51
|
Alfageme-Abello O, Porret R, Perreau M, Perez L, Muller YD. Chimeric antigen receptor T-cell therapy for HIV cure. Curr Opin HIV AIDS 2021; 16:88-97. [PMID: 33560017 DOI: 10.1097/coh.0000000000000665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cell-based immunotherapies have made enormous progress over the last decade with the approval of several anti-CD19-chimeric antigen receptor (CAR)-T cell therapies for haemato-oncological diseases. CARs are synthetic receptors comprising an antigen-specific extracellular domain fused to a hinge, transmembrane and intracellular signalling domains. The success obtained with CD19 CAR-T cells rekindled interest in using CAR-T cells to treat HIV seropositive patients. The purpose of this review is to discuss historical and recent developments of anti-HIV CARs. RECENT FINDINGS Since the first description of CD4+-based CARs in the early 90s, new generations of anti-HIV CARs were developed. They target the hetero-trimeric glycoprotein gp120/gp41 and consist of either a CD4+ extracellular domain or a VH/VL segment derived from broadly neutralizing antibodies. Recent efforts were employed in multiplexing CAR specificities, intracellular signalling domains and T cells resistance to HIV. SUMMARY Several new-anti HIV CAR-T cells were successfully tested in preclinical mice models and are now waiting to be evaluated in clinical trials. One of the key parameters to successfully using CAR-T cells in HIV treatment will depend on their capacity to control the HIV reservoir without causing off-targeting activities.
Collapse
Affiliation(s)
- Oscar Alfageme-Abello
- Lausanne University Hospital (CHUV), Department of Medicine, Division of Immunology and Allergy, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
52
|
Tegler L, Corin K, Pick H, Brookes J, Skuhersky M, Vogel H, Zhang S. The G protein coupled receptor CXCR4 designed by the QTY code becomes more hydrophilic and retains cell signaling activity. Sci Rep 2020; 10:21371. [PMID: 33288780 PMCID: PMC7721705 DOI: 10.1038/s41598-020-77659-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are vital for diverse biological functions, including vision, smell, and aging. They are involved in a wide range of diseases, and are among the most important targets of medicinal drugs. Tools that facilitate GPCR studies or GPCR-based technologies or therapies are thus critical to develop. Here we report using our QTY (glutamine, threonine, tyrosine) code to systematically replace 29 membrane-facing leucine, isoleucine, valine, and phenylalanine residues in the transmembrane α-helices of the GPCR CXCR4. This variant, CXCR4QTY29, became more hydrophilic, while retaining the ability to bind its ligand CXCL12. When transfected into HEK293 cells, it inserted into the cell membrane, and initiated cellular signaling. This QTY code has the potential to improve GPCR and membrane protein studies by making it possible to design functional hydrophilic receptors. This tool can be applied to diverse α-helical membrane proteins, and may aid in the development of other applications, including clinical therapies.
Collapse
Affiliation(s)
- Lotta Tegler
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- Molecular Biotechnology/IFM, Linköping University, 58183, Linköping, Sweden
| | - Karolina Corin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
- Biomedical Engineering Research Group, School of Electrical and Information Engineering, and Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1570, USA.
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jennifer Brookes
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
- Biophysics, Computational Physics, Quantum Physics, University College London, London, UK
| | - Michael Skuhersky
- Synthetic Neurobiology Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Shuguang Zhang
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
53
|
Marino J, Maubert ME, Mele AR, Spector C, Wigdahl B, Nonnemacher MR. Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci 2020; 77:5079-5099. [PMID: 32577796 PMCID: PMC7674201 DOI: 10.1007/s00018-020-03561-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) is a potent mediator involved in the development of HIV-1-associated neurocognitive disorders (HAND). Tat is expressed even in the presence of antiretroviral therapy (ART) and is able to enter the central nervous system (CNS) through a variety of ways, where Tat can interact with microglia, astrocytes, brain microvascular endothelial cells, and neurons. The presence of low concentrations of extracellular Tat alone has been shown to lead to dysregulated gene expression, chronic cell activation, inflammation, neurotoxicity, and structural damage in the brain. The reported effects of Tat are dependent in part on the specific HIV-1 subtype and amino acid length of Tat used. HIV-1 subtype B Tat is the most common subtype in North American and therefore, most studies have been focused on subtype B Tat; however, studies have shown many genetic, biologic, and pathologic differences between HIV subtype B and subtype C Tat. This review will focus primarily on subtype B Tat where the full-length protein is 101 amino acids, but will also consider variants of Tat, such as Tat 72 and Tat 86, that have been reported to exhibit a number of distinctive activities with respect to mediating CNS damage and neurotoxicity.
Collapse
Affiliation(s)
- Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
54
|
Grishin D, Kasap E, Izotov A, Lisitsa A. Multifaceted ammonia transporters. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1812443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- D.V. Grishin
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - E.Y. Kasap
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.A. Izotov
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.V. Lisitsa
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| |
Collapse
|
55
|
Uddin F, Rudin CM, Sen T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front Oncol 2020; 10:1387. [PMID: 32850447 PMCID: PMC7427626 DOI: 10.3389/fonc.2020.01387] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence across the biological sciences. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins has expanded the applications of genetic research in thousands of laboratories across the globe and is redefining our approach to gene therapy. Traditional gene therapy has raised some concerns, as its reliance on viral vector delivery of therapeutic transgenes can cause both insertional oncogenesis and immunogenic toxicity. While viral vectors remain a key delivery vehicle, CRISPR technology provides a relatively simple and efficient alternative for site-specific gene editing, obliviating some concerns raised by traditional gene therapy. Although it has apparent advantages, CRISPR/Cas9 brings its own set of limitations which must be addressed for safe and efficient clinical translation. This review focuses on the evolution of gene therapy and the role of CRISPR in shifting the gene therapy paradigm. We review the emerging data of recent gene therapy trials and consider the best strategy to move forward with this powerful but still relatively new technology.
Collapse
Affiliation(s)
- Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
56
|
Zhou Z, Zhao J, Hu K, Hou X, Sun X, Pan X, Wang X, Li N, Yang Z, Zhang F, Zhou Q, Zhan L. Single High-Dose Radiation Enhances Dendritic Cell Homing and T Cell Priming by Promoting Reactive Oxygen Species-Induced Cytoskeletal Reorganization. Int J Radiat Oncol Biol Phys 2020; 109:95-108. [PMID: 32763455 DOI: 10.1016/j.ijrobp.2020.07.2321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Radiation therapy (RT) affects tumor-infiltrating immune cells, cooperatively driving tumor growth inhibition. However, there is still no absolute consensus on whether the homing ability of dendritic cells (DCs) is affected by direct x-ray irradiation. Most importantly, the underlying mechanisms are poorly understood. METHODS AND MATERIALS Using noninvasive imaging, we systematically examined the dose effect of RT on the in vivo homing and distribution of bone marrow-derived DCs and elucidated the detailed mechanisms underlying these events. After exposure to 2, 5, 10, 15, and 20 Gy, DCs were analyzed for maturation, in vivo homing ability, and T cell priming. RESULTS At ranges of 2 to 20 Gy, irradiation did not cause direct cellular apoptosis or necrosis, but it induced mitochondrial damage in DCs independent of dose. In addition, upregulation of CD40, CD80, CD86, CXCR4, and CCR7 were detected on irradiated DCs. Secretion of IL-1β and IL-12p70 remained unchanged, whereas decreased secretion of IL-6 and promotion of tumor necrosis factor α secretion were observed. In particular, the homing ability of both the local residual and blood circulating DCs to lymphoid tissues was significantly higher in groups that received ≥5 Gy radiation than in the group that received 2 Gy. Furthermore, improved homing ability was associated with rearrangement of the cytoskeleton, which was regulated by reactive oxygen species accumulation through the RhoA/ROCK1 signaling pathway. Finally, more robust T cell activation was observed in mice inoculated with 20 Gy-treated DCs than in those inoculated with 2 Gy-irradiated DCs, and T cell activation also correlated with reactive oxygen species production. CONCLUSIONS An RT dose ≥5 Gy has distinct advantages over 2 Gy in facilitating DC homing to lymph nodes and cross-priming T cells.
Collapse
Affiliation(s)
- Ziqi Zhou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaorong Hou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiansong Sun
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoli Pan
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| | - Xiaohui Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| | - Nan Li
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiwei Yang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Qianqian Zhou
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| | - Linsheng Zhan
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| |
Collapse
|
57
|
CCR5-Δ32 gene variant frequency in the Turkish Cypriot population. Braz J Microbiol 2020; 51:1711-1717. [PMID: 32734471 PMCID: PMC7392619 DOI: 10.1007/s42770-020-00352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/25/2020] [Indexed: 11/09/2022] Open
Abstract
Recent UNAIDS reports (December 2019) indicate that 37.9 million people have been affected by HIV infection around the globe in 2018, of which 1.7 million are cited as new infections. Human immunodeficiency virus-1 (HIV-1) requires both the CD4 receptor, as the primary receptor, and a chemokine co-receptor to gain entry into the cell. In addition to the WT allele for C–C motif chemokine receptor 5 (CCR5-wt), there is another allele with a 32 bp deletion in the protein coding region (CCR5-Δ32). Individuals who are homozygous for the mutant allele are resistant towards M-tropic HIV infections. In the current study, we aimed to determine the CCR5-Δ32 allele frequency in the Turkish Cypriot population with 326 subjects, 141 men (43.1%) and 185 (56.9%) women. The region of the CCR5 gene containing the Δ32 deletion was amplified using flanking primers. The CCR5 gene Δ32 allele frequency was calculated at 3% and only observed in heterozygous individuals. We hope that our current publication could be a point of dialog between the physicians, the government officials and the public set up a more modern and well-structured HIV screening program in an effort to control and hopefully eliminate HIV from the Turkish Cypriot population.
Collapse
|
58
|
Almodovar S, Wade BE, Porter KM, Smith JM, Lopez-Astacio RA, Bijli K, Kang BY, Cribbs SK, Guidot DM, Molehin D, McNair BK, Pumarejo-Gomez L, Perez Hernandez J, Salazar EA, Martinez EG, Huang L, Kessing CF, Suarez-Martinez EB, Pruitt K, Hsue PY, Tyor WR, Flores SC, Sutliff RL. HIV X4 Variants Increase Arachidonate 5-Lipoxygenase in the Pulmonary Microenvironment and are associated with Pulmonary Arterial Hypertension. Sci Rep 2020; 10:11696. [PMID: 32678115 PMCID: PMC7366722 DOI: 10.1038/s41598-020-68060-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/18/2020] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is overrepresented in People Living with Human Immunodeficiency Virus (PLWH). HIV protein gp120 plays a key role in the pathogenesis of HIV-PAH. Genetic changes in HIV gp120 determine viral interactions with chemokine receptors; specifically, HIV-X4 viruses interact with CXCR4 while HIV-R5 interact with CCR5 co-receptors. Herein, we leveraged banked samples from patients enrolled in the NIH Lung HIV studies and used bioinformatic analyses to investigate whether signature sequences in HIV-gp120 that predict tropism also predict PAH. Further biological assays were conducted in pulmonary endothelial cells in vitro and in HIV-transgenic rats. We found that significantly more persons living with HIV-PAH harbor HIV-X4 variants. Multiple HIV models showed that recombinant gp120-X4 as well as infectious HIV-X4 remarkably increase arachidonate 5-lipoxygenase (ALOX5) expression. ALOX5 is essential for the production of leukotrienes; we confirmed that leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-infected patients. This is the first report associating HIV-gp120 genotype to a pulmonary disease phenotype, as we uncovered X4 viruses as potential agents in the pathophysiology of HIV-PAH. Altogether, our results allude to the supplementation of antiretroviral therapy with ALOX5 antagonists to rescue patients with HIV-X4 variants from fatal PAH.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Brandy E Wade
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristi M Porter
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Justin M Smith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Lopez-Astacio
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biology, University of Puerto Rico in Ponce, Ponce, PR, USA
| | - Kaiser Bijli
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Bum-Yong Kang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Sushma K Cribbs
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - David M Guidot
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryan K McNair
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Pumarejo-Gomez
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaritza Perez Hernandez
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan A Salazar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Laurence Huang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cari F Kessing
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - William R Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sonia C Flores
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
59
|
Genetically-edited induced pluripotent stem cells derived from HIV-1-infected patients on therapy can give rise to immune cells resistant to HIV-1 infection. AIDS 2020; 34:1141-1149. [PMID: 32287059 DOI: 10.1097/qad.0000000000002539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the in-vitro CCR5---tropic and CXCR4---tropic HIV---1 infectivity of immune cells, particularly macrophages, derived from CCR5 gene---edited induced pluripotent stem cells (iPSCs) obtained from the peripheral blood mononuclear cells (PBMC) of HIV---infected patients on antiretroviral therapy (ART). DESIGN PBMC were obtained from six patients who had been HIV---infected for over 20 years and were on ART for 1---12 years prior to this study. METHODS The PBMC were derived into iPSCs and genetically edited with TALENs or CRISPR---cas9 endonucleases combined with PiggyBac technology to introduce the naturally occurring 32---bp deletion to the CCR5 gene. These iPSCs were differentiated into macrophages, and subsequently challenged with CCR5---tropic or CCR5/CXCR4 dual--- tropic HIV---1 strains. iPSC derivation, gene editing and immune cell differentiation were done in feeder---free, xeno---free in-vitro conditions. RESULTS Multiple unedited (wild---type) and CCR5 gene---edited (mutant) iPSCs were derived from patients' PBMC. When differentiated into immune cells and HIV---1 challenged, mutant iPSC lines were resistant to CCR5---tropic and to some extent to CCR5/CXCR4 dual---tropic HIV---1 infection when compared to wild---type iPSC lines. CONCLUSION Our study demonstrates that iPSC---derived, gene---edited immune cells are resistant to distinct HIV---1 strains. These findings have important implications for both in-vitro stem cell development and therapeutic approaches to cure HIV infection.
Collapse
|
60
|
Ellwanger JH, Kulmann-Leal B, Kaminski VDL, Rodrigues AG, Bragatte MADS, Chies JAB. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res 2020; 286:198040. [PMID: 32479976 PMCID: PMC7260533 DOI: 10.1016/j.virusres.2020.198040] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CCR5 regulates multiple cell types (e.g., T regulatory and Natural Killer cells) and immune responses. The effects of CCR5, CCR5Δ32 (variant associated with reduced CCR5 expression) and CCR5 antagonists vary between infections. CCR5 affects the pathogenesis of flaviviruses, especially in the brain. The genetic variant CCR5Δ32 increases the risk of symptomatic West Nile virus infection. The triad “CCR5, extracellular vesicles and infections” is an emerging topic.
The interactions between chemokine receptors and their ligands may affect susceptibility to infectious diseases as well as their clinical manifestations. These interactions mediate both the traffic of inflammatory cells and virus-associated immune responses. In the context of viral infections, the human C-C chemokine receptor type 5 (CCR5) receives great attention from the scientific community due to its role as an HIV-1 co-receptor. The genetic variant CCR5Δ32 (32 base-pair deletion in CCR5 gene) impairs CCR5 expression on the cell surface and is associated with protection against HIV infection in homozygous individuals. Also, the genetic variant CCR5Δ32 modifies the CCR5-mediated inflammatory responses in various conditions, such as inflammatory and infectious diseases. CCR5 antagonists mimic, at least in part, the natural effects of the CCR5Δ32 in humans, which explains the growing interest in the potential benefits of using CCR5 modulators for the treatment of different diseases. Nevertheless, beyond HIV infection, understanding the effects of the CCR5Δ32 variant in multiple viral infections is essential to shed light on the potential effects of the CCR5 modulators from a broader perspective. In this context, this review discusses the involvement of CCR5 and the effects of the CCR5Δ32 in human infections caused by the following pathogens: West Nile virus, Influenza virus, Human papillomavirus, Hepatitis B virus, Hepatitis C virus, Poliovirus, Dengue virus, Human cytomegalovirus, Crimean-Congo hemorrhagic fever virus, Enterovirus, Japanese encephalitis virus, and Hantavirus. Subsequently, this review addresses the impacts of CCR5 gene editing and CCR5 modulation on health and viral diseases. Also, this article connects recent findings regarding extracellular vesicles (e.g., exosomes), viruses, and CCR5. Neglected and emerging topics in “CCR5 research” are briefly described, with focus on Rocio virus, Zika virus, Epstein-Barr virus, and Rhinovirus. Finally, the potential influence of CCR5 on the immune responses to coronaviruses is discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Alves de Souza Bragatte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Núcleo de Bioinformática do Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
61
|
Yoo KD, Cha R, Lee S, Kim JE, Kim KH, Lee JS, Kim DK, Kim YS, Yang SH. Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury. J Cell Mol Med 2020; 24:5515-5527. [PMID: 32227583 PMCID: PMC7214177 DOI: 10.1111/jcmm.15207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/01/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Chemokine receptor 5 (CCR5) is a pivotal regulator of macrophage trafficking in the kidneys in response to an inflammatory cascade. We investigated the role of CCR5 in experimental ischaemic-reperfusion injury (IRI) pathogenesis. To establish IRI, we clamped the bilateral renal artery pedicle for 30 min and then reperfused the kidney. We performed adoptive transfer of lipopolysaccharide (LPS)-treated RAW 264.7 macrophages following macrophage depletion in mice. B6.CCR5-/- mice showed less severe IRI based on tubular epithelial cell apoptosis than did wild-type mice. CXCR3 expression in CD11b+ cells and inducible nitric oxide synthase levels were more attenuated in B6.CCR5-/- mice. B6.CCR5-/- mice showed increased arginase-1 and CD206 expression. Macrophage-depleted wild-type mice showed more injury than B6.CCR5-/- mice after M1 macrophage transfer. Adoptive transfer of LPS-treated RAW 264.7 macrophages reversed the protection against IRI in wild-type, but not B6.CCR5-/- mice. Upon knocking out CCR5 in macrophages, migration of bone marrow-derived macrophages from wild-type mice towards primary tubular epithelial cells with recombinant CCR5 increased. Phospho-CCR5 expression in renal tissues of patients with acute tubular necrosis was increased, showing a positive correlation with tubular inflammation. In conclusion, CCR5 deficiency favours M2 macrophage activation, and blocking CCR5 might aid in treating acute kidney injury.
Collapse
Affiliation(s)
- Kyung Don Yoo
- Department of Internal MedicineUlsan University HospitalUniversity of Ulsan College of MedicineUlsanKorea
| | - Ran‐hui Cha
- Department of Internal MedicineNational Medical CenterSeoulKorea
| | - Sunhwa Lee
- Department of Internal MedicineKangwon National University HospitalChuncheonKorea
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
| | - Ji Eun Kim
- Department of Internal MedicineKorea University Guro HospitalSeoulKorea
| | - Kyu Hong Kim
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
| | - Jong Soo Lee
- Department of Internal MedicineUlsan University HospitalUniversity of Ulsan College of MedicineUlsanKorea
| | - Dong Ki Kim
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Kidney Research InstituteSeoul National UniversitySeoulKorea
| | - Yon Su Kim
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Kidney Research InstituteSeoul National UniversitySeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
| | - Seung Hee Yang
- Kidney Research InstituteSeoul National UniversitySeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
| |
Collapse
|
62
|
Verma MK, Shakya S. Genetic variation in the chemokine receptor 5 gene and course of HIV infection; review on genetics and immunological aspect. Genes Dis 2020; 8:475-483. [PMID: 34179311 PMCID: PMC8209322 DOI: 10.1016/j.gendis.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Chemokines are small protein molecules associated with various physiological events precisely in immune modulation via chemokine receptors. The chemokine receptors are G-protein coupled receptors express mainly on the cell surface of immune cells. Retroviruses, including HIV in the early stage of infection, primarily target chemokines receptors and get internalized easily into immune cells; T cell and escape from immune surveillance. HIV glycoprotein selectively develops an affinity for the extracellular domain of chemokines receptors and allows the pathogen to internalize via CCR-5. Now, CCR-5 remains a crucial signaling pathway that can be translated into the therapeutic target by changing the receptor protein environment. Many populations have a mutation in coding and promoter regions of CCR-5, tuning a resistance for HIV infection. Natively, there are several mechanisms where the human genome remains in the dynamic state by changing its composition and acquiring variations. Single nucleotide polymorphism is spontaneous phenomenon responsible for precise and point mutation at the genome. Several studies have demonstrated that European and African American populations are enriched in significant CCR5 promoter SNP (CCR5Δ32) in the coding and promoter region as well. Now, such SNP can be an early-stage biomarker in studying HIV and other similar infections. Here, in this study, we have elucidated the role of SNP (both the promoter and coding region) and the fate of HIV infections. We also empathized with the genetics of such SNPs, mostly frequency and its immunological impact.
Collapse
Affiliation(s)
- M K Verma
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - S Shakya
- Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
63
|
Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020; 234:119711. [PMID: 31945616 PMCID: PMC7035593 DOI: 10.1016/j.biomaterials.2019.119711] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
The recently developed CRISPR/Cas9 technology has revolutionized the genome engineering field. Since 2016, increasing number of studies regarding CRISPR therapeutics have entered clinical trials, most of which are focusing on the ex vivo genome editing. In this review, we highlight the ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. In these studies, CRISPR/Cas9 tools were used to edit cells in vitro and the successfully edited cells were considered as therapeutics, which can be introduced into patients to treat diseases. Considering a large number of previous reviews have been focused on the CRISPR/Cas9 delivery methods and materials, this review provides a different perspective, by mainly introducing the targeted conditions and design strategies for ex vivo CRISPR/Cas9 therapeutics. Brief descriptions of the history, functionality, and applications of CRISPR/Cas9 systems will be introduced first, followed by the design strategies and most significant results from previous research that used ex vivo CRISPR/Cas9 genome editing for the treatment of conditions or diseases. The last part of this review includes general information about the status of CRISPR/Cas9 therapeutics in clinical trials. We also discuss some of the challenges as well as the opportunities in this research area.
Collapse
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Mingqian Huang
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
| | - Zheng-Yi Chen
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
64
|
Virgilio MC, Collins KL. The Impact of Cellular Proliferation on the HIV-1 Reservoir. Viruses 2020; 12:E127. [PMID: 31973022 PMCID: PMC7077244 DOI: 10.3390/v12020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a chronic infection that destroys the immune system in infected individuals. Although antiretroviral therapy is effective at preventing infection of new cells, it is not curative. The inability to clear infection is due to the presence of a rare, but long-lasting latent cellular reservoir. These cells harboring silent integrated proviral genomes have the potential to become activated at any moment, making therapy necessary for life. Latently-infected cells can also proliferate and expand the viral reservoir through several methods including homeostatic proliferation and differentiation. The chromosomal location of HIV proviruses within cells influences the survival and proliferative potential of host cells. Proliferating, latently-infected cells can harbor proviruses that are both replication-competent and defective. Replication-competent proviral genomes contribute to viral rebound in an infected individual. The majority of available techniques can only assess the integration site or the proviral genome, but not both, preventing reliable evaluation of HIV reservoirs.
Collapse
Affiliation(s)
- Maria C. Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen L. Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
65
|
Donyavi T, Bokharaei-Salim F, Nahand JS, Garshasbi S, Esghaei M, Sadeghi M, Jamshidi S, Khanaliha K. Evaluation of CCR5-Δ32 mutation among individuals with high risk behaviors, neonates born to HIV-1 infected mothers, HIV-1 infected individuals, and healthy people in an Iranian population. J Med Virol 2020; 92:1158-1164. [PMID: 31854469 DOI: 10.1002/jmv.25658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/07/2022]
Abstract
One of the important genetic factors related to resistance to HIV-1 infection is the presence of the C-C chemokine receptor type 5 delta 32 (CCR5-Δ32) homozygous genotype (Δ32/Δ32). The aim of this study was to evaluate the CCR5-Δ32 mutation among individuals with high-risk behaviors, neonates born to HIV-1-infected mothers in the prevention of mother-to-child transmission (PMTCT) project, HIV-1-infected individuals, and healthy people. The frequency of the CCR5-Δ32 genotype was assessed in a cross-sectional survey carried out from March 2014 to March 2019 among four different groups of the Iranian population. Genomic DNA was extracted from peripheral blood mononuclear cells of 140 Iranian healthy people, 84 neonates born to HIV-1-infected mothers in the PMTCT project, 71 people with high-risk behaviors, and 76 HIV-1-infected individuals. The polymerase chain reaction method was used for the amplification of the CCR5 gene. The CCR5-Δ32 heterozygous deletion was detected in five (6.6%) HIV-1-infected individuals, four (4.7%) neonates born to HIV-1 positive mothers, two (1.4%) healthy people, and also three (4.2%) people with high-risk behaviors whereas the CCR5-Δ32 homozygous deletion was absent in all the groups (Fisher's exact test, P = .0242). The allele of CCR5-Δ32 homozygous was not detected in the four study groups, and no significant difference was seen in the frequency of the CCR5Δ32 heterozygous allele between HIV seropositive and seronegative individuals. Therefore, it seems that this allele alone cannot explain the natural resistance to HIV-1 infection and probably several mechanisms are responsible for these processes and it should be further investigated.
Collapse
Affiliation(s)
- Tahereh Donyavi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Garshasbi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
66
|
Calmet P, Cullin C, Cortès S, Vang M, Caudy N, Baccouch R, Dessolin J, Maamar NT, Lecomte S, Tillier B, Alves ID. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J 2019; 287:2367-2385. [PMID: 31738467 DOI: 10.1111/febs.15145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.
Collapse
Affiliation(s)
- Pierre Calmet
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | | | - Maylou Vang
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Nada Caudy
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Rim Baccouch
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Jean Dessolin
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Isabel D Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
67
|
Williford JM, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell TM, Potin L, Swartz MA, Hubbell JA. Recruitment of CD103 + dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. SCIENCE ADVANCES 2019; 5:eaay1357. [PMID: 31844672 PMCID: PMC6905870 DOI: 10.1126/sciadv.aay1357] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 05/10/2023]
Abstract
Although a clinical breakthrough for cancer treatment, it remains that a minority of patients respond to checkpoint inhibitor (CPI) immunotherapy. The composition of tumor-infiltrating immune cells has been identified as a key factor influencing CPI therapy success. Thus, enhancing tumor immune cell infiltration is a critical challenge. A lack of the chemokine CCL4 within the tumor microenvironment leads to the absence of CD103+ dendritic cells (DCs), a crucial cell population influencing CPI responsiveness. Here, we use a tumor stroma-targeting approach to deliver CCL4; by generating a fusion protein of CCL4 and the collagen-binding domain (CBD) of von Willebrand factor, we show that CBD fusion enhances CCL4 tumor localization. Intravenous CBD-CCL4 administration recruits CD103+ DCs and CD8+ T cells and improves the antitumor effect of CPI immunotherapy in multiple tumor models, including poor responders to CPI. Thus, CBD-CCL4 holds clinical translational potential by enhancing efficacy of CPI immunotherapy.
Collapse
Affiliation(s)
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Peyman Hosseinchi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Tiffany M. Marchell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Lambert Potin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
68
|
Kulmann-Leal B, Ellwanger JH, Chies JAB. A functional interaction between the CCR5 and CD34 molecules expressed in hematopoietic cells can support (or even promote) the development of cancer. Hematol Transfus Cell Ther 2019; 42:70-76. [PMID: 31822447 PMCID: PMC7031097 DOI: 10.1016/j.htct.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/13/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation and angiogenesis are linked to the development of cancer since both can support the establishment of a tumor-prone microenvironment. The CCR5 is a major regulatory molecule involved in inflammation. The CD34 molecule is commonly described as a hematopoietic stem cell marker, and CD34+ cells are involved in the regulation of distinct physiological processes, including angiogenesis. CCR5 participates in the development of various types of cancer, and recently, a reduced CCR5 expression was associated with low CD34+ cell counts in human cord blood. A naturally occurring genetic variant of the CCR5 gene, the so-called CCR5Δ32 polymorphism, consists of a 32 base-pair deletion in the DNA, interfering in the CCR5 protein levels on the cell surface. When in homozygosis, this variant leads to a total absence of CCR5 expression on the cell surface. In heterozygous individuals, CCR5 surface levels are reduced. Based on these key findings, we hypothesize that a functional interaction can connect CCR5 and CD34 molecules (giving rise to a “CCR5-CD34 axis”). According to this, a CCR5-CD34 interaction can potentially support the development of different types of cancer. Consequently, the lack of CCR5 in association with reduced CD34+ cell counts could indicate a protective factor against the development of cancer. It is required to characterize in detail the functional relationship between CCR5 and CD34 proteins, as well as the real influence of both molecules on the susceptibility and development of cancer at population level. If our hypothesis is confirmed, the CCR5-CD34 axis may be a potential target in the development of anti-cancer therapies.
Collapse
Affiliation(s)
- Bruna Kulmann-Leal
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
69
|
Cytokine CCL5 and receptor CCR5 axis in glioblastoma multiforme. Radiol Oncol 2019; 53:397-406. [PMID: 31747383 PMCID: PMC6884928 DOI: 10.2478/raon-2019-0057] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma is the most frequent and aggressive brain tumour in humans with median survival from 12 to 15 months after the diagnosis. This is mostly due to therapy resistant glioblastoma stem cells in addition to intertumour heterogeneity that is due to infiltration of a plethora of host cells. Besides endothelial cells, mesenchymal stem cells and their differentiated progenies, immune cells of various differentiation states, including monocytes, comprise resident, brain tumour microenvironment. There are compelling evidence for CCL5/CCR5 in the invasive and metastatic behaviour of many cancer types. CCR5, a G-protein coupled receptor, known to function as an essential co-receptor for HIV entry, is now known to participate in driving tumour heterogeneity, the formation of cancer stem cells and the promotion of cancer invasion and metastasis. Clinical trials have recently opened targeting CCR5 using a humanized monoclonal antibody (leronlimab) for metastatic triple negative breast cancer (TNBC) or a small molecule inhibitor (maraviroc) for metastatic colon cancer. There are important CCL5 and CCR5 structure and signalling mechanisms in glioblastoma. In addition, the CCL5/CCR5 axis directs infiltration and interactions with monocytes/macrophages and mesenchymal stem cells, comprising glioblastoma stem cell niches. Conclusions CCR5 is highly expressed in glioblastoma and is associated with poor prognosis of patients. CCL5/CCR5 is suggested to be an excellent new target for glioblastoma therapy. The molecular mechanisms, by which chemoattractant and receptor respond within the complex tissue microenvironment to promote cancer stem cells and tumour heterogeneity, should be considered in forthcoming studies.
Collapse
|
70
|
Wittine K, Saftić L, Peršurić Ž, Kraljević Pavelić S. Novel Antiretroviral Structures from Marine Organisms. Molecules 2019; 24:molecules24193486. [PMID: 31561445 PMCID: PMC6804230 DOI: 10.3390/molecules24193486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
In spite of significant advancements and success in antiretroviral therapies directed against HIV infection, there is no cure for HIV, which scan persist in a human body in its latent form and become reactivated under favorable conditions. Therefore, novel antiretroviral drugs with different modes of actions are still a major focus for researchers. In particular, novel lead structures are being sought from natural sources. So far, a number of compounds from marine organisms have been identified as promising therapeutics for HIV infection. Therefore, in this paper, we provide an overview of marine natural products that were first identified in the period between 2013 and 2018 that could be potentially used, or further optimized, as novel antiretroviral agents. This pipeline includes the systematization of antiretroviral activities for several categories of marine structures including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine derivatives, peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as adjuvants to the HAART therapy such as fish oil. We critically discuss the structures and activities of the most promising new marine anti-HIV compounds.
Collapse
Affiliation(s)
- Karlo Wittine
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Lara Saftić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Željka Peršurić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
71
|
Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update 2019; 25:564-591. [PMID: 31424502 PMCID: PMC6737540 DOI: 10.1093/humupd/dmz018] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometriosis, a common oestrogen-dependent inflammatory disorder in women of reproductive age, is characterized by endometrial-like tissue outside its normal location in the uterus, which causes pelvic scarring, pain and infertility. While its pathogenesis is poorly understood, the immune system (systemically and locally in endometrium, pelvic endometriotic lesions and peritoneal fluid) is believed to play a central role in its aetiology, pathophysiology and associated morbidities of pain, infertility and poor pregnancy outcomes. However, immune cell populations within the endometrium of women with the disease have had incomplete phenotyping, thereby limiting insight into their roles in this disorder. OBJECTIVE AND RATIONALE The objective herein was to determine reproducible and consistent findings regarding specific immune cell populations and their abundance, steroid hormone responsiveness, functionality, activation states, and markers, locally and systemically in women with and without endometriosis. SEARCH METHODS A comprehensive English language PubMed, Medline and Google Scholar search was conducted with key search terms that included endometriosis, inflammation, human eutopic/ectopic endometrium, immune cells, immune population, immune system, macrophages, dendritic cells (DC), natural killer cells, mast cells, eosinophils, neutrophils, B cells and T cells. OUTCOMES In women with endometriosis compared to those without endometriosis, some endometrial immune cells display similar cycle-phase variation, whereas macrophages (Mø), immature DC and regulatory T cells behave differently. A pro-inflammatory Mø1 phenotype versus anti-inflammatory Mø2 phenotype predominates and natural killer cells display abnormal activity in endometrium of women with the disease. Conflicting data largely derive from small studies, variably defined hormonal milieu and different experimental approaches and technologies. WIDER IMPLICATIONS Phenotyping immune cell subtypes is essential to determine the role of the endometrial immune niche in pregnancy and endometrial homeostasis normally and in women with poor reproductive history and can facilitate development of innovative diagnostics and therapeutics for associated symptoms and compromised reproductive outcomes.
Collapse
Affiliation(s)
- Júlia Vallvé-Juanico
- Department of Gynecology, IVI Barcelona S.L., 08017, Barcelona, Spain
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR) and University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| |
Collapse
|
72
|
Li T, Zhu J. Entanglement of CCR5 and Alzheimer's Disease. Front Aging Neurosci 2019; 11:209. [PMID: 31447666 PMCID: PMC6692443 DOI: 10.3389/fnagi.2019.00209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Although the mechanisms of Alzheimer's disease are diverse and unclear, the past 20 years have witnessed the unprecedented development of the AD inflammation theory. As a key inflammatory receptor family, the C-C chemokine receptor family is a remarkable participant in the cause of Alzheimer's disease; of this family, CCR5 is the most widely studied. CCR5 is an essential entrance when HIV infects immune cells and is also involved in other inflammatory and immune activities. New evidence on the inevitably intertwined link between Alzheimer's disease and CCR5 indicates that CCR5 accelerates the development of Alzheimer's disease, and few studies disputed it. The role of CCR5 in Alzheimer's disease remains elusive. However, as the research progresses, this intricate relationship will gradually be uncovered.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- Institutes of Brain Science, Shanghai, China
| |
Collapse
|
73
|
Suarez-Carmona M, Chaorentong P, Kather JN, Rothenheber R, Ahmed A, Berthel A, Heinzelmann A, Moraleda R, Valous NA, Kosaloglu Z, Eurich R, Wolf J, Grauling-Halama S, Hundemer M, Lasitschka F, Klupp F, Kahlert C, Ulrich A, Schneider M, Falk C, Jäger D, Zoernig I, Halama N. CCR5 status and metastatic progression in colorectal cancer. Oncoimmunology 2019; 8:e1626193. [PMID: 31428524 PMCID: PMC6685512 DOI: 10.1080/2162402x.2019.1626193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple reports have highlighted the importance of the local immunological cellular composition (i.e. the density of effector T cells and macrophage polarization state) in predicting clinical outcome in advanced metastatic stage of colorectal cancer. However, in spite of the general association between a high effector T cell density and improved outcome, our recent work has revealed a specific lymphocyte-driven cancer cell-supporting signal. Indeed, lymphocyte-derived CCL5 supports CCR5-positive tumor cell proliferation and thereby fosters tumor growth in metastatic liver lesions. Upon systematic analysis of CCR5 expression by tumor cells using immunohistochemistry, we observed that the intensity of CCR5 increases with primary tumor size and peaks in T4 tumors. In liver metastases however, though CCR5 expression intensity is globally heightened compared to primary tumors, alterations in the expression patterns appear, leading to “patchiness” of the stain. CCR5 patchiness is, therefore, a signature of liver metastases in our cohort (n = 97 specimens) and relates to globally decreased expression intensity, but does not influence the extent of the response to CCR5 inhibitor Maraviroc in patients. Moreover, CCR5 patchiness relates to a poor immune landscape characterized by a low cytotoxic-to-regulatory T cell ratio at the invasive margin and enriched cellular and molecular markers of macrophage M2 polarization. Finally, because higher numbers of PD-1- and CTLA-4-positive cells surround tumors with patchy CCR5 expression, one can speculate that these tumors potentially respond to immune checkpoint blockade. This hypothesis is corroborated by the prolonged disease-free survival and disease-specific survival observed in patients with low gene expression of CCR5 in metastases from two publically available cohorts. These observations highlight the complex role of the CCL5-CCR5 axis in CRC metastatic progression and warrant further investigations.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany
| | - Pornpimol Chaorentong
- Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Jakob Nikolas Kather
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Rebecca Rothenheber
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Azaz Ahmed
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Berthel
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Heinzelmann
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Rodrigo Moraleda
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Nektarios A Valous
- Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Zeynep Kosaloglu
- Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Rosa Eurich
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Jana Wolf
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Silke Grauling-Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany
| | - Michael Hundemer
- Department of Hematology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fee Klupp
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Kahlert
- Department of Surgery, University Hospital Dresden, Dresden, Germany
| | - Alexis Ulrich
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School Hannover, Hanover, Germany
| | - Dirk Jäger
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany.,Department of Internal Medicine VI, University Hospital Heidelberg, Heidelberg, Germany
| | - Inka Zoernig
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Department of Internal Medicine VI, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany.,Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Department of Internal Medicine VI, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
74
|
Ronsard L, Sood V, Yousif AS, Ramesh J, Shankar V, Das J, Sumi N, Rai T, Mohankumar K, Sridharan S, Dorschel A, Ramachandran VG, Banerjea AC. Genetic Polymorphisms in the Open Reading Frame of the CCR5 gene From HIV-1 Seronegative and Seropositive Individuals From National Capital Regions of India. Sci Rep 2019; 9:7594. [PMID: 31110236 PMCID: PMC6527560 DOI: 10.1038/s41598-019-44136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
C-C chemokine receptor type 5 (CCR5) serves as a co-receptor for Human immunodeficiency virus (HIV), enabling the virus to enter human CD4 T cells and macrophages. In the absence of CCR5, HIV strains that require CCR5 (R5 or M-tropic HIV) fail to successfully initiate infection. Various natural mutations of the CCR5 gene have been reported to interfere with the HIV-CCR5 interaction, which influences the rate of AIDS progression. Genetic characterization of the CCR5 gene in individuals from the National Capital Regions (NCRs) of India revealed several natural point mutations in HIV seropositive/negative individuals. Furthermore, we identified novel frame-shifts mutations in the CCR5 gene in HIV seronegative individuals, as well as the well reported CCR5Δ32 mutation. Additionally, we observed a number of mutations present only in HIV seropositive individuals. This is the first report to describe the genetic variations of CCR5 in individuals from the NCRs of India and demonstrates the utility of investigating understudied populations to identify novel CCR5 polymorphisms.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of Immunology, New Delhi, India. .,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India. .,Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, USA.
| | - Vikas Sood
- Laboratory of Virology, National Institute of Immunology, New Delhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, USA
| | - Janani Ramesh
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vijay Shankar
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, USA
| | - N Sumi
- Endocrinology & Toxicology Lab, Department of Zoology, University of Calicut, Kerala, India
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Delhi, India
| | | | - Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | | | | | - Akhil C Banerjea
- Laboratory of Virology, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
75
|
Abstract
During the second World Summit of Human Gene Editing, Jiankui He presented the gene-editing project that led to the birth of two baby girls with man-made C-C chemokine receptor type 5 (CCR5) mutations. This extremely irresponsible behavior violated the ethical consensus of scientists all over the world. His presentation revealed a troubling lack not only of basic medical ethics but also of the requisite understanding of genetics and gene editing. Here, we review the rationale and design of his experiment along with the presented data, and provide our scientific criticism of this misconduct.
Collapse
|
76
|
Abstract
During the second World Summit of Human Gene Editing, Jiankui He presented the gene-editing project that led to the birth of two baby girls with man-made C-C chemokine receptor type 5 (CCR5) mutations. This extremely irresponsible behavior violated the ethical consensus of scientists all over the world. His presentation revealed a troubling lack not only of basic medical ethics but also of the requisite understanding of genetics and gene editing. Here, we review the rationale and design of his experiment along with the presented data, and provide our scientific criticism of this misconduct. Last year, a gene-editing project led by Jiankui He resulted in the birth of two baby girls with engineered CCR5 mutations. In this Perspective article, two researchers working in the gene-editing field in China provide their scientific criticism of this misconduct.
Collapse
Affiliation(s)
- Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (HW); (HY)
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
- * E-mail: (HW); (HY)
| |
Collapse
|
77
|
Das SK, Sarkar D, Emdad L, Fisher PB. MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Adv Cancer Res 2019; 144:137-191. [PMID: 31349898 DOI: 10.1016/bs.acr.2019.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With few exceptions, metastasis is the terminal stage of cancer with limited therapeutic options. Metastasis consists of numerous phenotypic and genotypic alterations of cells that are directly and indirectly induced by multiple intrinsic (cellular) and extrinsic (micro-environmental) factors. To metastasize, a cancer cell often transitions from an epithelial to mesenchymal morphology (EMT), modifies the extracellular matrix, forms emboli and survives in the circulation, escapes immune surveillance, adheres to sites distant from the initial tumor and finally develops a blood supply (angiogenesis) and colonizes in a secondary niche (a micrometastasis). Scientific advances have greatly enhanced our understanding of the precise molecular and genetic changes, operating independently or collectively, that lead to metastasis. This review focuses on a unique gene, melanoma differentiation associated gene-9 (also known as Syntenin-1; Syndecan Binding Protein (sdcbp); mda-9/syntenin), initially cloned and characterized from metastatic human melanoma and shown to be a pro-metastatic gene. In the last two decades, our comprehension of the diversity of actions of MDA-9/Syntenin on cellular phenotype has emerged. MDA-9/Sytenin plays pivotal regulatory roles in multiple signaling cascades and orchestrates both metastatic and non-metastatic events. Considering the relevance of this gene in controlling cancer invasion and metastasis, approaches have been developed to uniquely and selectively target this gene. We also provide recent updates on strategies that have been successfully employed in targeting MDA-9/Syntenin resulting in profound pre-clinical anti-cancer activity.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
78
|
Costa MJ, Kudaravalli J, Ma JT, Ho WH, Delaria K, Holz C, Stauffer A, Chunyk AG, Zong Q, Blasi E, Buetow B, Tran TT, Lindquist K, Dorywalska M, Rajpal A, Shelton DL, Strop P, Liu SH. Optimal design, anti-tumour efficacy and tolerability of anti-CXCR4 antibody drug conjugates. Sci Rep 2019; 9:2443. [PMID: 30792442 PMCID: PMC6384886 DOI: 10.1038/s41598-019-38745-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are promising therapies for haematological cancers. Historically, their therapeutic benefit is due to ADC targeting of lineage-restricted antigens. The C-X-C motif chemokine receptor 4 (CXCR4) is attractive for targeted therapy of haematological cancers, given its expression in multiple tumour types and role in cancer "homing" to bone marrow. However, CXCR4 is also expressed in haematopoietic cells and other normal tissues, raising safety challenges to the development of anti-CXCR4 ADCs for cancer treatment. Here, we designed the first anti-CXCR4 ADC with favourable therapeutic index, effective in xenografts of haematopoietic cancers resistant to standard of care and anti-CXCR4 antibodies. We screened multiple ADC configurations, by varying type of linker-payload, drug-to-antibody ratio (DAR), affinity and Fc format. The optimal ADC bears a non-cleavable linker, auristatin as payload at DAR = 4 and a low affinity antibody with effector-reduced Fc. Contrary to other drugs targeting CXCR4, anti-CXCR4 ADCs effectively eliminated cancer cells as monotherapy, while minimizing leucocytosis. The optimal ADC selectively eliminated CXCR4+ cancer cells in solid tumours, but showed limited toxicity to normal CXCR4+ tissues, sparing haematopoietic stem cells and progenitors. Our work provides proof-of-concept that through empirical ADC design, it is possible to target proteins with broad normal tissue expression.
Collapse
Affiliation(s)
- Maria José Costa
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.
| | - Jyothirmayee Kudaravalli
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Jing-Tyan Ma
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Wei-Hsien Ho
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.,Alector, 151, Oyster Point Blvd, suite 300, South San Francisco, CA, 94080, USA
| | - Kathy Delaria
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.,Grifols Diagnostic Solutions, 6455 Christie Ave B-334C, Emeryville, CA, 94608, USA
| | - Charles Holz
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.,Grifols Diagnostic Solutions, 6455 Christie Ave B-334C, Emeryville, CA, 94608, USA
| | - Angela Stauffer
- BioMedicine Design, Medicinal Sciences, Worldwide Research and Development, Pfizer Inc., 10646 Science Center Dr, San Diego, CA, 92121, USA
| | - Allison Given Chunyk
- BioMedicine Design, Medicinal Sciences, Worldwide Research and Development, Pfizer Inc., 10646 Science Center Dr, San Diego, CA, 92121, USA
| | - Qing Zong
- Drug Safety Research and Development, Worldwide Research and Development, Pfizer Inc., 10646 Science Center Dr, San Diego, CA, 92121, USA
| | - Eileen Blasi
- Drug Safety Research and Development, Worldwide Research and Development, Pfizer Inc., 10646 Science Center Dr, San Diego, CA, 92121, USA
| | - Bernard Buetow
- Drug Safety Research and Development, Worldwide Research and Development, Pfizer Inc., 10646 Science Center Dr, San Diego, CA, 92121, USA
| | - Thomas-Toan Tran
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.,NGM Biopharmaceuticals, Inc, 630 Gateway Blvd, South San Francisco, CA, 94080, USA
| | - Kevin Lindquist
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Magdalena Dorywalska
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Arvind Rajpal
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.,Bristol-Myers Squibb, 700 Bay Rd suite A, Redwood City, CA, 94063, USA
| | - David L Shelton
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Pavel Strop
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.,Bristol-Myers Squibb, 700 Bay Rd suite A, Redwood City, CA, 94063, USA
| | - Shu-Hui Liu
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., 230 E Grand Ave, South San Francisco, CA, 94080, USA.,Multitude Therapeutics, Abmart, Redwood City, CA, 94063, USA
| |
Collapse
|
79
|
García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front Endocrinol (Lausanne) 2019; 10:585. [PMID: 31507535 PMCID: PMC6718456 DOI: 10.3389/fendo.2019.00585] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. These receptors are intimately involved in cell movement, and thus play a critical role in several physiological and pathological situations that require the precise regulation of cell positioning. CXCR4 is one of the most studied chemokine receptors and is involved in many functions beyond leukocyte recruitment. During embryogenesis, it plays essential roles in vascular development, hematopoiesis, cardiogenesis, and nervous system organization. It has been also implicated in tumor progression and autoimmune diseases and, together with CD4, is one of the co-receptors used by the HIV-1 virus to infect immune cells. In contrast to other chemokine receptors that are characterized by ligand promiscuity, CXCR4 has a unique ligand-stromal cell-derived factor-1 (SDF1, CXCL12). However, this ligand also binds ACKR3, an atypical chemokine receptor that modulates CXCR4 functions and is overexpressed in multiple cancer types. The CXCL12/CXCR4/ACKR3 axis constitutes a potential therapeutic target for a wide variety of inflammatory diseases, not only by interfering with cell migration but also by modulating immune responses. Thus far, only one antagonist directed against the ligand-binding site of CXCR4, AMD3100, has demonstrated clinical relevance. Here, we review the role of this ligand and its receptors in different autoimmune diseases.
Collapse
Affiliation(s)
- Eva M. García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - César A. Santiago
- Macromolecular X-Ray Crystallography Unit, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Jesús Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Yasmina Juarranz
- Department Cell Biology, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
- *Correspondence: Mario Mellado
| |
Collapse
|
80
|
Low levels of HIV-1 envelope-mediated fusion are associated with long-term survival of an infected CCR5-/- patient. AIDS 2018; 32:2269-2278. [PMID: 30005022 DOI: 10.1097/qad.0000000000001953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This study investigated whether Env-mediated fusion levels of R5X4 viruses are associated with long-term survival of an infected CCR5-/- patient. DESIGN Four R5X4 Envs were cloned from each of two infected homosexual individuals (DR and C2) homozygous for the CCR5Δ32 allele. DR is a long-term survivor chronically infected with HIV-1 and his Envs were cloned 12 years after testing HIV-infected, whereas C2 Envs were isolated 1 year after primary infection. METHODS The current study sequenced the gp41 subunits and created hybrid Envs that contained exchanged gp41 subunits or V3 loops. The Env-mediated fusion activity of Envs was examined in cell fusion and virus infection assays. RESULTS Sequence analysis indicated novel polymorphisms in the gp41 subunits of C2 and DR, and revealed sequence homology between DR and certain long-term nonprogressors. The DR Envs consistently showed lower Env-mediated fusion, smaller size, and delayed onset of syncytia formation. Envs containing swapped gp41 regions resulted in the transfer of most of the fusion phenotype and in the shift of the inhibition concentration 50 (IC50) of the inhibitory T20 peptide. In contrast, Envs with swapped V3 domains resulted in the partial transfer of the fusion phenotype and no significant change in the IC50 of T20. CONCLUSIONS Env sequence polymorphisms identified two distinct fusion phenotypes isolated from infected CCR5-/- patients. Swapping experiments confirmed DR's low fusion phenotype. Env-mediated fusion is a critical factor among others contributing to long-term survival.
Collapse
|
81
|
Levanova A, Poranen MM. RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Front Microbiol 2018; 9:2151. [PMID: 30254624 PMCID: PMC6141738 DOI: 10.3389/fmicb.2018.02151] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs) derived from viral genome or its replicative intermediates, is a natural antiviral defense in plants, fungi, and invertebrates. Whether RNAi naturally protects humans from viral invasion is still a matter of debate. Nevertheless, exogenous siRNAs are able to halt viral infection in mammals. The current review critically evaluates the production of antiviral siRNAs, delivery techniques to the infection sites, as well as provides an overview of antiviral siRNAs in clinical trials.
Collapse
Affiliation(s)
- Alesia Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
82
|
Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol 2018; 430:2590-2611. [PMID: 29924965 PMCID: PMC6083867 DOI: 10.1016/j.jmb.2018.06.024] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics. Viral receptors are key regulators of host range, tissue tropism, and viral pathogenesis. Many viruses utilize common viral receptors including sialic acid, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. Detailed molecular interactions between viruses and receptors have been defined through elegant biochemical analyses including glycan array screens, structural–functional analyses, and cell-based approaches providing tremendous insights into these initial events in viral infection. Commonalities in virus–receptor interactions present promising targets for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469-5735, USA.
| |
Collapse
|
83
|
García-Domínguez M, Lastra A, Folgueras AR, Cernuda-Cernuda R, Fernández-García MT, Hidalgo A, Menéndez L, Baamonde A. The Chemokine CCL4 (MIP-1β) Evokes Antinociceptive Effects in Mice: a Role for CD4 + Lymphocytes and Met-Enkephalin. Mol Neurobiol 2018; 56:1578-1595. [PMID: 29907903 DOI: 10.1007/s12035-018-1176-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
In the present study, we characterize the antinociceptive effects produced by the chemokine CCL4 in mice. The intraplantar administration of very low doses of CCL4 (0.1-3 pg) produced bilateral antinociception assessed by the unilateral hot-plate test (UHP) without evoking chemotactic responses at the injection site. Moreover, the subcutaneous administration of CCL4 (3-100 pg/kg) also yielded bilateral antinociception in the UHP and the paw pressure test and reduced the number of spinal neurons that express Fos protein in response to noxious stimulation. The implication of peripheral CCR5 but not CCR1 in CCL4-evoked antinociception was deduced from the inhibition produced by systemic but not intrathecal, administration of the CCR5 antagonist DAPTA, and the inefficacy of the CCR1 antagonist J113863. Besides, the inhibition observed after subcutaneous but not intrathecal administration of naloxone demonstrated the involvement of peripheral opioids and the efficacy of naltrindole but not cyprodime or nor-binaltorphimine supported the participation of δ-opioid receptors. In accordance, plasma levels of met-enkephalin, but not β-endorphin, were augmented in response to CCL4. Likewise, CCL4-evoked antinociception was blocked by the administration of an anti-met-enk antibody. Leukocyte depletion experiments performed with cyclophosphamide, anti-Ly6G, or anti-CD3 antibodies indicated that the antinociceptive effect evoked by CCL4 depends on circulating T lymphocytes. Double immunofluorescence experiments showed a four times more frequent expression of met-enk in CD4+ than in CD8+ T lymphocytes. CCL4-induced antinociception almost disappeared upon CD4+, but not CD8+, lymphocyte depletion with selective antibodies, thus supporting that the release of met-enk from CD4+ lymphocytes underlies the opioid antinociceptive response evoked by CCL4.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Alicia R Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Asturias, Spain
| | - Rafael Cernuda-Cernuda
- Área de Biología Celular, Departamento de Morfología y Biología Celular, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - María Teresa Fernández-García
- Unidad de Histopatología Molecular en Modelos Animales de Cáncer, IUOPA, Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Agustín Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
84
|
HIV-1 inhibition in cells with CXCR4 mutant genome created by CRISPR-Cas9 and piggyBac recombinant technologies. Sci Rep 2018; 8:8573. [PMID: 29872154 PMCID: PMC5988798 DOI: 10.1038/s41598-018-26894-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) is one of the major co-receptors for human immunodeficiency virus type 1 (HIV-1) entry and is considered an important therapeutic target. However, its function in maintaining the development of hematopoietic stem cells (HSC) makes it difficult to be used for HIV-1 gene therapy with HSC transplantation. A previous report showed that the natural CXCR4 P191A mutant inhibits HIV-1 infection without any defect in HSC differentiation, which could provide a basis for the development of new approaches for HIV-1 gene therapy. In the present study, we used CRISPR-Cas9 combined with the piggyBac transposon technologies to efficiently induce the expression of the CXCR4 P191A mutant in an HIV-1 reporter cell line, leading to no detectable exogenous sequences. In addition, no off-target effects were detected in the genome-edited cells. The decline of HIV-1 replication in biallelic CXCR4 gene-edited cells suggests that individuals equipped with homologous recombination of the CXCR4 P191A mutant could prevent or reduce HIV-1 infection. This study provides an effective approach to create a CXCR4 mutation with HIV-1 infection inhibition function and without leaving any genetic footprint inside cells, thereby shedding light on an application in HIV-1 gene therapy and avoiding side effects caused by deficiency or destruction of CXCR4 function.
Collapse
|
85
|
Colucci G, D'Ambrosio R, Galmozzi E, Maggioni M, De Nicola S, Aghemo A, Colombo M. Chemokine Receptor 5 Has No Major Role in the Severity of Hepatitis C Virus-Related Liver Damage. Viral Immunol 2018; 31:358-361. [PMID: 29664712 DOI: 10.1089/vim.2017.0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Total or partial inactivation of the chemokine 5 (CC5) pathway, as caused by the CC5 receptor Δ32 deletion (CCR5Δ32), may result in a profound manipulation of immune surveillance with significant consequences on the course and response to therapy of diverse human infections, including HIV. It has been postulated that in chronic hepatitis C (CHC), such a deregulation of CC5 pathway may compromise T cell-dependent antiviral immune responses, which in turn may favor viral persistence. To test this hypothesis, we investigated a cohort of 100 patients with CHC in whom 12 heterozygous and 1 homozygous CCR5Δ32 mutations were detected compared to 8 and none in 98 healthy controls (13% vs. 8.2%, p = 0.36). As patients with and without CCR5Δ32 mutations were similar in terms of histological activity (p = 0.84) and fibrosis stage (p = 0.20) as well as CCR5 tissue expression, we reasonably exclude that this CCR5 mutation is significantly involved in the pathogenesis of CHC and may be a potential therapeutic target. However, deleted patients showed a significantly higher response to pegylated interferon-alfa (PEG-IFN), suggesting that a dormant immune system is more readily primed by immunostimulation.
Collapse
Affiliation(s)
- Giuseppe Colucci
- 1 Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano , Milan, Italy
| | - Roberta D'Ambrosio
- 1 Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano , Milan, Italy
| | - Enrico Galmozzi
- 1 Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano , Milan, Italy
| | - Marco Maggioni
- 2 Department of Pathology, IRCCS Ca' Granda Ospedale Maggiore Policlinico , Università degli Studi di Milano, Milan, Italy
| | - Stella De Nicola
- 3 Division of Hepatology and Gastroenterology, AAST Grande Ospedale Metropolitano Niguarda , Milan, Italy
| | - Alessio Aghemo
- 4 Division of Medicine and Hepatology, Humanitas Research Hospital , Rozzano, Italy
| | - Massimo Colombo
- 5 Traslational Research Center in Hepatology , Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
86
|
Bonham LW, Karch CM, Fan CC, Tan C, Geier EG, Wang Y, Wen N, Broce IJ, Li Y, Barkovich MJ, Ferrari R, Hardy J, Momeni P, Höglinger G, Müller U, Hess CP, Sugrue LP, Dillon WP, Schellenberg GD, Miller BL, Andreassen OA, Dale AM, Barkovich AJ, Yokoyama JS, Desikan RS, International FTD-Genomics Consortium (IFGC) FerrariR.HernandezD. G.NallsM. A.RohrerJ. D.RamasamyA.KwokJ. B. J.Dobson-StoneC.SchofieldP. R.HallidayG. M.HodgesJ. R.PiguetO.BartleyL.ThompsonE.HaanE.HernándezI.RuizA.BoadaM.BorroniB.PadovaniA.CruchagaC.CairnsN. J.BenussiL.BinettiG.GhidoniR.ForloniG.AlbaniD.GalimbertiD.FenoglioC.SerpenteM.ScarpiniE.ClarimónJ.LleóA.BlesaR.WaldöM. Landqvist.NilssonK.NilssonC.MackenzieI. R. A.HsiungG-Y. R.MannD. M. A.GrafmanJ.MorrisC. M.AttemsJ.GriffithsT. D.McKeithI. G.ThomasA. J.PietriniP.HueyE. D.WassermannE. M.BaborieA.JarosE.TierneyM. C.PastorP.RazquinC.Ortega-CuberoS.AlonsoE.PerneczkyR.Diehl-SchmidJ.AlexopoulosP.KurzA.RaineroI.RubinoE.PinessiL.RogaevaE.George-HyslopP. St.RossiG.TagliaviniF.GiacconeG.RoweJ. B.SchlachetzkiJ. C. M.UphillJ.CollingeJ.MeadS.DanekA.Van DeerlinV. M.GrossmanM.TrojanowskiJ. Q.van der ZeeJ.CrutsM.Van BroeckhovenC.CappaS. F.LeberI.HannequinD.GolfierV.VercellettoM.BriceA.NacmiasB.SorbiS.BagnoliS.PiaceriI.NielsenJ. E.HjermindL. E.RiemenschneiderM.MayhausM.IbachB.GasparoniG.PichlerS.GuW.RossorM. N.FoxN. C.WarrenJ. D.SpillantiniM. G.MorrisH. R.RizzuP.HeutinkP.SnowdenJ. S.RollinsonS.RichardsonA.GerhardA.BruniA. C.MalettaR.FrangipaneF.CupidiC.BernardiL.AnfossiM.GalloM.ConidiM. E.SmirneN.RademakersR.BakerM.DicksonD. W.Graff-RadfordN. R.PetersenR. C.KnopmanD.JosephsK. A.BoeveB. F.ParisiJ. E.SeeleyW. W.MillerB. L.KarydasA. M.RosenH.van SwietenJ. C.DopperE. G. P.SeelaarH.PijnenburgY. A. L.ScheltensP.LogroscinoG.CapozzoR.NovelliV.PucaA. A.FranceschiM.PostiglioneA.MilanG.SorrentinoP.KristiansenM.ChiangH-H.GraffC.PasquierF.RollinA.DeramecourtV.LebouvierT.KapogiannisD.FerrucciL.Pickering-BrownS.SingletonA. B.HardyJ.MomeniP., International Parkinson’s Disease Genetics Consortium (IPDGC), International Genomics of Alzheimer’s Project (IGAP). CXCR4 involvement in neurodegenerative diseases. Transl Psychiatry 2018; 8:73. [PMID: 29636460 PMCID: PMC5893558 DOI: 10.1038/s41398-017-0049-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke W. Bonham
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Celeste M. Karch
- 0000 0001 2355 7002grid.4367.6Department of Psychiatry, Washington University, St. Louis, MO USA
| | - Chun C. Fan
- 0000 0001 2107 4242grid.266100.3Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA USA
| | - Chin Tan
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Ethan G. Geier
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Yunpeng Wang
- 0000 0004 0389 8485grid.55325.34NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Natalie Wen
- 0000 0001 2355 7002grid.4367.6Department of Psychiatry, Washington University, St. Louis, MO USA
| | - Iris J. Broce
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Yi Li
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Matthew J. Barkovich
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Raffaele Ferrari
- 0000000121901201grid.83440.3bDepartment of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - John Hardy
- 0000000121901201grid.83440.3bDepartment of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Parastoo Momeni
- 0000 0001 2179 3554grid.416992.1Department of Internal Medicine, Laboratory of Neurogenetics, Texas Tech University Health Science Center, Lubbock, TX USA
| | - Günter Höglinger
- 0000 0004 0438 0426grid.424247.3Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,0000000123222966grid.6936.aDepartment of Neurology, Technical University of Munich; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Ulrich Müller
- 0000 0001 2165 8627grid.8664.cInstitut for Humangenetik, Justus-Liebig-Universität, Giessen, Germany
| | - Christopher P. Hess
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Leo P. Sugrue
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - William P. Dillon
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Gerard D. Schellenberg
- 0000 0004 1936 8972grid.25879.31Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Bruce L. Miller
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- 0000 0001 2107 4242grid.266100.3Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Neurosciences and Radiology, University of California, San Diego, La Jolla, CA USA
| | - A. James Barkovich
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Jennifer S. Yokoyama
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Rahul S. Desikan
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | | | | | | |
Collapse
|
87
|
Costa MJ, Kudaravalli J, Liu WH, Stock J, Kong S, Liu SH. A mouse model for evaluation of efficacy and concomitant toxicity of anti-human CXCR4 therapeutics. PLoS One 2018; 13:e0194688. [PMID: 29554149 PMCID: PMC5858835 DOI: 10.1371/journal.pone.0194688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/07/2018] [Indexed: 01/09/2023] Open
Abstract
The development of therapeutic monoclonal antibodies through mouse immunization often originates drug candidates that are not cross-reactive to the mouse ortholog. In such cases, and particularly in oncology, drug efficacy studies are performed on human tumor xenografts or with "surrogate" anti-mouse ortholog antibodies if targeting tumor host cells. Safety assessment of drug candidate(s) is performed at a later development stage in healthy non-human primates. While the latter remains necessary before a drug advances into human subjects, it precludes evaluation of safety in disease conditions and drug de-risking during early development. Therefore, mouse models that allow concomitant evaluation of drug efficacy and safety are highly desirable. The C-X-C motif chemokine receptor 4 (CXCR4) is an attractive target for tumor-targeted and immuno-oncology therapeutics, with multiple mouse immunization-derived antibodies undergoing clinical trials. Given the pleiotropic role of CXCR4 in cancer biology, we anticipate continuous interest in this target, particularly in the testing of therapeutic combinations for immuno-oncology. Here, we describe the generation and validation of the first mouse knock-in of the whole coding region of human CXCR4. Homozygous human CXCR4 knock-in (hereafter designated as HuCXCR4KI) mice were viable and outwardly healthy, reproduced normally and nursed their young. The expression pattern of human CXCR4 in this model was similar to that of CXCR4 expression in normal human tissues. The human CXCR4 knock-in gene was expressed as a biologically active protein, thereby allowing normal animal development and adequate"homing" of leukocytes to the bone marrow. To further validate our model, we used an in vivo functional assay of leukocyte mobilization from bone marrow to peripheral blood by blocking CXCR4 signaling. Both an anti-human CXCR4 -specific blocking antibody and the small molecule CXCR4 inhibitor AMD3100 induced increased leukocyte counts in peripheral blood, whereas an anti-mouse CXCR4 -specific blocking antibody had no effect. This new mouse model is useful to evaluate efficacy and safety of anti-human CXCR4 -specific drugs as single agents or in combination therapies, particularly in the oncology, immuno-oncology, wound healing and chronic inflammation therapeutic areas.
Collapse
Affiliation(s)
- Maria José Costa
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
- * E-mail:
| | - Jyothirmayee Kudaravalli
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Wen-Hui Liu
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Jeffrey Stock
- Discovery Sciences, Medicinal Sciences, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut, United States of America
| | - Sophanna Kong
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Shu-Hui Liu
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| |
Collapse
|
88
|
Pham HT, Mesplède T. The latest evidence for possible HIV-1 curative strategies. Drugs Context 2018; 7:212522. [PMID: 29497452 PMCID: PMC5824924 DOI: 10.7573/dic.212522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains a major health issue worldwide. In developed countries, antiretroviral therapy has extended its reach from treatment of people living with HIV-1 to post-exposure prophylaxis, treatment as prevention, and, more recently, pre-exposure prophylaxis. These healthcare strategies offer the epidemiological tools to curve the epidemic in rich settings and will be concomitantly implemented in developing countries. One of the remaining challenges is to identify an efficacious curative strategy. This review manuscript will focus on some of the current curative strategies aiming at providing a sterilizing or functional cure to HIV-1-positive individuals. These include the following: early treatment initiation in post-treatment controllers as a long-term HIV-1 remission strategy, latency reversal, gene editing with or without stem cell transplantation, and antibodies against either the viral envelope protein or the host integrin α4β7.
Collapse
Affiliation(s)
- Hanh Thi Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Division of Infectious Diseases, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
89
|
Wang D. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity. Immunopharmacol Immunotoxicol 2018; 40:187-192. [PMID: 29433403 DOI: 10.1080/08923973.2018.1434792] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. METHODS The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. RESULTS GPCR signaling plays an important role in T cell activation, homeostasis and function. CONCLUSION GPCR signaling is critical in regulating T cell immunity.
Collapse
Affiliation(s)
- Dashan Wang
- a Molecular Biology Research Center, Key Medical Health Laboratory for Laboratory Medicine of Shandong Province, Department of Laboratory Medicine , Shandong Medical College , Linyi , Shandong , China
| |
Collapse
|
90
|
CCR5Δ32 in HCV infection, HCV/HIV co-infection, and HCV-related diseases. INFECTION GENETICS AND EVOLUTION 2018; 59:163-166. [PMID: 29408489 DOI: 10.1016/j.meegid.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/05/2018] [Accepted: 02/02/2018] [Indexed: 01/21/2023]
Abstract
Although a potential involvement of the CCR5Δ32 variant has already been suggested in relation to susceptibility to hepatitis C virus (HCV) infection, data from the literature is still quite controversial. Thus, our study evaluated the influence of the CCR5Δ32 allele variant in HCV infection, HCV/HIV co-infection, and HCV-related diseases in individuals from southern Brazil. A total of 1352 individuals were included in this study, divided into the following groups: Control (n = 274); HCV+ (n = 674); HIV+ (n = 300); HCV+/HIV+ (n = 104). Individuals from the HCV+ group were further stratified according to clinical/histological criteria, as HCV+/control (n = 124); HCV+/fibrosis (n = 268); HCV+/cirrhosis (n = 190); HCV+/hepatocarcinoma (n = 92). Considering all individuals included in this study, the following genotype frequencies were observed: wild-type homozygous (wt/wt), 88.76%; heterozygous (wt/Δ32), 10.72%; variant homozygous (Δ32/Δ32), 0.52%. Genotypic frequencies were very similar between the groups. Of note, the frequency of the Δ32 homozygous was quite similar comparing control uninfected against the HCV+ individuals (p > 0.999). The overall Δ32 allele frequency was estimated at 5.88%. Considering the number of Δ32 allele carriers and non-carriers, no statistically significant differences (p > 0.05) between the groups were observed, suggesting that the CCR5Δ32 variant does not influence the susceptibility to HCV infection, HCV/HIV co-infection, or HCV-related diseases in individuals from southern Brazil.
Collapse
|
91
|
Joseph SB, Swanstrom R. The evolution of HIV-1 entry phenotypes as a guide to changing target cells. J Leukoc Biol 2018; 103:421-431. [PMID: 29389021 DOI: 10.1002/jlb.2ri0517-200r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022] Open
Abstract
Through a twist of fate the most common form of HIV-1, as defined by entry phenotype, was not appreciated until recently. The entry phenotype is closely linked to the target cell and thus to virus-host interactions and pathogenesis. The most abundant form of HIV-1 uses CCR5 as the coreceptor and requires a high density of CD4 for efficient entry, defining its target cell as the CD4+ memory T cell. This is the transmitted form of the virus, the form that is found in the blood, and the form that rebounds from the latent reservoir. When CD4+/CCR5+ T cells become limiting the virus evolves to use alternative target cells to support viral replication. In the CNS, the virus can evolve to use a cell that displays only a low density of CD4, while maintaining the use of CCR5 as the coreceptor. When this evolutionary variant evolves, it must be sustaining its replication in either macrophages or microglial cells, which display only a low density of CD4 relative to that on T cells. In the blood and lymphoid system, the major switch late in disease is from T cells expressing CD4 and CCR5 to T cells expressing CD4 and CXCR4, with a change in coreceptor specificity. Thus the virus responds in two different ways to different environments when its preferred target cell becomes limiting.
Collapse
Affiliation(s)
- Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
92
|
Cerejo P, Santos-Costa Q, Calado M, Espírito-Santo M, Parreira R, Azevedo-Pereira JM. Characterization of Envelope Surface Glycoprotein from HIV-2 Primary Isolates with Different Coreceptor Usage Profile. AIDS Res Hum Retroviruses 2018; 34:218-221. [PMID: 29258330 DOI: 10.1089/aid.2017.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main goal of this work was to identify molecular signatures in envelope surface glycoprotein that may be correlated with coreceptor usage by different human immunodeficiency virus (HIV)-2 strains. From inspection of aligned HIV-2 sequences, we verified that V1/V2 region showed the highest degree of amino acid sequence heterogeneity, including polymorphisms in N-linked glycosylation sites, sequence, and length. Furthermore, we did not find any correlation between the net charge and specific amino acid positions in V3 region with any particular coreceptor usage pattern. In conclusion, we showed that for HIV-2, the genetic determinants for coreceptor usage are distinct from those of HIV-1. More specifically, we did not identify any molecular signature, based on discrete amino acid positions either in V1/V2 or in V3 regions, which could be assigned to the preferential usage of a specific coreceptor.
Collapse
Affiliation(s)
- Paula Cerejo
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Espírito-Santo
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Parreira
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Global Health and Tropical Medicine (GHTM), IHMT/UNL, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
93
|
Polymorphisms in CCR5Δ32 and Risk of HIV-1 Infection in the Southeast of Caspian Sea, Iran. DISEASE MARKERS 2017; 2017:4190107. [PMID: 29209099 PMCID: PMC5676439 DOI: 10.1155/2017/4190107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
Prevalence of CCR5Δ32 among blood samples of more than 400 healthy and HIV-1-infected people was investigated in Iran. Polymerase chain reaction (PCR) following DNA extraction was used. Desired frequency was analyzed by Hardy–Weinberg equilibrium (HWE) analysis and SPSS 16.0 software to harvest the results. The prevalence of CCRΔ32 heterozygote genotype was 3% in healthy people and 0.7% in HIV-1–infected individuals. There was no homozygote CCR5Δ32 in both groups, and the allele Δ32 was only observed in 1.5% and 0.36% of healthy and HIV-1–infected participants, respectively. Therefore according to this study, the frequency of the allele CCR5Δ32 indicates no significant difference between either groups (p = 0.18) and it sounds that the mentioned mutation in heterozygote people would not affect their susceptibility against HIV infection. Genotyping trial in Iranians with HIV infection is supposed to be helpful as a matter of prognostic purposes.
Collapse
|
94
|
Nazari A, Khorramdelazad H, Hassanshahi G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol 2017; 22:991-1000. [PMID: 29022185 DOI: 10.1007/s10147-017-1187-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
CXC chemokine ligand 12 (CXCL12) is an important member of the CXC subfamily of chemokines, and has been extensively studied in various human body organs and systems, both in physiological and clinical states. Ligation of CXCL12 to CXCR4 and CXCR7 as its receptors on peripheral immune cells gives rise to pleiotropic activities. CXCL12 itself is a highly effective chemoattractant which conservatively attracts lymphocytes and monocytes, whereas there exists no evidence to show attraction for neutrophils. CXCL12 regulates inflammation, neo-vascularization, metastasis, and tumor growth, phenomena which are all pivotally involved in cancer development and further metastasis. Generation and secretion of CXCL12 by stromal cells facilitate attraction of cancer cells, acting through its cognate receptor, CXCR4, which is expressed by both hematopoietic and non-hematopoietic tumor cells. CXCR4 stimulates tumor progression by different mechanisms and is required for metastatic spread to organs where CXCL12 is expressed, thereby allowing tumor cells to access cellular niches, such as the marrow, which favor tumor cell survival and proliferation. It has also been demonstrated that CXCL12 binds to another seven-transmembrane G-protein receptor or G-protein-coupled receptor, namely CXCR7. These studies indicated critical roles for CXCR4 and CXCR7 mediation of tumor metastasis in several types of cancers, suggesting their contributions as biomarkers of tumor behavior as well as potential therapeutic targets. Furthermore, CXCL12 itself has the capability to stimulate survival and growth of neoplastic cells in a paracrine fashion. CXCL12 is a supportive chemokine for tumor neovascularization via attracting endothelial cells to the tumor microenvironment. It has been suggested that elevated protein and mRNA levels of CXCL12/CXCR4/CXCR7 are associated with human bladder cancer (BC). Taken together, mounting evidence suggests a role for CXCR4, CXCR7, and their ligand CXCL12 during the genesis of BC and its further development. However, a better understanding is still required before exploring CXCL12/CXCR4/CXCR7 targeting in the clinic.
Collapse
Affiliation(s)
- Alireza Nazari
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. .,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
95
|
贾 搏, 邱 小, 褚 洪, 孙 翔, 盘 杰, 王 治, 赵 建. [Effect of macrophage inflammatory protein-1β on proliferation and apoptosis of human tongue squamous cell carcinoma CAL-27 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1104-1109. [PMID: 28801293 PMCID: PMC6765725 DOI: 10.3969/j.issn.1673-4254.2017.08.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To detect CCR5 protein expression in different human tongue squamous cell carcinoma cells and observe the effect of macrophage inflammatory protein-1β (MIP-1β) on the proliferation and apoptosis of CAL-27 cells. METHODS Western blotting and immunofluorescence staining were used to detect the expression of the CCR5, the receptor of MIP-1β, in 3 human tongue squamous cell carcinoma cells UM-1, CAL-27, and Tca-8113. CCK-8 assay was used to assess the proliferation of CAL-27 cells stimulated with 10, 20, and 40 ng/mL MIP-1β for 12, 24, or 48 h. The apoptosis of the cells stimulated with MIP-1β (10, 20, and 40 ng/mL) for 24 h was analyzed using flow cytometry with Annexin V/PI double staining. RESULTS CCR5 expression was detected both on the membrane and in the cytoplasm in all the 3 tongue squamous cell carcinoma cell lines. At the concentrations of 10, 20, and 40 ng/mL, MIP-1β stimulation for 12 and 24 h significantly promoted the proliferation of CAL-27 cells (P<0.05); MIP-1β stimulation for 48 h at the concentrations 10 and 20 ng/mL, but not at 40 ng/mL, promoted the proliferation of CAL-27 cells (P<0.05). MIP-1β stimulation at 40 ng/mL for 24 produced the most obvious apoptosis-inducing effect in CAL -27 cells (P<0.05), while MIP-1β at 10 or 20 ng/mL did not induce obvious apoptosis in the cells (P>0.05). CONCLUSION CCR5 is expressed in all the 3 human tongue squamous cell carcinoma cells. MIP-1β can promote the proliferation of CAL-27 cells but high concentrations of MIP-1β also induced cell apoptosis. Prolonged stimulation of the cells with a high concentration of MIP-1β shows attenuated effect in promoting cell proliferation probably as a result of cell apoptosis induced by MIP-1β.
Collapse
Affiliation(s)
- 搏 贾
- 南方医科大学口腔医院//广东省口腔医院, 口腔颌面外科, 广东 广州 510280Department of Oral Surgery, Guangdong Provincial Stomatological Hospital/Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - 小玲 邱
- 南方医科大学口腔医院//广东省口腔医院, 牙体牙髓科,广东 广州 510280Department of Endodontics, Guangdong Provincial Stomatological Hospital/Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - 洪星 褚
- 南方医科大学口腔医院//广东省口腔医院, 口腔颌面外科, 广东 广州 510280Department of Oral Surgery, Guangdong Provincial Stomatological Hospital/Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - 翔 孙
- 南方医科大学口腔医院//广东省口腔医院, 口腔颌面外科, 广东 广州 510280Department of Oral Surgery, Guangdong Provincial Stomatological Hospital/Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - 杰 盘
- 南方医科大学口腔医院//广东省口腔医院, 口腔颌面外科, 广东 广州 510280Department of Oral Surgery, Guangdong Provincial Stomatological Hospital/Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - 治平 王
- 南方医科大学口腔医院//广东省口腔医院, 口腔颌面外科, 广东 广州 510280Department of Oral Surgery, Guangdong Provincial Stomatological Hospital/Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - 建江 赵
- 南方医科大学口腔医院//广东省口腔医院, 口腔颌面外科, 广东 广州 510280Department of Oral Surgery, Guangdong Provincial Stomatological Hospital/Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
96
|
Zulfiqar HF, Javed A, Sumbal, Afroze B, Ali Q, Akbar K, Nadeem T, Rana MA, Nazar ZA, Nasir IA, Husnain T. HIV Diagnosis and Treatment through Advanced Technologies. Front Public Health 2017; 5:32. [PMID: 28326304 PMCID: PMC5339269 DOI: 10.3389/fpubh.2017.00032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the chief contributor to global burden of disease. In 2010, HIV was the fifth leading cause of disability-adjusted life years in people of all ages and leading cause for people aged 30-44 years. It is classified as a member of the family Retroviridae and genus Lentivirus based on the biological, morphological, and genetic properties. It infects different cells of the immune system, such as CD4+ T cells (T-helper cells), dendritic cells, and macrophages. HIV has two subtypes: HIV-1 and HIV-2. Among these strains, HIV-1 is the most virulent and pathogenic. Advanced diagnostic methods are exploring new ways of treatment and contributing in the reduction of HIV cases. The diagnostic techniques like PCR, rapid test, EIA, p24 antigen, and western blot have markedly upgraded the diagnosis of HIV. Antiretroviral therapy and vaccines are promising candidates in providing therapeutic and preventive regimes, respectively. Invention of CRISPR/Cas9 is a breakthrough in the field of HIV disease management.
Collapse
Affiliation(s)
| | - Aneeqa Javed
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Sumbal
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Bakht Afroze
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Khadija Akbar
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | | | - Zaheer Ahmad Nazar
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
97
|
Hang LH, Li SN, Dan X, Shu WW, Luo H, Shao DH. Involvement of Spinal CCR5/PKCγ Signaling Pathway in the Maintenance of Cancer-Induced Bone Pain. Neurochem Res 2016; 42:563-571. [PMID: 27848062 DOI: 10.1007/s11064-016-2108-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023]
Abstract
Cancer-induced bone pain (CIBP) is a challenging medical problem that considerably influences cancer patients' quality of life. Currently, few treatments have been developed to conquer CIBP because of a poor understanding of the potential mechanisms. Our previous work has proved that spinal RANTES (a major ligand for CCR5) was involved in the maintenance of CIBP. In this study, we attempted to investigate whether spinal CCR5 and its downstream PKCγ pathway is involved in the maintenance of CIBP. Inoculation of Walker 256 cells into the tibia could induce a marked mechanical allodynia with concomitant upregulation of spinal CCR5 and p-PKCγ expression from day 6 to day 15 after inoculation. Spinal CCR5 was prominently expressed in microglia, and mechanical allodynia was attenuated by intrathecal injection of DAPTA (a specific antagonist of CCR5) with downregulation of spinal CCR5 and p-PKCγ expression levels at day 15 in inoculated rats. Pre-intrathecal injection of RANTES could reverse the anti-allodynia effects of DAPTA. Intrathecal administration of GF109203X (an inhibitor of PKC) could alleviate mechanical allodynia as well as decrease of spinal p-PKCγ expression level, but no influence on spinal CCR5 level. Our findings suggest that CCR5/PKCγ signaling pathway in microglia may contribute to the maintenance of CIBP in rats.
Collapse
Affiliation(s)
- Li-Hua Hang
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Shu-Na Li
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang Dan
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Wei-Wei Shu
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Hong Luo
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Dong-Hua Shao
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| |
Collapse
|
98
|
Ripa M, Pogliaghi M, Chiappetta S, Nozza S, Soria A, Coppalini G, Rovelli C, Tambussi G. Maraviroc in addition to cART during primary HIV infection: Results from MAIN randomized clinical trial and 96-weeks follow-up. J Clin Virol 2016; 85:86-89. [PMID: 27865174 DOI: 10.1016/j.jcv.2016.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Multi-targeted treatment strategies including maraviroc (MVC) during Primary HIV Infection (PHI) may benefit from the immune-modulatory properties of this CCR5-inhibitor. OBJECTIVES We conducted a proof-of-concept clinical trial aimed at assessing whether maraviroc in addition of a combination antiretroviral therapy (cART) initiated during PHI would improve immunological and virological parameters. STUDY DESIGN The MAIN (Maraviroc in HIV Acute INfection) study was a randomized open-label clinical trial (EUDRACT number: 2008-007004-29) which enrolled 29 patients with PHI. Subjects were randomly assigned to receive cART-only (cART), cART+8 weeks of MVC (ST-MVC) or cART+48 weeks of MVC (LT-MVC), regardless of predicted co-receptor usage. After 48 weeks patients in ST-MVC and LT-MVC groups discontinued MVC. Patients were evaluated at week 48 and at week 96 of follow-up to assess differences in CD4 T-cell gain and plasma HIV-RNA. RESULTS Twenty-nine patients were enrolled. Seven patients (24%) had a predicted CXCR4 co-receptor usage. At week 48, 27 patients (93.1%) reached HIV-RNA<50cps/mL. Median CD4 T-cell count increase was 313 cells/μL (p<0.001, Wilcoxon signed-rank test). At multivariate linear regression analysis, LT-MVC arm had the greatest CD4 T-cell increase, while patients in ST-MVC arm had the least gain in CD4 T-cells (p=0.007). At week 96, multivariate analysis showed no associations between former treatment arm and CD4 T-cell gain. CONCLUSIONS The MAIN study showed that MVC for 48 weeks in addition to cART during PHI was able to enhance CD4 T-cell gain, regardless of co-receptor usage. After MVC discontinuation, the difference between treatment arms was lost.
Collapse
Affiliation(s)
- Marco Ripa
- IRCCS Ospedale San Raffaele, Department of Infectious and Tropical Diseases, Milan, Italy.
| | - Manuela Pogliaghi
- IRCCS Ospedale San Raffaele, Department of Infectious and Tropical Diseases, Milan, Italy
| | - Stefania Chiappetta
- IRCCS Ospedale San Raffaele, Department of Infectious and Tropical Diseases, Milan, Italy
| | - Silvia Nozza
- IRCCS Ospedale San Raffaele, Department of Infectious and Tropical Diseases, Milan, Italy
| | - Alessandro Soria
- Ospedale San Gerardo, Division of Infectious Diseases, Monza, Italy
| | | | | | - Giuseppe Tambussi
- IRCCS Ospedale San Raffaele, Department of Infectious and Tropical Diseases, Milan, Italy
| |
Collapse
|
99
|
Mayaphi SH, Martin DJ, Quinn TC, Laeyendecker O, Olorunju SAS, Tintinger GR, Stoltz AC. Detection of Acute and Early HIV-1 Infections in an HIV Hyper-Endemic Area with Limited Resources. PLoS One 2016; 11:e0164943. [PMID: 27764165 PMCID: PMC5072595 DOI: 10.1371/journal.pone.0164943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/20/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Two thirds of the world's new HIV infections are in sub-Saharan Africa. Acute HIV infection (AHI) is the time of virus acquisition until the appearance of HIV antibodies. Early HIV infection, which includes AHI, is the interval between virus acquisition and establishment of viral load set-point. This study aimed to detect acute and early HIV infections in a hyper-endemic setting. METHODS This was a cross-sectional diagnostic study that enrolled individuals who had negative rapid HIV results in five clinics in South Africa. Pooled nucleic acid amplification testing (NAAT) was performed, followed by individual sample testing in positive pools. NAAT-positive participants were recalled to the clinics for confirmatory testing and appropriate management. HIV antibody, p24 antigen, Western Blot and avidity tests were performed for characterization of NAAT-positive samples. RESULTS The study enrolled 6910 individuals with negative rapid HIV results. Median age was 27 years (interquartile range {IQR}: 23-31). NAAT was positive in 55 samples, resulting in 0.8% newly diagnosed HIV-infected individuals (95% confidence interval {CI}: 0.6-1.0). The negative predictive value for rapid HIV testing was 99.2% (95% CI: 99.0-99.4). Characterization of NAAT-positive samples revealed that 0.04% (95% CI: 0.000-0.001) had AHI, 0.3% (95% CI: 0.1-0.4) had early HIV infection, and 0.5% (95% CI: 0.5-0.7) had chronic HIV infection. Forty-seven (86%) of NAAT-positive participants returned for follow-up at a median of 4 weeks (IQR: 2-8). Follow-up rapid tests were positive in 96% of these participants. CONCLUSIONS NAAT demonstrated that a substantial number of HIV-infected individuals are misdiagnosed at South African points-of-care. Follow-up rapid tests done within a 4 week interval detected early and chronic HIV infections initially missed by rapid HIV testing. This may be a practical and affordable strategy for earlier detection of these infections in resource-constrained settings. Newer molecular tests that can be used at the points-of-care should be evaluated for routine diagnosis of HIV in hyper-endemic settings.
Collapse
Affiliation(s)
- Simnikiwe H. Mayaphi
- Department of Medical Virology, University of Pretoria, City of Tshwane, South Africa
- National Health Laboratory Service-Tshwane Academic Division (NHLS-TAD), City of Tshwane, South Africa
| | - Desmond J. Martin
- Department of Medical Virology, University of Pretoria, City of Tshwane, South Africa
- Toga Laboratories, Johannesburg, South Africa
| | - Thomas C. Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | - Gregory R. Tintinger
- Department of Internal Medicine, University of Pretoria, City of Tshwane, South Africa
| | - Anton C. Stoltz
- Department of Internal Medicine, University of Pretoria, City of Tshwane, South Africa
| |
Collapse
|
100
|
Liebick M, Schläger C, Oppermann M. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation. PLoS One 2016; 11:e0157502. [PMID: 27310579 PMCID: PMC4911081 DOI: 10.1371/journal.pone.0157502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general.
Collapse
MESH Headings
- Amides/pharmacology
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Basophils/cytology
- Basophils/drug effects
- Basophils/metabolism
- Biotin/chemistry
- Biotin/metabolism
- Biotinylation
- CCR5 Receptor Antagonists/pharmacology
- Carbon-Nitrogen Ligases/genetics
- Carbon-Nitrogen Ligases/metabolism
- Cell Line, Tumor
- Chemokine CCL5/pharmacology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Mice
- Protein Transport/drug effects
- Quaternary Ammonium Compounds/pharmacology
- Rats
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, CXCR5/antagonists & inhibitors
- Receptors, CXCR5/genetics
- Receptors, CXCR5/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transfection
Collapse
Affiliation(s)
- Marcel Liebick
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Christian Schläger
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Martin Oppermann
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| |
Collapse
|