51
|
Anantharamaiah GM, Mishra VK, Garber DW, Datta G, Handattu SP, Palgunachari MN, Chaddha M, Navab M, Reddy ST, Segrest JP, Fogelman AM. Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides. J Lipid Res 2007; 48:1915-23. [PMID: 17570869 DOI: 10.1194/jlr.r700010-jlr200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recently, attention has been focused on pharmacological treatments that increase HDL cholesterol to prevent coronary artery disease. Despite three decades of extensive research of human apolipoprotein A-I (apoA-I), the major protein component of HDL, the molecular basis for its antiatherogenic and anti-inflammatory functions remain elusive. Another protein component of HDL, apoA-II, has structural features similar to those of apoA-I but does not possess atheroprotective properties. To understand the molecular basis for the effectiveness of apoA-I, we used model synthetic peptides. We designed analogs of the class A amphipathic helical motif in apoA-I that is responsible for solubilizing phospholipids. None of these analogs has sequence homology to apoA-I, but all are similar in their lipid-associating structural motifs. Although all of these peptide analogs interact with phospholipids to form peptide:lipid complexes, the biological properties of these analogs are different. Physical-chemical and NMR studies of these peptides have enabled the delineation of structural requirements for atheroprotective and anti-inflammatory properties in these peptides. It has been shown that peptides that interact strongly with lipid acyl chains do not have antiatherogenic and anti-inflammatory properties. In contrast, peptides that associate close to the lipid head group (and hence do not interact strongly with the lipid acyl chain) are antiatherogenic and anti-inflammatory. Understanding the structure and function of apoA-I and HDL through studies of the amphipathic helix motif may lead to peptide-based therapies for inhibiting atherosclerosis and other related inflammatory lipid disorders.
Collapse
Affiliation(s)
- G M Anantharamaiah
- Department of Medicine, Biochemistry, and Molecular Genetics and Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Jia L, Wu X, Fu M, Xu Y, Tian Y, Tian H, Tian L. Relationship between apolipoproteins and the alteration of HDL subclasses in hyperlipidemic subjects. Clin Chim Acta 2007; 383:65-72. [PMID: 17532312 DOI: 10.1016/j.cca.2007.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/07/2007] [Accepted: 04/09/2007] [Indexed: 02/05/2023]
Abstract
BACKGROUND To elucidate the relationship between the apolipoproteins, especially apoA-I and the alteration of HDL subclasses in hyperlipidemic, HTC and HTG subjects. METHODS ApoA-I contents of plasma HDL subclasses were quantitated by two-dimensional gel electrophoresis coupled with immunodetection in 233 normolipidemic subjects and 312 hyperlipidemic subjects (132 HTC and 180 HTG subjects). Making use of the mean +/-1 SD of apoA-I levels, we further subdivided normolipidemic, hyperlipidemic, HTC and HTG subjects into 3 subgroups, respectively. RESULTS Subjects in the middle and low apoA-I subgroups had decreased HDL-C and apoA-I while increased TG, apoB100, apoCII, apoCIII and apoE concentrations. With the reduction of apoA-I concentrations, the apoA-I contents of all HDL subclasses decreased successively and significantly. The relative percentage of small-sized HDL increased significantly while those of large-sized HDL(2a), HDL(2b) decreased significantly in hyperlipidemic, especially in HTG group. Multiple liner regression result revealed that apoA-I was positively and significantly correlated with all HDL subclasses and apoA-I level influenced the distribution of HDL subclasses powerfully in hyperlipidemic subjects. CONCLUSIONS Both the rate and efficiency of RCT might be weakened more seriously in hyperlipidemic, especially in HTG subjects with low apoA-I levels. ApoA-I level might be a powerful factor correlated with the distributions of HDL subclasses.
Collapse
Affiliation(s)
- Lianqun Jia
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | | | | | | | | | | | | |
Collapse
|
53
|
Peters-Libeu CA, Newhouse Y, Hall SC, Witkowska HE, Weisgraber KH. Apolipoprotein E*dipalmitoylphosphatidylcholine particles are ellipsoidal in solution. J Lipid Res 2007; 48:1035-44. [PMID: 17308333 DOI: 10.1194/jlr.m600545-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (apoE) is a major protein component of cholesterol-transporting lipoprotein particles in the central nervous system and in plasma. Polymorphisms of apoE are associated with cardiovascular disease and with a predisposition to Alzheimer's disease and other forms of neurodegeneration. For full biological activity, apoE must be bound to a lipoprotein particle. Complexes of apoE and phospholipid mimic many of these activities. In contrast to a widely accepted discoidal model of apoA-I bound to dimyristoylphosphatidylcholine, which is based on solution studies, an X-ray diffraction study of apoE bound to dipalmitoylphosphatidylcholine (DPPC) indicated that apoE*DPPC particles are quasi-spheroidal and that the packing of the phospholipid core is similar to a micelle. Using small-angle X-ray scattering, we show that apoE*DPPC particles in solution are ellipsoidal and that the shape of the phospholipid core is compatible with a twisted-bilayer model. The proposed model is consistent with the results of mass spectrometric analysis of products of limited proteolysis. These revealed that the nonlipid-bound regions of apoE in the particle are consistent with an alpha-helical hairpin.
Collapse
Affiliation(s)
- Clare A Peters-Libeu
- Gladstone Institute of Neurological Disease, Biomolecular Resource Center Mass Spectrometry Facility, Department of Cell and Tissue Biology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
54
|
Boldog T, Li M, Hazelbauer GL. Using Nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers. Methods Enzymol 2007; 423:317-35. [PMID: 17609138 DOI: 10.1016/s0076-6879(07)23014-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe application of the emerging technology of Nanodiscs to chemoreceptors, a class of transmembrane proteins that presents many challenges to the investigator. Nanodiscs are soluble, nanoscale ( approximately 10nm diameter) particles of lipid bilayer surrounded by an annulus of amphipathic protein, the membrane scaffold protein. A transmembrane protein inserted in a Nanodisc is surrounded by a lipid bilayer much as it is prior to detergent solublization. Thus, the Nanodisc-inserted protein is in an environment that approximates its native state. Yet, that membrane protein is also water-soluble and segregated from other membrane proteins because the bilayer into which it is inserted is of very limited size and, with appropriate preparation, contains only a single protein. In a Nanodisc, the water-soluble, bilayer-inserted membrane protein can be purified by conventional techniques and analyzed for activities and interactions as a pure entity. Thus, Nanodisc technology has great promise for improving isolation, purification, and characterization of the many membrane proteins that are difficult to handle, become unstable, or lose native activity when surrounded by detergent instead of lipid bilayer. The technology has proven useful for the investigation of chemoreceptor activity as a function of oligomeric state.
Collapse
|
55
|
Kim HS. Effects of the Feral Peach (Prunus persica Batsch var. davidiana Max) Extract on the Lipid Compositions and Blood Pressure Level in Spontaneously Hypertensive Rats. ACTA ACUST UNITED AC 2006. [DOI: 10.5352/jls.2006.16.7.1071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
56
|
Han CY, Chiba T, Campbell JS, Fausto N, Chaisson M, Orasanu G, Plutzky J, Chait A. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol 2006; 26:1806-13. [PMID: 16709944 DOI: 10.1161/01.atv.0000227472.70734.ad] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE During inflammation, the serum amyloid A (SAA) content of HDL increases, whereas apolipoprotein A-I (apoA-I) and paraoxonase-1 (PON-1) decrease. It remains unclear whether SAA physically displaces apoA-I or if these changes derive from coordinated but inverse transcriptional regulation of the HDL apolipoprotein genes. Because cytokines stimulate the hepatic expression of inflammatory markers, we investigated their role in regulating SAA, apoA-I, and PON-1 expression. METHODS AND RESULTS A cytokine mixture (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta, and IL-6) simultaneously induced SAA and repressed apoA-I and PON-1 expression levels. These effects were partially inhibited in cells pretreated with either nuclear factor kappaB (NF-kappaB) inhibitors (pyrrolidine dithiocarbamate, SN50, and overexpression of super-repressor inhibitor kappaB) or after exposure to the peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands (WY-14643 and fenofibrate). Consistent with these findings, the basal level of SAA was increased, whereas apoA-I and PON-1 decreased in primary hepatocytes from PPARalpha-deficient mice as compared with wild-type mice. Moreover, neither WY-14643 nor fenofibrate had any effect on SAA, apoA-I, or PON-1 expression in the absence of PPARalpha. CONCLUSIONS These results suggest that cytokines increase the expression of SAA through NF-kappaB transactivation, while simultaneously decreasing the expression of apoA-I and PON-1 by inhibiting PPARalpha activation. Inflammation may convert HDL de novo into a more proatherogenic form by coordinate but inverse transcriptional regulation in the liver, rather than by physical displacement of apoA-I by SAA.
Collapse
Affiliation(s)
- Chang Yeop Han
- Department of Medicine, University of Washington, Seattle, WA 98195-6426, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 2006; 84:276-94. [PMID: 16501936 DOI: 10.1007/s00109-005-0030-4] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The concentration, composition, shape, and size of plasma high-density lipoprotein (HDL) are determined by numerous proteins that influence its biogenesis, remodeling, and catabolism. The discoveries of the HDL receptor (scavenger receptor class B type I, SR-BI) and the ABCA1 (ATP-binding cassette transporter A1) lipid transporter provided two missing links that were necessary to understand the biogenesis and some of the functions of HDL. Existing data indicate that functional interactions between apoA-I and ABCA1 are necessary for the initial lipidation of apoA-I. Through a series of intermediate steps, lipidated apoA-I proceeds to form discoidal HDL particles that can be converted to spherical particles by the action of lecithin:cholesterol acyltransferase (LCAT). Discoidal and spherical HDL can interact functionally with SR-BI and these interactions lead to selective lipid uptake and net efflux of cholesterol and thus remodel HDL. Defective apoA-I/ABCA1 interactions prevent lipidation of apoA-I that is necessary for the formation of HDL particles. In the same way, specific mutations in apoA-I or LCAT prevent the conversion of discoidal to spherical HDL particles. The interactions of lipid-bound apoA-I with SR-BI are affected in vitro by specific mutations in apoA-I or SR-BI. Furthermore, deficiency of SR-BI affects the lipid and apolipoprotein composition of HDL and is associated with increased susceptibility to atherosclerosis. Here we review the current status of the pathway of HDL biogenesis and mutations in apoA-I, ABCA1, and SR-BI that disrupt different steps of the pathway and may lead to dyslipidemia and atherosclerosis in mouse models. The phenotypes generated in experimental mouse models for apoA-I, ABCA1, LCAT, SR-BI, and other proteins of the HDL pathway may facilitate early diagnosis of similar phenotypes in the human population and provide guidance for proper treatment.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute and Department of Biochemistry, Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
58
|
Ajees AA, Anantharamaiah GM, Mishra VK, Hussain MM, Murthy HMK. Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases. Proc Natl Acad Sci U S A 2006; 103:2126-31. [PMID: 16452169 PMCID: PMC1413691 DOI: 10.1073/pnas.0506877103] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Despite three decades of extensive studies on human apolipoprotein A-I (apoA-I), the major protein component in high-density lipoproteins, the molecular basis for its antiatherogenic function is elusive, in part because of lack of a structure of the full-length protein. We describe here the crystal structure of lipid-free apoA-I at 2.4 A. The structure shows that apoA-I is comprised of an N-terminal four-helix bundle and two C-terminal helices. The N-terminal domain plays a prominent role in maintaining its lipid-free conformation, indicating that mutants with truncations in this region form inadequate models for explaining functional properties of apoA-I. A model for transformation of the lipid-free conformation to the high-density lipoprotein-bound form follows from an analysis of solvent-accessible hydrophobic patches on the surface of the structure and their proximity to the hydrophobic core of the four-helix bundle. The crystal structure of human apoA-I displays a hitherto-unobserved array of positively and negatively charged areas on the surface. Positioning of the charged surface patches relative to hydrophobic regions near the C terminus of the protein offers insights into its interaction with cell-surface components of the reverse cholesterol transport pathway and antiatherogenic properties of this protein. This structure provides a much-needed structural template for exploration of molecular mechanisms by which human apoA-I ameliorates atherosclerosis and inflammatory diseases.
Collapse
Affiliation(s)
| | - G. M. Anantharamaiah
- Atherosclerosis Research Unit and Departments of Medicine, Biochemistry, and Molecular Genetics, University of Alabama, 1530 3rd Avenue South, Birmingham, AL 35294; and
| | - Vinod K. Mishra
- Atherosclerosis Research Unit and Departments of Medicine, Biochemistry, and Molecular Genetics, University of Alabama, 1530 3rd Avenue South, Birmingham, AL 35294; and
| | - M. Mahmood Hussain
- Departments of Anatomy, Cell Biology, and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - H. M. Krishna Murthy
- *Center for Biophysical Sciences and Engineering and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
59
|
Gross E, Peng DQ, Hazen SL, Smith JD. A novel folding intermediate state for apolipoprotein A-I: role of the amino and carboxy termini. Biophys J 2005; 90:1362-70. [PMID: 16326917 PMCID: PMC1367287 DOI: 10.1529/biophysj.105.075069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intramolecular interactions between the amino and carboxy termini of apolipoprotein A-I (apoAI) are believed to stabilize the helix bundle conformation of the protein. During lipid assembly the protein undergoes conformational changes that result in an exposure of the carboxy terminus and its insertion into the lipid phase. To determine the role of the two termini in the energetics of unfolding, we studied the guanidine-hydrochloride-induced unfolding and refolding of apoAI as well as its N-terminal deletion (del[1-43]), C-terminal deletion (del[186-243]), and the double deletion containing only the central residues 44-185. Thermodynamic analysis of the equilibrium unfolding measured by fluorescence spectroscopy revealed the presence of an intermediate unfolded state (I(equil)) in addition to the native (N) and unfolded states. Refolding kinetics of apoAI, measured by stopped-flow circular dichroism, revealed two kinetic intermediates, I(burst) and I(recovery). Computer modeling suggested that the first resembles the partially unfolded protein, whereas the second overlaps with the native state of the protein. The free energy changes for the N --> I(equil) transition of the N-terminal and double deletions were lower then that of the full-length form, whereas that for the C-terminal deletion was higher. Our findings suggest that the N-terminus of apoAI stabilizes the native state of the protein by increasing the Eyring energy barrier for the N --> I(equil) unfolding transition; whereas the carboxyl terminus destabilizes that state.
Collapse
Affiliation(s)
- Eitan Gross
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
60
|
Sobal G, Sinzinger H. Effect of simvastatin on the oxidation of native and modified lipoproteins. Biochem Pharmacol 2005; 70:1185-91. [PMID: 16143314 DOI: 10.1016/j.bcp.2005.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 11/16/2022]
Abstract
Modified (oxidized) low-density lipoprotein (LDL) plays a significant role in atherosclerosis by accumulation in arteries. Also, glycated LDL, such as in diabetics, are increasing the risk for atherosclerosis, due to an increased oxidizability as compared to native LDL. For these reasons, the potential inhibition of such modifications is of clinical importance. We investigated the influence of simvastatin on oxidation of native and modified LDL as well as high-density lipoprotein (HDL), which plays a protective role in atherosclerosis. Quantitative assessment of the oxidation end-product malondialdehyde (MDA) revealed the highest inhibitory rate for HDL at concentrations of 1.6 microg/ml and 0.8 microg/ml by 30.3% and 20.4%, at 6 h and 4 h, respectively. At 24 h, the inhibition was still persisting amounting to 27.9% and 20.3%, respectively. For native LDL, we found less inhibition of oxidation at a concentration of 1.6 microg/ml amounting to 19.2% and 11.5%, for 4 h and 6 h, respectively. Similar effects were found at a concentration of 0.8 microg/ml. For modified, glycated LDL, the most pronounced effect was found at a concentration of 1.6 microg/ml amounting to 22.4% for the period of 2-24 h of oxidation. For glycoxidated LDL, the inhibition of oxidation was less expressed amounting to 10.1% for the period of 2-6 h at the same concentration. The influence of simvastatin on lag time (protection from oxidation) by diene conjugation was also investigated. At the highest concentration of simvastatin (1.6 microg/ml), we found a prolongation of lag time from 73 min to 99 min for native LDL, for glycoxidated LDL 60 min to 89 min and for HDL 54 min to 64 min. For glycated LDL, only a small decrease of lag time (66 min versus 71 min) at same concentration was observed. For glycated and glycoxidated LDL, we found a moderate increase in relative electrophoretic mobility (REM) by 2.0 and 2.3, respectively, but no changes in the presence of simvastatin were observed. These data show that simvastatin besides its lipid-lowering action has also significant antioxidative properties.
Collapse
Affiliation(s)
- Grazyna Sobal
- Department of Nuclear Medicine, Medical University of Vienna, Austria.
| | | |
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in structural studies of exchangeable human apolipoproteins and the insights they provide into lipoprotein action in cardiovascular and amyloid diseases. RECENT FINDINGS The high-resolution X-ray crystal structure of free apoA-II reveals a parallel helical array that may represent other lipid-poor apolipoproteins, and the structure in complex with detergent substantiates the belt model for the protein arrangement on lipoproteins. Nuclear magnetic resonance structures of apolipoprotein-detergent complexes show a repertoire of curved helical conformations, suggesting multiple helical arrangements on the lipid. Low-resolution spectroscopic analyses, interface studies and molecular modeling provide new insights into the 'hinge-domain' mechanism of apolipoprotein adaptation at variable lipoprotein surfaces. A kinetic mechanism for lipoprotein stabilization is proposed. SUMMARY Cumulative evidence supports the belt model that provides a general structural basis for understanding the molecular mechanisms of functional apolipoprotein reactions, such as binding to lipoprotein receptors, lipid transporters, and the activation of lipophilic enzymes. However, the detailed protein and lipid conformations on lipoproteins and the underlying molecular interactions are unclear. New insights will hopefully emerge once the first detailed lipoprotein structure is solved.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, Boston, Massachusetts 02118, USA.
| |
Collapse
|
62
|
Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 2005; 12:1199-207. [PMID: 15242596 DOI: 10.1016/j.str.2004.04.021] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 04/05/2004] [Accepted: 04/06/2004] [Indexed: 12/16/2022]
Abstract
The perilipin/ADRP/TIP47 (PAT) proteins localize to the surface of intracellular neutral lipid droplets. Perilipin is essential for lipid storage and hormone regulated lipolysis in adipocytes, and perilipin null mice exhibit a dramatic reduction in adipocyte lipid stores. A significant fraction of the approximately 200 amino acid N-terminal region of the PAT proteins consists of 11-mer helical repeats that are also found in apolipoproteins and other lipid-associated proteins. The C-terminal 60% of TIP47, a representative PAT protein, comprises a monomeric and independently folded unit. The crystal structure of the C-terminal portion of TIP47 was determined and refined at 2.8 A resolution. The structure consists of an alpha/beta domain of novel topology and a four-helix bundle resembling the LDL receptor binding domain of apolipoprotein E. The structure suggests an analogy between PAT proteins and apolipoproteins in which helical repeats interact with lipid while the ordered C-terminal region is involved in protein:protein interactions.
Collapse
Affiliation(s)
- Sabrina J Hickenbottom
- Laboratory of Cellular and Developmental Biology, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
63
|
Sorkin SC, Forestiero FJ, Hirata MH, Guzmán ECR, Cavalli SA, Bertolami MC, Salazar LA, Hirata RDC. APOA1 polymorphisms are associated with variations in serum triglyceride concentrations in hypercholesterolemic individuals. Clin Chem Lab Med 2005; 43:1339-45. [PMID: 16309370 DOI: 10.1515/cclm.2005.229] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBackground: Apolipoprotein A-I gene (Methods:Results: G–75A polymorphism was associated with differences in serum concentrations of triglyceride and very low-density lipoprotein (VLDL)-cholesterol (p=0.026) in HC men. After atorvastatin treatment, women carrying theConclusion: Our data suggest that
Collapse
Affiliation(s)
- Simone C Sorkin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Nutritional genomics has tremendous potential to change the future of dietary guidelines and personal recommendations. Nutrigenetics will provide the basis for personalized dietary recommendations based on the individual's genetic make up. This approach has been used for decades for certain monogenic diseases; however, the challenge is to implement a similar concept for common multifactorial disorders and to develop tools to detect genetic predisposition and to prevent common disorders decades before their manifestation. The preliminary results involving gene-diet interactions for cardiovascular diseases and cancer are promising, but mostly inconclusive. Success in this area will require the integration of different disciplines and investigators working on large population studies designed to adequately investigate gene-environment interactions. Despite the current difficulties, preliminary evidence strongly suggests that the concept should work and that we will be able to harness the information contained in our genomes to achieve successful aging using behavioral changes; nutrition will be the cornerstone of this endeavor.
Collapse
Affiliation(s)
- Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer-U.S. Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA.
| | | |
Collapse
|
65
|
Spagnuolo MS, Cigliano L, D'Andrea LD, Pedone C, Abrescia P. Assignment of the binding site for haptoglobin on apolipoprotein A-I. J Biol Chem 2004; 280:1193-8. [PMID: 15533931 DOI: 10.1074/jbc.m411390200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Haptoglobin (Hpt) was previously found to bind the high density lipoprotein (HDL) apolipoprotein A-I (ApoA-I) and able to inhibit the ApoA-I-dependent activity of the enzyme lecithin:cholesterol acyltransferase (LCAT), which plays a major role in the reverse cholesterol transport. The ApoA-I structure was analyzed to detect the site bound by Hpt. ApoA-I was treated by cyanogen bromide or hydroxylamine; the resulting fragments, separated by electrophoresis or gel filtration, were tested by Western blotting or enzyme-linked immunosorbent assay for their ability to bind Hpt. The ApoA-I sequence from Glu113 to Asn184 harbored the binding site for Hpt. Biotinylated peptides were synthesized overlapping such a sequence, and their Hpt binding activity was determined by avidin-linked peroxidase. The highest activity was exhibited by the peptide P2a, containing the ApoA-I sequence from Leu141 to Ala164. Such a sequence contains an ApoA-I domain required for binding cells, promoting cholesterol efflux, and stimulating LCAT. The peptide P2a effectively prevented both binding of Hpt to HDL-coated plastic wells and Hpt-dependent inhibition of LCAT, measured by anti-Hpt antibodies and cholesterol esterification activity, respectively. The enzyme activity was not influenced, in the absence of Hpt, by P2a. Differently from ApoA-I or HDL, the peptide did not compete with hemoglobin for Hpt binding in enzyme-linked immunosorbent assay experiments. The results suggest that Hpt might mask the ApoA-I domain required for LCAT stimulation, thus impairing the HDL function. Synthetic peptides, able to displace Hpt from ApoA-I without altering its property of binding hemoglobin, might be used for treatment of diseases associated with defective LCAT function.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- Dipartimento di Fisiologia Generale ed Ambientale, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italia
| | | | | | | | | |
Collapse
|
66
|
Datta G, Epand RF, Epand RM, Chaddha M, Kirksey MA, Garber DW, Lund-Katz S, Phillips MC, Hama S, Navab M, Fogelman AM, Palgunachari MN, Segrest JP, Anantharamaiah GM. Aromatic residue position on the nonpolar face of class a amphipathic helical peptides determines biological activity. J Biol Chem 2004; 279:26509-17. [PMID: 15075321 DOI: 10.1074/jbc.m314276200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The apolipoprotein A-I mimetic peptide 4F (Ac-DWFKAFYDKVAEKFKEAF-NH(2)), with four Phe residues on the nonpolar face of the amphipathic alpha-helix, is strongly anti-inflammatory, whereas two 3F analogs (3F(3) and 3F(14)) are not. To understand how changes in helix nonpolar face structure affect function, two additional 3F analogs, Ac-DKLKAFYDKVFEWAKEAF-NH(2) (3F-1) and Ac-DKWKAVYDKFAEAFKEFL-NH(2) (3F-2), were designed using the same amino acid composition as 3F(3) and 3F(14). The aromatic residues in 3F-1 and 3F-2 are near the polar-nonpolar interface and at the center of the nonpolar face of the helix, respectively. Like 4F, but in contrast to 3F(3) and 3F(14), these peptides effectively inhibited lytic peptide-induced hemolysis, oxidized phospholipid-induced monocyte chemotaxis, and scavenged lipid hydroperoxides from low density lipoprotein. High pressure liquid chromatography retention times and monolayer exclusion pressures indicated that there is no direct correlation of peptide function with lipid affinity. Fluorescence studies suggested that, although the peptides bind phospholipids similarly, the Trp residue in 4F, 3F-1, and 3F-2 is less motionally restricted than in 3F(3) and 3F(14). Based on these results and molecular modeling studies, we propose that the arrangement of aromatic residues in class A amphipathic helical molecules regulates entry of reactive oxygen species into peptide-phospholipid complexes, thereby reducing the extent of monocyte chemotaxis, an important step in atherosclerosis.
Collapse
Affiliation(s)
- Geeta Datta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zannis VI, Chroni A, Kypreos KE, Kan HY, Cesar TB, Zanni EE, Kardassis D. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Curr Opin Lipidol 2004; 15:151-66. [PMID: 15017358 DOI: 10.1097/00041433-200404000-00008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE REVIEW This review clarifies the functions of key proteins of the chylomicron and the HDL pathways. RECENT FINDINGS Adenovirus-mediated gene transfer of several apolipoprotein (apo)E forms in mice showed that the amino-terminal 1-185 domain of apoE can direct receptor-mediated lipoprotein clearance in vivo. Clearance is mediated mainly by the LDL receptor. The carboxyl-terminal 261-299 domain of apoE induces hypertriglyceridemia, because of increased VLDL secretion, diminished lipolysis and inefficient VLDL clearance. Truncated apoE forms, including apoE2-202, have a dominant effect in remnant clearance and may have future therapeutic applications for the correction of remnant removal disorders. Permanent expression of apoE and apoA-I following adenoviral gene transfer protected mice from atherosclerosis. Functional assays, protein cross-linking, and adenovirus-mediated gene transfer of apoA-I mutants in apoA-I deficient mice showed that residues 220-231, as well as the central helices of apoA-I, participate in ATP-binding cassette transporter A1-mediated lipid efflux and HDL biogenesis. Following apoA-I gene transfer, an amino-terminal deletion mutant formed spherical alpha-HDL, a double amino- and carboxyl-terminal deletion mutant formed discoidal HDL, and a carboxyl-terminal deletion mutant formed only pre-beta-HDL. The findings support a model of cholesterol efflux that requires direct physical interactions between apoA-I and ATP-binding cassette transporter A1, and can explain Tangier disease and other HDL deficiencies. SUMMARY New insights are provided into the role of apoE in cholesterol and triglyceride homeostasis, and of apoA-I in the biogenesis of HDL. Clearance of the lipoprotein remnants and increase in HDL synthesis are obvious targets for therapeutic interventions.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA. vzannis!bu.edu
| | | | | | | | | | | | | |
Collapse
|
68
|
Chenaud C, Merlani PG, Roux-Lombard P, Burger D, Harbarth S, Luyasu S, Graf JD, Dayer JM, Ricou B. Low apolipoprotein A-I level at intensive care unit admission and systemic inflammatory response syndrome exacerbation*. Crit Care Med 2004; 32:632-7. [PMID: 15090939 DOI: 10.1097/01.ccm.0000114820.47460.0a] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Examine whether a low serum level of apolipoprotein A-I at intensive care unit (ICU) admission is associated with a further increase of the number of systemic inflammatory response syndrome (SIRS) criteria. DESIGN Prospective observational study. SETTING A 20-bed, university-affiliated, surgical ICU. PATIENTS Patients admitted after major surgery, multiple trauma, or acute pancreatitis without septic shock. INTERVENTIONS We defined as the SIRS Exacerb group patients who presented a further increase of the number of SIRS criteria during their ICU stay or, in the presence of four SIRS criteria at ICU admission, those who presented a further aggravation of organ failure. Other patients were attributed to the SIRS No Exacerb group. From day 1 to 6, we measured apolipoprotein A-I, high-density lipoprotein and total cholesterol, triglycerides, C-reactive protein, procalcitonin, serum amyloid A, interleukin 6, interleukin-1 receptor antagonist, albumin, and other nutrition-linked variables. We looked at laboratory values or factors present at ICU admission according to the two groups. MEASUREMENTS AND MAIN RESULTS From 63 patients analyzed, 29 (46%) were assigned to the SIRS Exacerb group. Age, sex, and SAPS II and SIRS scores at ICU admission did not differ between the groups. Patients in the SIRS Exacerb group presented more often a septic event (5/29 vs. 0/34, p =.02), had a higher hospital mortality (6/29 vs. 0/34, p =.007), and had a longer ICU stay (p =.0023). At admission, inflammatory variables such as the C-reactive protein, serum amyloid A, interleukin 6, interleukin-1 receptor antagonist plasma levels, and other lipid or nutrition-linked variables were similar between the two groups. Apolipoprotein A-I levels were lower in the SIRS Exacerb group (median [interquartile range]: 68 [56-81] vs. 84 [69-94] mg/dL, p =.028). CONCLUSION A low serum level of apolipoprotein A-I at ICU admission is associated with an increase of the number of SIRS criteria during the ICU stay.
Collapse
Affiliation(s)
- Catherine Chenaud
- Division of Surgical Intensive Care, Department of Anesthesiology, Pharmacology, and Surgical Intensive Care, University of Geneva Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Scislowski V, Durand D, Gruffat D, Bauchart D. Dietary linoleic acid-induced hypercholesterolemia and accumulation of very light HDL in steers. Lipids 2004; 39:125-33. [PMID: 15134139 DOI: 10.1007/s11745-004-1210-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This experiment was designed to study the effects in fattening steers of n-6 PUFA supplementation on the plasma distribution and chemical composition of major lipoproteins (TG-rich lipoproteins: d < 1.006 g/mL; intermediate density lipoproteins + LDL: 1.019 < d < 1.060 g/mL; light HDL: 1.060 < d < 1.091 g/mL; and heavy HDL: 1.091 < d < 1.180 g/mL). For a period of 70 d, animals [454 +/- 20 d; 528 +/- 36 kg (mean +/- SD)] were given a control diet (diet C, n = 6) consisting of hay and concentrate mixture (54 and 46% of diet dry matter, respectively) or the same diet supplemented with sunflower oil (4% of dry matter), given either as crushed seeds (diet S, n = 6) or as free oil continuously infused into the duodenum through a chronic canula to avoid ruminal PUFA hydrogenation (diet O, n = 6). Plasma lipids increased in steers given diet S (x1.4, P < 0.05) and diet O (x2.3, P < 0.05), leading to hyperphospholipemia and hypercholesterolemia. With diet S, hypercholesterolemia was associated with higher levels of light (x1.4, P < 0.05) and heavy HDL (x1.3, NS). With diet O, it was linked to higher levels of light HDL (x1.8, P < 0.005) and to very light HDL accumulation within density limits of 1.019 to 1.060 g/mL, as demonstrated by the apolipoprotein A-I profile. Diet O favored incorporation of 18:2n-6 into polar (x2.2, P < 0.05) and neutral lipids (x1.5 to x8, P < 0.05) at the expense of SFA, MUFA, and n-3 PUFA. Thus, protection of dietary PUFA against ruminal hydrogenation allowed them to accumulate in plasma lipoproteins, but the effects of hypercholesterolemia on animal health linked to very light HDL accumulation remain to be elucidated.
Collapse
Affiliation(s)
- Valérie Scislowski
- Institut National de la Recherche Agronomique, Research Unit on Herbivores, Nutrient and Metabolism Group, 63122 Saint Genès-Champanelle, France
| | | | | | | |
Collapse
|
70
|
Li L, Cao D, Garber DW, Kim H, Fukuchi KI. Association of aortic atherosclerosis with cerebral beta-amyloidosis and learning deficits in a mouse model of Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2155-64. [PMID: 14633589 PMCID: PMC1892402 DOI: 10.1016/s0002-9440(10)63572-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
High fat/high cholesterol diets exacerbate beta-amyloidosis in mouse models of Alzheimer's disease (AD). It has been impossible, however, to study the relationship between atherosclerosis and beta-amyloidosis in those models because such mice were on atherosclerosis-resistant genetic backgrounds. Here we report the establishment of AD model mice, B6Tg2576, that are prone to atherosclerosis. B6Tg2576 mice were produced by back-crossing Tg2576 mice, an AD mouse model overexpressing human amyloid beta-protein precursor with the Swedish double mutation, to C57BL/6 mice, a strain susceptible to diet-induced atherosclerosis. An atherogenic diet induced aortic atherosclerosis and exacerbated cerebral beta-amyloidosis in B6Tg2576 mice. Compared with age-matched non-transgenic littermates, B6Tg2576 mice developed significantly more diet-induced aortic atherosclerosis. Unexpectedly, normal diet-fed B6Tg2576 mice also developed fatty streak lesions (early atherosclerosis) in the aorta. The aortic atherosclerotic lesion area positively correlated with cerebral beta-amyloid deposits in B6Tg2576 mice on both atherogenic and normal diets. Furthermore, behavioral assessments demonstrated that B6Tg2576 mice fed an atherogenic diet had more spatial learning impairment than those fed a normal diet. Our results suggest that synergistic mechanisms may be involved in the pathogenesis of atherosclerosis and AD. These findings may have important implications in the prevention and treatment of cardiovascular diseases as well as AD.
Collapse
Affiliation(s)
- Ling Li
- Departments of Medicine, Pharmacology, and Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
71
|
Lindstedt L, Lee M, Oörni K, Brömme D, Kovanen PT. Cathepsins F and S block HDL3-induced cholesterol efflux from macrophage foam cells. Biochem Biophys Res Commun 2003; 312:1019-24. [PMID: 14651973 DOI: 10.1016/j.bbrc.2003.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In atherosclerosis, accumulation of cholesterol in macrophages may partially depend on its defective removal by high-density lipoproteins (HDL). We studied the proteolytic effect of cathepsins F, S, and K on HDL(3) and on lipid-free apoA-I, and its consequence on their function as inductors of cholesterol efflux from cholesterol-filled mouse peritoneal macrophages in vitro. Incubation of HDL(3) with cathepsin F or S, but not with cathepsin K, led to rapid loss of prebeta-HDL, and reduced cholesterol efflux by 50% in only 1min. Cathepsins F or K partially degraded lipid-free apoA-I and reduced its ability to induce cholesterol efflux, whereas cathepsin S totally degraded apoA-I, leading to complete loss of apoA-I cholesterol acceptor function. These results suggest that cathepsin-secreting cells induce rapid depletion of lipid-poor (prebeta-HDL) and lipid-free apoA-I and inhibit cellular cholesterol efflux, so tending to promote the formation and maintenance of foam cells in atherosclerotic lesions.
Collapse
|
72
|
Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ. Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J Biol Chem 2003; 278:22530-6. [PMID: 12690114 DOI: 10.1074/jbc.m213250200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Laboratory, Hanson Institute, Adelaide, South Australia 5000, Australia.
| | | | | | | | | |
Collapse
|
73
|
Marcel YL, Kiss RS. Structure-function relationships of apolipoprotein A-I: a flexible protein with dynamic lipid associations. Curr Opin Lipidol 2003; 14:151-7. [PMID: 12642783 DOI: 10.1097/00041433-200304000-00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Apolipoprotein A-I is the major structural protein of HDL. Its physicochemical properties maintain a delicate balance between maintenance of stable lipoproteins and the ability to associate with and dissociate from the lipid transported. Here we review the progress made in the last 2-3 years on the structure-function relationships of apolipoprotein A-I, including elements related to the ATP binding cassette transporter A1. RECENT FINDINGS Current evidence now supports the so-called 'belt' or 'hairpin' models for apolipoprotein A-I conformation when bound to discoidal lipoproteins. In-vivo expression of apolipoprotein A-I mutant proteins has shown that both the N- and C-terminal domains are important for lipid association as well as for the esterification reaction, particularly binding of cholesteryl esters and formation of mature alpha-migrating lipoproteins. This property is apparently quite distinct from the activation of the enzyme lecithin cholesterol acyl transferase, which requires interaction with the central helix 6. The interaction of apolipoprotein A-I with the ATP binding cassette transporter A1 has been shown to require the C-terminal domain, which is proposed to mediate the opening of the helix bundle formed by lipid-free or lipid-poor apolipoprotein A-I and allow its association with hydrophobic binding sites. SUMMARY Significant progress has been made in the understanding of the molecular mechanisms controlling the folding of apolipoprotein A-I and its interaction with lipids and various other protein factors involved in HDL metabolism.
Collapse
Affiliation(s)
- Yves L Marcel
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Room H460, 40 Ruskin Street, Ottawa, Ontario, Canada, K1Y 4W7.
| | | |
Collapse
|
74
|
Dergunov AD, Hoy A, Smirnova EA, Visvikis S, Siest G. Charge-based heterogeneity of human plasma lipoproteins at hypertriglyceridemia: capillary isotachophoresis study. Int J Biochem Cell Biol 2003; 35:530-43. [PMID: 12565713 DOI: 10.1016/s1357-2725(02)00359-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To reveal the metabolic links between and within pools of pro-atherogenic triglyceride(TG)-rich lipoproteins and anti-atherogenic high density lipoproteins (HDL), the changes in lipoprotein profile at hypertriglyceridemia were analyzed by capillary isotachophoresis. Plasma samples from patients with apoE3/3 phenotype were stained with a fluorescent probe NBD-C6-ceramide and lipoproteins resolved into six H-, one (V+I) and four L-components which belong to HDL, very low and intermediate density (VLDL+IDL) and low density lipoproteins (LDL), respectively. The expected correlation between the relative size of the combined fractions and lipid and apolipoprotein values was obtained confirming the validity of the approach. The new findings were obtained as follows. (1) The fast L-component correlated inversely with HDL-cholesterol (Chol), while intermediate and slow H-components correlated inversely with plasma and LDL-Chol and apoB. (2) The content of intermediate and slow H-components increased within H-pool and decreased relative TG-rich lipoproteins as hypertriglyceridemia rose due to the impairment of triglyceride hydrolysis by lipoprotein lipase within TG-rich particles. (3) A predictive value of the ratios of fast to slow H-components as an indicator of lecithin:cholesterol acyltransferase activity was demonstrated which tended to decrease at hypertriglyceridemia. (4) The L1/L2 ratio may be considered as an indicator of the accumulation of small dense LDL, which is a feature of clinically manifested atherogenic B-pattern. The competition between H(DL) and L(DL) particles for hepatic lipase and significant contribution of apoE to functional deficiency of H(DL) particles at hypertriglyceridemia are suggested.
Collapse
Affiliation(s)
- Alexander D Dergunov
- National Research Centre for Preventive Medicine, 10, Petroverigsky street, 101953, Moscow, Russia.
| | | | | | | | | |
Collapse
|
75
|
Lee M, Sommerhoff CP, von Eckardstein A, Zettl F, Fritz H, Kovanen PT. Mast cell tryptase degrades HDL and blocks its function as an acceptor of cellular cholesterol. Arterioscler Thromb Vasc Biol 2002; 22:2086-91. [PMID: 12482839 DOI: 10.1161/01.atv.0000041405.07367.b5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In human atherosclerotic lesions, degranulated mast cells are found in the vicinity of macrophage foam cells. Mast cell granules contain tryptase, a tetrameric serine protease requiring glycosaminoglycans for stabilization. No endogenous inhibitors have been described for tryptase, and the physiological functions of the enzyme are poorly understood. Here, we investigated the effects of human tryptase on the integrity of high density lipoprotein (HDL)3 and on its ability to release cholesterol from cultured mouse macrophage foam cells. METHODS AND RESULTS Incubation of HDL3 with tryptase led to degradation of its apolipoproteins. Tryptase predominantly degraded a quantitatively minor subfraction of HDL3 that is lipid poor, exhibits electrophoretic pre-beta mobility, and contains either apolipoprotein A-I or apolipoprotein A-IV as its sole apolipoprotein. Moreover, tryptase caused functional changes in HDL3 by destroying its ability to promote high-affinity efflux of cholesterol from macrophage foam cells, ie, the pre-beta-HDL-dependent component of the process. Human aortic proteoglycans increased the ability of tryptase to proteolyze HDL3, suggesting that the proteoglycan-rich extracellular matrix of the arterial intima provides an appropriate environment for the extracellular actions of tryptase. CONCLUSIONS By depleting pre-beta-HDL, mast cell tryptase may impair the initial step of reverse cholesterol transport and will then favor cellular accumulation of cholesterol during atherogenesis.
Collapse
Affiliation(s)
- Miriam Lee
- Wihuri Research Institute, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
76
|
Li HH, Lyles DS, Pan W, Alexander E, Thomas MJ, Sorci-Thomas MG. ApoA-I structure on discs and spheres. Variable helix registry and conformational states. J Biol Chem 2002; 277:39093-101. [PMID: 12167653 DOI: 10.1074/jbc.m206770200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) readily forms discoidal high density lipoprotein (HDL) particles with phospholipids serving as an ideal transporter of plasma cholesterol. In the lipid-bound conformation, apoA-I activates the enzyme lecithin:cholesterol acyltransferase stimulating the formation of cholesterol esters from free cholesterol. As esterification proceeds cholesterol esters accumulate within the hydrophobic core of the discoidal phospholipid bilayer transforming it into a spherical HDL particle. To investigate the change in apoA-I conformation as it adapts to a spherical surface, fluorescence resonance energy transfer studies were performed. Discoidal rHDL particles containing two lipid-bound apoA-I molecules were prepared with acceptor and donor fluorescent probes attached to cysteine residues located at specific positions. Fluorescence quenching was measured for probe combinations located within repeats 5 and 5 (residue 132), repeats 5 and 6 (residues 132 and 154), and repeats 6 and 6 (residue 154). Results from these experiments indicated that each of the 2 molecules of discoidal bound apoA-I exists in multiple conformations and support the concept of a "variable registry" rather than a "fixed helix-helix registry." Additionally, discoidal rHDL were transformed in vitro to core-containing particles by incubation with lecithin:cholesterol acyltransferase. Compositional analysis showed that core-containing particles contained 11% less phospholipid and 633% more cholesterol ester and a total of 3 apoA-I molecules per particle. Spherical particles showed a lowering of acceptor to donor probe quenching when compared with starting rHDL. Therefore, we conclude that as lipid-bound apoA-I adjusts from a discoidal to a spherical surface its intermolecular interactions are significantly reduced presumably to cover the increased surface area of the particle.
Collapse
Affiliation(s)
- Hui-Hua Li
- Department of Pathology, The Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
77
|
Dayal B, Ertel NH. ProteinChip technology: a new and facile method for the identification and measurement of high-density lipoproteins apoA-I and apoA-II and their glycosylated products in patients with diabetes and cardiovascular disease. J Proteome Res 2002; 1:375-80. [PMID: 12645894 DOI: 10.1021/pr010008n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes a ProteinChip technology for the identification and quantification of apolipoprotein profiles in crude biological samples. Expression levels of apoA-I and apoA-II and their glycosylated products were accomplished using single 1 microL plasma samples. In the present studies, strong anionic and weak cationic exchanger ProteinChips (SAX2 and WCX2 chip surfaces) were tested, and the WCX2 chip was found to be selective for specific apolipoproteins. Using the WCX2 chip and analysis via surface-enhanced laser desorption ionization mass spectrometry (SELDI-MS), apoA-I and apoA-II were separated as sharp peaks at 28 and 17 kD and did not overlap with other serum protein peaks. Since these assays can be completed on a large number of clinical samples in approximately 1 h, further development of this technique will facilitate both epidemiological studies and therapeutic trials in assessing the role of the apolipoproteins and their glycosylated products in atherosclerosis.
Collapse
Affiliation(s)
- Bishambar Dayal
- VA NJ Health Care System, East Orange, New Jersey 07018, USA.
| | | |
Collapse
|
78
|
Liu T, Krieger M, Kan HY, Zannis VI. The effects of mutations in helices 4 and 6 of ApoA-I on scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted high density lipoprotein and SR-BI is required for efficient lipid transport. J Biol Chem 2002; 277:21576-84. [PMID: 11882653 DOI: 10.1074/jbc.m112103200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the effects of mutations in apoA-I on reconstituted high density lipoprotein (HDL) particle (rHDL(apoA-I)) binding to and cholesterol efflux from wild-type (WT) and mutant forms of the HDL receptor SR-BI expressed by ldlA-7 cells. Mutations in helix 4 or helix 6 of the apoA-I reduced efflux by 79 and 51%, respectively, without substantially altering receptor binding (apparent K(d) values of 1.1-4.4 microg of protein/ml). SR-BI with an M158R mutation bound poorly to rHDL with WT and helix 4 mutant apoA-I; the helix 6 mutant restored tight binding to SR-BI(M158R) (K(d) values of 48, 60, and 7 microg of protein/ml, respectively). SR-BI(M158R)-mediated cholesterol efflux rates, normalized for binding, were high for all three rHDLs (71-111% of control). In contrast, absolute (12-19%) and binding-corrected (24-47%) efflux rates for all three rHDLs mediated by SR-BI with Q402R/Q418R mutations were very low. We propose that formation of a productive complex between apoA-I in rHDL and SR-BI, in which the lipoprotein and the receptor must either be precisely aligned or have the capacity to undergo appropriate conformational changes, is required for efficient SR-BI-mediated cholesterol efflux. Some mutations in apoA-I and/or SR-BI can result in high affinity, but non-productive, binding that does not permit efficient cholesterol efflux.
Collapse
Affiliation(s)
- Tong Liu
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine and Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
79
|
Abstract
Approximately 46 human apolipoprotein A-I (apoA-I) coding sequence mutations have been reported to date. Roughly half of these mutations are associated with lower than average plasma concentrations of high-density lipoprotein (HDL) apoA-I. Mutations associated with low HDL apoA-I concentrations fall into two main categories: those which poorly activate the enzyme lecithin:cholesterol acyltransferase (LCAT) and those associated with amyloidosis. These phenotypically distinct groups of mutations are uniquely localized in different regions of the apoprotein sequence. Mutations associated with abnormal LCAT activation are located within repeats 5, 6, and 7, corresponding to amino acids 121 to 186, while many of the mutations found in amyloid deposits are clustered at the amino terminus of the protein, namely residues 1 to 90. These observations strongly support the idea that the tertiary structure of apoA-I determines its intravascular fate and ultimately the steady state concentration of plasma HDL.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Department of Pathology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, USA.
| | | |
Collapse
|
80
|
Ordovas JM, Corella D, Cupples LA, Demissie S, Kelleher A, Coltell O, Wilson PWF, Schaefer EJ, Tucker K. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr 2002; 75:38-46. [PMID: 11756058 DOI: 10.1093/ajcn/75.1.38] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A common G-to-A substitution in the promoter area (-75 base pairs) of the apolipoprotein A-I gene (APOA1) has been described. The A allele was shown to be associated with higher HDL-cholesterol concentrations in some studies but not in others. OBJECTIVE We examined whether dietary fat modulates the association between this polymorphism and HDL-cholesterol concentrations. DESIGN We studied a population-based sample of 755 men and 822 women from the Framingham Offspring Study. RESULTS The frequency of the A allele was 0.165. No significant differences were observed between G/G subjects and carriers of the A allele for any lipid variables. In multivariate linear regression models, HDL-cholesterol concentrations in women were associated with a significant interaction between polyunsaturated fatty acid (PUFA) intake as a continuous variable and APOA1 genotype (P = 0.005). By using 3 categories of PUFA intake, we found a significantly different effect of APOA1 genotype across PUFA categories in women. When PUFA intake was <4% of energy, G/G subjects had approximately 14% higher HDL-cholesterol concentrations than did carriers of the A allele (P < 0.05). Conversely, when PUFA intake was >8%, HDL-cholesterol concentrations in carriers of the A allele were 13% higher than those of G/G subjects (P < 0.05). No significant allelic difference was observed for subjects in the range of PUFA intake of 4-8% of energy. These interactions were not significant in men. CONCLUSIONS We found a significant gene-diet interaction associated with the APOA1 G-A polymorphism. In women carriers of the A allele, higher PUFA intakes were associated with higher HDL-cholesterol concentrations, whereas the opposite effect was observed in G/G women.
Collapse
Affiliation(s)
- Jose M Ordovas
- Nutrition and Genomics Laboratory, the Lipid Metabolism Laboratory and the Epidemiology Program, Jean Mayer-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Scott BR, McManus DC, Franklin V, McKenzie AG, Neville T, Sparks DL, Marcel YL. The N-terminal globular domain and the first class A amphipathic helix of apolipoprotein A-I are important for lecithin:cholesterol acyltransferase activation and the maturation of high density lipoprotein in vivo. J Biol Chem 2001; 276:48716-24. [PMID: 11602583 DOI: 10.1074/jbc.m106265200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of the N terminus of apolipoprotein A-I (apoA-I) in the maturation of high density lipoproteins (HDL), two N-terminal mutants with deletions of residues 1-43 and 1-65 (referred to as Delta 1-43 and Delta 1-65 apoA-I) were studied. In vitro, these deletions had little effect on cellular cholesterol efflux from macrophages but LCAT activation was reduced by 50 and 70% for the Delta 1-43 and Delta 1-65 apoA-I mutants, respectively, relative to wild-type (Wt) apoA-I. To further define the role of the N terminus of apoA-I in HDL maturation, we constructed recombinant adenoviruses containing Wt apoA-I and two similar mutants with deletions of residues 7-43 and 7-65 (referred to as Delta 7-43 and Delta 7-65 apoA-I, respectively). Residues 1-6 were not removed in these mutants to allow proper cleavage of the pro-sequence in vivo. Following injection of these adenoviruses into apoA-I-deficient mice, plasma concentrations of both Delta 7-43 and Delta 7-65 apoA-I were reduced 4-fold relative to Wt apoA-I. The N-terminal deletion mutants, in particular Delta 7-65 apoA-I, were associated with greater proportions of pre beta-HDL and accumulated fewer HDL cholesteryl esters relative to Wt apoA-I. Wt and Delta 7-43 apoA-I formed predominantly alpha-migrating and spherical HDL, whereas Delta 7-65 apoA-I formed only pre beta-HDL of discoidal morphology. This demonstrates that deletion of the first class A amphipathic alpha-helix has a profound additive effect in vivo over the deletion of the globular domain alone (amino acids 1-43) indicating its important role in the production of mature alpha-migrating HDL. In summary, the combined in vitro and in vivo studies demonstrate a role for the N terminus of apoA-I in lecithin:cholesterol acyltransferase activation and the requirement of the first class A amphipathic alpha-helix for the maturation of HDL in vivo.
Collapse
Affiliation(s)
- B R Scott
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
82
|
Li HH, Thomas MJ, Pan W, Alexander E, Samuel M, Sorci-Thomas MG. Preparation and incorporation of probe-labeled apoA-I for fluorescence resonance energy transfer studies of rHDL. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31538-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
83
|
Affiliation(s)
- Lawrence W. Castellani
- Departments of Medicine (L.W.C., A.J.L.) and Microbiology (A.J.L.), Immunology and Molecular Genetics, and Molecular Biology Institute (A.J.L.), University of California, Los Angeles
| | - Aldons J. Lusis
- Departments of Medicine (L.W.C., A.J.L.) and Microbiology (A.J.L.), Immunology and Molecular Genetics, and Molecular Biology Institute (A.J.L.), University of California, Los Angeles
| |
Collapse
|
84
|
Shah PK, Kaul S, Nilsson J, Cercek B. Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part II. Circulation 2001; 104:2498-502. [PMID: 11705831 DOI: 10.1161/hc4501.098468] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- P K Shah
- Atherosclerosis Research Center, Division of Cardiology and Burns and Allen research Institute, Department of Medicine, Cedars Sinai Medical Center and UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
85
|
Abstract
Risk stratification is a key element of clinical management not only in the primary and secondary prevention, but also during the acute stages of cardiovascular disease. The current risk assessment algorithms in primary prevention are based on established risk factors: gender and age, cigarette smoking, the presence of hypertension and diabetes mellitus, and serum concentrations of total cholesterol, low-density lipoprotein (LDL)-cholesterol and high-density lipoprotein-cholesterol. However, many individuals who are assessed as "low risk" on the basis of traditional risk factors, still develop cardiac events. This article addresses current issues relevant to the assessment of cardiovascular risk. It emphasizes the potential importance of disturbed energy supply for atherogenesis, by introducing the concept of fuel transport (chylomicron, VLDL, and remnants) and overflow (LDL) pathways of lipid metabolism. It highlights the present lack of routine methods to monitor the fuel transport pathway. It considers the measurements of serum C-reactive protein and plasma fibrinogen as new additions to the cardiovascular risk factor profiles. Finally, risk stratification based on the traditional and the new risk factors is linked to that based on the markers of acute myocardial damage such as cardiac troponin I or troponin T. It is concluded that the combined use of the markers of myocardial damage and the "new" cardiovascular risk factors is the way ahead for the assessment of cardiovascular risk.
Collapse
Affiliation(s)
- M H Dominiczak
- Department of Biochemistry, Gartnavel General Hospital, Glasgow, UK.
| |
Collapse
|
86
|
Schmitz G, Orsó E. Intracellular cholesterol and phospholipid trafficking: comparable mechanisms in macrophages and neuronal cells. Neurochem Res 2001; 26:1045-68. [PMID: 11699932 DOI: 10.1023/a:1012357106398] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the past ten years considerable evidences have accumulated that in addition to monocytes/macrophages, that are implicated in innate immunity and atherogenesis, neuronal cells also exhibit an extensive cellular metabolism. The present study focuses on the major protein players that establish cellular distribution of cholesterol and phospholipids. Evidences are provided that neuronal cells and monocytes/macrophages are equipped with comparable intracellular lipid trafficking mechanisms. Selected examples are presented that trafficking dysfunctions lead to disease development, such as Tangier disease and Niemann-Pick disease type C, or contribute to the pathogenesis of diseases such as Alzheimer disease and atherosclerosis.
Collapse
Affiliation(s)
- G Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.
| | | |
Collapse
|
87
|
Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30267-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
88
|
Datta G, Chaddha M, Hama S, Navab M, Fogelman AM, Garber DW, Mishra VK, Epand RM, Epand RF, Lund-Katz S, Phillips MC, Segrest JP, Anantharamaiah G. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31599-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
89
|
McManus DC, Scott BR, Franklin V, Sparks DL, Marcel YL. Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J Biol Chem 2001; 276:21292-302. [PMID: 11292828 DOI: 10.1074/jbc.m100463200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have devised a combined in vivo, ex vivo, and in vitro approach to elucidate the mechanism(s) responsible for the hypoalphalipoproteinemia in heterozygous carriers of a naturally occurring apolipoprotein A-I (apoA-I) variant (Leu(159) to Arg) known as apoA-I Finland (apoA-I(FIN)). Adenovirus-mediated expression of apoA-I(FIN) decreased apoA-I and high density lipoprotein cholesterol concentrations in both wild-type C57BL/6J mice and in apoA-I-deficient mice expressing native human apoA-I (hapoA-I). Interestingly, apoA-I(FIN) was degraded in the plasma, and the extent of proteolysis correlated with the most significant reductions in murine apoA-I concentrations. ApoA-I(FIN) had impaired activation of lecithin:cholesterol acyltransferase in vitro compared with hapoA-I, but in a mixed lipoprotein preparation consisting of both hapoA-I and apoA-I(FIN) there was only a moderate reduction in the activation of this enzyme. Importantly, secretion of apoA-I was also decreased from primary apoA-I-deficient hepatocytes when hapoA-I was co-expressed with apoA-I(FIN) following infection with recombinant adenoviruses, a condition that mimics secretion in heterozygotes. Thus, this is the first demonstration of an apoA-I point mutation that decreases LCAT activation, impairs hepatocyte secretion of apoA-I, and makes apoA-I susceptible to proteolysis leading to dominantly inherited hypoalphalipoproteinemia.
Collapse
Affiliation(s)
- D C McManus
- Lipoprotein and Atherosclerosis Research Group, Department of Pathology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
90
|
Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW. Structural models of human apolipoprotein A-I: a critical analysis and review. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:4-46. [PMID: 11278170 DOI: 10.1016/s1388-1981(01)00081-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human apolipoprotein (apo) A-I has been the subject of intense investigation because of its well-documented anti-atherogenic properties. About 70% of the protein found in high density lipoprotein complexes is apo A-I, a molecule that contains a series of highly homologous amphipathic alpha-helices. A number of significant experimental observations have allowed increasing sophisticated structural models for both the lipid-bound and the lipid-free forms of the apo A-I molecule to be tested critically. It seems clear, for example, that interactions between amphipathic domains in apo A-I may be crucial to understanding the dynamic nature of the molecule and the pathways by which the lipid-free molecule binds to lipid, both in a discoidal and a spherical particle. The state of the art of these structural studies is discussed and placed in context with current models and concepts of the physiological role of apo A-I and high-density lipoprotein in atherosclerosis and lipid metabolism.
Collapse
Affiliation(s)
- C G Brouillette
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
91
|
Oram JF. Novel approaches to treating cardiovascular disease: lessons from Tangier disease. Expert Opin Investig Drugs 2001; 10:427-38. [PMID: 11227043 DOI: 10.1517/13543784.10.3.427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in Western societies. Although cholesterol is a major CVD risk factor, therapeutic interventions to lower plasma cholesterol levels have had limited success in reducing coronary events. Thus, novel approaches are needed to reduce or eliminate CVD. A potential therapeutic target is a newly discovered ATP binding cassette transporter called ABCA1, a cell membrane protein that is the gateway for secretion of excess cholesterol from macrophages into the high density lipoprotein (HDL) metabolic pathway. Mutations in ABCA1 cause Tangier disease, a severe HDL deficiency syndrome characterised by accumulation of cholesterol in tissue macrophages and prevalent atherosclerosis. Studies of Tangier disease heterozygotes revealed that the relative activity of ABCA1 determines plasma HDL levels and susceptibility to CVD. Drugs that induce ABCA1 in mice increase clearance of cholesterol from tissues and inhibit intestinal absorption of dietary cholesterol. Thus, ABCA1-stimulating drugs have the potential to both mobilise cholesterol from atherosclerotic lesions and eliminate cholesterol from the body. By reducing plaque formation and rupture independently of the atherogenic factors involved, these drugs would be powerful agents for treating CVD.
Collapse
Affiliation(s)
- J F Oram
- University of Washington, Department of Medicine, Seattle, Washington, WA 98195-6426, USA.
| |
Collapse
|
92
|
Li H, Lyles DS, Thomas MJ, Pan W, Sorci-Thomas MG. Structural determination of lipid-bound ApoA-I using fluorescence resonance energy transfer. J Biol Chem 2000; 275:37048-54. [PMID: 10956648 DOI: 10.1074/jbc.m005336200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on the x-ray crystal structure of lipid-free Delta43 apoA-I, two monomers of apoA-I were suggested to bind to a phospholipid bilayer in an antiparallel paired dimer, or "belt orientation." This hypothesis challenges the currently held model in which each of the two apoA-I monomers fold as antiparallel alpha-helices or "picket fence orientation." When apoA-I is bound to a phospholipid disc, the first model predicts that the glutamine at position 132 on one apoA-I molecule lies within 16 A of glutamine 132 in the second monomer, whereas, the second model predicts glutamines at position 132 to be 104 A apart. To distinguish between these models, glutamine at position 132 was mutated to cysteine in wild-type apoA-I to produce Q132C apoA-I, which were labeled with thiol-reactive fluorescent probes. Q132C apoA-I was labeled with either fluorescein (donor probe) or tetramethylrhodamine (acceptor probe) and then used to make recombinant phospholipid discs (recombinant high density lipoprotein (rHDL)). The rHDL containing donor- and acceptor-labeled Q132C apoA-I were of similar size, composition, and lecithin:cholesterol acyltransferase reactivity when compared to rHDL-containing human plasma apoA-I. Analysis of donor probe fluorescence showed highly efficient quenching in rHDL containing one donor- and one acceptor-labeled Q132C apoA-I. rHDL containing only acceptor probe-labeled Q132C apoA-I showed rhodamine self-quenching. Both of these observations demonstrate that position 132 in two lipid-bound apoA-I monomers were in close proximity, supporting the "belt conformation" hypothesis for apoA-I on rHDL.
Collapse
Affiliation(s)
- H Li
- Departments of Pathology, Microbiology and Immunology, and Biochemistry, The Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
93
|
Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:189-210. [PMID: 11082530 DOI: 10.1016/s1388-1981(00)00123-2] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Low density lipoprotein (LDL) particles are the major cholesterol carriers in circulation and their physiological function is to carry cholesterol to the cells. In the process of atherogenesis these particles are modified and they accumulate in the arterial wall. Although the composition and overall structure of the LDL particles is well known, the fundamental molecular interactions and their impact on the structure of LDL particles are not well understood. Here, the existing pieces of structural information on LDL particles are combined with computer models of the individual molecular components to give a detailed structural model and visualization of the particles. Strong evidence is presented in favor of interactions between LDL lipid constituents that lead to specific domain formation in the particles. A new three-layer model, which divides the LDL particle into outer surface, interfacial layer, and core, and which is capable of explaining some seemingly contradictory interpretations of molecular interactions in LDL particles, is also presented. A new molecular interaction model for the beta-sheet structure and phosphatidylcholine headgroups is introduced and an overall view of the tertiary structure of apolipoprotein B-100 in the LDL particles is presented. This structural information is also utilized to understand and explain the molecular characteristics and interactions of modified, atherogenic LDL particles.
Collapse
Affiliation(s)
- T Hevonoja
- Wihuri Research Institute, Kalliolinnantie 4, FIN-00140 Helsinki, Finland
| | | | | | | | | |
Collapse
|
94
|
Segrest JP, Harvey SC, Zannis V. Detailed molecular model of apolipoprotein A-I on the surface of high-density lipoproteins and its functional implications. Trends Cardiovasc Med 2000; 10:246-52. [PMID: 11282302 DOI: 10.1016/s1050-1738(00)00078-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The major apolipoprotein (apo) A-I containing lipoprotein, high- density lipoprotein, is a negative risk factor for cardiovascular disease. An atomic resolution molecular model for lipid-associated apo A-I was recently proposed in which two apo A-I molecules are wrapped beltwise around a small discoidal patch of phospholipid bilayer. Because of its detailed predictions of lipid-associated apo A-I structure, this molecular belt model, if confirmed, provides a blueprint for understanding the molecular mechanisms of reverse cholesterol transport, and thus for the rational design of new classes of drugs for reversal of atherosclerosis and cardiovascular disease. The details and implications of the model are currently being explored by site-directed mutagenesis.
Collapse
Affiliation(s)
- J P Segrest
- Department of Medicine at the UAB Medical Center, Birmingham, Alabama 35149-0012, USA.
| | | | | |
Collapse
|