51
|
Shi K, Yin Q, Tang X, Yu X, Zheng S, Shentu X. Necroptosis Contributes to Airborne Particulate Matter-Induced Ocular Surface Injury. Toxicology 2022; 470:153140. [PMID: 35247514 DOI: 10.1016/j.tox.2022.153140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022]
Abstract
In this study, we explored the role of necroptosis in the pathogenesis of ocular surface injury caused by airborne particulate matter (PM). Human corneal epithelial (HCE) cells and mouse ocular surface were treated with PM exposure and compared with non-exposed groups. The expression of necroptosis-related proteins was measured by immunoblotting in HCE cell groups. Cell damages were detected using CCK-8, flow cytometry, and immunofluorescence staining. In the mouse model, hematoxylin and eosin (H&E) staining and corneal fluorescein sodium staining were assessed. In addition, the expression of inflammatory cytokines and mucin were examined via Enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining and/or quantitative RT -PCR (qRT-PCR), both in vitro and in vivo. Our research showed that PM exposure may trigger HCE cell damage via necroptosis. Necrostatin-1(Nec-1), one of the specific inhibitors of necroptosis, can markedly reduce PM-induced HCE cell damage. HCE cell damage markers included decreased cell viability, increased intracellular reactive oxygen species (ROS) levels, and loss of mitochondrial membrane potential. At the same time, Nec-1 inhibited the increased inflammatory cytokines and the decreased mucin expression caused by PM exposure in HCE cells. Nec-1 also reduced corneal inflammation and mucin underproduction in mouse ocular surface after PM exposure. Our study demonstrated that necroptosis is involved in the pathogenesis of PM exposure-related ocular surface injury, including inflammation and insufficient mucin production in the cornea, which can be rescued by inhibitor Nec-1. This suggests Nec-1 could be a novel therapeutic target for ocular surface disorders, especially dry eye disease, which is caused by the exacerbation of airborne PM pollution.
Collapse
Affiliation(s)
- Kexin Shi
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qichuan Yin
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiajing Tang
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiaoning Yu
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London, SE1 1UL, England
| | - Xingchao Shentu
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
52
|
Cano-Granda DV, Ramírez-Ramírez M, M. Gómez D, Hernandez JC. Effects of particulate matter on endothelial, epithelial and immune system cells. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Particulate Matter (PM) is an air pollutant that is classified according to its aerodynamic diameter into particles with a diameter of less than 10 µm (PM10), a diameter of less than 2.5 µm (PM2.5), and particles ultra-fine with a diameter less than 0.1 µm (PM0.1). PM10 is housed in the respiratory system, while PM2.5 and 0.1 can pass into the circulation to generate systemic alterations. Although several diseases associated with PM exposure, such as respiratory, cardiovascular, and central nervous system, have been documented to cause 4.2 million premature deaths per year worldwide. Few reviews address cellular and molecular mechanisms in the epithelial and endothelial cells of the tissues exposed to PM, which can cause these diseases, this being the objective of the present review. For this, a search was carried out in the NCBI and Google Scholar databases focused on scientific publications that addressed the expression of pro-inflammatory molecules, adhesion molecules, and oxidative radicals, among others, and their relationship with the effects caused by the PM. The main findings include the increase in pro-inflammatory cytokines and dysfunction in the components of the immune response; the formation of reactive oxygen species; changes in epithelial and endothelial function, evidenced by altered expression of adhesion molecules; and the increase in molecules involved in coagulation. Complementary studies are required to understand the molecular effects of harmful health effects and the future approach to strategies to mitigate this response.
Collapse
Affiliation(s)
- Danna V. Cano-Granda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Mariana Ramírez-Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Diana M. Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| |
Collapse
|
53
|
Opuntia ficus-indica Alleviates Particulate Matter 10 Plus Diesel Exhaust Particles (PM10D)—Induced Airway Inflammation by Suppressing the Expression of Inflammatory Cytokines and Chemokines. PLANTS 2022; 11:plants11040520. [PMID: 35214853 PMCID: PMC8877671 DOI: 10.3390/plants11040520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/02/2023]
Abstract
Particulate matter (PM) exposure may cause adverse health effects such as respiratory disorders. We evaluated the protective effects of various Opuntia ficus-indica (OFI) extracts on airway inflammation associated with exposure to PM10D with an aerodynamic diameter <10 μm (PM10) and diesel exhaust particles (DEP). BALB/c mice were exposed to PM10D via intranasal tracheal injection three times over a period of 12 days and various OFI extracts (water, 30% ethanolic, or 50% ethanolic extracts) were administered orally for 12 days. All OFI extracts suppressed neutrophil infiltration and the number of immune cells (CD3+/CD4+, CD3+/CD8+, and Gr-1+/CD11b) in bronchoalveolar lavage fluid (BALF) and lungs. OFI extracts decreased the expression of cytokines and chemokines, including chemokine (C-X-C motif) ligand (CXCL)-1, interleukin (IL)-17, macrophage inflammatory protein-2, tumor necrosis factor (TNF)-α, cyclooxygenase-2, IL-1α, IL-1β, IL-5, IL-6, transient receptor potential cation channel subfamily V member 1, and mucin 5AC, and inhibited IRAK-1, TNF-α, and CXCL-1 localization in BALF and lungs of mice with PM10D-induced airway inflammation. Serum asymmetric and symmetric dimethyl arginine levels were also decreased by OFI extracts treatment. Moreover, all OFI extracts restored histopathological damage in the trachea and lungs of mice with PM10D-induced airway inflammation. These results indicate that OFI extracts may be used to prevent and treat airway inflammation and respiratory diseases.
Collapse
|
54
|
Lyu YR, Yang WK, Lee SW, Kim SH, Kim DS, Son E, Jung IC, Park YC. Inhibitory effects of modified gamgil-tang in a particulate matter-induced lung injury mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114789. [PMID: 34728315 DOI: 10.1016/j.jep.2021.114789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The modified gamgil-tang (GGX) is a mixture of four herbal medicine including Platycodi Radix, Glycyrrhizae Radix, Lonicerae Flos and Mori Radicis Cortex which has been traditionally used to treat lung and airway diseases to relieve symptoms like sore throat, cough, and sputum in Korea. Its major component chlorogenic acid had been reported to have antioxidant, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antiviral, and anti-microbial activity. AIM OF THE STUDY To identify the inhibitory effect of GGX in a particulate matter (PM) induced lung injury mouse model. MATERIALS AND METHODS We evaluated NO production, the release of TNF-α and IFN-γ in PM-induced MH-S cells, and the number of neutrophils, immune cell subtypes, and the secretion of TNF-α, IL-17, CXCL-1, MIP-2 in the PM-stimulated mouse model to assess the inhibitory effect of GGX against PM. In addition, as exposure to PM increases respiratory symptoms, typically cough and sputum, we attempted to evaluate the antitussive and expectorant activities of GGX. RESULTS Our study provided evidence that GGX has inhibitory effects in PM-induced lung injury by inhibiting the increase in neutrophil and inflammatory mediators, deactivating T cells, and ameliorating lung tissue damage. Notably, GGX reduced PM-induced neutrophilic inflammation by attenuating the number of neutrophils and regulating the secretion of neutrophil-related cytokines and chemokines, such as TNF-α, IL-17, MIP2, and CXCL-1. In addition, GGX demonstrated an antitussive activity by significantly reducing citric acid-induced cough frequency and delaying the latent period and expectorant activities by the increased phenol red secretion compared to the control group. CONCLUSIONS GGX is expected to be an effective herbal remedy to prevent PM-induced respiratory disease.
Collapse
Affiliation(s)
- Yee Ran Lyu
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Su-Won Lee
- Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Eunjung Son
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea.
| |
Collapse
|
55
|
Park SY, Han J, Kim SH, Suk HW, Park JE, Lee DY. Impact of Long-Term Exposure to Air Pollution on Cognitive Decline in Older Adults Without Dementia. J Alzheimers Dis 2022; 86:553-563. [DOI: 10.3233/jad-215120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Air pollution control is necessary to decrease the burden on older adults with cognitive impairment, especially in low- and middle-income countries (LMICs). Objective: This study retrospectively examined the effect of cumulative exposure to air pollution, including NO2, SO2, CO, fine particulate matter (PM)10, PM2.5, and O3, on cognitive function in older individuals. Methods: Community-dwelling older adults who underwent the Mini-Mental State Examination (MMSE) from 2007 to 2018 were included in the analyses. We excluded older individuals diagnosed with dementia at baseline, while those who had completed more than two MMSE tests were included in the longitudinal analyses. Baseline MMSE and changes in MMSE scores were analyzed according to 5-year average concentrations of the district-level air pollutants, after controlling for covariates associated with cognitive decline in older adults. Results: In total, 884,053 (74.3±7.1 years; 64.1% females) and 398,889 (72.3±6.4 years; 67.0% females) older individuals were included in the cross-sectional and longitudinal analyses, respectively. Older individuals exposed to higher levels of NO2, SO2, CO, and PM10 showed lower baseline MMSE scores. During follow-up, exposure to higher levels of NO2, SO2, CO, and PM10 was associated with greater decreases in MMSE scores in older individuals; for O3, the opposite pattern was observed. Conclusion: Our findings suggest that exposure to high levels of air pollutants can worsen the cognitive performance of older adults without dementia. Efforts to reduce air pollution in LMICs that have similar levels of pollutants to South Korea are necessary to reduce the burden on older adults with cognitive impairment.
Collapse
Affiliation(s)
- Seon Young Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jiyeon Han
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, South Korea
| | - Seon Hwa Kim
- Seoul Metropolitan Center for Dementia, Seoul, South Korea
| | - Hye Won Suk
- Departement of Psychology, Sogang University, Seoul, South Korea
| | - Jee Eun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Jongno Community Center for Dementia, Seoul, South Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Seoul Metropolitan Center for Dementia, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Center, Institute of Human Behavioral Medicine, Seoul National University, Seoul, South Korea
- Interdisiplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
56
|
Effect of Airborne Particulate Matter on the Immunologic Characteristics of Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2022; 23:ijms23031018. [PMID: 35162939 PMCID: PMC8835188 DOI: 10.3390/ijms23031018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
The inflammatory mechanisms of environmental pollutants in chronic rhinosinusitis (CRS) have recently been proposed. However, the mechanisms underlying the inflammatory effects of particulate matter (PM) on nasal polyp (NP) tissues remain unknown. Here we investigated the mechanism underlying the inflammatory effects of PM10 on human nasal polyp-derived fibroblasts (NPDFs). We isolated NPDFs from human NP tissues obtained from patients with CRS with NPs (CRSwNP). The NPDFs were exposed to PM10 in vitro. Immunologic characteristics were assessed using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, Western blot, and flow cytometry. Additionally, we investigated the effect of NPDF-conditioned media (CM) on the expression of CD4+ T cell inflammatory mediators. PM10-treated NPDFs significantly upregulated interleukin (IL)-6, IL-4, and IL-33 expression and CXCL1 protein levels than PM10-treated normal tissues. MAP kinase, AP-1, and NF-kB were the primary cell signaling proteins. Immune cells in NPDF-CM had elevated IL-13, IL-17A, and IL-10 expression, but no significant difference in IFN-γ, TNF-α, and IL-4 expression. Moreover, under a Th2 inducing condition, NPDF-CM-treated CD4+ T cells had increased expression of IL-13, IL-10, and IL-17, which was reversed on ST2 inhibitor addition. Our study suggests that PM10 exposure could significantly increase the Th2 inflammatory pathway in NP tissues, specifically the IL-33/ST2 pathway-mediated immune response.
Collapse
|
57
|
Luderer U, Lim J, Ortiz L, Nguyen JD, Shin JH, Allen BD, Liao LS, Malott K, Perraud V, Wingen LM, Arechavala RJ, Bliss B, Herman DA, Kleinman MT. Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM 2.5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice. Part Fibre Toxicol 2022; 19:5. [PMID: 34996492 PMCID: PMC8740366 DOI: 10.1186/s12989-021-00445-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. RESULTS Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. CONCLUSIONS These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.
Collapse
Affiliation(s)
- Ulrike Luderer
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Jinhwan Lim
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Laura Ortiz
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Johnny D. Nguyen
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Joyce H. Shin
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Barrett D. Allen
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Lisa S. Liao
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Kelli Malott
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA
| | - Veronique Perraud
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Lisa M. Wingen
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Rebecca J. Arechavala
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Bishop Bliss
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - David A. Herman
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Michael T. Kleinman
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| |
Collapse
|
58
|
Berman R, Rose CS, Downey GP, Day BJ, Chu HW. Role of Particulate Matter from Afghanistan and Iraq in Deployment-Related Lung Disease. Chem Res Toxicol 2021; 34:2408-2423. [PMID: 34808040 DOI: 10.1021/acs.chemrestox.1c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 3 million United States military personnel and contractors were deployed to Southwest Asia and Afghanistan over the past two decades. After returning to the United States, many developed persistent respiratory symptoms, including those due to asthma, rhinosinusitis, bronchiolitis, and others, which we collectively refer to as deployment-related lung diseases (DRLD). The mechanisms of different DRLD have not been well defined. Limited studies from us and others suggest that multiple factors and biological signaling pathways contribute to the onset of DRLD. These include, but are not limited to, exposures to high levels of particulate matter (PM) from sandstorms, burn pit combustion products, improvised explosive devices, and diesel exhaust particles. Once inhaled, these hazardous substances can activate lung immune and structural cells to initiate numerous cell-signaling pathways such as oxidative stress, Toll-like receptors, and cytokine-driven cell injury (e.g., interleukin-33). These biological events may lead to a pro-inflammatory response and airway hyperresponsiveness. Additionally, exposures to PM and other environmental hazards may predispose military personnel and contractors to more severe disease due to the interactions of those hazardous materials with subsequent exposures to allergens and cigarette smoke. Understanding how airborne exposures during deployment contribute to DRLD may identify effective targets to alleviate respiratory diseases and improve quality of life in veterans and active duty military personnel.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Cecile S Rose
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Brian J Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| |
Collapse
|
59
|
Kahl VFS, da Silva J. Inorganic elements in occupational settings: A review on the effects on telomere length and biology. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503418. [PMID: 34798938 DOI: 10.1016/j.mrgentox.2021.503418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The past decades have shown that telomere crisis is highly affected by external factors. Effects of human exposure to xenobiotics on telomere length (TL), particularly in their workplace, have been largely studied. TL has been shown to be an efficient biomarker in occupational risk assessment. This is the first review focusing on studies about the effects on TL from occupational exposures to metals (lead [Pb] and mixtures), and particulate matter (PM) related to inorganic elements. Data from 15 studies were evaluated regarding occupational exposure to metals and PM-associated inorganic elements and impact on TL. Potential complementary analyses and subjects' background (age, length of employment and gender) were also assessed. There was limited information on the correlations between work length and TL dynamics, and that was also true for the correlation between age and TL. Results indicated that TL is affected differently across the types of occupational exposure investigated in this review, and even within the same exposure, a variety of effects can be observed. Fifty-three percent of the studies observed decreased TL in occupational exposure among welding fumes, open-cast coal mine, Pb and PM industries workers. Two studies focused particularly on the levels of metals and association with TL, and both linear and non-linear associations were found. Interestingly, TL modifications were accompanied by increase in DNA damage in 7 out of 8 studies that investigated it, measured either by Cytokinesis-block Micronucleus Assay or Comet assay. Five studies also investigated oxidative stress parameters, and 4 of them found increased levels of oxidative damage along with TL impairment. Oxidative stress is one of the main mechanisms by which telomeres are affected due to their high guanine content. Our review highlights the need of further studies accessing TL in simultaneous occupational exposure to mixtures of xenobiotics.
Collapse
Affiliation(s)
- Vivian F Silva Kahl
- The University of Queensland Diamantina Institute, The University of Queensland, Faculty of Medicine, 37 Kent Street, Woolloongabba, Queensland 4102, Australia; Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil, Av Farroupilha 8001, Canoas, Rio Grande do Sul, 92425-900, Brazil; LaSalle University (UniLaSalle), Av Victor Barreto 2288, Canoas, Rio Grande do Sul, 92010-000, Brazil.
| |
Collapse
|
60
|
Treesubsuntorn C, Setiawan GD, Permana BH, Citra Y, Krobthong S, Yingchutrakul Y, Siswanto D, Thiravetyan P. Particulate matter and volatile organic compound phytoremediation by perennial plants: Affecting factors and plant stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148779. [PMID: 34225152 DOI: 10.1016/j.scitotenv.2021.148779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Air pollution by particulate matter (PM) and volatile organic compounds (VOCs) is a major global issue. Many technologies have been developed to address this problem. Phytoremediation is one possible technology to remediate these air pollutants, and a few studies have investigated the application of this technology to reduce PM and VOCs in a mixture of pollutants. This study aimed to screen plant species capable of PM and VOC phytoremediation and identify plant physiology factors to be used as criteria for plant selection for PM and VOC phytoremediation. Wrightia religiosa removed PM and VOCs. In addition, the relative water content in the plant and ethanol soluble wax showed positive relationships with PM and VOC phytoremediation, with a high correlation coefficient. For plant stress responses, several plant species maintained and/or increased the relative water content after short-term exposure to PM and VOCs. In addition, based on proteomic analysis, most of the proteins in W. religiosa leaves related to photosystems I and II were significantly reduced by PM2.5. When a high water content was achieved in W. religiosa (80% soil humidity), W. religiosa can effectively remove PM. The results suggested that PM can reduce plant photosynthesis. In addition, plants might require a high water supply to maintain their health under PM and VOC stress.
Collapse
Affiliation(s)
- Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Ginting Dwi Setiawan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Yovita Citra
- Department of Biology, Brawijaya University, Malang 65145, Indonesia
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Pathum Thani 12120, Thailand
| | - Dian Siswanto
- Department of Biology, Brawijaya University, Malang 65145, Indonesia
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
61
|
Zhang L, Ou C, Magana-Arachchi D, Vithanage M, Vanka KS, Palanisami T, Masakorala K, Wijesekara H, Yan Y, Bolan N, Kirkham MB. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11055. [PMID: 34769574 PMCID: PMC8582694 DOI: 10.3390/ijerph182111055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and carcinogenic volatile organic compounds. As a potential health hazard, indoor exposure to PM has received increased attention in recent years because people spend most of their time indoors. In addition, as the quantity, quality, and scope of the research have expanded, it is necessary to conduct a systematic review of indoor PM. This review discusses the sources, pathways, characteristics, health effects, and exposure mitigation of indoor PM. Practical solutions and steps to reduce exposure to indoor PM are also discussed.
Collapse
Affiliation(s)
- Ling Zhang
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
- School of Health, Jiangsu Food & Pharmaceutical Science College, Huai’an 223003, China
| | - Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
| | - Dhammika Magana-Arachchi
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
| | - Meththika Vithanage
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Kanth Swaroop Vanka
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara 80000, Sri Lanka;
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka;
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia;
| | - M. B. Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
62
|
Hou T, Chen Q, Ma Y. Elevated expression of miR-146 involved in regulating mice pulmonary dysfunction after exposure to PM2.5. J Toxicol Sci 2021; 46:437-443. [PMID: 34602528 DOI: 10.2131/jts.46.437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to atmospheric fine particulate matter has short-term and long-term adverse effects on pulmonary function, especially PM2.5; however, early lung function impairment is not easily detected in time. Notably, microRNAs (miRNAs) have been classified as novel biomarkers for diseases related to PM. Thus, the purpose of this study was to investigate whether miR-146 was related to the decline of lung function after exposure to air pollution. Thirty BALB/c mice were subjected to different concentrations of PM2.5 by noninvasive tracheal instillation for 56 days (two times one week), after which we detected the histopathological changes of mice lung, pulmonary functions, pro-inflammatory factors levels in bronchoalveolar lavage fluid (BALF) and lung tissue homogenate, and the relative expression of microRNA-146a and -146b. When BALB/c mice were exposed to 10 mg/kg PM2.5, severe changes such as widened alveolar interval and diffuse infiltration of macrophages with engulfed PM2.5 particles (dust cells) were found. Peak inspiratory flow (PIF) and peak expiratory flow (PEF) were decreased significantly. Expiratory resistance (Re) and inspiratory resistance (Ri) were increased significantly in the 5 mg/kg and 10 mg/kg PM2.5 groups, meanwhile lung resistance increased and MVV (maximum minute ventilation) decreased from the general tendency; however, pro-inflammatory factors interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) were increased dramatically. MiR-146a and miR-146b were elevated remarkably in the PM2.5 groups compared to the NS group. We also found miR-146 had negative relationships with PIF and PEF, especially miR-146b. Thus, elevated miR-146a and miR-146b may have a relationship with pulmonary dysfunction after PM2.5 chronic exposure.
Collapse
Affiliation(s)
- Tianfang Hou
- Department of Respiratory and Critical Care Medicine, Aviation General Hospital, China Medical University, China
| | - Qianhua Chen
- Department of Respiratory and Critical Care Medicine, Aviation General Hospital, China Medical University, China
| | - Yuanyuan Ma
- Department of Laboratory Animal Center, Peking University First Hospital, China
| |
Collapse
|
63
|
Leland EM, Zhang Z, Kelly KM, Ramanathan M. Role of Environmental Air Pollution in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2021; 21:42. [PMID: 34499234 DOI: 10.1007/s11882-021-01019-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a highly prevalent disease with large social and financial burdens. The pathophysiology is multifactorial. Environmental pollutants have been suggested to play a role in the inflammatory component of the disease process. RECENT FINDINGS Recent work has focused on exposure to various pollutants, primarily particulate matter (PM). Exposure to environmental pollutants leads to upregulation of inflammatory markers and ciliary dysfunction at the cellular level. Mouse models suggest a role for epithelial barrier dysfunction contributing to inflammatory changes after pollutant exposure. Clinical studies support the role of pollutants contributing to disease severity in certain populations, but the role in CRS incidence or prevalence is less clear. Research is limited by the retrospective nature of most studies. This review focuses on recent advancements in our understanding of the impact of environmental pollutants in CRS, limitations of the available data, and potential opportunities for future studies.
Collapse
Affiliation(s)
- Evelyn M Leland
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Zhenyu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Kathleen M Kelly
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA.
| |
Collapse
|
64
|
Vo TTT, Wee Y, Chen YL, Cheng HC, Tuan VP, Lee IT. Surfactin attenuates particulate matter-induced COX-2-dependent PGE 2 production in human gingival fibroblasts by inhibiting TLR2 and TLR4/MyD88/NADPH oxidase/ROS/PI3K/Akt/NF-κB signaling pathway. J Periodontal Res 2021; 56:1185-1199. [PMID: 34486757 DOI: 10.1111/jre.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the anti-inflammatory effects of surfactin and underlying mechanisms against particulate matter (PM)-induced inflammatory responses in human gingival fibroblasts (HGFs). BACKGROUND PM, a major air pollutant, may associate with certain oral diseases possibly by inducing inflammation and oxidative stress. Surfactin, a potent biosurfactant, possesses various biological properties including anti-inflammatory activity. However, the underlying mechanisms are unclear. Also, there is no study investigating the effects of surfactin on PM-induced oral inflammatory responses. As an essential constituent of human periodontal connective tissues which involves immune-inflammatory responses, HGFs serve as useful study models. METHODS HGFs were pretreated with surfactin prior to PM incubation. The PGE2 production was determined by ELISA, while the protein expression and mRNA levels of COX-2 and upstream regulators were measured using Western blot and real-time PCR, respectively. The transcriptional activity of COX-2 and NF-κB were determined using promoter assay. ROS generation and NADPH oxidase activity were identified by specific assays. Co-immunoprecipitation assay, pharmacologic inhibitors, and siRNA transfection were applied to explore the interplay of molecules. Mice were given one dose of surfactin or different pharmacologic inhibitors, then PM was delivered into the gingiva for three consecutive days. Gingival tissues were obtained for analyzing COX-2 expression. RESULTS PM-treated HGFs released significantly higher COX-2-dependent PGE2 , which were regulated by TLR2 and TLR4/MyD88/NADPH oxidase/ROS/PI3K/Akt/NF-κB pathway. PM-induced COX-2/PGE2 increase was effectively reversed by surfactin through the disruption of regulatory pathway. Similar inhibitory effects of surfactin was observed in mice. CONCLUSION Surfactin may elicit anti-inflammatory effects against PM-induced oral inflammatory responses.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
65
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
66
|
Singh AV, Maharjan RS, Kromer C, Laux P, Luch A, Vats T, Chandrasekar V, Dakua SP, Park BW. Advances in Smoking Related In Vitro Inhalation Toxicology: A Perspective Case of Challenges and Opportunities from Progresses in Lung-on-Chip Technologies. Chem Res Toxicol 2021; 34:1984-2002. [PMID: 34397218 DOI: 10.1021/acs.chemrestox.1c00219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inhalation toxicology of multifaceted particulate matter from the environment, cigarette smoke, and e-cigarette liquid vapes is a major research topic concerning the adverse effect of these items on lung tissue. In vitro air-liquid interface (ALI) culture models hold more potential in an inhalation toxicity assessment. Apropos to e-cigarette toxicity, the multiflavor components of the vapes pose a complex experimental bottleneck. While an appropriate ALI setup has been one part of the focus to overcome this, parallel attention towards the development of an ideal exposure system has pushed the field forward. With the advent of microfluidic devices, lung-on-chip (LOC) technologies show enormous opportunities in in vitro smoke-related inhalation toxicity. In this review, we provide a framework, establish a paradigm about smoke-related inhalation toxicity testing in vitro, and give a brief overview of breathing LOC experimental design concepts. The capabilities with optimized bioengineering approaches and microfluidics and their fundamental pros and cons are presented with specific case studies. The LOC model can imitate the structural, functional, and mechanical properties of human alveolar-capillary interface and are more reliable than conventional in vitro models. Finally, we outline current perspective challenges as well as opportunities of future development to smoking lungs-on-chip technologies based on advances in soft robotics, machine learning, and bioengineering.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Romi Singh Maharjan
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Charlotte Kromer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Tanusri Vats
- KNIPSS Management Institute, Faridipur Campus, NH 96, Faizabad-Allahabad Road, Sultanpur 228119, Uttar Pradesh, India
| | | | | | - Byung-Wook Park
- Department of Chemical Engineering, Rayen School of Engineering, Youngstown State University, Youngstown 44555, Ohio, United States
| |
Collapse
|
67
|
Lee UN, van Neel TL, Lim FY, Khor JW, He J, Vaddi RS, Ong AQW, Tang A, Berthier J, Meschke JS, Novosselov IV, Theberge AB, Berthier E. Miniaturizing Wet Scrubbers for Aerosolized Droplet Capture. Anal Chem 2021; 93:11433-11441. [PMID: 34379402 DOI: 10.1021/acs.analchem.1c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aerosols dispersed and transmitted through the air (e.g., particulate matter pollution and bioaerosols) are ubiquitous and one of the leading causes of adverse health effects and disease transmission. A variety of sampling methods (e.g., filters, cyclones, and impactors) have been developed to assess personal exposures. However, a gap still remains in the accessibility and ease-of-use of these technologies for people without experience or training in collecting airborne samples. Additionally, wet scrubbers (large non-portable industrial systems) utilize liquid sprays to remove aerosols from the air; the goal is to "scrub" (i.e., clean) the exhaust of industrial smokestacks, not collect the aerosols for analysis. Inspired by wet scrubbers, we developed a device fundamentally different from existing portable air samplers by using aerosolized microdroplets to capture aerosols in personal spaces (e.g., homes, offices, and schools). Our aerosol-sampling device is the size of a small teapot, can be operated without specialized training, and features a winding flow path in a supersaturated relative humidity environment, enabling droplet growth. The integrated open mesofluidic channels shuttle coalesced droplets to a collection chamber for subsequent sample analysis. Here, we present the experimental demonstration of aerosol capture in water droplets. An iterative study optimized the non-linear flow manipulating baffles and enabled an 83% retention of the aerosolized microdroplets in the confined volume of our device. As a proof-of-concept for aerosol capture into a liquid medium, 0.5-3 μm model particles were used to evaluate aerosol capture efficiency. Finally, we demonstrate that the device can capture and keep a bioaerosol (bacteriophage MS2) viable for downstream analysis.
Collapse
Affiliation(s)
- Ulri N Lee
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Fang Yun Lim
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Jian Wei Khor
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Jiayang He
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ravi S Vaddi
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Angelo Q W Ong
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, Washington 98105, United States
| | - Anthony Tang
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jean Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - John S Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, Washington 98105, United States
| | - Igor V Novosselov
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, Washington 98105, United States.,Institute of Nano-Engineering Sciences, University of Washington, Box 351654, Seattle, Washington 98195, United States
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States.,Department of Urology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
68
|
The Impact of an Urban Scrapyard Fire on Respiratory-Related Pediatric Emergency Department Visits. J Occup Environ Med 2021; 62:764-770. [PMID: 32890216 DOI: 10.1097/jom.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In Philadelphia, a scrapyard fire generated PM2.5 concentrations >1000 μg/m. We assessed whether this was associated with pediatric emergency department visits for respiratory diagnoses. DESIGN/METHODS Retrospective observational study using electronic health record data from a local, academic pediatric hospital. RESULTS Compared to the two-week period before the fire, patients living directly north of the fire (downwind) had a significant difference in all asthma diagnoses (OR = 3.02, P = 0.03); asthma and upper respiratory infection (OR = 17.3, P = 0.01); overall admissions (OR = 3.04, P = 01); asthma admissions (OR = 4.45, P = .01); and asthma and upper respiratory infection admissions (OR = 15.0, P = 0.01). We did not observe any significant differences among visits or admissions from patients residing in other adjacent zip codes. CONCLUSION A localized, transient increase in PM2.5 was associated with increased pediatric emergency department visits for asthma among patients living downwind of the fire.
Collapse
|
69
|
Xia Y, Zhang X, Sun D, Gao Y, Zhang X, Wang L, Cai Q, Wang Q, Sun J. Effects of water-soluble components of atmospheric particulates from rare earth mining areas in China on lung cancer cell cycle. Part Fibre Toxicol 2021; 18:27. [PMID: 34340691 PMCID: PMC8330054 DOI: 10.1186/s12989-021-00416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to investigate the effects of water soluble particulate matter (WSPM) on the viability and protein expression profile of human lung adenocarcinoma cell A549 in the Bayou Obo rare earth mining area, and explore the influence of WSPM on the A549 cell cycle. RESULTS It was found that WSPM can inhibit the viability of A549 cells and induce cell arrest in the G2/M phase. Compared with controls, exposure to WSPM10 and WSPM2.5 induced 134 and 116 proteins to be differentially expressed in A549 cells, respectively. In addition, 33 and 31 differentially expressed proteins were further confirmed, and was consistent with the proteomic analysis. The most prominent enrichment in ribosome-associated proteins were presented. When RPL6, RPL13, or RPL18A gene expression was inhibited, A549 cells were arrested in the G1 phase, affecting the expression of Cyclin D1, p21, RB1, Cyclin A2, Cyclin B1, CDC25A, CDK2, CHEK2 and E2F1. Furthermore, the La3+, Ce3+, Nd3+ and F- in WSPM also inhibited the viability of A549 cells. After 24 h of exposure to 2 mM of NaF, A549 cells were also arrested in the G2/M phase, while the other three compounds did not have this effect. These four compounds affected the cell cycle regulatory factors in A549 cells, mainly focusing on effecting the expression of CDK2, CDK4, RB1, ATM, TP53 and MDM2 genes. These results are consistent with the those from WSPM exposure. CONCLUSIONS These results revealed that WSPM from rare earth mines decreased the viability of A549 cells, and induced cell cycle G2/M phase arrest, and even apoptosis, which may be independent of the NF-κB/MYD88 pathway, and be perceived by the TLR4 receptor. The dysfunction of the cell cycle is correlated to the down-expression of ribosomal proteins (RPs). However, it is not the direct reason for the A549 cell arrest in the G2/M phase. La3+, Ce3+, and F- are probably the main toxic substances in WSPM, and may be regulate the A549 cell cycle by affecting the expression of genes, such as MDM2, RB1, ATM, TP53, E2F1, CDK2 and CDK4. These results indicate the importance for further research into the relationship between APM and lung cancer.
Collapse
Affiliation(s)
- Yuan Xia
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dejun Sun
- Inner Mongolia People's Hospital, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yumin Gao
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Xiaoe Zhang
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Li Wang
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Qingjun Cai
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Qihao Wang
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Juan Sun
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China.
| |
Collapse
|
70
|
To T, Zhu J, Terebessy E, Zhang K, Fong I, Pinault L, Jerrett M, Robichaud A, Ménard R, van Donkelaar A, Martin RV, Hystad P, Brook JR, Dell S, Stieb D. Does exposure to air pollution increase the risk of acute care in young children with asthma? An Ontario, Canada study. ENVIRONMENTAL RESEARCH 2021; 199:111302. [PMID: 34019894 DOI: 10.1016/j.envres.2021.111302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Owing to their greater outdoor activity and ongoing lung development, children are particularly vulnerable to the harmful effects of exposure to fine particulate matter (PM2.5). However, the effects of PM2.5 components are poorly understood. This study aimed to use a longitudinal birth cohort of children with physician-diagnosed incident asthma to investigate the effect of PM2.5 components at birth on morbidity measured by health services utilization. Of 1277 Toronto Child Health Evaluation Questionnaire (T-CHEQ) participants, the study population included 362 children diagnosed with asthma who were followed for a mean of 13 years from birth until March 31, 2016, or loss-to-follow-up. Concentrations of PM2.5 and its components were assigned based on participants' postal codes at birth. Study outcomes included counts of asthma, asthma-related, and all-cause health services use. Poisson regression in single-, two-, and multi-pollutant models was used to estimate rate ratios (RR) per interquartile range (IQR) increase of exposures. Covariates were included in all models to further adjust for potential confounding. The adjusted RR for sulfate (SO4) and all-cause hospitalizations was statistically significant with RR = 2.23 (95% confidence interval [CI]: 1.25-3.96) in a multi-pollutant model with nitrogen dioxide (NO2) and ozone (O3). In multi-pollutant models with oxidants, the adjusted RRs for SO4 of all-cause hospitalizations and emergency department (ED) visits were also statistically significant with RR = 2.31 (95% CI: 1.32-4.03) and RR = 1.39 (95% CI: 1.02-1.90), respectively. While unadjusted single-pollutant RRs for asthma-specific and asthma-related health services use with the SO4 component of PM2.5 were above one, none were statistically significant. This study found significant associations with exposure to SO4 in PM2.5 and all-cause acute care, chiefly for hospitalizations, in children with asthma.
Collapse
Affiliation(s)
- Teresa To
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Canada; Dalla Lana School of Public Health, University of Toronto, Canada; Institute for Clinical Evaluative Sciences, Ontario, Canada.
| | - Jingqin Zhu
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Canada; Institute for Clinical Evaluative Sciences, Ontario, Canada
| | - Emilie Terebessy
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Canada
| | - Kimball Zhang
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Canada; Institute for Clinical Evaluative Sciences, Ontario, Canada
| | - Ivy Fong
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Canada
| | | | - Michael Jerrett
- The University of California, Los Angeles, Fielding School of Public Health, CA, USA
| | - Alain Robichaud
- Air Quality Research Division, Environment and Climate Change Canada
| | - Richard Ménard
- Air Quality Research Division, Environment and Climate Change Canada
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Harvard-Smithsonian Center for Astrophysics, USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, USA
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Canada
| | - Sharon Dell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Canada; Pediatric Respiratory Medicine, Provincial Health Services Authority, BC Children's Hospital, Canada
| | - Dave Stieb
- Environmental Health Science and Research Bureau, Health Canada, Canada
| |
Collapse
|
71
|
Park SY, An KS, Lee B, Kang JH, Jung HJ, Kim MW, Ryu HY, Shim KS, Nam KT, Yoon YS, Oh SH. Establishment of particulate matter-induced lung injury model in mouse. Lab Anim Res 2021; 37:20. [PMID: 34330339 PMCID: PMC8323282 DOI: 10.1186/s42826-021-00097-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Particulate matter (PM) is one of the principal causes of human respiratory disabilities resulting from air pollution. Animal models have been applied to discover preventive and therapeutic drugs for lung diseases caused by PM. However, the induced severity of lung injury in animal models using PM varies from study to study due to disparities in the preparation of PM, and the route and number of PM administrations. In this study, we established an in vivo model to evaluate PM-induced lung injury in mice. RESULTS PM dispersion was prepared using SRM2975. Reactive oxygen species were increased in MLE 12 cells exposed to this PM dispersion. In vivo studies were conducted in the PM single challenge model, PM multiple challenge model, and PM challenge with ovalbumin-induced asthma using the PM dispersion. No histopathological changes were observed in lung tissues after a single injection of PM, whereas mild to moderate lung inflammation was obtained in the lungs of mice exposed to PM three times. However, fibrotic changes were barely seen, even though transmission electron microscopy (TEM) studies revealed the presence of PM particles in the alveolar macrophages and alveolar capillaries. In the OVA-PM model, peribronchial inflammation and mucous hypersecretion were more severe in the OVA+PM group than the OVA group. Serum IgE levels tended to increase in OVA+PM group than in OVA group. CONCLUSIONS In this study, we established a PM-induced lung injury model to examine the lung damage induced by PM. Based on our results, repeated exposures of PM are necessary to induce lung inflammation by PM alone. PM challenge, in the presence of underlying diseases such as asthma, can also be an appropriate model for studying the health effect of PM.
Collapse
Affiliation(s)
- Se Yong Park
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Kyu Sup An
- Korea Conformity Laboratories, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, Incheon, 21999, South Korea
| | - Buhyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Min Woo Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Hyeon Yeol Ryu
- Korea Conformity Laboratories, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, Incheon, 21999, South Korea
| | | | - Ki Taek Nam
- Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| |
Collapse
|
72
|
Braun M, Dehm M, Klingelhöfer D, Groneberg DA. High particulate matter burden by cigarillos: A laser spectrometric analysis of second-hand smoke of common brands with and without filter. PLoS One 2021; 16:e0254537. [PMID: 34242367 PMCID: PMC8270437 DOI: 10.1371/journal.pone.0254537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Although the global tobacco market of cigarillos is substantial, little is known about their particulate matter (PM) emissions. For exposure risk assessment of cigarillos, the PM fractions PM10, PM2.5, and PM1 of eight cigarillo brands (four with filters) and a reference cigarette were measured. For this purpose, second-hand smoke was generated by an automatic smoke pump in a measuring chamber with a volume of 2.88 m³. The mean particle concentrations of the cigarillos ranged from 2783 μg/m³ to 6686 μg/m³ for PM10, from 2767 μg/m³ to 6585 μg/m³ for PM2.5, and from 2441 to 4680 μg/m³ for PM1. Mean concentrations of the reference cigarette for PM10, PM2.5, and PM1 were 4400 μg/m³, 4335 μg/m³, and 3289 μg/m³, respectively. Filter-tipped cigarillos showed between 5% and 38% lower PM10 and PM2.5 levels, respectively, and between 4% and 30% lower PM1 levels. Our findings show generally high PM emissions for all investigated tobacco products. Therefore, the declaration of PM amounts to government authorities should be mandatory for all tobacco products. Policymakers should ensure that corresponding information will be provided in the future.
Collapse
Affiliation(s)
- Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
- * E-mail:
| | - Maike Dehm
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Doris Klingelhöfer
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - David A. Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
73
|
Conditions Affecting the Release of Heavy and Rare Earth Metals from the Mine Tailings Kola Subarctic. TOXICS 2021; 9:toxics9070163. [PMID: 34357906 PMCID: PMC8309732 DOI: 10.3390/toxics9070163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
In the Kola Subarctic, a mining industry has developed, which is a source of environmental pollution with heavy metals. The objects of study were the tailings of three large mining enterprises in the region: apatite-nepheline, complex and loparite ores. The geotechnical characteristics were studied, and the granulometric composition of the samples was established. The main minerals that make up the material of ore dressing tailings have been determined. Using inductively coupled plasma mass spectrometry, the content of trace elements, in particular heavy metals and rare earth elements, has been established. The enrichment factor, the geoaccumulation indexes, the potential ecological risk index factor and the potential environmental hazard index have been calculated. Priority pollutants characteristics for specific objects have been identified. It is noted that the finely dispersed material of the tailings of loparite and complex ores is 1.5–3 times enriched in heavy and rare earth metals in comparison with the total material of the tailings. In laboratory conditions, experiments were carried out to simulate the process of interaction of dust particles with soil solutions containing different amounts of dissolved organic matter and at average seasonal temperatures. It was found that a decrease in the pH of the solution and an increase in the amount of organic carbon and temperature lead to the mobilization of heavy and rare earth metals from the tailings.
Collapse
|
74
|
Miler M. Airborne particles in city bus: concentrations, sources and simulated pulmonary solubility. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2757-2780. [PMID: 33179202 DOI: 10.1007/s10653-020-00770-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
PM10 and PM2.5 concentrations in Ljubljana city bus were monitored during entire shift, and individual particles were morphologically and chemically characterised in order to determine PM concentration variability, particle sources, solubility in simulated pulmonary environment and effects on human health. PM measurements revealed high mean PM10 (82.8 μg/m3) and PM2.5 (47 μg/m3), which were highest and most variable during rush hours with fluid traffic and lowest during traffic jams with standing vehicles. Individual particle analysis showed that airborne particles were dominated by metal-bearing phases, particularly small-sized (Cr,Mn,Zn)-bearing Fe-oxyhydroxides and Al-/Fe-Al-oxides, large (Fe,Cr,Ni)- and (Cu,Zn,Ni)-alloys, and small-sized Sb-sulphide and Ba-sulphate. Non-metallic phases were represented by (Ca,Mg)-carbonates, Al-silicates, Na-chloride and Ca-sulphate. Comparison with possible source materials (vehicle exhaust emissions, brake disc dust and road sediment) showed that primary sources of these metal-bearing phases were wear of brake discs, brake pads and tyres, and also wear of engine components and catalytic converters. Most non-metallic phases originated from resuspension of road sediment, containing road sanding materials, but also from emissions of burned fuel and lubricating oil (Ca-sulphate). Assessment of effects on human health indicated that mean PM concentrations, which significantly exceeded daily limit values, increased mortality (by 2-3%) and morbidity (by 7-8%) risk for bus drivers. Simplified PHREEQC calculations of airborne metal-bearing phase solubility in aqueous solutions simulating pulmonary environment showed that metallic Fe, Ba-sulphate, Sb-sulphide and Al-oxide, partly also Cu-bearing metal alloys, were soluble under reducing and oxidising conditions, but released metals were removed from solution by precipitation of stable secondary metal-bearing phases.
Collapse
Affiliation(s)
- Miloš Miler
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia.
| |
Collapse
|
75
|
Pini L, Giordani J, Concoreggi C, Zanardini E, Pini A, Perger E, Bargagli E, Di Bona D, Ciarfaglia M, Tantucci C. Effects of short-term exposure to particulate matter on emergency department admission and hospitalization for asthma exacerbations in Brescia district. J Asthma 2021; 59:1290-1297. [PMID: 33980121 DOI: 10.1080/02770903.2021.1929310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Rising pollution plays a crucial role in worsening several respiratory diseases. Particulate Matter (PM)-induced asthma exacerbations are one of the most dangerous events. OBJECTIVES To assess the correlation between progressive particulate matter short-term exposure and asthma exacerbations, we investigated the role of PM levels on Emergency Department (ED) admissions and hospitalizations for these events in Brescia, an important industrial city located in northern Italy with high yearly levels of air pollution. METHODS We analyzed 1050 clinical records of ED admissions for suspected asthma exacerbation, starting from January 2014 to December 2017. Daily PM levels were collected from the Environmental Protection Regional Agency. We performed a time-series analysis using a Poisson regression model with single and multiple day-lag. Results were expressed as Relative Risk (RR) and Excess of Relative Risk (ERR) of severe asthma exacerbation over a 10 µg/m3 increase in PM10 and PM2.5 concentration. RESULTS We selected and focused our analysis on 543 admissions for indisputable asthma exacerbation in ED and hospital. The time-series study showed an increase of the RR (CI95%) for asthma exacerbation-related ED admissions of 1.24 with an ERR of 24.2% for PM2.5 at lag0-1 (p < 0.05). We also estimated for PM2.5 a RR (CI95%) of 1.12 with an ERR of 12.5% at lag0-5 (p ≤ 0.05). Again, for PM2.5, an increase of the RR (CI95%) for asthma exacerbation-related hospitalizations of 1.31 with an ERR of 30.7% at lag0-1 (p < 0.05) has been documented. These findings were confirmed and even reinforced considering only the population living in the city. CONCLUSIONS Short-term PM exposure, especially for PM2.5, plays a critical role in inducing asthma exacerbation events leading to ED admission or hospitalization.
Collapse
Affiliation(s)
- Laura Pini
- Respiratory Medicine Unit, ASST - Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carlo Concoreggi
- Emergency Department, ASST - Spedali Civili di Brescia, Brescia, Italy
| | - Elena Zanardini
- Post-Graduate School of Public Health, University of Brescia, Brescia, Italy
| | - Alessandro Pini
- Departement de épidemiologie d'Intervention et Formation, Epicentre, Paris, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, School and Chair of Allergology and Clinical Immunology, University of Bari, Bari, Italy
| | - Manuela Ciarfaglia
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Tantucci
- Respiratory Medicine Unit, ASST - Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
76
|
Real ÁD, Santurtún A, Teresa Zarrabeitia M. Epigenetic related changes on air quality. ENVIRONMENTAL RESEARCH 2021; 197:111155. [PMID: 33891958 DOI: 10.1016/j.envres.2021.111155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The exposure to airborne particulate matter (PM) increases the risk of developing human diseases. Epigenetic mechanisms have been related to environmental exposures and human diseases. The present review is focused on current available studies, which show the relationship between epigenetic marks, exposure to air pollution and human's health. Air contaminants involved in epigenetic changes have been related to different specific mechanisms (DNA methylation, post-translational histone modifications and non-coding RNA transcripts), which are described in separate sections. Several studies describe how these epigenetic mechanisms are influenced by environmental factors including air pollution. This interaction between PM and epigenetic factors results in an altered profile of these marks, in both, globally and locus specific. Following this connection, specific epigenetic marks can be used as biomarkers, as well as, to find new therapeutic targets. For this purpose, some significant characteristics have been highlighted, such as, the spatiotemporal specificity of these marks, the relevance of the collected tissue and the specific changes stability. Air pollution has been related to a higher mortality rate due to non-accidental deaths. This exposure to particulate matter induces changes to the epigenome, which are increasing the susceptibility of human diseases. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PM exposure must be performed to find new targets and disease biomarkers.
Collapse
Affiliation(s)
- Álvaro Del Real
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain.
| | - Ana Santurtún
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - M Teresa Zarrabeitia
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
77
|
Okedere OO, Elehinafe FB, Oyelami S, Ayeni AO. Drivers of anthropogenic air emissions in Nigeria - A review. Heliyon 2021; 7:e06398. [PMID: 33732932 PMCID: PMC7938250 DOI: 10.1016/j.heliyon.2021.e06398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022] Open
Abstract
This study presents a review of sources and atmospheric levels of anthropogenic air emissions in Nigeria with a view to reviewing the existence or otherwise of national coordination aimed at mitigating the continued increase. According to individual researcher's reports, the atmospheric loading of anthropogenic air pollutants is currently on an alarming increase in Nigeria. Greater concerns are premised on the inadequacy existing emission inventories, continuous assessment, political will and development of policy plans for effective mitigation of these pollutants. The identified key drivers of these emissions include gas flaring, petroleum product refining, thermal plants for electricity generation, transportation, manufacturing sector, land use changes, proliferation of small and medium enterprises, medical wastes incineration, municipal waste disposal, domestic cooking, bush burning and agricultural activities such as land cultivation and animal rearing. Having identified the key sources of anthropogenic air emissions and established the rise in their atmospheric levels through aggregation of literature reports, this study calls for a review of energy policy, adoption of best practices in the management air emissions and solid wastes as well as agriculture and land use pattern which appear to be the rallying points of all identified sources of emission. The study concluded that the adoption of cleaner energy policies and initiatives in energy generation and usage as against pursuit of thermal plants and heavy dependence on fossil fuels will assist to ameliorate the atmospheric loadings of these pollutants.
Collapse
Affiliation(s)
- Oyetunji O Okedere
- Department of Chemical Engineering, Faculty of Engineering and Environmental Sciences, Osun State University, Nigeria
| | - Francis B Elehinafe
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Seun Oyelami
- Department of Mechanical Engineering, Faculty of Engineering and Environmental Sciences, Osun State University, Nigeria
| | - Augustine O Ayeni
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
78
|
Nikolopoulos D, Alam A, Petraki E, Papoutsidakis M, Yannakopoulos P, Moustris KP. Stochastic and Self-Organisation Patterns in a 17-Year PM 10 Time Series in Athens, Greece. ENTROPY 2021; 23:e23030307. [PMID: 33807725 PMCID: PMC7999766 DOI: 10.3390/e23030307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
This paper utilises statistical and entropy methods for the investigation of a 17-year PM10 time series recorded from five stations in Athens, Greece, in order to delineate existing stochastic and self-organisation trends. Stochastic patterns are analysed via lumping and sliding, in windows of various lengths. Decreasing trends are found between Windows 1 and 3500-4000, for all stations. Self-organisation is studied through Boltzmann and Tsallis entropy via sliding and symbolic dynamics in selected parts. Several values are below -2 (Boltzmann entropy) and 1.18 (Tsallis entropy) over the Boltzmann constant. A published method is utilised to locate areas for which the PM10 system is out of stochastic behaviour and, simultaneously, exhibits critical self-organised tendencies. Sixty-six two-month windows are found for various dates. From these, nine are common to at least three different stations. Combining previous publications, two areas are non-stochastic and exhibit, simultaneously, fractal, long-memory and self-organisation patterns through a combination of 15 different fractal and SOC analysis techniques. In these areas, block-entropy (range 0.650-2.924) is significantly lower compared to the remaining areas of non-stochastic but self-organisation trends. It is the first time to utilise entropy analysis for PM10 series and, importantly, in combination with results from previously published fractal methods.
Collapse
Affiliation(s)
- Dimitrios Nikolopoulos
- Department of Industrial Design and Production Engineering, University of West Attica, GR-12244 Aigaleo, Greece;
- Correspondence: ; Tel.: +30-5381388
| | - Aftab Alam
- Centre for Earthquake Studies, National Centre for Physics, Islamabad 44000, Pakistan;
| | - Ermioni Petraki
- Department of Informatics and Computer Engineering, University of West Attica, GR-12233 Aigaleo, Greece; (E.P.); (P.Y.)
| | - Michail Papoutsidakis
- Department of Industrial Design and Production Engineering, University of West Attica, GR-12244 Aigaleo, Greece;
| | - Panayiotis Yannakopoulos
- Department of Informatics and Computer Engineering, University of West Attica, GR-12233 Aigaleo, Greece; (E.P.); (P.Y.)
| | - Konstantinos P. Moustris
- Department of Mechanical Engineering, University of West Attica, Petrou Ralli & Thivon 250, GR-12244 Aigaleo, Greece;
| |
Collapse
|
79
|
Yaroslavov AA, Efimova AA, Krasnikov EA, Trosheva KS, Popov AS, Melik-Nubarov NS, Krivtsov GG. Chitosan-based multi-liposomal complexes: Synthesis, biodegradability and cytotoxicity. Int J Biol Macromol 2021; 177:455-462. [PMID: 33636261 DOI: 10.1016/j.ijbiomac.2021.02.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
Anionic liposomes were electrostatically adsorbed onto the surface of cationic chitosan particles cross-linked by sulfate anions, forming multi-liposomal containers (MLCs) for encapsulation and delivery of bioactive substances. An increase in molecular mass of chitosan from 30 to 300 kDa results in a size increase of chitosan particles, from 200 to 400 nm. Being saturated by liposomes, chitosan particles give MLCs of 320-540 nm. Each chitosan particle carries between 60 and 200 liposomes. The proteolytic complex Morikrase, a mixture of enzymes with various specificities, induces degradation of MLCs down to particles of size 10-15 nm; the higher the molecular mass of chitosan, the slower the enzyme-induced MLCs' degradation. pH variation within 5.5-7 and cholesterol incorporation into the liposomal membrane both have a minor effect on the rate of MLCs' biodegradation. Both the MLCs and the products of their biodegradation show low cytotoxicity. These results are of interest for constructing biodegradable capacious carriers of bioactive substances.
Collapse
Affiliation(s)
- A A Yaroslavov
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - A A Efimova
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - E A Krasnikov
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - K S Trosheva
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - A S Popov
- Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - G G Krivtsov
- Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| |
Collapse
|
80
|
Pini L, Giordani J, Gardini G, Concoreggi C, Pini A, Perger E, Vizzardi E, Di Bona D, Cappelli C, Ciarfaglia M, Tantucci C. Emergency department admission and hospitalization for COPD exacerbation and particulate matter short-term exposure in Brescia, a highly polluted town in northern Italy. Respir Med 2021; 179:106334. [PMID: 33640663 DOI: 10.1016/j.rmed.2021.106334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Short-term exposure to high Particulate Matter (PM) concentrations worsens several respiratory conditions. OBJECTIVES We evaluated the relationship between short-term exposure to Particulate Matter and fine Particulate Matter (PM10 - PM2.5) and Emergency Department (ED) admissions and hospitalizations for COPD exacerbation observed at the University Hospital, Spedali Civili of Brescia, a city with some of the highest yearly levels of air pollution in Italy. METHODS We collected data from patients admitted to the ED with a COPD exacerbation diagnosis, starting from January 2014 to January 2016. Daily PM levels were collected from the Environmental Protection Regional Agency (ARPA). We performed a time-series analysis using the Poisson regression model with single and multiple day-lag. Results were expressed as Relative Risk (RR) and Excess of Relative Risk (ER) for COPD exacerbation-related ED admissions and hospitalizations, over a 10μg/m3 increase in PM concentration. RESULTS We collected data from 431 COPD patients. Both PM10 and PM2.5 were significantly associated with the risk of COPD exacerbation-related ED admission and hospitalization. Each increase of 10μg/m3 of PM10 and PM2.5 corresponded respectively to a RR for ED admissions of 1.06 and 1.08 at lag0-1; 1.06 and 1.09 at lag0-5 (p < 0.05). Similar results for COPD Exacerbation-related hospitalizations were found, with a RR of 1.07 and 1.10 at lag0-1 and 1.07 and 1.11 at lag0-5 for each increase of 10μg/m3 PM10 and PM2.5, respectively. CONCLUSIONS Our findings show that in a highly polluted city of Northern Italy, short-term increase in exposure to PM10-PM2.5 is associated with a higher risk of ED admission and hospitalization due to COPD exacerbation with a greater incidence during the winter season.
Collapse
Affiliation(s)
- Laura Pini
- Respiratory Medicine Unit, Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giulia Gardini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carlo Concoreggi
- Emergency Department, ASST - Spedali Civili di Brescia, Brescia, Italy
| | - Alessandro Pini
- Epicentre, Departement de épidemiologie D'Intervention et Formation, Paris, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, School and Chair of Allergology and Clinical Immunology, University of Bari, Italy
| | - Carlo Cappelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Ciarfaglia
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Tantucci
- Respiratory Medicine Unit, Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
81
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
82
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
83
|
Circadian Deregulation as Possible New Player in Pollution-Induced Tissue Damage. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms are 24-h oscillations driven by a hypothalamic master oscillator that entrains peripheral clocks in almost all cells, tissues and organs. Circadian misalignment, triggered by industrialization and modern lifestyles, has been linked to several pathological conditions, with possible impairment of the quality or even the very existence of life. Living organisms are continuously exposed to air pollutants, and among them, ozone or particulate matters (PMs) are considered to be among the most toxic to human health. In particular, exposure to environmental stressors may result not only in pulmonary and cardiovascular diseases, but, as it has been demonstrated in the last two decades, the skin can also be affected by pollution. In this context, we hypothesize that chronodistruption can exacerbate cell vulnerability to exogenous damaging agents, and we suggest a possible common mechanism of action in deregulation of the homeostasis of the pulmonary, cardiovascular and cutaneous tissues and in its involvement in the development of pathological conditions.
Collapse
|
84
|
Wu N, Lu B, Chen J, Li X. Size distributions of particle-generated hydroxyl radical (·OH) in surrogate lung fluid (SLF) solution and their potential sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115582. [PMID: 33017744 DOI: 10.1016/j.envpol.2020.115582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/03/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Although it is known that increases in ambient particulate matter (PM) levels are associated with elevated occurrence of adverse health outcomes, the understanding of the mechanisms of PM-related health effects is limited by our knowledge of how particle size and composition are altered subsequent to inhalation through respiratory-deposited processing. Here we present a particle-generated hydroxyl radical (·OH) study of the size-resolved particles as particles are inhaled in the human respiratory tract (RT), and we show that accumulation-mode particles are significant factors (71-75%) in ·OH generation of lung-deposited particles using Multiple-Path Particle Dosimetry (MPPD) model. The ability of PM to catalyze ·OH generation is mainly related to transition metals, particularly towards the upper regions of the RT (75%), and to quinones deeper in the lung (42-46%). Identification of this generation ability induced by chemical composition has shown that four potential sources (biomass burning, incomplete combustion, mobile & industry, and mineral dust) are responsible for ·OH generation. With ·OH-forming ability after PM inhalation implicated as the first step towards revealing the subsequent toxic processes, this work draws a connection between the detailed ·OH chemistry occurring on size-resolved particles and a possible toxicological mechanism based on chemical composition and sources.
Collapse
Affiliation(s)
- Na Wu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China
| | - Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China
| | - Jianmin Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200032, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
85
|
Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42390-42404. [PMID: 32870429 DOI: 10.1007/s11356-020-10574-w] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is composed of microscopic particles that contain a mixture of chemicals and biological elements that can be harmful to human health. The aerodynamic diameter of PM facilitates their deposition when inhaled. For instance, coarse PM having a diameter of < 10 μm is deposited mainly in the large conducting airways, but PM of < 2.5 μm can cross the alveolar-capillary barrier, traveling to other organs within the body. Epidemiological studies have shown the association between PM exposure and risk of disease, namely those of the respiratory system such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD). However, cardiovascular and neurological diseases have also been reported, including hypertension, atherosclerosis, acute myocardial infarction, stroke, loss of cognitive function, anxiety, and Parkinson's and Alzheimer's diseases. Inflammation is a common hallmark in the pathogenesis of many of these diseases associated with exposure to a variety of air pollutants, including PM. This review focuses on the main effects of PM on human health, with an emphasis on the role of inflammation.
Collapse
Affiliation(s)
- Rubén D Arias-Pérez
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Natalia A Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana M Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Jhon Fredy Narvaez
- Grupo de Investigaciones Ingeniar, Facultad de Ingenierías, Corporación Universitaria Remington, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| |
Collapse
|
86
|
Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. Air Pollution and Dementia: A Systematic Review. J Alzheimers Dis 2020; 70:S145-S163. [PMID: 30775976 PMCID: PMC6700631 DOI: 10.3233/jad-180631] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Both air pollution and dementia are current and growing global issues. There are plausible links between exposure to specific air pollutants and dementia. Objective: To systematically review the evidence base with respect to the relationship between air pollution and later cognitive decline and dementia. Methods: Medline, Embase, and PsychINFO® were searched from their inception to September 2018, for publications reporting on longitudinal studies of exposure to air pollution and incident dementia or cognitive decline in adults. Studies reporting on exposure to tobacco smoke including passive smoking or on occupational exposure to pollutants were excluded. Using standard Cochrane methodology, two readers identified relevant abstracts, read full text publications, and extracted data into structured tables from relevant papers, as defined by inclusion and exclusion criteria. Papers were also assessed for validity. CRD42018094299 Results: From 3,720 records, 13 papers were found to be relevant, with studies from the USA, Canada, Taiwan, Sweden, and the UK. Study follow-up ranged from one to 15 years. Pollutants examined included particulate matter ≤2.5 μ (PM2.5), nitrogen dioxide (NO2), nitrous oxides (NOx), carbon monoxide (CO), and ozone. Studies varied in their methodology, population selection, assessment of exposure to pollution, and method of cognitive testing. Greater exposure to PM2.5, NO2/NOx, and CO were all associated with increased risk of dementia. The evidence for air pollutant exposure and cognitive decline was more equivocal. Conclusion: Evidence is emerging that greater exposure to airborne pollutants is associated with increased risk of dementia.
Collapse
Affiliation(s)
- Ruth Peters
- University of New South Wales, Australia.,Neuroscience Research Australia, Australia
| | - Nicole Ee
- Neuroscience Research Australia, Australia
| | - Jean Peters
- School for Health and Related Research, University of Sheffield, UK
| | - Andrew Booth
- School for Health and Related Research, University of Sheffield, UK
| | - Ian Mudway
- MRC-PHE Centre for Environment and Health, NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, London, UK
| | - Kaarin J Anstey
- University of New South Wales, Australia.,Neuroscience Research Australia, Australia
| |
Collapse
|
87
|
Jun MS, Kwack MH, Kim MK, Kim JC, Sung YK. Particulate Matters Induce Apoptosis in Human Hair Follicular Keratinocytes. Ann Dermatol 2020; 32:388-394. [PMID: 33911773 PMCID: PMC7992589 DOI: 10.5021/ad.2020.32.5.388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Background Particulate matters (PM) comprise a heterogeneous mixture of particles suspended in air. A recent study found that urban PMs may penetrate into hair follicles via transfollicular and transdermal routes in dorsal skin. Objective To investigate the effects of PM on ex vivo cultured human scalp hair follicles and hair follicular keratinocytes in vitro. Methods TUNEL staining was employed to check cells undergoing apoptosis in cultured hair follicles after PM treatment. MTT assay was employed to check cell viability after PM treatment. Quantitative real-time PCR analysis was employed to quantitate the expression of inflammatory genes, matrix metalloproteinases (MMPs), and Duox1. Inflammatory cytokine levels were measured by ELISA after PM treatment. The level of reactive oxygen species (ROS) production was measured using a chemical fluorescent probe by a fluorescence plate reader. Results Abundant TUNEL-positive cells were observed in the keratinocyte region of hair including the epidermis, sebaceous gland, outer root sheath (ORS), inner root sheath (IRS), and bulb region. The viability of follicular cells, including the ORS, was found to be decreased upon PM exposure. mRNA expression and protein levels of inflammatory response genes and MMPs were upregulated in a dose-dependent manner by PM treatment. ROS levels were also increased by PM. Conclusion These data strongly suggest that penetrated PMs from air pollution may cause apoptotic cell death to follicular keratinocytes by increased production of ROS and inflammatory cytokines, which could impair hair growth.
Collapse
Affiliation(s)
- Mee Sook Jun
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
88
|
Huang L, Mao F, Zang L, Zhang Y, Zhang Y, Zhang T. Estimation of hourly PM 1 concentration in China and its application in population exposure analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115720. [PMID: 33508630 DOI: 10.1016/j.envpol.2020.115720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
Particulate pollution is closely related to public health. PM1 (particles with an aerodynamic size not larger than 1 μm) is much more harmful than particles with larger sizes because it goes deeper into the body and hence arouses social concern. However, the sparse and unevenly distributed ground-based observations limit the understanding of spatio-temporal distributions of PM1 in China. In this study, hourly PM1 concentrations in central and eastern China were retrieved based on a random forest model using hourly aerosol optical depth (AOD) from Himawari-8, meteorological and geographic information as inputs. Here the spatiotemporal autocorrelation of PM1 was also considered in the model. Experimental results indicate that although the performance of the proposed model shows diurnal, seasonal and spatial variations, it is relatively better than others, with a determination coefficient (R2) of 0.83 calculated based on the 10-fold cross validation method. Geographical map implies that PM1 pollution level in Beijing-Tianjin-Hebei is much higher than in other regions, with the mean value of ∼55 μg/m3. Based on the exposure analysis, we found about 75% of the population lives in an environment with PM1 higher than 35 μg/m3 in the whole study area. The retrieval dataset in this study is of great significance for further exploring the impact of PM1 on public health.
Collapse
Affiliation(s)
- Li Huang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
| | - Feiyue Mao
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
| | - Lin Zang
- Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, 430079, China.
| | - Yunquan Zhang
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yi Zhang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
| | - Taixin Zhang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
89
|
Paital B, Agrawal PK. Air pollution by NO 2 and PM 2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:25-42. [PMID: 32982622 PMCID: PMC7499935 DOI: 10.1007/s10311-020-01091-w] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/05/2020] [Indexed: 05/08/2023]
Abstract
Many major cities that witnessed heavy air pollution by nitrogen dioxide (NO2) and particulate matter (PM) have experienced a high rate of infection and severity of the coronavirus disease pandemic (COVID-19). This phenomenon could be explained by the overexpression of the angiotensin converting enzyme 2 (ACE-2) on epithelial cell surfaces of the respiratory tract. Indeed, ACE-2 is a receptor for coronaviruses including the severe acute respiratory syndrome coronavirus 1 and 2 (SARS-CoV), and ACE-2 is overexpressed under chronic exposure to air pollution such as NO2 and PM2.5. In this review, we explain that ACE-2 acts as the sole receptor for the attachment of the SARS-CoV-2 via its spike protein. The fact that respiratory and vascular epithelial cells express ACE-2 has been previously observed during the 2003 epidemic of the SARS-CoV-1 in China, and during the 2012 Middle East respiratory syndrome in Saudi Arabia. High ACE-2 expression in respiratory epithelial cells under air pollution explains the positive correlation between the severity in COVID-19 patients and elevated air pollution, notably high NO2 and PM2.5 levels. Specific areas in India, China, Italy, Russia, Chile and Qatar that experience heavy air pollution also show high rates of COVID-19 infection and severity. Overall, we demonstrate a link between NO2 emissions, PM2.5 levels, ACE-2 expression and COVID-19 infection severity. Therefore, air pollution should be reduced in places where confirmed cases of COVID-19 are unexpectedly high.
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, Odisha University of Agriculture and Technology, College of Basic Science and Humanities, Bhubaneswar, 751003 India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar, 751003 India
| |
Collapse
|
90
|
Shao X, Cheng H, Zhou J, Zhang J, Zhu Y, Yang C, Di Narzo A, Yu J, Shen Y, Li Y, Xu S, Zhang Z, Chen J, Cheng J, Hao K. Prenatal exposure to ambient air multi-pollutants significantly impairs intrauterine fetal development trajectory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110726. [PMID: 32480160 PMCID: PMC7363555 DOI: 10.1016/j.ecoenv.2020.110726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Impaired in utero fetal growth trajectory may have long term health consequences of the newborns and increase risk of adulthood metabolic diseases. Prenatal exposure to air pollution has been linked to fetal development restriction; however, the impact of exposure to ambient air pollutants on the entire course of intrauterine fetal development has not been comprehensively investigated. METHODS During 2015-2018, two cohorts of mother-infant dyads (N = 678 and 227) were recruited in Shanghai China, from which three categories of data were systematically collected: (1) daily exposure to six air pollutants during pregnancy, (2) fetal biometry in the 2nd (gestational week 24, [GW24]) and 3rd trimester (GW36), and (3) neonatal outcomes at birth. We investigated the impact of prenatal exposure to air pollutant mixture on the trajectory of fetal development during the course of gestation, adjusting for a broad set of potential confounds. RESULTS Prenatal exposure to PM2.5, PM10, SO2 and O3 significantly reduced fetal biometry at GW24, where SO2 had the most potent effect. For every 10 μg/m3 increment increase of daily SO2 exposure during the 1st trimester shortened femur length by 2.20 mm (p = 6.7E-21) translating to 5.3% reduction from the average of the study cohort. Prenatal air pollution exposure also decreased fetal biometry at GW36 with attenuated effect size. Comparing to the lowest exposed quartile, fetus in the highest exposed quartile had 6.3% (p = 3.5E-5) and 2.1% (p = 2.4E-3) lower estimated intrauterine weight in GW24 and GW36, respectively; however, no difference in birth weight was observed, indicating a rapid catch-up growth in the 3rd trimester. CONCLUSIONS To our knowledge, for the first time, we demonstrated the impact of prenatal exposure to ambient air pollutants on the course of intrauterine fetal development. The altered growth trajectory and rapid catch-up growth in associated with high prenatal exposure may lead to long-term predisposition for adulthood metabolic disorders.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chun Yang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Ecology and Environment, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Ecology and Environment, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jiajing Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
91
|
Open questions on the chemical composition of airborne particles. Commun Chem 2020; 3:108. [PMID: 36703388 PMCID: PMC9814933 DOI: 10.1038/s42004-020-00347-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 01/29/2023] Open
|
92
|
Urban particulate matter regulates tight junction proteins by inducing oxidative stress via the Akt signal pathway in human nasal epithelial cells. Toxicol Lett 2020; 333:33-41. [PMID: 32687961 DOI: 10.1016/j.toxlet.2020.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
Abstract
Recent studies have revealed that increased reactive oxidative stress (ROS) induced by particulate matter (PM) affects tight junction (TJ) functions; however, the molecular mechanisms underlying this effect have not been evaluated fully. Cultured human epithelial cells obtained from inferior turbinate tissues were exposed to an urban PM (UPM) standard reference material (SRM 1648a). Intracellular ROS level and expression of proinflammatory cytokines and TJ proteins were examined. Expression level of phosphorylated (p)-Akt, p38, p65 were compared between exposed and unexposed cells. Cells were pretreated with the ROS scavenger N-acetylcysteine (NAC) or Akt inhibitor MK-2206 before exposure to determine whether the changes in cellular ROS and TJ protein expression could be reversed. Exposure to UPM significantly increased ROS levels and inflammatory cytokine expression levels, and decreased expression of TJ proteins zonula occludins (ZO)-1, occludin, claudin-1, and E-cadherin. UPM exposure increased p-Akt, p-p38, and p65 expression levels, and NAC pretreatment reversed these effects. Akt inhibition decreased UPM-induced ROS formation and p38 and p65 protein phosphorylation, and restored the decreased ZO-1 and E-cadherin expression. Akt inhibition and ROS scavenging may provide targets for maintaining epithelial integrity by restoring decreased TJ protein expression during exposure to UPM.
Collapse
|
93
|
Ihantola T, Di Bucchianico S, Happo M, Ihalainen M, Uski O, Bauer S, Kuuspalo K, Sippula O, Tissari J, Oeder S, Hartikainen A, Rönkkö TJ, Martikainen MV, Huttunen K, Vartiainen P, Suhonen H, Kortelainen M, Lamberg H, Leskinen A, Sklorz M, Michalke B, Dilger M, Weiss C, Dittmar G, Beckers J, Irmler M, Buters J, Candeias J, Czech H, Yli-Pirilä P, Abbaszade G, Jakobi G, Orasche J, Schnelle-Kreis J, Kanashova T, Karg E, Streibel T, Passig J, Hakkarainen H, Jokiniemi J, Zimmermann R, Hirvonen MR, Jalava PI. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Part Fibre Toxicol 2020; 17:27. [PMID: 32539833 PMCID: PMC7296712 DOI: 10.1186/s12989-020-00355-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJ− 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.
Collapse
Affiliation(s)
- Tuukka Ihantola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Mikko Happo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Ramboll Finland, P.O.Box 25 Itsehallintokuja 3, FI-02601, Espoo, Finland
| | - Mika Ihalainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Oskari Uski
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kari Kuuspalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Present address: Savonia University of applied sciences, Microkatu 1, FI-70210, Kuopio, Finland
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jarkko Tissari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Anni Hartikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Teemu J Rönkkö
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Kati Huttunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Petra Vartiainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Suhonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Miika Kortelainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Lamberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ari Leskinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Finnish Meteorological Institute, Yliopistonranta 1 F, FI-70210, Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Marco Dilger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Gunnar Dittmar
- Luxembourg institute of health, 1A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Johannes Beckers
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Technical University of Munich, Chair of Experimental Genetics, D-85350, Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jeroen Buters
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Joana Candeias
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Hendryk Czech
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Pasi Yli-Pirilä
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Tamara Kanashova
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125, Berlin, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Johannes Passig
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Henri Hakkarainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| |
Collapse
|
94
|
Markowicz KM, Chiliński MT. Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2617. [PMID: 32375350 PMCID: PMC7249179 DOI: 10.3390/s20092617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
The aerosol scattering coefficient and Ångström exponent (AE) are important parameters in the understanding of aerosol optical properties and aerosol direct effect. These parameters are usually measured by a nephelometer network which is under-represented geographically; however, a rapid growth of air-pollution monitoring, using low-cost particle sensors, may extend observation networks. This paper presents the results of co-located measurements of aerosol optical properties, such as the aerosol scattering coefficient and the scattering AE, using low-cost sensors and using a scientific-grade polar Aurora 4000 nephelometer. A high Pearson correlation coefficient (0.94-0.96) between the low-cost particulate matter (PM) mass concentration and the aerosol scattering coefficient was found. For the PM10 mass concentration, the aerosol scattering coefficient relation is linear for the Dfrobot SEN0177 sensor and non-linear for the Alphasense OPC-N2 device. After regression analyses, both low-cost instruments provided the aerosol scattering coefficient with a similar mean square error difference (RMSE) of about 20 Mm-1, which corresponds to about 27% of the mean aerosol scattering coefficient. The relative uncertainty is independent of the pollution level. In addition, the ratio of aerosol number concentration between different bins showed a significant statistical (95% of confidence level) correlation with the scattering AE. For the SEN0177, the ratio of the particle number in bin 1 (radius of 0.15-0.25 µm) to bin 4 (radius of 1.25-2.5 µm) was a linear function of the scattering AE, with a Pearson correlation coefficient of 0.74. In the case of OPC-N2, the best correlation (r = 0.66) was found for the ratio between bin 1 (radius of 0.19-0.27 µm) and bin 2 (radius of 0.27-0.39 µm). Comparisons of an estimated scattering AE from a low-cost sensor with Aurora 4000 are given with the RMSE of 0.23-0.24, which corresponds to 16-19%. In addition, a three-year (2016-2019) observation by SEN0177 indicates that this sensor can be used to determine an annual cycle as well as a short-term variability.
Collapse
Affiliation(s)
- Krzysztof M. Markowicz
- Institute of Geophysics, Faculty of Physics, University of Warsaw, Pastuera 5, 02093 Warsaw, Poland
| | - Michał T. Chiliński
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland;
| |
Collapse
|
95
|
Liu Y, Qian X, Zhang H, Wang L, Zou C, Cui Y. Preparing micro/nano-fibrous filters for effective PM 2.5 under low filtration resistance. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
96
|
Personal Exposure Estimates via Portable and Wireless Sensing and Reporting of Particulate Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030843. [PMID: 32013139 PMCID: PMC7037995 DOI: 10.3390/ijerph17030843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022]
Abstract
Low-cost, portable particle sensors (n = 3) were designed, constructed, and used to monitor human exposure to particle pollution at various locations and times in Lubbock, TX. The air sensors consisted of a Sharp GP2Y1010AU0F dust sensor interfaced to an Arduino Uno R3, and a FONA808 3G communications module. The Arduino Uno was used to receive the signal from calibrated dust sensors to provide a concentration (µg/m3) of suspended particulate matter and coordinate wireless transmission of data via the 3G cellular network. Prior to use for monitoring, dust sensors were calibrated against a reference aerosol monitor (RAM-1) operating independently. Sodium chloride particles were generated inside of a 3.6 m3 mixing chamber while the RAM-1 and each dust sensor recorded signals and calibration was achieved for each dust sensor independently of others by direct comparison with the RAM-1 reading. In an effort to improve the quality of the data stream, the effect of averaging replicate individual pulses of the Sharp sensor when analyzing zero air has been studied. Averaging data points exponentially reduces standard deviation for all sensors with n < 2000 averages but averaging produced diminishing returns after approx. 2000 averages. The sensors exhibited standard deviations for replicate measurements of 3-6 µg/m3 and corresponding 3 detection limits of 9-18 µg/m3 when 2000 pulses of the dust sensor LED were averaged over an approx. 2 minute data collection/transmission cycle. To demonstrate portable monitoring, concentration values from the dust sensors were sent wirelessly in real time to a ThingSpeak channel, while tracking the sensor's latitude and longitude using an on-board Global Positioning System (GPS) sensor. Outdoor and indoor air quality measurements were made at different places and times while human volunteers carried sensors. The measurements indicated walking by restaurants and cooking at home increased the exposure to particulate matter. The construction of the dust sensors and data collected from this research enhance the current research by describing an open-source concept and providing initial measurements. In principle, sensors can be massively multiplexed and used to generate real-time maps of particulate matter around a given location.
Collapse
|
97
|
Cavieres MF, Leiva V, Marchant C, Rojas F. A Methodology for Data-Driven Decision-Making in the Monitoring of Particulate Matter Environmental Contamination in Santiago of Chile. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 250:45-67. [PMID: 32318823 DOI: 10.1007/398_2020_41] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric pollution derives mainly from anthropogenic activities that use combustion and may lead to adverse effects in exposed populations. It is generally accepted that air contamination causes cardiovascular and pulmonary morbidity in addition to increased mortality after exposure, but other epidemiological associations have also been described, including cancer as well as reproductive and immunological toxicity. Thus the concentration of chemicals in the air must be controlled. We propose that monitoring of air quality may be achieved by employing data analytics to generate information within the context of data-driven decision making to prevent and/or adequately alert the population about possible critical episodes of air contamination. In this paper, we propose a methodology for monitoring particulate matter pollution in Santiago of Chile which is based on bivariate control charts with heavy-tailed asymmetric distributions. This methodology is useful for monitoring environmental risk when the particulate matter concentrations follow bivariate Birnbaum-Saunders or Birnbaum-Saunders-t-Student distributions. A case study with real particulate matter pollution from Santiago is provided, which shows that the methodology is suitable to alert early episodes of extreme air pollution. The results are in agreement with the critical episodes reported with the current model used by the Chilean health authority.
Collapse
Affiliation(s)
| | - Víctor Leiva
- School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carolina Marchant
- Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Fernando Rojas
- Faculty of Pharmacy, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
98
|
Zhang Z, Zeng Y, Zheng N, Luo L, Xiao H, Xiao H. Fossil fuel-related emissions were the major source of NH 3 pollution in urban cities of northern China in the autumn of 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113428. [PMID: 31706780 DOI: 10.1016/j.envpol.2019.113428] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/25/2023]
Abstract
As the most important gas-phase alkaline species, atmospheric ammonia (NH3) contributes considerably to the formation and development of fine-mode particles (PM2.5), which affect air quality and environmental health. Recent satellite-based observations suggest that the North China Plain is the largest agricultural NH3 emission source in China. However, our isotopic approach shows that the surface NH3 in the intraregional urban environment of Beijing-Tianjin-Shijiazhuang is contributed primarily by combustion-related processes (i.e., coal combustion, NH3 slip, and vehicle exhaust). Specifically, the Batch fractionation model was used to describe the partitioning of gaseous NH3 into particles and to trace the near-ground atmospheric NH3 sources. With the development of haze pollution, the dynamics of δ15N-NH4+ were generally consistent with the fractionation model. The simulated initial δ15N-NH3 values ranged from -22.6‰ to -2.1‰, suggesting the dominance of combustion-related sources for urban NH3. These emission sources contributed significantly (92% on hazy days and 67% on clean days) to the total ambient NH3 in urban cities, as indicated by a Bayesian mixing model. Based on the Batch fractionation model, we concluded the following: 1) δ15N-NH4+ can be used to model the evolution of fine-mode aerosols and 2) combustion-related sources dominate the near-ground atmospheric NH3 in urban cities. These findings highlight the need for regulatory controls on gaseous NH3 emissions transported from local and surrounding industrial sources.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Nengjian Zheng
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Li Luo
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Hongwei Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Huayun Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
99
|
Hajipour S, Farbood Y, Gharib-Naseri MK, Goudarzi G, Rashno M, Maleki H, Bakhtiari N, Nesari A, Khoshnam SE, Dianat M, Sarkaki B, Sarkaki A. Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain inflammation and oxidative stress in rats. Life Sci 2019; 242:117210. [PMID: 31874166 DOI: 10.1016/j.lfs.2019.117210] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Exposure of healthy subjects to ambient airborne dusty particulate matter (PM) causes brain dysfunction. This study aimed to investigate the effect of sub-chronic inhalation of ambient PM in a designed special chamber to create factual dust storm (DS) conditions on spatial cognition, hippocampal long-term potentiation (LTP), inflammatory cytokines, and oxidative stress in the brain tissue. METHODS Adult male Wistar rats (250-300 g) were randomly divided into four groups: Sham (clean air, the concentration of dusty PM was <150 μg/m3), DS1 (200-500 μg/m3), DS2 (500-2000 μg/m3) and DS3 (2000-8000 μg/m3). Experimental rats were exposed to clean air or different sizes and concentrations of dust PM storm for four consecutive weeks (exposure was during 1-4, 8-11, 15-16 and 20-23 days, 30 min, twice daily) in a real-ambient dust exposure chamber. Subsequently, cognitive performance, hippocampal LTP, blood-brain barrier (BBB) permeability and brain edema of the animals evaluated. As well as, inflammatory cytokines and oxidative stress indexes in the brain tissue measured using ELISA assays. RESULTS Exposing to dust PM impaired spatial memory (p < 0.001), hippocampal LTP (p < 0.001). These disturbances were in line with the severe damage to respiratory system followed by disruption of BBB integrity (p < 0.001), increased brain edema (p < 0.001), inflammatory cytokines (p < 0.001) excretion and oxidative stress (p < 0.001) in brain tissue. CONCLUSIONS Our study showed that exposure to ambient dust PM increased brain edema and BBB permeability, induced memory impairment and hippocampal LTP deficiency by increasing the inflammatory responses and oxidative stress in the brain of the rats.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases (APRD) Research Center, Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Medicine Faculty, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heidar Maleki
- Air Pollution and Respiratory Diseases (APRD) Research Center, Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Engineer, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeiny Hospital Research and Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Nesari
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behjat Sarkaki
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Iran National Science Foundation (INSF), Science Deputy of Presidency, Islamic Republic of Iran, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
100
|
Ouyang X, Xia M, Shen X, Zhan Y. Pollution characteristics of 15 gas- and particle-phase phthalates in indoor and outdoor air in Hangzhou. J Environ Sci (China) 2019; 86:107-119. [PMID: 31787175 DOI: 10.1016/j.jes.2019.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/10/2023]
Abstract
Phthalate esters (PAEs), typical pollutants widely used as plasticizers, are ubiquitous in various indoor and outdoor environments. PAEs exist in both gas and particle phases, posing risks to human health. In the present study, we chose four typical kinds of indoor and outdoor environments with the longest average human residence times to assess the human exposure in Hangzhou, including newly decorated residences, ordinary residences, offices and outdoor air. In order to analyze the pollution levels and characteristics of 15 gas- and particle-phase PAEs in indoor and outdoor environments, air and particulate samples were collected simultaneously. The total PAEs concentrations in the four types of environments were 25,396, 25,466.8, 15,388.8 and 3616.2 ng/m3, respectively. DEHP and DEP were the most abundant, and DMPP was at the lowest level. Distinct variations in the distributions of indoor/outdoor, gas/particle-phase and different molecular weights of PAEs were observed, showing that indoor environments were the main sources of PAEs pollution. While most PAEs tended to exsit in indoor sites and gas-phase, the high-molecular-weight chemicals tended to exist in the particle-phase and were mainly found in PM2.5. PAEs were more likely adsorbed by small particles, especially for the indoor environments. There existed a good correlation between the particle matter concentrations and the PAEs levels. In addition, neither temperature nor humidity had obvious effects on the distributions of the PAEs concentrations.
Collapse
Affiliation(s)
- Xingzi Ouyang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meng Xia
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueyou Shen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Yu Zhan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|