
Collapse
|
55
|
Wan M, Ding L, Wang D, Han J, Gao P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front Immunol 2020; 11:186. [PMID: 32117308 PMCID: PMC7026253 DOI: 10.3389/fimmu.2020.00186] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT) is a signaling mediator that regulates emotion, behavior, and cognition. Previous studies have focused more on the roles of 5-HT in the central nervous system (CNS). However, 5-HT also shares a strong relationship with the pathological cases of tumor, inflammation, and pathogen infection. 5-HT participates in tumor cell migration, metastatic dissemination, and angiogenesis. In addition, 5-HT affects immune regulation via different 5-HT receptors (5-HTRs) expressed immune cells, including both innate and adaptive immune system. Recently, drugs targeting at 5-HT signaling were tested to be beneficial in mouse models and clinical trials of multiple sclerosis (MS) and inflammatory bowel disease (IBD). Thus, it is reasonable to assume that 5-HT participates in the pathogenesis of autoimmune diseases. However, the underlying mechanism by 5-HT modulates the development of autoimmune diseases has not been fully understood. Based on our previous studies and pertinent literature, we provide circumstantial evidence for an essential role of 5-HT, especially the regulation of 5-HT on immune cells in the pathogenesis of autoimmune diseases, which may provide a new point cut for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Minjie Wan
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lili Ding
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.,Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Dong Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
56
|
Vasin MV, Ushakov IB. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
57
|
Vašíček O, Lojek A, Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 2020; 76:49-60. [PMID: 31900806 DOI: 10.1007/s13105-019-00714-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/08/2019] [Indexed: 01/02/2023]
Abstract
In this study, we focused on comparing the effects of serotonin and its metabolites on the functions of RAW264.7 cells (emphasis on oxidative burst and production of nitric oxide and cytokines), thereby expanding the scope of existing knowledge with advent of novel findings in this field. Changes in production of reactive oxygen species (ROS) by RAW264.7 cells after treatment with serotonin, N-acetylserotonin and melatonin were determined using the chemiluminescence (CL) assay. To exclude the direct scavenging effects of the studied compounds on the CL response, the antioxidant properties of all respective compounds were measured using TRAP and amperometrical method. Nitric oxide (NO) production was measured by Griess reagent and inducible NO synthase (iNOS) expression by Western blot. Cytokine production was assessed using the Mouse Cytokine Panel A Array kit and ELISA. We showed that all tested compounds were able to reduce oxidative stress, as well as inhibit production of inflammatory cytokines by macrophages. Of the tested compounds, serotonin and N-acetylserotonin were markedly better antioxidants than melatonin. In comparison, other effects of tested compounds were very similar. It can be concluded that antioxidant capacity of tested compounds is a major advantage in the early stages of inflammation. Since plasma concentrations of N-acetylserotonin and melatonin are lower than serotonin, it can be deduced that serotonin plays a key role in modulation of inflammation and the regulatory functions of immune cells, while also protecting cells against oxidative stress.
Collapse
Affiliation(s)
- Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Antonín Lojek
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Milan Číž
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic. .,Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
58
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
59
|
Mauler M, Herr N, Schoenichen C, Witsch T, Marchini T, Härdtner C, Koentges C, Kienle K, Ollivier V, Schell M, Dorner L, Wippel C, Stallmann D, Normann C, Bugger H, Walther P, Wolf D, Ahrens I, Lämmermann T, Ho-Tin-Noé B, Ley K, Bode C, Hilgendorf I, Duerschmied D. Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation 2019; 139:918-931. [PMID: 30586717 DOI: 10.1161/circulationaha.118.033942] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. METHODS Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. RESULTS Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition-reported to protect patients with depression from cardiovascular events-resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. CONCLUSIONS Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.
Collapse
Affiliation(s)
- Maximilian Mauler
- Faculty of Biology (M.M., K.K.), University of Freiburg, Germany.,Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Nadine Herr
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Claudia Schoenichen
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Thilo Witsch
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Timoteo Marchini
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Carmen Härdtner
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Christoph Koentges
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Korbinian Kienle
- Faculty of Biology (M.M., K.K.), University of Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics (K.K., T.L.), Germany
| | - Véronique Ollivier
- INSERM Unit 1148, University Paris Diderot (V.O., B.H-T-N.), France.,Laboratory for Vascular Translational Science, Sorbonne Paris Cité (V.O., B.H-T-N.), France
| | - Maximilian Schell
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Ludwig Dorner
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Christopher Wippel
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Daniela Stallmann
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Claus Normann
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Psychiatry, University Medical Center Freiburg (C.N.), Germany
| | - Heiko Bugger
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University; Ulm, Germany (P.W.)
| | - Dennis Wolf
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany.,La Jolla Institute for Allergy and Immunology, La Jolla, CA (D.W., K.L.)
| | - Ingo Ahrens
- Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics (K.K., T.L.), Germany
| | - Benoît Ho-Tin-Noé
- INSERM Unit 1148, University Paris Diderot (V.O., B.H-T-N.), France.,Laboratory for Vascular Translational Science, Sorbonne Paris Cité (V.O., B.H-T-N.), France
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA (D.W., K.L.)
| | - Christoph Bode
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Ingo Hilgendorf
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Daniel Duerschmied
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| |
Collapse
|
60
|
Review on Cross Talk between Neurotransmitters and Neuroinflammation in Striatum and Cerebellum in the Mediation of Motor Behaviour. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1767203. [PMID: 31815123 PMCID: PMC6877979 DOI: 10.1155/2019/1767203] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
Neurological diseases particularly Alzheimer's disease (AD), Parkinson's disease (PD), stroke, and epilepsy are on the rise all around the world causing morbidity and mortality globally with a common symptom of gradual loss or impairment of motor behaviour. Striatum, which is a component of the basal ganglia, is involved in facilitating voluntary movement while the cerebellum is involved in the maintenance of balance and coordination of voluntary movements. Dopamine, serotonin, gamma-aminobutyric acid (GABA), and glutamate, to name a few, interact in regulating the excitation and inhibition of motor neurons. In another hand, interestingly, the motor loss associated with neurological diseases is possibly resulted from neuroinflammation induced by the neuroimmune system. Toll-like receptors (TLRs) are present in the central nervous system (CNS), specifically and primarily expressed in microglia and are also found on neurons and astrocytes, functioning mainly in the regulation of proinflammatory cytokine production. TLRs are always found to be associated or involved in the induction of neuroinflammation in neurodegenerative diseases. Activation of toll-like receptor 4 (TLR4) through TLR4 agonist, lipopolysaccharide (LPS), stimulation initiate a signaling cascade whereby the TLR4-LPS interaction has been found to result in physiological and behavioural changes including retardation of motor activity in the mouse model. TLR4 inhibitor TAK-242 was reflected in the reduction of the spinal cord pathology along with the motor improvement in ALS mouse. There is cross talk with neuroinflammation and neurochemicals. For example, TLR4 activation by LPS is noted to release proinflammatory cytokines, IL-1β, from microglia that subsequently suppresses GABA receptor activities at the postsynaptic site and reduces GABA synthesis at the presynaptic site. Glial glutamate transporter activities are also found to be suppressed, showing the association between TLR4 activation and the related neurotransmitters and corresponding receptors and transporters in the event of neuroinflammation. This review is helpful to understand the connection between neurotransmitter and neuroinflammation in striatum- and cerebellum-mediated motor behaviour.
Collapse
|
61
|
van de Wouw M, Boehme M, Dinan TG, Cryan JF. Monocyte mobilisation, microbiota & mental illness. Brain Behav Immun 2019; 81:74-91. [PMID: 31330299 DOI: 10.1016/j.bbi.2019.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome has emerged as a key player in regulating brain and behaviour. This has led to the strategy of targeting the gut microbiota to ameliorate disorders of the central nervous system. Understanding the underlying signalling pathways in which the microbiota impacts these disorders is crucial for the development of future therapeutics for improving CNS functionality. One of the major pathways through which the microbiota influences the brain is the immune system, where there is an increasing appreciation for the role of monocyte trafficking in regulating brain homeostasis. In this review, we will shed light on the role of monocyte trafficking as a relay of microbiota signals in conditions where the central nervous system is in disorder, such as stress, peripheral inflammation, ageing, traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease and Parkinson's disease. We also cover how the gastrointestinal microbiota is implicated in these mental illnesses. In addition, we aim to discuss how the monocyte system can be modulated by the gut microbiota to mitigate disorders of the central nervous system, which will lead to novel microbiota-targeted strategies.
Collapse
Affiliation(s)
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
62
|
Liu X, Gorzelanny C, Schneider SW. Platelets in Skin Autoimmune Diseases. Front Immunol 2019; 10:1453. [PMID: 31333641 PMCID: PMC6620619 DOI: 10.3389/fimmu.2019.01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and small vessel vasculitis are three autoimmune diseases frequently manifested in the skin. They share common pathogenic features, including production of autoantibodies, loss of tolerance to self-antigens, tissue necrosis and fibrosis, vasculopathy and activation of the coagulation system. Platelets occupy a central part within the coagulation cascade and are well-recognized for their hemostatic role. However, recent cumulative evidence implicates their additional and multifaceted immunoregulatory functions. Platelets express immune receptors and they store growth factors, cytokines, and chemokines in their granules enabling a significant contribution to inflammation. A plethora of activating triggers such as damage associated molecular patterns (DAMPs) released from damaged endothelial cells, immune complexes, or complement effector molecules can mediate platelet activation. Activated platelets further foster an inflammatory environment and the crosstalk with the endothelium and leukocytes by the release of immunoactive molecules and microparticles. Further insight into the pathogenic implications of platelet activation will pave the way for new therapeutic strategies targeting autoimmune diseases. In this review, we discuss the inflammatory functions of platelets and their mechanistic contribution to the pathophysiology of SSc, ANCA associated small vessel vasculitis and other autoimmune diseases affecting the skin.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
63
|
Harman and norharman, metabolites of the entomopathogenic fungus Conidiobolus coronatus (Entomophthorales), affect the serotonin levels and phagocytic activity of hemocytes, insect immunocompetent cells, in Galleria mellonella (Lepidoptera). Cell Biosci 2019; 9:29. [PMID: 30962871 PMCID: PMC6434831 DOI: 10.1186/s13578-019-0291-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Background Although the β-carboline alkaloids harman and norharman are considered as plant metabolites, they can also be secreted by fungi such as the entomopathogen Conidiobolus coronatus. Norharman and harman are also known to be reversible competitive monamine oxidase inhibitors, which increase serotonin concentrations in tissues. In addition, these alkaloids are able to bind to serotonin receptors, an important immune regulatory molecule in both vertebrates and invertebrates. In insects, serotonin modulates hemocyte phagocytosis, nodule formation and the populations of hemocyte classes. The present study examines whether harman and norharman may influence the phagocytic activity of insect hemocytes by regulating serotonin levels. Results Significantly greater serotonin levels and hemocyte phagocytic activity were observed after 24 h of exposure to food contaminated with harman and norharman. Similar responses were noticed 1 h after topical application or addition to in vitro hemocyte cultures. Observations and measurements performed 24 h later revealed decreased responses, suggesting decomposition and/or exertion of alkaloids and/or serotonin. Harman and norharman influenced the activity of Galleria mellonella plasmatocytes and the granulocyte cytoskeleton. Disturbances in hemocyte network formation, abnormal cell shape, naked nuclei, cell aggregates, fragments of disintegrated cells, interrupted cell membrane continuity and actin condensation in cells were observed. Conclusion Our findings may have a considerable impact on research concerning insect physiology, parasitology, immunology and biocontrol of pests. They confirm for the first time that harman and norharman (metabolites of the entomopathogenic fungus C. coronatus) elevate serotonin levels in G. mellonella hemocytes, thus potentially stimulating their phagocytic activity. Our studies shed light on the mechanisms underlying the interaction between innate insect immune responses and entomopathogen metabolites. Electronic supplementary material The online version of this article (10.1186/s13578-019-0291-1) contains supplementary material, which is available to authorized users.
Collapse
|
64
|
Stegemann A, Böhm M. Tropisetron via α7 nicotinic acetylcholine receptor suppresses tumor necrosis factor-α-mediated cell responses of human keratinocytes. Exp Dermatol 2019; 28:276-282. [DOI: 10.1111/exd.13883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology; University of Münster; Münster Germany
| | - Markus Böhm
- Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
65
|
Affiliation(s)
- Luc Maroteaux
- UMR-S839 INSERM, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Fusun Kilic
- Departments of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
66
|
Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res 2019; 140:100-114. [DOI: 10.1016/j.phrs.2018.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022]
|
67
|
Dolivo DM, Larson SA, Dominko T. Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 2018; 75:3663-3681. [PMID: 30027295 PMCID: PMC11105268 DOI: 10.1007/s00018-018-2880-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.
Collapse
Affiliation(s)
- David M Dolivo
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Sara A Larson
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Tanja Dominko
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
68
|
Noonin C. Involvement of Serotonin in crayfish hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:189-195. [PMID: 29778989 DOI: 10.1016/j.dci.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Serotonin (5-HT) is a conserved monoamine neurotransmitter that has several physiological functions both in vertebrates and invertebrates. In addition to its well-known function in the central nervous system, 5-HT also participates in peripheral system. However, in crustaceans, the knowledge about peripheral functions of 5-HT is limited. In this study, a role of 5-HT in hematopoiesis in crayfish, Pacifastacus leniusculus, was investigated. The presence of 5-HT in crayfish plasma and the effect of 5-HT injection on hemocyte number were examined. The effects of 5-HT on hematopoietic tissue (HPT) cell proliferation and secretion of the hematopoietic cytokine, astakine 1 (Ast 1) were determined in vitro. The results from this study suggest that 5-HT has no direct effect on HPT cell proliferation, but it participates in crayfish hematopoiesis through stimulating Ast 1 cytokine release from crayfish hemocytes, and thereby affects release of new hemocytes into the circulation.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Organismal Biology, Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| |
Collapse
|
69
|
Abstract
Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising new treatment options for a variety of disorders. The recent success of these agonists, also known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these compounds are perceived in the medical community and populace at large. One emerging therapeutic area that holds significant promise is their use as anti-inflammatory agents. Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of human inflammatory disorders at sub-behavioural levels. This review discusses the role of the 5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms, and may represent a new and exciting treatment strategy for several inflammatory disorders.
Collapse
Affiliation(s)
- Thomas W Flanagan
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Charles D Nichols
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
70
|
Waclawiková B, El Aidy S. Role of Microbiota and Tryptophan Metabolites in the Remote Effect of Intestinal Inflammation on Brain and Depression. Pharmaceuticals (Basel) 2018; 11:ph11030063. [PMID: 29941795 PMCID: PMC6160932 DOI: 10.3390/ph11030063] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
The human gastrointestinal tract is inhabited by trillions of commensal bacteria collectively known as the gut microbiota. Our recognition of the significance of the complex interaction between the microbiota, and its host has grown dramatically over the past years. A balanced microbial community is a key regulator of the immune response, and metabolism of dietary components, which in turn, modulates several brain processes impacting mood and behavior. Consequently, it is likely that disruptions within the composition of the microbiota would remotely affect the mental state of the host. Here, we discuss how intestinal bacteria and their metabolites can orchestrate gut-associated neuroimmune mechanisms that influence mood and behavior leading to depression. In particular, we focus on microbiota-triggered gut inflammation and its implications in shifting the tryptophan metabolism towards kynurenine biosynthesis while disrupting the serotonergic signaling. We further investigate the gaps to be bridged in this exciting field of research in order to clarify our understanding of the multifaceted crosstalk in the microbiota–gut–brain interphase, bringing about novel, microbiota-targeted therapeutics for mental illnesses.
Collapse
Affiliation(s)
- Barbora Waclawiková
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
71
|
Banskota S, Ghia JE, Khan WI. Serotonin in the gut: Blessing or a curse. Biochimie 2018; 161:56-64. [PMID: 29909048 DOI: 10.1016/j.biochi.2018.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) once most extensively studied as a neurotransmitter of the central nervous system, is seen to be predominantly secreted in the gut. About 95% of 5-HT is estimated to be found in gut mainly within the enterochromaffin cells whereas about 5% is found in the brain. 5-HT is an important enteric signaling molecule and is well known for playing a key role in sensory-motor and secretory functions in the gut. In recent times, studies uncovering various new functions of gut-derived 5-HT indicate that many more are yet to be discovered in coming days. Recent studies revealed that 5-HT plays a pivotal role in immune cell activation and generation/perpetuation of inflammation in the gut. In addition to its various roles in the gut, there are now emerging evidences that suggest an important role of gut-derived 5-HT in other biological processes beyond the gut, such as bone remodeling and metabolic homeostasis. This review focuses to briefly summarize the accumulated and newly updated role of 5-HT in the maintenance of normal gut physiology and in the pathogenesis of inflammation in the gut. The collected information about this multifaceted signaling molecule may aid in distinguishing its good and bad effects which may lead to the development of novel strategies to overcome the unwanted effect, such as in inflammatory bowel disease.
Collapse
Affiliation(s)
- Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jean-Eric Ghia
- Department of Immunology and Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
72
|
Santos JC, Pyter LM. Neuroimmunology of Behavioral Comorbidities Associated With Cancer and Cancer Treatments. Front Immunol 2018; 9:1195. [PMID: 29930550 PMCID: PMC6001368 DOI: 10.3389/fimmu.2018.01195] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Behavioral comorbidities (depression, anxiety, fatigue, cognitive disturbances, and neuropathic pain) are prevalent in cancer patients and survivors. These mental and neurological health issues reduce quality-of-life, which is a significant societal concern given the increasing rates of long-term survival after various cancers. Hypothesized causes of behavioral comorbidities with cancer include tumor biology, stress associated with the cancer experience, and cancer treatments. A relatively recent leading mechanism by which these causes contribute to changes in neurobiology that underlie behavior is inflammation. Indeed, both basic and clinical research indicates that peripheral inflammation leads to central inflammation and behavioral changes in other illness contexts. Given the limitations of assessing neuroimmunology in clinical populations, this review primarily synthesizes evidence of neuroimmune and neuroinflammatory changes due to two components of cancer (tumor biology and cancer treatments) that are associated with altered affective-like or cognitive behaviors in rodents. Specifically, alterations in microglia, neuroinflammation, and immune trafficking to the brain are compiled in models of tumors, chemotherapy, and/or radiation. Evidence-based neuronal mechanisms by which these neuroimmune changes may lead to changes in behavior are proposed. Finally, converging evidence in clinical cancer populations is discussed.
Collapse
Affiliation(s)
- Jessica C Santos
- Department of Basic and Applied Immunology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Leah M Pyter
- Departments of Psychiatry and Behavioral Health and Neuroscience, The Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
73
|
Chronic Intake of the Selective Serotonin Reuptake Inhibitor Fluoxetine Enhances Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:1007-1019. [DOI: 10.1161/atvbaha.117.310536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/07/2018] [Indexed: 01/20/2023]
Abstract
Objective—
Cardiovascular diseases and depression are the leading causes of disability in Western countries. Clinical data on potential cardiovascular effects of serotonin reuptake inhibitors (SSRIs), the most commonly used antidepressant drugs, are controversial. In addition to blocking serotonin reuptake transporter in the brain, SSRIs deplete the major peripheral serotonin (5-hydroxytryptamine [5-HT]) storage by inhibiting serotonin reuptake transporter–mediated uptake in platelets. In this study, we aimed to investigate the effect of chronic SSRI intake on the development of atherosclerosis.
Approach and Results—
Treatment of apolipoprotein E–deficient mice with the SSRI fluoxetine for 2, 4, or 16 weeks increased atherosclerotic lesion formation, with most pronounced effect during early plaque development. Intravital microscopy of carotid arteries revealed enhanced myeloid cell adhesion on fluoxetine treatment. Mechanistically, we found that fluoxetine augmented vascular permeability and increased chemokine-induced integrin-binding activity of circulating leukocytes. In vitro stimulation of murine blood demonstrated that fluoxetine, but not 5-HT, could directly promote β1 and β2 integrin activation provided C-C motif chemokine ligand 5 was also present. Similar effects were observed with the SSRI escitalopram. Enhanced C-C motif chemokine ligand 5–induced integrin activation by fluoxetine was also confirmed in a human neutrophil-like cell line. In contrast to the proatherogenic properties of fluoxetine, pharmacological inhibition of the peripheral 5-HT synthesizing enzyme tryptophan hydroxylase 1 did not promote atherosclerosis, suggesting that the proatherogenic effect of fluoxetine occurs independent of peripheral 5-HT depletion.
Conclusions—
SSRI intake may promote atherosclerosis and therefore potentially increase the risk for acute cardiovascular events by a mechanism that is independent of 5-HT depletion.
Collapse
|
74
|
Jia Y, Yang B, Dong W, Liu Z, Lv Z, Jia Z, Qiu L, Wang L, Song L. A serotonin receptor (Cg5-HTR-1) mediating immune response in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:83-93. [PMID: 29305167 DOI: 10.1016/j.dci.2017.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Serotonin receptors, including ligand-gated ion channel (LGICs) and G protein-coupled receptors (GPCR), play vital roles in modulating physiological processes and immunoreaction. In the present study, a homologue of serotonin (5-HT) receptor was identified from oyster Crassostrea gigas (designated Cg5-HTR-1). Its open reading frame (ORF) was of 1239 bp, encoding a polypeptide of 412 amino acids with a seven transmembrane region. Cg5-HTR-1 shared high similarity with the 5-HTRs from other animals. The cAMP contents in HEK293T cells decreased significantly after Cg5-HTR-1 transfection and 5-HT incubation (p < .05), while blocking Cg5-HTR-1 with specific receptor antagonist reversed this downtrend. The intracellular Ca2+ concentrations increased significantly (p < .05) after cell transfection and 5-HT incubation, and the antagonist treatment also arrested this process. Cg5-HTR-1 transcripts were widely distributed in various tissues, with the highest level in hepatopancreas and lowest level in mantle and gill. The mRNA expression of Cg5-HTR-1 in hemocyte increased significantly after lipopolysaccharide (LPS) stimulation and reached the peak level (6.47-fold, p < .05) at 6 h post treatment. The inhibition of Cg5-HTR-1 significantly reduced the expression of tumor necrosis factor (TNF) mRNA in hemocyte, down-regulated the superoxide dismutase (SOD) activity in serum, and induced the apoptosis of hemocyte (p < .05). These results suggested that Cg5-HTR-1 was a novel member of 5-HT1 receptor family and it mediated serotonergic immunomodulation on both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Dong
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
75
|
Szabo A, Gogolak P, Koncz G, Foldvari Z, Pazmandi K, Miltner N, Poliska S, Bacsi A, Djurovic S, Rajnavolgyi E. Immunomodulatory capacity of the serotonin receptor 5-HT2B in a subset of human dendritic cells. Sci Rep 2018; 8:1765. [PMID: 29379077 PMCID: PMC5788853 DOI: 10.1038/s41598-018-20173-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
Serotonin is a monoamine neurotransmitter that signals through a wide array of receptors (5-HT1–7) many of which are also involved in immune processes. Dendritic cells (DCs) are crucial players in immune defense by bridging innate and adaptive immune responses via their vast repertoire of pattern recognition receptors and antigen-presenting capability. Although serotonin is known to influence immunity at many levels, cell type-specific expression and function of its receptors remains poorly understood. Here we aimed to study 5-HT1–7 expression and function in CD1a− and CD1a+ human monocyte-derived DCs (moDCs). We found that the 5-HT2B receptor-subtype is solely expressed by the inflammatory CD1a+ moDC subset. Specific 5-HT2B activation potently inhibited TLR2, TLR3, and TLR7/8-induced proinflammatory cytokine and chemokine (TNF-α, IL-6, IL-8, IP-10, IL-12) but not type I interferon-β responses. 5-HT2B agonism also interfered with the polarization of CD1a+ moDC-primed CD4+ T cells towards inflammatory Th1 and Th17 effector lymphocytes. Here we report the subset-specific expression and immunomodulatory function of 5-HT2B in human moDCs. Our results expand the biological role of 5-HT2B which may act not only as a neurotransmitter receptor, but also as an important modulator of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Attila Szabo
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. .,Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Peter Gogolak
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsofia Foldvari
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noemi Miltner
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
76
|
Talmon M, Rossi S, Pastore A, Cattaneo CI, Brunelleschi S, Fresu LG. Vortioxetine exerts anti-inflammatory and immunomodulatory effects on human monocytes/macrophages. Br J Pharmacol 2018; 175:113-124. [PMID: 29057467 PMCID: PMC5740236 DOI: 10.1111/bph.14074] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE A crosstalk between the immune system and depression has been postulated, with monocytes/macrophages and cytokines having a key role in this interaction. In this study, we examined whether vortioxetine, a multimodal anti-depressive drug, was endowed with anti-inflammatory and antioxidative activity, leading to immunomodulatory effects on human monocytes and macrophages. EXPERIMENTAL APPROACH Human monocytes were isolated from buffy coats and used as such or differentiated into M1 and M2 macrophages. Cells were treated with vortioxetine before or after differentiation, and their responsiveness was evaluated. This included oxy-radical and TNFα production, TNFα and PPARγ gene expression and NF-κB translocation. KEY RESULTS Vortioxetine significantly reduced the PMA-induced oxidative burst in monocytes and in macrophages (M1 and M2), causing a concomitant shift of macrophages from the M1 to the M2 phenotype, demonstrated by a significant decrease in the expression of the surface marker CD86 and an increase in CD206. Moreover, treatment of monocytes with vortioxetine rendered macrophages derived from this population less sensitive to PMA, as it reduced the oxidative burst, NF-kB translocation, TNFα release and expression while inducing PPARγ gene expression. FACS analysis showed a significant decrease in the CD14+ /CD16+ /CD86+ M1 population. CONCLUSIONS AND IMPLICATIONS These results demonstrate that in human monocytes/macrophages, vortioxetine has antioxidant activity and anti-inflammatory effects driving the polarization of macrophages towards their alternative phenotype. These findings suggest that vortioxetine, alongside its antidepressive effect, may have immunomodulatory properties.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Silvia Rossi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Anna Pastore
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Carlo Ignazio Cattaneo
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
- Department of Mental Health, ASL NOCentre of Mental HealthNovaraItaly
| | - Sandra Brunelleschi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| |
Collapse
|
77
|
Errico J. The Role of Vagus Nerve Stimulation in the Treatment of Central and Peripheral Pain Disorders and Related Comorbid Somatoform Conditions. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
78
|
Yayla M, Halici Z, Kose D, Tatar A, Sitki Gozeler M. 5-HT 7 receptors are over-expressed in patients with nasal polyps. EAR, NOSE & THROAT JOURNAL 2017; 96:E14-E18. [PMID: 29236276 DOI: 10.1177/0145561320919603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nasal polyposis (NP) is an inflammatory disease of the paranasal sinuses and nasal cavity. The primary purpose of our study is to determine the expression of 5-HT7 receptors both in nasal polyps and in healthy tissue in the nasal cavity. The subsequent aim is to compare the expression of 5-HT7 receptors in patients with NP and in inferior turbinate tissue (control). The study included 60 participants (40 with NP and 20 controls) aged 35 to 62 years. Nasal polyp samples were collected from all patients and relative 5-HT7 receptor expression analyses were performed. Reverse transcription polymerase chain reaction analysis of nasal polyps and control tissue identified 5-HT7 receptor expression in the nasal cavities of controls. This expression was approximately 67 times higher in nasal polyp tissue than in healthy tissue. Our study identifies the expression of 5-HT7 receptors in the nasal cavity for the first time and the first demonstration of increased 5-HT7 receptor expression in tissue from nasal polyps, which occur in the paranasal sinuses and nasal cavity.
Collapse
Affiliation(s)
- Muhammed Yayla
- Department of Pharmacology, Kafkas University Faculty of Medicine Kars, Turkey
| | | | | | | | | |
Collapse
|
79
|
Domínguez-Soto Á, Usategui A, Casas-Engel MDL, Simón-Fuentes M, Nieto C, Cuevas VD, Vega MA, Luis Pablos J, Corbí ÁL. Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Sci Rep 2017; 7:14761. [PMID: 29116249 PMCID: PMC5676747 DOI: 10.1038/s41598-017-15348-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
Peripheral serotonin (5-hydroxytryptamine, 5-HT) regulates cell growth and differentiation in numerous cell types through engagement of seven types of cell surface receptors (HTR1-7). Deregulated 5-HT/HTR levels contribute to pathology in chronic inflammatory diseases, with macrophages being relevant targets for the physio-pathological effects of 5-HT. In fact, 5-HT skews human macrophage polarization through engagement of 5-HT2BR and 5-HT7R receptors. We now report that 5-HT primes macrophages for reduced pro-inflammatory cytokine production and IFN type I-mediated signaling, and promotes an anti-inflammatory and pro-fibrotic gene signature in human macrophages. The acquisition of the 5-HT-dependent gene profile primarily depends on the 5-HT7R receptor and 5-HT7R-initiated PKA-dependent signaling. In line with the transcriptional results, 5-HT upregulates TGFβ1 production by human macrophages in an HTR7- and PKA-dependent manner, whereas the absence of Htr7 in vivo results in diminished macrophage infiltration and collagen deposition in a mouse model of skin fibrosis. Our results indicate that the anti-inflammatory and pro-fibrotic activity of 5-HT is primarily mediated through the 5-HT7R-PKA axis, and that 5-HT7R contributes to pathology in fibrotic diseases.
Collapse
Affiliation(s)
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Concha Nieto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Víctor D Cuevas
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Miguel A Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - José Luis Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de octubre, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
80
|
Shi H, Zhu X, Cui Y, Qin Y, Yang L, Deng X. Analgesic activity of cynaropicrinon on post-inflammatory irritable bowel syndrome visceral hypersensitivity in a rat model. Exp Ther Med 2017; 14:4476-4482. [PMID: 29067122 DOI: 10.3892/etm.2017.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Visceral hypersensitivity is one of the most common symptoms in patients with post-inflammatory-irritable bowel syndrome (PI-IBS). Enterochromaffin (EC) cells and 5-hydroxytryptamine (5-HT) are important in the development of visceral hyperalgesia, and EC cells are influenced by helper T-cell subtype 1 or 2 cytokine predominant environments. In the present study, the analgesic effect of cynaropicrin and its underlying mechanism on the treatment of trinitrobenzene sulfonic (TNBS)-induced PI-IBS visceral hyperalgesia rats was investigated. The results from the abdominal withdrawal reflex tests and electromyography recordings indicated that treatment with cynaropicrin significantly and dose-dependently alleviated the visceral hyperalgesia of PI-IBS rats (P<0.05). In addition, the increased colonic 5-HT content, colonic tryptophan hydroxylase expression, EC cell number and the cytokine levels, including tumor necrosis factor-α and interleukin-6 in PI-IBS rats were significantly alleviated by cynaropicrin (P<0.05). These data demonstrate that the analgesic activity of cynaropicrin on TNBS-induced PI-IBS visceral hypersensitive rats was mediated via reduction of cytokines levels. Thus, cynaropicrin as a bioactive natural product may offer promising therapeutic avenues for visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Hailong Shi
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an Shaanxi 710069, P.R. China.,College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| | - Xianwei Zhu
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China.,Innovation Research Centre of Acupuncture Combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Shaanxi 712046, P.R. China.,Graduate School of Innovative Life Science for Education, University of Toyama, Toyama 930-8555, Japan
| | - Yaya Cui
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| | - Yifei Qin
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| | - Lin Yang
- Graduate School of Innovative Life Science for Education, University of Toyama, Toyama 930-8555, Japan
| | - Xu Deng
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| |
Collapse
|
81
|
Herr N, Bode C, Duerschmied D. The Effects of Serotonin in Immune Cells. Front Cardiovasc Med 2017; 4:48. [PMID: 28775986 PMCID: PMC5517399 DOI: 10.3389/fcvm.2017.00048] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] plays an important role in many organs as a peripheral hormone. Most of the body’s serotonin is circulating in the bloodstream, transported by blood platelets and is released upon activation. The functions of serotonin are mediated by members of the 7 known mammalian serotonin receptor subtype classes (15 known subtypes), the serotonin transporter (SERT), and by covalent binding of serotonin to different effector proteins. Almost all immune cells express at least one serotonin component. In recent years, a number of immunoregulatory functions have been ascribed to serotonin. In monocytes/macrophages, for example, serotonin modulates cytokine secretion. Serotonin can also suppress the release of tumor necrosis factor-α and interleukin-1β by activating serotonin receptors. Furthermore, neutrophil recruitment and T-cell activation can both be mediated by serotonin. These are only a few of the known immunomodulatory roles of serotonin that we will review here.
Collapse
Affiliation(s)
- Nadine Herr
- Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
82
|
Lee ES, Lee MY, Kwon MH, Kim HM, Kang JS, Kim YM, Lee EY, Chung CH. Sarpogrelate hydrochloride ameliorates diabetic nephropathy associated with inhibition of macrophage activity and inflammatory reaction in db/db mice. PLoS One 2017. [PMID: 28640832 PMCID: PMC5480859 DOI: 10.1371/journal.pone.0179221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to evaluate the effects of sarpogrelate hydrochloride (SH), a selective serotonin 2A receptor antagonist, on diabetic nephropathy in a type 2 diabetes mouse model. We treated db/m and db/db mice with SH (30 mg/kg/day) for 12 weeks. Rat renal proximal tubule cells (NRK-52E) and mouse macrophages (Raw 264.7) were stimulated by high glucose (30 mM glucose) or LPS (100 ng/ml) with or without SH (20 μM). We found that SH treatment increased serum adiponectin level and decreased urinary albumin, macrophage infiltration to glomeruli, and renal inflammatory and fibrosis signals, which were highly expressed in diabetic mice. Proximal tubule cells treated with high glucose (30 mM) also showed increased inflammatory and fibrosis signals. However, SH (20 μM) treatment reduced these changes. Moreover, SH treatment inhibited LPS-stimulated macrophage migration and activation. These findings suggest that SH ameliorates diabetic nephropathy not only by suppressing macrophage infiltration, but also by anti-inflammatory and anti-fibrotic effects.
Collapse
Affiliation(s)
- Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi Young Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi-Hye Kwon
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - You Mi Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- * E-mail:
| |
Collapse
|
83
|
Ntelis K, Solomou EE, Sakkas L, Liossis SN, Daoussis D. The role of platelets in autoimmunity, vasculopathy, and fibrosis: Implications for systemic sclerosis. Semin Arthritis Rheum 2017; 47:409-417. [PMID: 28602360 DOI: 10.1016/j.semarthrit.2017.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, autoimmunity, and widespread dermal and visceral fibrosis. This article summarizes the current knowledge about the potential contribution of platelets in the disease process and the rationale of targeting platelets as an adjunct treatment for SSc. METHODS We performed an electronic search (Medline) using the keywords platelets, systemic sclerosis, autoimmunity, fibrosis, Raynaud, and pulmonary arterial hypertension. RESULTS The link that connects vasculopathy, autoimmunity, and fibrosis in SSc remains obscure. Experimental data suggest that platelets are not solely cell fragments regulating hemostasis but they have a pleiotropic role in several biologic processes including immune regulation, vasculopathy, fibrosis, and all key features of SSc. Platelets interplay with the impaired endothelium, can interact with immune cells, and they are storages of bioactive molecules involved in tissue injury and remodeling. The potential role of platelets in the pathogenesis of SSc is further supported by experimental data in animal models of SSc. Platelet-derived serotonin represents a novel target in SSc and serotonin blockade is currently being tested in clinical trials. CONCLUSION Platelets may be actively involved in the pathogenesis of SSc by activating immune responses and facilitating the fibrotic process. However, definite conclusions cannot be drawn until more data from both basic and clinical research are available.
Collapse
Affiliation(s)
- Konstantinos Ntelis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, Patras, Greece
| | - Lazaros Sakkas
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece.
| |
Collapse
|
84
|
Robson MJ, Quinlan MA, Blakely RD. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery. ACS Chem Neurosci 2017; 8:932-942. [PMID: 28345868 DOI: 10.1021/acschemneuro.6b00412] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
Collapse
Affiliation(s)
- Matthew J Robson
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University , Jupiter, Florida 33458, United States
| | - Meagan A Quinlan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University , Jupiter, Florida 33458, United States
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37240-7933, United States
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University , Jupiter, Florida 33458, United States
| |
Collapse
|
85
|
Shajib MS, Baranov A, Khan WI. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem Neurosci 2017; 8:920-931. [PMID: 28288510 DOI: 10.1021/acschemneuro.6b00414] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut is the largest producer of serotonin or 5-hydroxytryptamine (5-HT) in the human body, and 5-HT has been recognized as an important signaling molecule in the gut for decades. There are two distinct sources of enteric 5-HT. Mucosal 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract, and neuronal 5-HT in the gut is produced by serotonergic neurons of the enteric nervous system (ENS). The quantity of mucosal 5-HT produced vastly eclipses the amount of neuronal 5-HT in the gut. Though it is difficult to separate the functions of neuronal and mucosal 5-HT, in the normal gut both types of enteric 5-HT work synergistically playing a prominent role in the maintenance of GI functions. In inflammatory conditions of the gut, like inflammatory bowel disease (IBD) recent studies have revealed new diverse functions of enteric 5-HT. Mucosal 5-HT plays an important role in the production of pro-inflammatory mediators from immune cells, and neuronal 5-HT provides neuroprotection in the ENS. Based on searches for terms such as "5-HT", "EC cell", "ENS", and "inflammation" in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of enteric 5-HT and its immune mediators in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Md. Sharif Shajib
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Adriana Baranov
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Hamilton
Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
86
|
The 5-HT3 Receptor Antagonist Ondansetron Attenuates Pancreatic Injury in Cerulein-Induced Acute Pancreatitis Model. Inflammation 2017; 40:1409-1415. [DOI: 10.1007/s10753-017-0584-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
87
|
Shendre A, Wiener H, Irvin MR, Zhi D, Limdi NA, Overton ET, Wassel CL, Divers J, Rotter JI, Post WS, Shrestha S. Admixture Mapping of Subclinical Atherosclerosis and Subsequent Clinical Events Among African Americans in 2 Large Cohort Studies. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001569. [PMID: 28408707 PMCID: PMC5396391 DOI: 10.1161/circgenetics.116.001569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/03/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Local ancestry may contribute to the disproportionate burden of subclinical and clinical cardiovascular disease among admixed African Americans compared with other populations, suggesting a rationale for admixture mapping. METHODS AND RESULTS We estimated local European ancestry (LEA) using Local Ancestry inference in adMixed Populations using Linkage Disequilibrium method (LAMP-LD) and evaluated the association with common carotid artery intima-media thickness (cCIMT) using multivariable linear regression analysis among 1554 African Americans from MESA (Multi-Ethnic Study of Atherosclerosis). We conducted secondary analysis to examine the significant cCIMT-LEA associations with clinical cardiovascular disease events. We observed genome-wide significance in relation to cCIMT association with the SERGEF gene (secretion-regulating guanine nucleotide exchange factor; β=0.0137; P=2.98×10-4), also associated with higher odds of stroke (odds ratio=1.71; P=0.02). Several regions, in particular CADPS gene (Ca2+-dependent secretion activator 1) region identified in MESA, were also replicated in the ARIC cohort (Atherosclerosis Risk in Communities). We observed other cCIMT-LEA regions associated with other clinical events, most notably the regions harboring CKMT2 gene (creatine kinase, mitochondrial 2) and RASGRF2 gene (Ras protein-specific guanine nucleotide-releasing factor 2) with all clinical events except stroke, the LRRC3B gene (leucine-rich repeat containing 3B) with myocardial infarction, the PRMT3 gene (protein arginine methyltransferase 3) with stroke, and the LHFPL2 gene (lipoma high mobility group protein I-C fusion partner-like 2) with hard and all coronary heart disease. CONCLUSIONS We identified several novel LEA regions, in addition to previously identified genetic variations, associated with cCIMT and cardiovascular disease events among African Americans.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Currently: Richard M. Fairbanks School of Public Health, Indianapolis University Purdue University Indianapolis, IN
| | - Howard Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Currently: Richard M. Fairbanks School of Public Health, Indianapolis University Purdue University Indianapolis, IN
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Currently: Richard M. Fairbanks School of Public Health, Indianapolis University Purdue University Indianapolis, IN
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
- Currently, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Edgar T. Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Christina L. Wassel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT
| | - Jasmin Divers
- Biostatistical Sciences, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Jerome I. Rotter
- Department of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
88
|
Lv J, Liu F. The Role of Serotonin beyond the Central Nervous System during Embryogenesis. Front Cell Neurosci 2017. [DOI: 10.3389/fnpit.2017.00400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
89
|
Lv J, Liu F. The Role of Serotonin beyond the Central Nervous System during Embryogenesis. Front Cell Neurosci 2017; 11:74. [PMID: 28348520 PMCID: PMC5346549 DOI: 10.3389/fncel.2017.00074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Serotonin, or 5-hydroxytryptamine (5-HT), is a well-known neurotransmitter that plays vital roles in neural activities and social behaviors. Clinically, deficiency of serotonin is linked with many psychiatric disorders. Interestingly, a large proportion of serotonin is also produced outside the central nervous system (CNS). There is increasing evidence demonstrating important roles of serotonin in the peripheral tissues. Here, we will describe the multiple biological functions of serotonin in hematopoietic system, such as development of hematopoietic stem and progenitor cells (HSPCs), differentiation of hematopoietic cells, maintenance of vascular system, and relationship with hematological diseases. The roles of serotonin in inflammatory responses mediated by hematopoietic cells as well as in liver regeneration are also discussed. Our recent understandings of the impact of serotonin on hematopoietic system, immune responses, and tissue regeneration support utilization of serotonin as a potential therapeutic target for the treatment of hematological diseases and organ repair in clinic.
Collapse
Affiliation(s)
- Junhua Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
90
|
Swanson G, Miller S, Alyahyawi A, Wilson B, Saadatmand F, Lee C, Dunston G, Abbas M. Genetic polymorphisms in the serotonin receptor 7 (HTR7) gene are associated with cortisol levels in African American young adults. F1000Res 2017. [DOI: 10.12688/f1000research.10442.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction: Serotonin is a neurohormone involved in biological processes, such as behavior and immune function. Chronic psychosocial stressors may cause serotonin release resulting in immune system dysregulation, as evidenced by increased or far decreased levels of cortisol, a blood biomarker of stress and immune function. We hypothesize that genetic polymorphisms in the HTR7 gene are associated with both hypo- and hyper-cortisolism. Methods: The study population included 602 African American subjects between 18-34 years of age, living in Washington, D.C. Five single nucleotide polymorphisms (SNPs) in HTR7, rs2420367, rs12412496, rs2185706, rs7089533, and rs7093602 were genotyped by restriction fragment length polymorphism or the TaqMan assay. Statistical analysis, using the program SNPstat, was performed to determine their associations with cortisol measured in the study population. Results: While an increased risk of hypocortisolism was found to be associated with rs2420367, rs2185706, and rs7093602 in a gender specific manner, no genotypes could be associated with hypercortisolism. Inversely, a decreased risk of hypocortisolism was found with the haplotype CGGCC (p=0.033), which remained significant in males. When adjusting for gender, females associated with the haplotype AGACC. Hypercortisolism was also associated with a decreased risk for the haplotypes AAACC (p=0.042) and AAGTT (p=0.001). Discussion: Based on these results, genetic variation in the HTR7 gene may contribute to both stress and inflammation, and will provide a new glimpse into stress-related inflammation psychophysiology.
Collapse
|
91
|
Serotonin-Exacerbated DSS-Induced Colitis Is Associated with Increase in MMP-3 and MMP-9 Expression in the Mouse Colon. Mediators Inflamm 2016; 2016:5359768. [PMID: 27478308 PMCID: PMC4949340 DOI: 10.1155/2016/5359768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/24/2016] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
Background. 5-HT enhances dextran sulfate sodium- (DSS-) induced colitis and is involved in inflammatory bowel disease (IBD). Matrix metalloproteinases (MMPs) play roles in the process of intestinal inflammation. Aims. To examine whether 5-HT induces MMPs expression in mouse colon to enhance DSS-induced colitis. Materials and Methods. C57BL/6J (B6) mice were treated with either low-dose (1.0 mg/kg) or high-dose (2.0 mg/kg) 5-HT by enema, low-dose (1.0%) or high-dose (2.5%) DSS, or combined low-dose (1.0%) DSS and (1.0 mg/kg) 5-HT. Mouse colitis was analyzed. MMPs and tissue inhibitors of MMPs (TIMPs) mRNA were measured by real-time quantitative RT-PCR in mouse colon and in human Caco-2 cells and neutrophils. MMP-3 and MMP-9 protein levels were quantified from immunohistochemistry (IHC) images of mouse colons. Results. 5-HT exacerbated DSS-induced colitis, low-dose 5-HT induces both MMP-3 and MMP-9, and high-dose 5-HT only increased MMP-3 mRNA expression in mouse colon. Mouse colon MMP-3 and MMP-9 protein levels were also elevated by 5-HT treatment. The MMP-2, TIMP-1, and TIMP-2 mRNA levels were increased in the inflamed colon. 5-HT induced MMP-3 and MMP-9 mRNA expression in Caco-2 and human neutrophils, respectively, in vitro. Conclusion. 5-HT induced MMP-3 and MMP-9 expression in mouse colon; these elevated MMPs may contribute to DSS-induced colitis.
Collapse
|
92
|
Di Rosso ME, Palumbo ML, Genaro AM. Immunomodulatory effects of fluoxetine: A new potential pharmacological action for a classic antidepressant drug? Pharmacol Res 2016; 109:101-7. [DOI: 10.1016/j.phrs.2015.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022]
|
93
|
Abstract
Macrophages and their counterparts in the central nervous system, the microglia, detect and subsequently clear microbial pathogens and injured tissue. These phagocytic cells alter and adapt their phenotype depending on their prime activity, i.e., whether they participate in acute defence against pathogenic organisms ('M1'-phenotype) or in clearing damaged tissues and performing repair activities ('M2'-phenotype). Stimulation of pattern recognition receptors by viruses (vaccines), bacterial membrane components (e.g., LPS), alcohol, or long-chain saturated fatty acids promotes M1-polarization. Vaccine or LPS administration to healthy human subjects can result in sickness symptoms and low mood. Alcohol abuse and abdominal obesity are recognized as risk factors for depression. In the M1-polarized form, microglia and macrophages generate reactive oxygen and nitrogen radicals to eradicate microbial pathogens. Inadvertently, also tetrahydrobiopterin (BH4) may become oxidized. This is an irreversible reaction that generates neopterin, a recognized biomarker for depression. BH4 is a critical cofactor for the synthesis of dopamine, noradrenaline, and serotonin, and its loss could explain some of the symptoms of depression. Based on these aspects, the suppression of M1-polarization would limit the inadvertent catabolism of BH4. In the current review, we evaluate the evidence that antidepressant treatments (monoamine reuptake inhibitors, PDE4 inhibitors, lithium, valproate, agomelatine, tianeptine, electroconvulsive shock, and vagus nerve stimulation) inhibit LPS-induced microglia/macrophage M1-polarization. Consequently, we propose that supplementation with BH4 could limit the reduction in central monoamine synthesis and might represent an effective treatment for depressed mood.
Collapse
Affiliation(s)
- Hans O Kalkman
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, Basel 4002, Switzerland.
| | - Dominik Feuerbach
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, Basel 4002, Switzerland
| |
Collapse
|
94
|
Kataoka H, Ariyama Y, Deushi M, Osaka M, Nitta K, Yoshida M. Inhibitory Effect of Serotonin Antagonist on Leukocyte-Endothelial Interactions In Vivo and In Vitro. PLoS One 2016; 11:e0147929. [PMID: 26824242 PMCID: PMC4732655 DOI: 10.1371/journal.pone.0147929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
Background Although 5-HT2A serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (SRPO), a 5-HT2A receptor inverse agonist, on leukocyte-endothelial cell interactions in obesity both in vivo and in vitro. Methods and Findings In the in vivo experiment, C57BL/6 mice were fed a high-fat high-fructose diet (HFFD), comprising 20% fat and 30% fructose, with or without intraperitoneal injection of 5 mg/kg/day SRPO for 4 weeks. The body weight, visceral fat weight, and serum monocyte chemoattractant protein-1 levels in the mice increased significantly with the HFFD, but these effects were prevented by chronic injections of SRPO. Intravital microscopy of the femoral artery detected significant leukocyte-endothelial interactions after treatment with HFFD, but these leukocyte-endothelial interactions were reduced in the mice injected with SRPO. In the in vitro experiment, pre-incubation of activated human umbilical vein endothelial cells (HUVECs) with platelet-rich plasma (PRP) induced THP-1 cell adhesion under physiological flow conditions, but the adhesion was reduced by pretreatment of PRP with SRPO. A fluorescent immunobinding assay showed that PRP induced significant upregulation of E-selectin in HUVECs, but this upregulation was reduced by pretreatment of PRP with SRPO. In other in vitro conditions, pre-incubation of THP-1 cells with phorbol 12-myristate 13-acetate increased the adhesion of THP-1 cells to activated HUVECs under rotational conditions, but this adhesion was reduced by pretreatment with SRPO. Western blotting analysis showed that protein kinase C α activation in THP-1 cells was inhibited by SRPO. Conclusion Our findings indicated that SRPO inhibits vascular inflammation in obesity via inactivation of platelets and leukocytes, and improvement of obese.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuno Ariyama
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiyo Deushi
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuko Osaka
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
95
|
Irge E, Halici Z, Yilmaz M, Cadirci E, Karakus E. Evaluation of 5-HT7receptor expression in the placentae of normal and pre-eclamptic women. Clin Exp Hypertens 2016; 38:189-93. [DOI: 10.3109/10641963.2015.1081215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
96
|
Kostadinov I, Delev D, Petrova A, Stanimirova I, Draganova K, Kruzliak P, Kostadinova I, Murdjeva M. Study on anti-inflammatory and immunomodulatory effects of fluoxetine in rat models of inflammation. EUR J INFLAMM 2015. [DOI: 10.1177/1721727x15618671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to evaluate the anti-inflammatory effect of fluoxetine in carrageenan- and lipoplysaccharide-induced models of inflammation by investigating the changes in serum levels of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokines IL-10 and TGF-β after single and repeated administration of the drug. To study the effect of a single and repeated dose fluoxetine on carrageenan-induced paw edema male Wistar rats were divided into five groups (n = 8): control group; positive control group; and three experimental groups treated with 5, 10, and 20 mg/kg bodyweight (bw) fluoxetine, respectively. To study the effect of a single and repeated dose of fluoxetine on serum cytokine levels, the animals were divided in four groups (n = 8): two control groups treated with saline and two experimental groups treated with fluoxetine 20 mg/kg bw. Carrageenan and LPS were injected immediately after fluoxetine or saline injection. Serum cytokine concentrations were tested by enzyme immunoassay. In single administration only the highest dose used inhibited carrageenan-induced inflammation. Edema inhibition was seen with 10 and 20 mg/kg bw fluoxetine after repeated administration. At 24 h a statistically significant effect on inhibition of carrageenan edema was found only in rats treated with 20 mg/kg bw fluoxetine In carrageenan-induced inflammation, fluoxetine significantly increased Il-10 and decreased TNF-α after repeated administration. Surprisingly, in single-dose treated animals an increase in TNF-α values upon fluoxetine administration was observed in this model of inflammation. In LPS-induced inflammation, fluoxetine significantly decreased TNF-α after single and repeated treatment. Fluoxetine has anti-inflammatory and immunomodulatory effect in the carrageenan-induced model of exudative inflammation. In LPS-induced inflammation it showed an immunomodulatory effect manifested with a decrease in pro-inflammatory cytokine TNF-α.
Collapse
Affiliation(s)
- Ilia Kostadinov
- Department of Pharmacology and Clinical
Pharmacology, Faculty of Medicine, Medical University, Plovdiv, Bulgaria
| | - Delian Delev
- Department of Pharmacology and Clinical
Pharmacology, Faculty of Medicine, Medical University, Plovdiv, Bulgaria
| | - Atanaska Petrova
- Department of Microbiology and
Immunology, Faculty of Medicine, Medical University, Plovdiv, Bulgaria
| | - Irina Stanimirova
- Department of Microbiology and
Immunology, Faculty of Medicine, Medical University, Plovdiv, Bulgaria
| | - Krassimira Draganova
- Department of Microbiology and
Immunology, Faculty of Medicine, Medical University, Plovdiv, Bulgaria
| | - Peter Kruzliak
- 2nd Department of Internal
Medicine, St. Anne’s University Hospital and Masaryk University, Brno, Czech
Republic
- 2nd Department of Surgery,
St. Anne’s University Hospital and Masaryk University, Brno, Czech
Republic
| | - Ivanka Kostadinova
- Department of Pharmacology and Clinical
Pharmacology, Faculty of Medicine, Medical University, Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Microbiology and
Immunology, Faculty of Medicine, Medical University, Plovdiv, Bulgaria
| |
Collapse
|
97
|
Szabo A. Psychedelics and Immunomodulation: Novel Approaches and Therapeutic Opportunities. Front Immunol 2015; 6:358. [PMID: 26236313 PMCID: PMC4500993 DOI: 10.3389/fimmu.2015.00358] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Classical psychedelics are psychoactive substances, which, besides their psychopharmacological activity, have also been shown to exert significant modulatory effects on immune responses by altering signaling pathways involved in inflammation, cellular proliferation, and cell survival via activating NF-κB and mitogen-activated protein kinases. Recently, several neurotransmitter receptors involved in the pharmacology of psychedelics, such as serotonin and sigma-1 receptors, have also been shown to play crucial roles in numerous immunological processes. This emerging field also offers promising treatment modalities in the therapy of various diseases including autoimmune and chronic inflammatory conditions, infections, and cancer. However, the scarcity of available review literature renders the topic unclear and obscure, mostly posing psychedelics as illicit drugs of abuse and not as physiologically relevant molecules or as possible agents of future pharmacotherapies. In this paper, the immunomodulatory potential of classical serotonergic psychedelics, including N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-iodoamphetamine, and 3,4-methylenedioxy-methamphetamine will be discussed from a perspective of molecular immunology and pharmacology. Special attention will be given to the functional interaction of serotonin and sigma-1 receptors and their cross-talk with toll-like and RIG-I-like pattern-recognition receptor-mediated signaling. Furthermore, novel approaches will be suggested feasible for the treatment of diseases with chronic inflammatory etiology and pathology, such as atherosclerosis, rheumatoid arthritis, multiple sclerosis, schizophrenia, depression, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
98
|
Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry. J Virol 2015; 89:8701-12. [PMID: 26109733 DOI: 10.1128/jvi.00739-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/17/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Mammalian orthoreoviruses (reoviruses) are nonenveloped double-stranded RNA viruses that infect most mammalian species, including humans. Reovirus binds to cell surface glycans, junctional adhesion molecule A (JAM-A), and the Nogo-1 receptor (depending on the cell type) and enters cells by receptor-mediated endocytosis. Within the endocytic compartment, reovirus undergoes stepwise disassembly, which is followed by release of the transcriptionally active viral core into the cytoplasm. In a small-molecule screen to identify host mediators of reovirus infection, we found that treatment of cells with 5-nonyloxytryptamine (5-NT), a prototype serotonin receptor agonist, diminished reovirus cytotoxicity. 5-NT also blocked reovirus infection. In contrast, treatment of cells with methiothepin mesylate, a serotonin antagonist, enhanced infection by reovirus. 5-NT did not alter cell surface expression of JAM-A or attachment of reovirus to cells. However, 5-NT altered the distribution of early endosomes with a concomitant impairment of reovirus transit to late endosomes and a delay in reovirus disassembly. Consistent with an inhibition of viral disassembly, 5-NT treatment did not alter infection by in vitro-generated infectious subvirion particles, which bind to JAM-A but bypass a requirement for proteolytic uncoating in endosomes to infect cells. We also found that treatment of cells with 5-NT decreased the infectivity of alphavirus chikungunya virus and coronavirus mouse hepatitis virus. These data suggest that serotonin receptor signaling influences cellular activities that regulate entry of diverse virus families and provides a new, potentially broad-spectrum target for antiviral drug development. IMPORTANCE Identification of well-characterized small molecules that modulate viral infection can accelerate development of antiviral therapeutics while also providing new tools to increase our understanding of the cellular processes that underlie virus-mediated cell injury. We conducted a small-molecule screen to identify compounds capable of inhibiting cytotoxicity caused by reovirus, a prototype double-stranded RNA virus. We found that 5-nonyloxytryptamine (5-NT) impairs reovirus infection by altering viral transport during cell entry. Remarkably, 5-NT also inhibits infection by an alphavirus and a coronavirus. The antiviral properties of 5-NT suggest that serotonin receptor signaling is an important regulator of infection by diverse virus families and illuminate a potential new drug target.
Collapse
|
99
|
Lood C, Tydén H, Gullstrand B, Klint C, Wenglén C, Nielsen CT, Heegaard NHH, Jönsen A, Kahn R, Bengtsson AA. Type I interferon-mediated skewing of the serotonin synthesis is associated with severe disease in systemic lupus erythematosus. PLoS One 2015; 10:e0125109. [PMID: 25897671 PMCID: PMC4405357 DOI: 10.1371/journal.pone.0125109] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/20/2015] [Indexed: 01/09/2023] Open
Abstract
Serotonin, a highly pro-inflammatory molecule released by activated platelets, is formed by tryptophan. Tryptophan is also needed in the production of kynurenine, a process mediated by the type I interferon (IFN)-regulated rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO). The aim of this study was to investigate levels of serotonin in patients with the autoimmune disease systemic lupus erythematosus (SLE), association to clinical phenotype and possible involvement of IDO in regulation of serotonin synthesis. Serotonin levels were measured in serum and plasma from patients with SLE (n=148) and healthy volunteers (n=79) by liquid chromatography and ELISA, as well as intracellularly in platelets by flow cytometry. We found that SLE patients had decreased serotonin levels in serum (p=0.01) and platelets (p<0.0001) as compared to healthy individuals. SLE patients with ongoing type I IFN activity, as determined by an in-house reporter assay, had decreased serum levels of serotonin (p=0.0008) as well as increased IDO activity (p<0.0001), as determined by the kynurenine/tryptophan ratio measured by liquid chromatography. Furthermore, SLE sera induced IDO expression in WISH cells in a type I IFN-dependent manner (p=0.008). Also platelet activation contributed to reduce overall availability of serotonin levels in platelets and serum (p<0.05). Decreased serum serotonin levels were associated with severe SLE with presence of anti-dsDNA antibodies and nephritis. In all, reduced serum serotonin levels in SLE patients were related to severe disease phenotype, including nephritis, suggesting involvement of important immunopathological processes. Further, our data suggest that type I IFNs, present in SLE sera, are able to up-regulate IDO expression, which may lead to decreased serum serotonin levels.
Collapse
Affiliation(s)
- Christian Lood
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
- * E-mail:
| | - Helena Tydén
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Laboratory Medicine Lund, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | | | | | - Christoffer T. Nielsen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Niels H. H. Heegaard
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A. Bengtsson
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
100
|
Arreola R, Becerril-Villanueva E, Cruz-Fuentes C, Velasco-Velázquez MA, Garcés-Alvarez ME, Hurtado-Alvarado G, Quintero-Fabian S, Pavón L. Immunomodulatory effects mediated by serotonin. J Immunol Res 2015; 2015:354957. [PMID: 25961058 PMCID: PMC4417587 DOI: 10.1155/2015/354957] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 11/17/2022] Open
Abstract
Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.
Collapse
Affiliation(s)
- Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Enrique Becerril-Villanueva
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Carlos Cruz-Fuentes
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Marco Antonio Velasco-Velázquez
- School of Medicine, National Autonomous University of Mexico, Avenida Universidad 3000, Coyoacan, 04510 Mexico City, DF, Mexico
| | - María Eugenia Garcés-Alvarez
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Iztapalapa, 09340 Mexico City, DF, Mexico
| | - Saray Quintero-Fabian
- Genetics Unit Nutrition of Biomedical Research Institute of Universidad Nacional Autónoma de México at Instituto Nacional de Pediatría, Avenida del Iman No. 1, cuarto piso, Colonia Insurgentes-Cuicuilco, Coyoacan, 04530 Mexico City, DF, Mexico
| | - Lenin Pavón
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| |
Collapse
|