51
|
Kondakova OA, Nikitin NA, Trifonova EA, Atabekov JG, Karpova OV. Rotavirus Vaccines: New Strategies and Approaches. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0096392517040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Nayak MK, De P, Manna B, Dutta S, Bhadra UK, Chawla-Sarkar M. Species A rotaviruses isolated from hospitalized patients over 5 years of age in Kolkata, India, in 2012/13. Arch Virol 2017; 163:745-750. [PMID: 29248967 DOI: 10.1007/s00705-017-3670-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/20/2017] [Indexed: 01/16/2023]
Abstract
In hospital-based diarrhoeal disease surveillance at Infectious Diseases & Beliaghata-General Hospital (May-2012 to April-2013), Kolkata, India, stool samples were collected from patients < 5 years (n = 830) and > 5 years of age (n = 728) hospitalized with diarrhea. Group-A rotavirus (GARV) was identified by ELISA followed by multiplex RT-PCR. In children < 5 years of age, 53.4% of the samples were positive for GARV. In patients > 5 years to 90 years old, only 6.04% (n = 44) tested positive for GARV. G2P[4] strains (n = 16 [36.36%]) were the most prevalent, followed by G9P[4] strains (n = 13 [29.54%]), while P[4]-(n = 30 [68.18%]) was most prevalent among the P genotypes. The GARV strains G2, G9 and P[4] detected in adults clustered together in the phylogenetic tree with the GARV strains identified in children (< 5 years) during the same period. Rotavirus positivity was high among female patients (75%), suggesting that caregivers (mother/grandmother/older-siblings) may get infected through young children or may act as carriers for transmission.
Collapse
Affiliation(s)
- Mukti Kant Nayak
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India. .,Department of Zoology, B. B. Autonomous College, Chandikhol, Jajpur, Odisha, 755044, India.
| | - Papiya De
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Byomkesh Manna
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Uchhal Kumar Bhadra
- Infectious Diseases and Beliaghata General Hospital, 57-Dr SC Banerjee Road, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
53
|
Miño S, Adúriz M, Barrandeguy M, Parreño V. Molecular Characterization of Equine Rotavirus Group A Detected in Argentinean Foals During 2009–2014. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
54
|
Molecular characterization of a human G20P[28] rotavirus a strain with multiple genes related to bat rotaviruses. INFECTION GENETICS AND EVOLUTION 2017; 57:166-170. [PMID: 29187315 DOI: 10.1016/j.meegid.2017.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
Group A rotaviruses are the major cause of severe gastroenteritis in the young of mammals and birds. This report describes characterization of an unusual G20P[28] rotavirus strain detected in a 24month old child from Suriname. Genomic sequence analyses revealed that the genotype constellation of the Suriname strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] was G20-P[28]-I13-R13-C13-M12-A23-N13-T15-E20-H15. Genes VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5 were recently assigned novel genotypes by the Rotavirus Classification Working Group (RCWG). Three of the 11 gene segments (VP7, VP4, VP6) were similar to cognate gene sequences of bat-like human rotavirus strain Ecu534 from Ecuador and the VP7, NSP3 and NSP5 gene segments of strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] were found to be closely related to gene sequences of bat rotavirus strain 3081/BRA detected in Brazil. Although distantly related, the VP1 gene of the study strain and bat strain BatLi09 detected in Cameroon in 2014 are monophyletic. The NSP1 gene was found to be most closely related to human strain QUI-35-F5 from Brazil. These findings suggest that strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] represents a zoonotic infection from a bat host.
Collapse
|
55
|
Gupta S, Krishnan A, Sharma S, Kumar P, Aneja S, Ray P. Changing pattern of prevalence, genetic diversity, and mixed infections of viruses associated with acute gastroenteritis in pediatric patients in New Delhi, India. J Med Virol 2017; 90:469-476. [PMID: 29064572 DOI: 10.1002/jmv.24980] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/07/2017] [Indexed: 11/06/2022]
Abstract
There are very few studies that have assessed multiple viral agents causing Acute-Gastroenteritis (AGE) in India. The present study compared the changing pattern of prevalence and genetic diversity of five enteric viruses associated with acute-diarrhea in Delhi children within a gap of 5 years. Fecal samples were collected from diarrheal children (<4 years) during two winter seasons: year 2009-2010 (n = 59) and year 2014-2015 (n = 85). Samples were individually tested for rotavirus-A, norovirus, astrovirus, adenovirus, and sapovirus using EIA/RT-PCR and genetically characterized by phylogenetic analysis. Rotavirus was the most predominant (54.9%) virus followed by norovirus (25.7%), astrovirus (8.3%), and adenovirus (4.9%) with rare detection of sapovirus (0.7%). While detection rate increased for both rotavirus (49.2-58.8%) and astrovirus (5.1-10.6%), norovirus detection rate decreased (30.5-22.4%) from 2009 to 2015. During the same time period, adenovirus detection remained low (4.7-5.1%). Interestingly, mixed infections increased from 8.5% to 16.5% after 5 years. G1P[8] rotavirus strain was found most predominant (40%). Both type-1 and 8 astroviruses were detected. Single sapovirus detected was of genotype GII.1. Both GI (GI.5, GI.3) and GII (GII.1, GII.4, GII.7, GII.21, GII.13) genogroups of norovirus were detected. Of particular significance was the first detection of other NoV genotypes (besides GII.4 and GI.3) in Delhi. This is also the first report of NoV GI.5 from India. A change in prevalence pattern and increased diversity from 2009 to 2015 emphasizes the need for continued enteric virus surveillance to help measure the impact of new diarrhea vaccine(s) introduced in India.
Collapse
Affiliation(s)
- Shipra Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Anuja Krishnan
- Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Sumit Sharma
- Department of Molecular Virology, Linkoping University, Linkoping, Sweden
| | - Praveen Kumar
- Department of Pediatrics, Kalawati Saran Children's Hospital, New Delhi, India
| | - Satinder Aneja
- Department of Pediatrics, Kalawati Saran Children's Hospital, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
56
|
Liu Y, Xu S, Woodruff AL, Xia M, Tan M, Kennedy MA, Jiang X. Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution. PLoS Pathog 2017; 13:e1006707. [PMID: 29136651 PMCID: PMC5705156 DOI: 10.1371/journal.ppat.1006707] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/28/2017] [Accepted: 10/22/2017] [Indexed: 12/26/2022] Open
Abstract
Recognition of specific cell surface glycans, mediated by the VP8* domain of the spike protein VP4, is the essential first step in rotavirus (RV) infection. Due to lack of direct structural information of virus-ligand interactions, the molecular basis of ligand-controlled host ranges of the major human RVs (P[8] and P[4]) in P[II] genogroup remains unknown. Here, through characterization of a minor P[II] RV (P[19]) that can infect both animals (pigs) and humans, we made an important advance to fill this knowledge gap by solving the crystal structures of the P[19] VP8* in complex with its ligands. Our data showed that P[19] RVs use a novel binding site that differs from the known ones of other genotypes/genogroups. This binding site is capable of interacting with two types of glycans, the mucin core and type 1 histo-blood group antigens (HBGAs) with a common GlcNAc as the central binding saccharide. The binding site is apparently shared by other P[II] RVs and possibly two genotypes (P[10] and P[12]) in P[I] as shown by their highly conserved GlcNAc-interacting residues. These data provide strong evidence of evolutionary connections among these human and animal RVs, pointing to a common ancestor in P[I] with a possible animal host origin. While the binding properties to GlcNAc-containing saccharides are maintained, changes in binding to additional residues, such as those in the polymorphic type 1 HBGAs may occur in the course of RV evolution, explaining the complex P[II] genogroup that mainly causes diseases in humans but also in some animals.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Shenyuan Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States of America
| | - Andrew L. Woodruff
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States of America
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States of America
- * E-mail: (MAK); (XJ)
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- * E-mail: (MAK); (XJ)
| |
Collapse
|
57
|
Chan-It W, Chanta C. Emergence of G9P[8] rotaviruses in children with acute gastroenteritis in Thailand, 2015-2016. J Med Virol 2017; 90:477-484. [DOI: 10.1002/jmv.24985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Wisoot Chan-It
- Biology Program; Faculty of Science and Technology; Pibulsongkram Rajabhat University; Phitsanulok Thailand
| | - Chulapong Chanta
- Pediatric Unit; Chiangrai Prachanukroh Hospital; Chiang Rai Thailand
| |
Collapse
|
58
|
Rotavirus A strains obtained from children with acute gastroenteritis in Mozambique, 2012-2013: G and P genotypes and phylogenetic analysis of VP7 and partial VP4 genes. Arch Virol 2017; 163:153-165. [PMID: 29052059 PMCID: PMC5756281 DOI: 10.1007/s00705-017-3575-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 01/13/2023]
Abstract
In Mozambique rotavirus (RV) was shown to be the greatest cause of acute diarrhoea in infants from 0 to 11 months, and in 2015, national rotavirus vaccination was introduced. As with other developing countries, there is very limited active strain characterisation. Rotavirus positive clinical specimens, collected between 2012 and 2013, have now provided information on the genotypes circulating in southern Mozambique prior to vaccine introduction. Genotypes G2 (32.4%), G12 (28.0%), P[4] (41.4%) and P[6] (22.9%) (n = 157) strains were commonly detected with G2P[4] (42.3%) RVs being predominant, specifically during 2013. Phylogenetic evaluation of the VP7 and VP8* encoding genes showed, for the majority of the Mozambican strains, that they clustered with other African strains based on genotype. RVA/Human-wt/MOZ/0153/2013/G2P[4], RVA/Human-wt/MOZ/0308/2012/G2P[4] and RVA/Human-wt/MOZ/0288/2012/G12P[8] formed separate clusters from the other Mozambican strains with similar genotypes, suggesting possible reassortment. Amino acid substitutions in selected epitope regions also supported phylogenetic clustering. As expected, the VP7 and VP8* genes from the Mozambican strains differed from both the RotaTeq® (SC2-9) G2P[5] and Rotarix® (A41CB052A) G1P[8] genes. This study provides information on the genetic diversity of rotavirus strains prior to vaccine introduction and generates baseline data for future monitoring of any changes in rotavirus strains in response to vaccine pressure.
Collapse
|
59
|
Durmaz R, Bakkaloglu Z, Unaldi O, Karagoz A, Korukluoglu G, Kalaycioglu AT, Acar S, Kilic S. Prevalence and diversity of rotavirus A genotypes cirulating in Turkey during a 2-year sentinel surveillance period, 2014-2016. J Med Virol 2017; 90:229-238. [PMID: 28892173 DOI: 10.1002/jmv.24945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022]
Abstract
Human rotavirus A (RVA) is the main etiological agent of watery diarrhea among children under 5 years of age worldwide. The aims of this study were to investigate the prevalence and diversity of RVA genotypes circulating in Turkey during a 2-year sentinel surveillance study. A total of 1639 rotavirus antigen-positive stool samples were obtained from children younger than 5 years of age hospitalized with acute gastroenteritis. Rotavirus G and P genotypes were determined by reverse transcription polymerase chain reaction (RT-PCR) with consensus primers for the VP7 and VP4 genes, followed by semi-nested type-specific multiplex PCR. Rotavirus RNA was detected in 1396 (85.3%) of the samples tested. The highest detection rate (38.2%) was obtained among children in the 0-12 months age group, followed by children in the 13-24 months age group (36.2%). The most prevalent genotype was G1P[8] (24.6%) followed by G3P[8] (19.6%), G9P[8] (12.2%), G2P[4] (9.5%), G2P[8] (6.5%), and G4P[8] (4.8%). The proportions of uncommon and mixed genotypes were 21.5% and 1.14%, respectively. The large number of genotypes observed, including common, uncommon, and mixed types, indicates a high heterogeneity of RVA strains circulating in Turkey. The current study also exhibited dramatic fluctuations on the prevalences of the common genotypes, with increases in G3 and G1 and decreases in G9 and G2 from 2014-2016.
Collapse
Affiliation(s)
- Riza Durmaz
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey.,Department of Medical Microbiology, Faculty of Medicine Yildirim Beyazit University, Ankara, Turkey
| | - Zekiye Bakkaloglu
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Ozlem Unaldi
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Alper Karagoz
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Gulay Korukluoglu
- Virology Reference Central Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Atila T Kalaycioglu
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Sumeyra Acar
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Selcuk Kilic
- Microbiology Reference Laboratories, Public Health Agency of Turkey, Ankara, Turkey
| | | |
Collapse
|
60
|
Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P, Baliraine FN, Desselberger U, Iturriza-Gomara M. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017. [PMID: 28640820 PMCID: PMC5480867 DOI: 10.1371/journal.pone.0178855] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Khuzwayo C. Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Prossy Namuwulya
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Frederick N. Baliraine
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
61
|
Cañon Jones H, Cortes H, Gaggero A, Levican J, Castillo-Ruiz M, Schlotterbeck T, San Martín R. High genetic diversity of species A rotaviruses detected in swine farms in Chile. J Gen Virol 2017; 98:539-547. [PMID: 27902360 DOI: 10.1099/jgv.0.000662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus A is one of the main causative agents of diarrhoea in lactating and weaned pigs worldwide. Its impact in the swine industry is well documented. However, in Chile, the current epidemiological status of rotavirus on porcine farms is unknown. This study evaluated the current epidemiologic status of rotavirus A infection in Chile using on-farm detection techniques, electrophoretic confirmation, genotyping and phylogenetic clustering by analysis of partial sequences of VP4 and VP7 genes. Rotavirus A was detected in four out of five farms with an overall prevalence of 17.7 % in diarrhoeic pigs. The average age of diarrhoea onset was at 32±6.2 days, corresponding to weaning pigs, and rotavirus was not detected in lactating piglets. Molecular characterization indicated that genotypes G5, G3, P[7] and P[13] are currently the most widely represented on these pigs farms. The phylogenetic analysis showed that farms shared similar G types (VP7), which might denote a common origin. Meanwhile, [P] types (VP4) showed considerable genetic diversity, and this might represent a high rate of reassortment of this genetic segment in rotavirus circulating in the researched area. These findings demonstrate the importance of considering both the geographical and production factors to accurately determine rotavirus prevalence status at the national level, and have relevant implications in determining effective strategies for rotavirus infection control on porcine farms.
Collapse
Affiliation(s)
- Hernán Cañon Jones
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Americas, Sede Providencia, Manuel Montt 948, Santiago, Chile.,Saponin Research Center, Limache 3405, Oficina 57, Viña del Mar, Chile
| | - Hernan Cortes
- Desert King Chile S. A., Limache 3405, Oficina 57, Viña del Mar, Chile
| | - Aldo Gaggero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Santiago, Chile
| | - Jorge Levican
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Santiago, Chile
| | | | - Trinidad Schlotterbeck
- Saponin Research Center, Limache 3405, Oficina 57, Viña del Mar, Chile.,Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingenieria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo San Martín
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingenieria, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
62
|
Dung TTN, Duy PT, Sessions OM, Sangumathi UK, Phat VV, Tam PTT, To NTN, Phuc TM, Hong Chau TT, Chau NNM, Minh NN, Thwaites GE, Rabaa MA, Baker S. A universal genome sequencing method for rotavirus A from human fecal samples which identifies segment reassortment and multi-genotype mixed infection. BMC Genomics 2017; 18:324. [PMID: 28438140 PMCID: PMC5404283 DOI: 10.1186/s12864-017-3714-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Genomic characterization of rotavirus (RoV) has not been adopted at large-scale due to the complexity of obtaining sequences for all 11 segments, particularly when feces are used as starting material. Methods To overcome these limitations, we developed a novel RoV capture and genome sequencing method combining commercial enzyme immunoassay plates and a set of routinely used reagents. Results Our approach had a 100% success rate, producing >90% genome coverage for diverse RoV present in fecal samples (Ct < 30). Conclusions This method provides a novel, reproducible and comparatively simple approach for genomic RoV characterization and could be scaled-up for use in global RoV surveillance systems. Trial registration (prospectively registered) Current Controlled Trials ISRCTN88101063. Date of registration: 14/06/2012 Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3714-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tran Thi Ngoc Dung
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Pham Thanh Duy
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | | | | | - Voong Vinh Phat
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Pham Thi Thanh Tam
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Nguyen To
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Tran My Phuc
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Tran Thi Hong Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Nguyen Ngoc Minh Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | | | - Guy E Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Oxford University, Oxford, UK
| | - Maia A Rabaa
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine, Oxford University, Oxford, UK.
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University, Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Oxford University, Oxford, UK.,The London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
63
|
Felix-Valenzuela L, Cooley-García DP, Cano-Rangel MA, Durazo-Arvizu MDLA, Mata-Haro V. Predominance of G9P[4] Rotavirus from Children with Acute Gastroenteritis in Northwestern Mexico. Intervirology 2017; 59:228-233. [DOI: 10.1159/000464132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022] Open
|
64
|
Vizzi E, Piñeros OA, Oropeza MD, Naranjo L, Suárez JA, Fernández R, Zambrano JL, Celis A, Liprandi F. Human rotavirus strains circulating in Venezuela after vaccine introduction: predominance of G2P[4] and reemergence of G1P[8]. Virol J 2017; 14:58. [PMID: 28320411 PMCID: PMC5359893 DOI: 10.1186/s12985-017-0721-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Rotavirus (RV) is the most common cause of severe childhood diarrhea worldwide. Despite Venezuela was among the first developing countries to introduce RV vaccines into their national immunization schedules, RV is still contributing to the burden of diarrhea. Concerns exist about the selective pressure that RV vaccines could exert on the predominant types and/or emergence of new strains. RESULTS To assess the impact of RV vaccines on the genotype distribution 1 year after the vaccination was implemented, a total of 912 fecal specimens, collected from children with acute gastroenteritis in Caracas from February 2007 to April 2008, were screened, of which 169 (18.5%) were confirmed to be RV positive by PAGE. Rotavirus-associated diarrhea occurred all year-round, although prevailed during the coolest and driest months among unvaccinated children under 24 months old. Of 165 RV strains genotyped for G (VP7) and P (VP4) by seminested multiplex RT-PCR, 77 (46.7%) were G2P[4] and 63 (38.2%) G1P[8]. G9P[8], G3P[8] and G2P[6] were found in a lower proportion (7.3%). Remarkable was also the detection of <5% of uncommon combinations (G8P[14], G8P[4], G1P[4] and G4P[4]) and 3.6% of mixed infections. A changing pattern of G/P-type distribution was observed during the season studied, with complete predominance of G2P[4] from February to June 2007 followed by its gradual decline and the reemergence of G1P[8], predominant since January 2008. Phylogenetic analysis of VP7 and VP4 genes revealed a high similarity among G2P[4] and global strains belonging to G2-II and P[4]-V lineages. The amino acid substitution 96D → N, related with reemergence of the G2 genotype elsewhere, was observed. The G1P[8] strains from Caracas were grouped into the lineages G1-I and P[8]-III, along with geographically remote G1P[8] rotaviruses, but they were rather distant from Rotarix® vaccine and pre-vaccine strains. Unique amino acid substitutions observed on neutralization domains of the VP7 sequence from Venezuelan post-vaccine G1P[8] could have conditioned their re-emergence and a more efficient dissemination into susceptible population. CONCLUSIONS The results suggest that natural fluctuations of genotypes in combination with forces driving the genetic evolution could determine the spread of novel strains, whose long-term effect on the efficacy of available vaccines should be determined.
Collapse
Affiliation(s)
- Esmeralda Vizzi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas, 1020-A, Venezuela.
| | - Oscar A Piñeros
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas, 1020-A, Venezuela
| | - M Daniela Oropeza
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas, 1020-A, Venezuela
| | | | | | - Rixio Fernández
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas, 1020-A, Venezuela
| | - José L Zambrano
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas, 1020-A, Venezuela
| | - Argelia Celis
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas, 1020-A, Venezuela
- Universidad de Carabobo-Sede Aragua, Maracay, Edo. Aragua, Venezuela
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas, 1020-A, Venezuela
| |
Collapse
|
65
|
Rocha TG, Silva FDF, Gregori F, Alfieri AA, Buzinaro MDG, Fagliari JJ. Longitudinal study of bovine rotavirus group A in newborn calves from vaccinated and unvaccinated dairy herds. Trop Anim Health Prod 2017; 49:783-790. [PMID: 28321789 PMCID: PMC7088669 DOI: 10.1007/s11250-017-1263-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/06/2017] [Indexed: 11/06/2022]
Abstract
Reports of rotavirus excretion in calves usually result from cross-sectional studies, and in face of the conflicting results regarding protection of calves born to vaccinated dams against diarrhea, the aim of the present study was to evaluate rotavirus excretion in dairy calves born to vaccinated or unvaccinated dams, to identify the genotypes of bovine rotavirus group A (RVA) strains isolated from these animals as well as to investigate characteristics of the disease in naturally occurring circumstances throughout the first month of life. Five hundred fifty-two fecal samples were taken from 56 calves, 28 from each farm and, in the vaccinated herd, 11/281 samples (3.91%) taken from six different calves tested positive for RVA while in the unvaccinated herd, 3/271 samples (1.11%) taken from 3 different calves tested positive. The genotyping of the VP7 genes showed 91.2% nucleotide sequence identity to G6 genotype (NCDV strain), and for the VP4 gene, strains from the vaccinated herd were 96.6% related to B223 strain, while strains from the unvaccinated herd were 88% related to P[5] genotype (UK strain). Genotypes found in this study were G6P[11] in the vaccinated herd and G6P[5] in the unvaccinated herd. All calves infected with rotavirus presented an episode of diarrhea in the first month of life, and the discrepancy between the genotypes found in the commercial vaccine (G6P[1] and G10P[11]) and the rotavirus strains circulating in both vaccinated and unvaccinated herds show the importance of keeping constant surveillance in order to avoid potential causes of vaccination failure.
Collapse
Affiliation(s)
- Thaís Gomes Rocha
- Research Laboratory of the Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, CEP14884-900, Brazil. .,, Jaboticabal, SP, CEP 14870-720, Brazil.
| | - Fernanda Dornelas Florentino Silva
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo (USP), Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-900, Brazil
| | - Fábio Gregori
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo (USP), Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-900, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, P.O. Box 10.011, Londrina, PR, CEP 86057-970, Brazil
| | - Maria da Glória Buzinaro
- Department of Preventive Veterinary Medicine, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - José Jurandir Fagliari
- Research Laboratory of the Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, CEP14884-900, Brazil
| |
Collapse
|
66
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
67
|
Tatte VS, Chaphekar D, Gopalkrishna V. Full genome analysis of rotavirus G9P[8] strains identified in acute gastroenteritis cases reveals genetic diversity: Pune, western India. J Med Virol 2017; 89:1354-1363. [DOI: 10.1002/jmv.24799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/29/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Deepa Chaphekar
- Enteric Viruses Group; National Institute of Virology; Pune India
| | | |
Collapse
|
68
|
Luchs A, Timenetsky MDCST. Group A rotavirus gastroenteritis: post-vaccine era, genotypes and zoonotic transmission. EINSTEIN-SAO PAULO 2017; 14:278-87. [PMID: 27462899 PMCID: PMC4943361 DOI: 10.1590/s1679-45082016rb3582] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
This article provides a review of immunity, diagnosis, and clinical aspects of rotavirus disease. It also informs about the changes in epidemiology of diarrheal disease and genetic diversity of circulating group A rotavirus strains following the introduction of vaccines. Group A rotavirus is the major pathogen causing gastroenteritis in animals. Its segmented RNA genome can lead to the emergence of new or unusual strains in human populations via interspecies transmission and/or reassortment events.
Collapse
|
69
|
Moussa A, Fredj MBH, BenHamida-Rebaï M, Fodha I, Boujaafar N, Trabelsi A. Phylogenetic analysis of partial VP7 gene of the emerging human group A rotavirus G12 strains circulating in Tunisia. J Med Microbiol 2017; 66:112-118. [DOI: 10.1099/jmm.0.000420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Amal Moussa
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Mouna Ben Hadj Fredj
- Faculty of Sciences and Techniques, University of Kairouan, 9100 Kairouan, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Meriam BenHamida-Rebaï
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Imene Fodha
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Noureddine Boujaafar
- Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Abdelhalim Trabelsi
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| |
Collapse
|
70
|
Wang Y, Zhang J, Liu P. Clinical and molecular epidemiologic trends reveal the important role of rotavirus in adult infectious gastroenteritis, in Shanghai, China. INFECTION GENETICS AND EVOLUTION 2017; 47:143-154. [DOI: 10.1016/j.meegid.2016.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
|
71
|
Yodmeeklin A, Khamrin P, Chuchaona W, Kumthip K, Kongkaew A, Vachirachewin R, Okitsu S, Ushijima H, Maneekarn N. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus. INFECTION GENETICS AND EVOLUTION 2016; 47:99-108. [PMID: 27894992 DOI: 10.1016/j.meegid.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand.
Collapse
Affiliation(s)
- Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Watchaporn Chuchaona
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Animal House Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchaya Vachirachewin
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
72
|
Damanka S, Lartey B, Agbemabiese C, Dennis FE, Adiku T, Nyarko K, Ofori M, Armah GE. Detection of the first G6P[14] human rotavirus strain in an infant with diarrhoea in Ghana. Virol J 2016; 13:183. [PMID: 27832798 PMCID: PMC5103419 DOI: 10.1186/s12985-016-0643-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Rotaviruses with G6P[14] specificity are mostly isolated in cattle and have been established as a rare cause of gastroenteritis in humans. This study reports the first detection of G6P[14] rotavirus strain in Ghana from the stool of an infant during a hospital-based rotavirus surveillance study in 2010. METHODS Viral RNA was extracted and rotavirus VP7 and VP4 genes amplified by one step RT-PCR using gene-specific primers. The DNA was purified, sequenced and genotypes determined using BLAST and RotaC v2.0. Phylogenetic tree was constructed using maximum likelihood method in MEGA v6.06 software and statistically supported by bootstrapping with 1000 replicates. Phylogenetic distances were calculated using the Kimura-2 parameter model. RESULTS The study strain, GHA-M0084/2010 was characterised as G6P[14]. The VP7 gene of the Ghanaian strain clustered in G6 lineage-III together with artiodactyl and human rotavirus (HRV) strains. It exhibited the highest nucleotide (88.1 %) and amino acid (86.9 %) sequence identity with Belgian HRV strain, B10925. The VP8* fragment of the VP4 gene was closely related to HRV strains detected in France, Italy, Spain and Belgium. It exhibited the strongest nucleotide sequence identity (87.9 %) with HRV strains, PA169 and PR/1300 (Italy) and the strongest amino acid sequence identity (89.3 %) with HRV strain R2775/FRA/07 (France). CONCLUSION The study reports the first detection of G6P[14] HRV strain in an infant in Ghana. The detection of G6P[14], an unusual strain pre-vaccine introduction in Ghana, suggests a potential compromise of vaccine effectiveness and indicates the necessity for continuous surveillance in the post vaccine era.
Collapse
Affiliation(s)
- Susan Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Belinda Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Chantal Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Francis E Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Theophilus Adiku
- Department of Microbiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kofi Nyarko
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Michael Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - George E Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
73
|
Tacharoenmuang R, Komoto S, Guntapong R, Ide T, Sinchai P, Upachai S, Yoshikawa T, Tharmaphornpilas P, Sangkitporn S, Taniguchi K. Full Genome Characterization of Novel DS-1-Like G8P[8] Rotavirus Strains that Have Emerged in Thailand: Reassortment of Bovine and Human Rotavirus Gene Segments in Emerging DS-1-Like Intergenogroup Reassortant Strains. PLoS One 2016; 11:e0165826. [PMID: 27802339 PMCID: PMC5089778 DOI: 10.1371/journal.pone.0165826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013-2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014-2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.
Collapse
Affiliation(s)
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Phakapun Sinchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
74
|
Jeong S, Than VT, Lim I, Kim W. Differentiation of RotaTeq ® vaccine strains from wild-type strains using NSP3 gene in reverse transcription polymerase chain reaction assay. J Virol Methods 2016; 237:72-78. [DOI: 10.1016/j.jviromet.2016.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/23/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
75
|
Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes. J Virol 2016; 90:9983-9996. [PMID: 27558427 PMCID: PMC5068545 DOI: 10.1128/jvi.01494-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/24/2022] Open
Abstract
The P[19] genotype belongs to the P[II] genogroup of group A rotaviruses (RVs). However, unlike the other P[II] RVs, which mainly infect humans, P[19] RVs commonly infect animals (pigs), making P[19] unique for the study of RV diversity and host ranges. Through in vitro binding assays and saturation transfer difference (STD) nuclear magnetic resonance (NMR), we found that P[19] could bind mucin cores 2, 4, and 6, as well as type 1 histo-blood group antigens (HBGAs). The common sequences of these glycans serve as minimal binding units, while additional residues, such as the A, B, H, and Lewis epitopes of the type 1 HBGAs, can further define the binding outcomes and therefore likely the host ranges for P[19] RVs. This complex binding property of P[19] is shared with the other three P[II] RVs (P[4], P[6], and P[8]) in that all of them recognized the type 1 HBGA precursor, although P[4] and P[8], but not P[6], also bind to mucin cores. Moreover, while essential for P[4] and P[8] binding, the addition of the Lewis epitope blocked P[6] and P[19] binding to type 1 HBGAs. Chemical-shift NMR of P[19] VP8* identified a ligand binding interface that has shifted away from the known RV P-genotype binding sites but is conserved among all P[II] RVs and two P[I] RVs (P[10] and P[12]), suggesting an evolutionary connection among these human and animal RVs. Taken together, these data are important for hypotheses on potential mechanisms for RV diversity, host ranges, and cross-species transmission. IMPORTANCE In this study, we found that our P[19] strain and other P[II] RVs recognize mucin cores and the type 1 HBGA precursors as the minimal functional units and that additional saccharides adjacent to these units can alter binding outcomes and thereby possibly host ranges. These data may help to explain why some P[II] RVs, such as P[6] and P[19], commonly infect animals but rarely humans, while others, such as the P[4] and P[8] RVs, mainly infect humans and are predominant over other P genotypes. Elucidation of the molecular bases for strain-specific host ranges and cross-species transmission of these human and animal RVs is important to understand RV epidemiology and disease burden, which may impact development of control and prevention strategies against RV gastroenteritis.
Collapse
|
76
|
Whole genome sequencing of a rare rotavirus from archived stool sample demonstrates independent zoonotic origin of human G8P[14] strains in Hungary. Virus Res 2016; 227:96-103. [PMID: 27671785 DOI: 10.1016/j.virusres.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/21/2022]
Abstract
Genotype P[14] rotaviruses in humans are thought to be zoonotic strains originating from bovine or ovine host species. Over the past 30 years only few genotype P[14] strains were identified in Hungary totaling<0.1% of all human rotaviruses whose genotype had been determined. In this study we report the genome sequence and phylogenetic analysis of a human genotype G8P[14] strain, RVA/Human-wt/HUN/182-02/2001/G8P[14]. The whole genome constellation (G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3) of this strain was shared with another Hungarian zoonotic G8P[14] strain, RVA/Human-wt/HUN/BP1062/2004/G8P[14], although phylogenetic analyses revealed the two rotaviruses likely had different progenitors. Overall, our findings indicate that human G8P[14] rotavirus detected in Hungary in the past originated from independent zoonotic events. Further studies are needed to assess the public health risk associated with infections by various animal rotavirus strains.
Collapse
|
77
|
Nakagomi T, Do LP, Agbemabiese CA, Kaneko M, Gauchan P, Doan YH, Jere KC, Steele AD, Iturriza-Gomara M, Nakagomi O, Cunliffe NA. Whole-genome characterisation of G12P[6] rotavirus strains possessing two distinct genotype constellations co-circulating in Blantyre, Malawi, 2008. Arch Virol 2016; 162:213-226. [PMID: 27718073 DOI: 10.1007/s00705-016-3103-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Rotavirus A strains detected in diarrhoeal children commonly possess any one of the genotypes G1, G2, G3, G4, and G9, with a recent increase in G12 detection globally. G12P[6] strains possessing short RNA (DS-1-like) and long RNA (Wa-like) migration patterns accounted for 27 % of the strains circulating in Blantyre, Malawi, between 2007 and 2008. To understand how the G12P[6] strains with two distinct genetic backgrounds emerged in Malawi, we conducted whole-genome analysis of two long-RNA and two short-RNA strains. While the former had a typical Wa-like genotype constellation of G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, the latter was found to have G12-P[6]-I2-R2-C2-M1-A2-N2-T2-E2-H2: a VP3 gene mono-reassortant on the DS-1-like backbone. Phylogenetic and Bayesian Markov chain Monte Carlo analyses showed that the short-RNA G12P[6] strains were generated around 2006 by reassortment between an African Wa-like G12P[6] strain donating three genes (the VP7, VP4, and VP3 genes) and a G2P[4] strain similar to the one circulating in Thailand or the United States of America that donated the remaining eight genes. On the other hand, the long-RNA strains were generated as a result of reassortment events within Wa-like G12 and non-G12 strains commonly circulating in Africa; only the VP4 gene was from a Malawian G8P[6] strain. In conclusion, this study uncovered the evolutionary pathways through which two distinct G12P[6] strains emerged in Malawi.
Collapse
Affiliation(s)
- T Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - L P Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - C A Agbemabiese
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - M Kaneko
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - P Gauchan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Y H Doan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Virology 2, National Institute of Infectious Diseases, Tokyo, Japan
| | - K C Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - A D Steele
- Vaccines and Immunization, PATH, Seattle, WA, 98121, USA.,MRC Diarrhoeal Pathogens Research Unit, MEDUNSA, University of Limpopo, Pretoria, South Africa
| | - M Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - O Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - N A Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
78
|
Phan MVT, Anh PH, Cuong NV, Munnink BBO, van der Hoek L, My PT, Tri TN, Bryant JE, Baker S, Thwaites G, Woolhouse M, Kellam P, Rabaa MA, Cotten M. Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. Virus Evol 2016; 2:vew027. [PMID: 28748110 PMCID: PMC5522372 DOI: 10.1093/ve/vew027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coordinated and synchronous surveillance for zoonotic viruses in both human clinical cases and animal reservoirs provides an opportunity to identify interspecies virus movement. Rotavirus (RV) is an important cause of viral gastroenteritis in humans and animals. In this study, we document the RV diversity within co-located humans and animals sampled from the Mekong delta region of Vietnam using a primer-independent, agnostic, deep sequencing approach. A total of 296 stool samples (146 from diarrhoeal human patients and 150 from pigs living in the same geographical region) were directly sequenced, generating the genomic sequences of sixty human rotaviruses (all group A) and thirty-one porcine rotaviruses (thirteen group A, seven group B, six group C, and five group H). Phylogenetic analyses showed the co-circulation of multiple distinct RV group A (RVA) genotypes/strains, many of which were divergent from the strain components of licensed RVA vaccines, as well as considerable virus diversity in pigs including full genomes of rotaviruses in groups B, C, and H, none of which have been previously reported in Vietnam. Furthermore, the detection of an atypical RVA genotype constellation (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1) in a human patient and a pig from the same region provides some evidence for a zoonotic event.
Collapse
Affiliation(s)
- My V T Phan
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Bas B Oude Munnink
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phuc Tran My
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tue Ngo Tri
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,London School of Tropical Medicine and Hygiene, London, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Woolhouse
- Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK
| | - Paul Kellam
- Kymab Inc., Cambridge, UK.,Imperial College, London, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew Cotten
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
79
|
Aida S, Nahar S, Paul SK, Hossain MA, Kabir MR, Sarkar SR, Ahmed S, Ghosh S, Urushibara N, Kawaguchiya M, Aung MS, Sumi A, Kobayashi N. Whole genomic analysis of G2P[4] human Rotaviruses in Mymensingh, north-central Bangladesh. Heliyon 2016; 2:e00168. [PMID: 27722206 PMCID: PMC5047856 DOI: 10.1016/j.heliyon.2016.e00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Rotavirus A (RVA) is a dominant causative agent of acute gastroenteritis in children worldwide. G2P[4] is one of the most common genotypes among human rotavirus (HRV) strains, and has been persistently prevalent in South Asia including Bangladesh. In the present study, whole genome sequences of a total of 16 G2P[4] HRV strains (8 strains each in 2010 and 2013) detected in Mymensingh, north-central Bangladesh were determined. These strains had typical DS-1-like genotype constellation. Most of gene segments from DS-1 genogroup exhibited high level sequence identities to each other (>98%), while slight diversity was observed for VP1, VP3, and NSP4 genes. By phylogenetic analysis, individual RNA segments were classified into one (V) or two-three lineages (V–VI or V–VII). In terms of lineages (sublineages) of 11 gene segments, the 16 Bangladeshi strains could be further classified into four clades (A-D) containing 8 lineage constellations, revealing the presence of three clades (A-C) with three lineage constellations in 2010, and a single clade (D) with four constellations in 2013. Therefore, co-existence of multiple G2P[4] HRV strains with different lineage constellations, and change in clades for the study period were demonstrated. Although amino acids in the antigenic regions on VP7 and VP4 were mostly identical to those of global G2P[4] strains after 2000, VP4 of clade D RVAs in 2013 had alanine and proline at positions 88 and 114, respectively, which are novel substitutions compared with recent global G2P[4] strains. Replacement of lineage constellations associated with unique amino acid changes in the antigenic region in VP4 suggested continuous genetic evolutionary state for emerging new G2P[4] rotavirus strains in Bangladesh.
Collapse
Affiliation(s)
- Satoru Aida
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
- Corresponding author at: Satoru Aida, Department of Hygiene, Sapporo Medical University School of Medicine, S-1 W-17, Chuo-ku, Sapporo 060–8556, Japan.Department of HygieneSapporo Medical University School of MedicineSapporoJapan
| | - Samsoon Nahar
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | | | - Santana Rani Sarkar
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Salma Ahmed
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayako Sumi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
80
|
Wandera EA, Mohammad S, Komoto S, Maeno Y, Nyangao J, Ide T, Kathiiko C, Odoyo E, Tsuji T, Taniguchi K, Ichinose Y. Molecular epidemiology of rotavirus gastroenteritis in Central Kenya before vaccine introduction, 2009-2014. J Med Virol 2016; 89:809-817. [DOI: 10.1002/jmv.24691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Ernest A. Wandera
- Institute of Tropical Medicine, Center for Microbiology Research, KEMRI; KEMRI-Nagasaki University; Nairobi Kenya
| | - Shah Mohammad
- Institute of Tropical Medicine, Center for Microbiology Research, KEMRI; KEMRI-Nagasaki University; Nairobi Kenya
| | - Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine; Fujita Health University; Toyoake Japan
| | - Yoshimasa Maeno
- Department of Virology and Parasitology, School of Medicine; Fujita Health University; Toyoake Japan
| | | | - Tomihiko Ide
- Department of Virology and Parasitology, School of Medicine; Fujita Health University; Toyoake Japan
| | - Cyrus Kathiiko
- Institute of Tropical Medicine, Center for Microbiology Research, KEMRI; KEMRI-Nagasaki University; Nairobi Kenya
| | - Erick Odoyo
- Institute of Tropical Medicine, Center for Microbiology Research, KEMRI; KEMRI-Nagasaki University; Nairobi Kenya
| | - Takao Tsuji
- Department of Microbiology, School of Medicine; Fujita Health University; Toyoake Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, School of Medicine; Fujita Health University; Toyoake Japan
| | - Yoshio Ichinose
- Institute of Tropical Medicine, Center for Microbiology Research, KEMRI; KEMRI-Nagasaki University; Nairobi Kenya
| |
Collapse
|
81
|
Guntapong R, Tacharoenmuang R, Singchai P, Upachai S, Sutthiwarakom K, Komoto S, Tsuji T, Tharmaphornpilas P, Yoshikawa T, Sangkitporn S, Taniguchi K. Predominant prevalence of human rotaviruses with the G1P[8] and G8P[8] genotypes with a short RNA profile in 2013 and 2014 in Sukhothai and Phetchaboon provinces, Thailand. J Med Virol 2016; 89:615-620. [PMID: 27557434 DOI: 10.1002/jmv.24669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Of 2,754 stool specimens collected from children with acute gastroenteritis during 2013-2014 in Sukhothai and Phetchaboon provinces, Thailand, 666 (24.2%) were positive for rotavirus A (RVA) in polyacrylamide gel electrophoresis (PAGE). The G and P types of all RVA-positive specimens were determined by semi-nested RT-PCR. G1P[8] (56.5%) was most prevalent, followed by G2P[4] (22.1%). Unusual G8P[8] human RVAs (HuRVAs) were detected at a high frequency (20.0%). Interestingly, 171 of the 376 G1P[8] HuRVAs and all of the 133 G8P[8] HuRVAs showed a short RNA pattern in PAGE. Thus, it was shown that the properties of HuRVAs have been markedly unusual in recent years in Thailand. J. Med. Virol. 89:615-620, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Ratana Tacharoenmuang
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Karun Sutthiwarakom
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
82
|
Komoto S, Adah MI, Ide T, Yoshikawa T, Taniguchi K. Whole genomic analysis of human and bovine G8P[1] rotavirus strains isolated in Nigeria provides evidence for direct bovine-to-human interspecies transmission. INFECTION GENETICS AND EVOLUTION 2016; 43:424-33. [DOI: 10.1016/j.meegid.2016.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
83
|
Al-Ayed MSZ, Asaad AM, Qureshi MA, Hawan AA. Epidemiology of group A rotavirus infection after the introduction of monovalent vaccine in the National Immunization Program of Saudi Arabia. J Med Virol 2016; 89:429-434. [PMID: 27531633 DOI: 10.1002/jmv.24664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the prevalence of group A rotavirus (RVA) gastroenteritis and the distribution of the RVA genotypes as well as to determine a possible change in the age of occurrence of the RVA infection in the first 2 years after Rotarix® vaccine introduction in Saudi Arabia. This descriptive study included 850 hospitalized children <5 years of age with acute gastroenteritis (AG) between October 2013 and September 2015. Overall, 78 (9.2%) children were positive for RVA during the study period with a positivity rate ranging from 11.3% in the first year of the study to 6.8% in the second year. G1 (47.4%) was the predominant G type, followed by G2 (28.2%) and G9 (10.3%). The most common P type was P[8] (69.2%) followed by P[4] (25.6%). The decrease in the prevalence of G1P[8] from 51% to 37.1% was associated with an increase in the prevalence of G2P[4] from 21.6% to 33.3% during the 2-year study period. This study demonstrated a significant decrease in the prevalence of RVA-AG cases in the first 2-year period after vaccine introduction, especially in the age group between 1 and 12 months, and a reduction in the circulation of G1P[6]. The parallel rise and spread of G2P[4] in post-vaccination period might pose an impact to long-term vaccine efficacy. Continued surveillance studies in different Saudi regions are crucial to document the effectiveness of Rotarix® vaccine and evaluate the potential emergence of rare/novel RVA genotypes. J. Med. Virol. 89:429-434, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Mohamed Ansar Qureshi
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
84
|
Molecular Analysis of VP7 Gene of Rotavirus G1 Strains Isolated from North India. Curr Microbiol 2016; 73:781-789. [DOI: 10.1007/s00284-016-1129-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
|
85
|
Agbemabiese CA, Nakagomi T, Doan YH, Do LP, Damanka S, Armah GE, Nakagomi O. Genomic constellation and evolution of Ghanaian G2P[4] rotavirus strains from a global perspective. INFECTION GENETICS AND EVOLUTION 2016; 45:122-131. [PMID: 27569866 DOI: 10.1016/j.meegid.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/03/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Understanding of the genetic diversity and evolution of Rotavirus A (RVA) strains, a common cause of severe diarrhoea in children, needs to be based on the analysis at the whole genome level in the vaccine era. This study sequenced the whole genomes of six representative G2P[4] strains detected in Ghana from 2008 to 2013, and analysed them phylogenetically with a global collection of G2P[4] strains and African non-G2P[4] DS-1-like strains. The genotype constellation of the study strains was G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Strains from the same season were highly identical across the whole genome while strains from different seasons were more divergent from each other. The VP7, VP4, VP2, NSP1, and NSP5 genes belonged to lineage IVa; the VP6, VP1, NSP2, and NSP3 genes belonged to lineage V, and all these genes evolved in the same fashion as the global strains. In the NSP4 gene, lineages V (2008) and X (2009) were replaced by VI (2012/2013) whereas in the VP3 gene, lineage V (2008/2009) was replaced by VII (2012/2013) and these replacements coincided with the vaccine introduction period (2012). The evolutionary rate of the NSP4 gene was 1.2×10-3 substitutions/site/year and was rather comparable to that of the remaining 10 genes. The multiple NSP4 lineages were explained by intra-genotype reassortment with co-circulating African human DS-1-like strains bearing G2[6], G3P[6], G6[6] and G8. There was no explicit evidence of the contribution of animal RVA strains to the genome of the Ghanaian G2P[4] strains. In summary, this study revealed the dynamic evolution of the G2P[4] strains through intra-genotype reassortment events leading to African specific lineages such IX and X in the NSP4 gene. So far, there was no evidence of a recent direct involvement of animal RVA genes in the genome diversity of African G2P[4] strains.
Collapse
Affiliation(s)
- Chantal Ama Agbemabiese
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yen Hai Doan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susan Damanka
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Osamu Nakagomi
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
86
|
Abstract
Rotavirus, a member of the family Reoviridae, was identified as the leading etiological agent of severe gastroenteritis in infants and young children in 1973. The rotavirus genome is composed of 11 gene segments of double-stranded (ds)RNA. During the last 40 years, a large amount of basic research on rotavirus structure, genome, antigen, replication, pathogenesis, epidemiology, immune responses, and evolution has been accumulated. This article reviews the fundamental aspects of rotavirology including recent important achievements in research.
Collapse
|
87
|
de Rougemont A, Kaplon J, Fremy C, Legrand-Guillien MC, Minoui-Tran A, Payan C, Vabret A, Mendes-Martins L, Chouchane M, Maudinas R, Huet F, Dubos F, Hober D, Lazrek M, Bouquignaud C, Decoster A, Alain S, Languepin J, Gillet Y, Lina B, Mekki Y, Morfin-Sherpa F, Guigon A, Guinard J, Foulongne V, Rodiere M, Avettand-Fenoel V, Bonacorsi S, Garbarg-Chenon A, Gendrel D, Lebon P, Lorrot M, Mariani P, Meritet JF, Schnuriger A, Agius G, Beby-Defaux A, Oriot D, Colimon R, Lagathu G, Mory O, Pillet S, Pozzetto B, Stephan JL, Aho S, Pothier P. Clinical severity and molecular characteristics of circulating and emerging rotaviruses in young children attending hospital emergency departments in France. Clin Microbiol Infect 2016; 22:737.e9-737.e15. [PMID: 27287887 DOI: 10.1016/j.cmi.2016.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 11/18/2022]
Abstract
Group A rotavirus (RVA) is the leading cause of acute gastroenteritis in young children worldwide. A prospective surveillance network has been set up to investigate the virological and clinical features of RVA infections and to detect the emergence of potentially epidemic strains in France. From 2009 to 2014, RVA-positive stool samples were collected from 4800 children <5 years old attending the paediatric emergency units of 16 large hospitals. Rotaviruses were then genotyped by RT-PCR with regard to their outer capsid proteins VP4 and VP7. Genotyping of 4708 RVA showed that G1P[8] strains (62.2%) were predominant. The incidence of G9P[8] (11.5%), G3P[8] (10.4%) and G2P[4] (6.6%) strains varied considerably, whereas G4P[8] (2.7%) strains were circulating mostly locally. Of note, G12P[8] (1.6%) strains emerged during the seasons 2011-12 and 2012-13 with 4.1% and 3.0% prevalence, respectively. Overall, 40 possible zoonotic reassortants, such as G6 (33.3%) and G8 (15.4%) strains, were detected, and were mostly associated with P[6] (67.5%). Analysis of clinical records of 624 hospitalized children and severity scores from 282 of them showed no difference in clinical manifestations or severity in relation to the genotype. The relative stability of RVA genotypes currently co-circulating and the large predominance of P[8] type strains may ensure vaccine effectiveness in France. The surveillance will continue to monitor the emergence of new reassortants that might not respond to current vaccines, all the more so as all genotypes can cause severe infections in infants.
Collapse
Affiliation(s)
- A de Rougemont
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France; UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| | - J Kaplon
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France
| | - C Fremy
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France
| | | | | | - C Payan
- Centre Hospitalier Universitaire de Brest, France
| | - A Vabret
- Centre Hospitalier Universitaire de Caen, France
| | | | - M Chouchane
- Centre Hospitalier Universitaire de Dijon, France
| | - R Maudinas
- Centre Hospitalier Universitaire de Dijon, France
| | - F Huet
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, France
| | - F Dubos
- Centre Hospitalier Régional Universitaire de Lille, France
| | - D Hober
- Centre Hospitalier Régional Universitaire de Lille, France
| | - M Lazrek
- Centre Hospitalier Régional Universitaire de Lille, France
| | - C Bouquignaud
- Groupement des Hôpitaux de l'Institut Catholique de Lille, France
| | - A Decoster
- Groupement des Hôpitaux de l'Institut Catholique de Lille, France
| | - S Alain
- Centre Hospitalier Universitaire de Limoges, France
| | - J Languepin
- Centre Hospitalier Universitaire de Limoges, France
| | | | - B Lina
- Hospices Civils de Lyon, France
| | - Y Mekki
- Hospices Civils de Lyon, France
| | | | - A Guigon
- Centre Hospitalier Universitaire d'Orléans, France
| | - J Guinard
- Centre Hospitalier Universitaire d'Orléans, France
| | - V Foulongne
- Centre Hospitalier Universitaire de Montpellier, France
| | - M Rodiere
- Centre Hospitalier Universitaire de Montpellier, France
| | | | - S Bonacorsi
- Assistance Publique Hôpitaux de Paris, France
| | | | - D Gendrel
- Assistance Publique Hôpitaux de Paris, France
| | - P Lebon
- Assistance Publique Hôpitaux de Paris, France
| | - M Lorrot
- Assistance Publique Hôpitaux de Paris, France
| | - P Mariani
- Assistance Publique Hôpitaux de Paris, France
| | - J-F Meritet
- Assistance Publique Hôpitaux de Paris, France
| | | | - G Agius
- Centre Hospitalier Universitaire de Poitiers, France
| | - A Beby-Defaux
- Centre Hospitalier Universitaire de Poitiers, France
| | - D Oriot
- Centre Hospitalier Universitaire de Poitiers, France
| | - R Colimon
- Centre Hospitalier Universitaire de Rennes, France
| | - G Lagathu
- Centre Hospitalier Universitaire de Rennes, France
| | - O Mory
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - S Pillet
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - B Pozzetto
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - J-L Stephan
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - S Aho
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Dijon, France
| | - P Pothier
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France; UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| |
Collapse
|
88
|
Delogu R, Ianiro G, Morea A, Chironna M, Fiore L, Ruggeri FM. Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012. INFECTION GENETICS AND EVOLUTION 2016; 44:303-312. [PMID: 27449953 DOI: 10.1016/j.meegid.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Morea
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Franco M Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
89
|
Yodmeeklin A, Khamrin P, Chuchaona W, Saikruang W, Kongkaew A, Vachirachewin R, Kumthip K, Okitsu S, Ushijima H, Maneekarn N. Great genetic diversity of rotaviruses detected in piglets with diarrhea in Thailand. Arch Virol 2016; 161:2843-9. [PMID: 27412716 DOI: 10.1007/s00705-016-2976-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 01/07/2023]
Abstract
A total of 491 fecal specimens collected from diarrheic piglets in Thailand from January 2011 to March 2014 were screened for group A rotavirus by RT-PCR assay. The G and P genotypes of the detected rotaviruses were determined by multiplex PCR or nucleotide sequencing. Group A rotaviruses were detected in 113 out of 491 (23.0 %) fecal specimens. A wide variety of G-P genotype combinations were identified, and G4P[13] was the most prevalent genotype combination (29.2 %), followed by G4P[23] (14.1 %), G5P[23] (11.5 %), G4P[6] (9.7 %), G3P[23] (7.0 %), G5P[13] (6.1 %), G3P[13] (4.4 %), G3P[6] (2.7 %), and G5P[6] (2.7 %). In addition, the other G-P combinations were also detected at a low percentage, including G3P[19], G4P[7], G9P[19], G9P[23], G9P[7], G4P[19], and G11P[13] strains. This study indicated that group A rotaviruses are a common causes of diarrhea in piglets and a great diversity of G and P genotype combinations are circulating in piglets in Thailand.
Collapse
Affiliation(s)
- Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Watchaporn Chuchaona
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wilaiporn Saikruang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Animal House Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchaya Vachirachewin
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
90
|
da Silva MFM, Fumian TM, de Assis RMS, Fialho AM, Carvalho-Costa FA, da Silva Ribeiro de Andrade J, Leite JPG. VP7 and VP8* genetic characterization of group A rotavirus genotype G12P[8]: Emergence and spreading in the Eastern Brazilian coast in 2014. J Med Virol 2016; 89:64-70. [PMID: 27322509 DOI: 10.1002/jmv.24605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 11/07/2022]
Abstract
Group A rotavirus (RVA) genotype G12 is habitually associated with diarrhea disease (DD) in African children and recently its detection has increased worldwide. A total of 970 stool samples collected from individuals with DD in the Northeastern, Southeastern, and Southern Brazilian regions, Eastern coast, were analyzed and 321 (33%) were positive for RVA and of these, 241 (75%) genotyped as G12P[8]. The rate of RVA positivity was higher among children aged 5-10 years old (60%). All RVA infections observed in adults aged >21 years were G12P[8] (n = 27) showing that this genotype affected older age groups during the year of 2014 in Brazil. Phylogenetic analysis of VP7 and VP8* G12P[8] strains demonstrated an elevated similarity among Brazilian and G12-III prototypes strains circulating worldwide recently, suggesting that this lineage is associated with the global spread of the G12 genotype, considered as the 6th most prevalent human RVA genotype nowadays; while other G12 lineages remain sporadically detected and usually detected in association with other P genotypes. VP8* analysis revealed that Brazilian strains belong to P[8]-3 lineage, the single P[8] lineage presently detected in the country. No major nucleotide/amino acid disparities were observed among strains recovered from children and adults for VP7 and VP8* genes. These data are essential to support the surveillance studies, particularly in countries where the RVA vaccine was introduced in their National Immunization Program enabling identification of potential alterations in the epidemiological profile that can impact its efficacy in vaccination programs. J. Med. Virol. 89:64-70, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcelle Figueira Marques da Silva
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Alexandre Madi Fialho
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Filipe Anibal Carvalho-Costa
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Juliana da Silva Ribeiro de Andrade
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
91
|
Genetic variability of VP7, VP4, VP6 and NSP4 genes of common human G1P[8] rotavirus strains circulating in Italy between 2010 and 2014. Virus Res 2016; 220:117-28. [DOI: 10.1016/j.virusres.2016.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
|
92
|
Arana A, Montes M, Jere KC, Alkorta M, Iturriza-Gómara M, Cilla G. Emergence and spread of G3P[8] rotaviruses possessing an equine-like VP7 and a DS-1-like genetic backbone in the Basque Country (North of Spain), 2015. INFECTION GENETICS AND EVOLUTION 2016; 44:137-144. [PMID: 27370571 DOI: 10.1016/j.meegid.2016.06.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 11/30/2022]
Abstract
In March 2015, an atypical G3P[8] rotavirus with an equine-like VP7 gene was detected in Gipuzkoa (Basque Country, Spain) and spread contributing significantly to the seasonal epidemic. The strain was identified in fecal samples collected from 68 patients, mainly children from rural and urban settings with acute gastroenteritis, representing 14.9% of the 455 rotavirus strains genotyped between July 2014 and June 2015. Seven patients (10.3%) were hospitalized. Full genome analysis of six of these strains revealed a DS-1-like genotype constellation, G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2, and showed that most genome segments shared the highest nucleotide sequence identity with strains isolated in Japan, Thailand, Australia and the Philippines. The strains of Gipuzkoa were similar to novel G3P[8] reassortant rotaviruses with an equine-like VP7 gene and a DS-1-like genetic backbone that emerged in the Asia-Pacific Region in 2013. The study highlights the circulation of these atypical rotaviruses outside the Asia-Pacific Region of origin, and their emergence in a European Region. Due to their unusual genotype constellation, these strains pose a challenge for the rotavirus strain surveillance, since G-/P-typing, the most commonly used classification system, cannot identify this type of intergenogroup reassortants.
Collapse
Affiliation(s)
- Ainara Arana
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain
| | - Milagrosa Montes
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain
| | - Khuzwayo C Jere
- Institute of Infection & Global Health, University of Liverpool, Ronald Ross Building, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Miriam Alkorta
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain
| | - Miren Iturriza-Gómara
- Institute of Infection & Global Health, University of Liverpool, Ronald Ross Building, Liverpool, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Gustavo Cilla
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain.
| |
Collapse
|
93
|
De Grazia S, Dóró R, Bonura F, Marton S, Cascio A, Martella V, Bányai K, Giammanco GM. Complete genome analysis of contemporary G12P[8] rotaviruses reveals heterogeneity within Wa-like genomic constellation. INFECTION GENETICS AND EVOLUTION 2016; 44:85-93. [PMID: 27353490 DOI: 10.1016/j.meegid.2016.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
G12 rotaviruses are globally emergent rotaviruses causing severe childhood gastroenteritis. Little is known about the evolution and diversity of G12P[8] rotaviruses and the possible role that widespread vaccine use, globally, has had on their emergence. In Sicily, Italy, surveillance activity for rotaviruses has been conducted uninterruptedly since 1985, thus representing a unique observatory for the study of human rotaviruses in the pre- and post-vaccine era. G12 rotaviruses were first detected only in 2012 and between 2012 and 2014 they accounted for 8.7% of all rotavirus-associated infections among children, with peaks of 27.8% in 2012/2013 and 21% in 2014. We determined and analyzed the full-genome of 22 G12P[8] rotaviruses collected during the 2012-2014. Although all G12P[8] rotaviruses exhibited a typical Wa-like genotype constellation (G12P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), phylogenetic analysis allowed distinguishing either two or three (sub)lineages in each genome segment. On the basis of the segregation patterns into lineages/sublineages, 20 G12P[8] rotaviruses could be grouped into three stable major genomic sub-constellations, whilst two strains displayed unique genome architectures, likely due to ressortment with co-circulating strains. Altogether, these findings indicate that the onset and prolonged circulation of G12 rotaviruses was due to repeated introductions of different G12 rotaviruses circulating globally. Importantly, as regional rotavirus vaccination was initiated in 2012 reaching a 45% coverage in newborns in 2014, a correlation between the appearance and spread of G12 rotaviruses and the enacted vaccination program could not be drawn. Constant epidemiologic surveillance remains important to monitor the epidemiological dynamics of human rotaviruses.
Collapse
Affiliation(s)
- Simona De Grazia
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Renáta Dóró
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Floriana Bonura
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Szilvia Marton
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio Cascio
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Giovanni M Giammanco
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
94
|
Jamnikar-Ciglenecki U, Kuhar U, Sturm S, Kirbis A, Racki N, Steyer A. The first detection and whole genome characterization of the G6P[15] group A rotavirus strain from roe deer. Vet Microbiol 2016; 191:52-9. [PMID: 27374907 DOI: 10.1016/j.vetmic.2016.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/23/2023]
Abstract
Although rotaviruses have been detected in a variety of host species, there are only limited records of their occurrence in deer, where their role is unknown. In this study, group A rotavirus was identified in roe deer during a study of enteric viruses in game animals. 102 samples of intestinal content were collected from roe deer (56), wild boars (29), chamois (10), red deer (6) and mouflon (1), but only one sample from roe deer was positive. Following whole genome sequence analysis, the rotavirus strain D38/14 was characterized by next generation sequencing. The genotype constellation, comprising 11 genome segments, was G6-P[15]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Phylogenetic analysis of the VP7 genome segment showed that the D38/14 rotavirus strain is closely related to the various G6 zoonotic rotavirus strains of bovine-like origin frequently detected in humans. In the VP4 segment, this strain showed high variation compared to that in the P[15] strain found in sheep and in a goat. This finding suggests that rotaviruses from deer are similar to those in other DS-1 rotavirus groups and could constitute a source of zoonotically transmitted rotaviruses. The epidemiological status of group A rotaviruses in deer should be further investigated.
Collapse
Affiliation(s)
- Urska Jamnikar-Ciglenecki
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - Urska Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sabina Sturm
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Andrej Kirbis
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Nejc Racki
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4,1000 Ljubljana, Slovenia
| |
Collapse
|
95
|
Luchs A, Cilli A, Morillo SG, Carmona RDCC, Timenetsky MDCST. ROTAVIRUS GENOTYPES CIRCULATING IN BRAZIL, 2007-2012: IMPLICATIONS FOR THE VACCINE PROGRAM. Rev Inst Med Trop Sao Paulo 2016; 57:305-13. [PMID: 26422154 PMCID: PMC4616915 DOI: 10.1590/s0036-46652015000400006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regarding public health in Brazil, a new scenario emerged with the establishment of universal rotavirus (RV) vaccination programs. Herein, the data from the five years of surveillance (2007-2012) of G- and P-type RV strains isolated from individuals with acute gastroenteritis in Brazil are reported. A total of 6,196 fecal specimens were investigated by ELISA and RT-PCR. RVs were detected in 19.1% (1,181/6,196). The peak of RV incidence moved from June-August to September. RV was detected less frequently (19.5%) among children ≤ 5 years than in older children and adolescents (6-18 years) (40.6%). Genotype distribution showed a different profile for each year: G2P[4] strains were most prevalent during 2007-2010, G9P[8] in 2011, and G12P[8] in 2012. Mixed infections (G1+G2P[4], G2+G3P[4]+P[8], G2+G12P[8]), unusual combinations (G1P[4], G2P[6]), and rare strains (G3P[3]) were also identified throughout the study period. Widespread vaccination may alter the RV seasonal pattern. The finding of RV disease affecting older children and adolescents after vaccine implementation has been reported worldwide. G2P[4] emergence most likely follows a global trend seemingly unrelated to vaccination, and G12, apparently, is emerging in the Brazilian population. The rapidly changing RV genotype patterns detected during this study illustrate a dynamic population of co-circulating wildtype RVs in Brazil.
Collapse
|
96
|
Theuns S, Conceição-Neto N, Zeller M, Heylen E, Roukaerts IDM, Desmarets LMB, Van Ranst M, Nauwynck HJ, Matthijnssens J. Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. INFECTION GENETICS AND EVOLUTION 2016; 43:135-45. [PMID: 27184192 PMCID: PMC7172746 DOI: 10.1016/j.meegid.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
Next-generation sequencing (NGS) technologies are becoming increasingly accessible, leading to an expanded interest in the composition of the porcine enteric virome. In the present study, the fecal virome of a non-diarrheic Belgian piglet was determined. Although the virome of only a single piglet was analyzed, some interesting data were obtained, including the second complete genome of a pig group C rotavirus (RVC). This Belgian strain was only distantly related to the only other completely characterized pig RVC strain, Cowden. Its relatedness to RVC strains from other host species was also analyzed and the porcine strain found in our study was only distantly related to RVCs detected in humans and cows. The gene encoding the outer capsid protein VP7 belonged to the rare porcine G3 genotype, which might be serologically distinct from most other pig RVC strains. A putative novel RVC VP6 genotype was identified as well. A group A rotavirus strain also present in this fecal sample contained the rare pig genotype combination G11P[27], but was only partially characterized. Typical pig RVA genotypes I5, A8, and T7 were found for the viral proteins VP6, NSP1, and NSP3, respectively. Interestingly, the fecal virome of the piglet also contained an astrovirus and an enterovirus, of which the complete genomes were characterized. Results of the current study indicate that many viruses may be present simultaneously in fecal samples of non-diarrheic piglets. In this study, these viruses could not be directly associated with any disease, but still they might have had a potential subclinical impact on pig growth performance. The fast evolution of NGS will be a powerful tool for future diagnostics in veterinary practice. Its application will certainly lead to better insights into the relevance of many (sub)clinical enteric viral infections, that may have remained unnoticed using traditional diagnostic techniques. This will stimulate the development of new and durable prophylactic measures to improve pig health and production. The virome of a non-diarrheic Belgian piglet was determined. Porcine group C and A rotaviruses, and an astrovirus and enterovirus were found. The second complete genome of a pig group C rotavirus was fully characterized. The Belgian rotavirus C strain was only distantly related to pig strain Cowden. A putative novel genotype of VP6 of the RVC strains was detected.
Collapse
Affiliation(s)
- Sebastiaan Theuns
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium.
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Inge D M Roukaerts
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Lowiese M B Desmarets
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Hans J Nauwynck
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| |
Collapse
|
97
|
Okadera K, Abe M, Ito N, Mitake H, Okada K, Nakagawa K, Une Y, Tsunemitsu H, Sugiyama M. Isolation and characterization of a novel type of rotavirus species A in sugar gliders (Petaurus breviceps). J Gen Virol 2016; 97:1158-1167. [DOI: 10.1099/jgv.0.000433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kota Okadera
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Masako Abe
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Naoto Ito
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Hiromichi Mitake
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Kazuma Okada
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Kento Nakagawa
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Yumi Une
- Laboratory of Veterinary Pathology, School of Veterinary Medicine,Azabu University, 1-17-71 Fuchinobe, Kanagawa, 252-5201,Japan
| | - Hiroshi Tsunemitsu
- Dairy Hygiene Research Division, National Institute of Animal Health,4 Hitsujigaoka, Hokkaido, 062-0045,Japan
| | - Makoto Sugiyama
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| |
Collapse
|
98
|
Unusual rotavirus genotypes in humans and animals with acute diarrhoea in Northeast India. Epidemiol Infect 2016; 144:2780-9. [PMID: 27113208 DOI: 10.1017/s0950268816000807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rotavirus (RV) infection causes acute infantile diarrhoea in humans and animals and remains a major concern for vaccine development. The close proximity of humans to animals may foster cross-species infection resulting in the emergence of novel/unusual strains by genetic reassortment. In this study, we characterized 500 diarrhoeal samples for group A rotaviruses (RVA) from children (n = 290), piglets (n = 95) and calves (n = 115) in Northeast India during 2012-2013. The data showed that 142/500 (28·4%) faecal samples were positive for RVA with the highest level of infection detected in piglets (57/142, 40·1%) followed by children (51/142, 35·9%) and calves (34/142, 23·9%). Sequence-based G- and P-typing showed G1P[8] (25%) and G1P[7] (35%) were the prevailing genotypes in both humans and animals. Single cases of unusual genotypes, i.e. G9P[8], G5P[8] in humans and G1P[13], G1P[23] and G3P[7] in animals were also identified. Cluster analyses of the sequences showed regional strains were genetically closer to their homologous strains. However, human G5P[8] and porcine G1P[8] strains showed homology to heterologous hosts of their prototype strains. The subsequent global spread of unusual RV strains may result in their establishment over time, presenting challenges to future vaccine evaluation programmes. More studies on emerging genotypes are required to elucidate how RVA strains evolve post-vaccination. This study supports the need for continuous surveillance of RVA infections after detecting from diverse hosts in a common setting.
Collapse
|
99
|
Li K, Lin XD, Huang KY, Zhang B, Shi M, Guo WP, Wang MR, Wang W, Xing JG, Li MH, Hong WS, Holmes EC, Zhang YZ. Identification of novel and diverse rotaviruses in rodents and insectivores, and evidence of cross-species transmission into humans. Virology 2016; 494:168-77. [PMID: 27115729 PMCID: PMC7173014 DOI: 10.1016/j.virol.2016.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
Rotaviruses are an important cause of severe diarrheal illness in children globally. We characterized rotaviruses sampled in humans, insectivores (shrews) and rodents from urban and rural regions of Zhejiang province, China. Phylogenetic analyses revealed seven genotypic constellations of human rotaviruses with six different combinations of G and P genotypes – G3P[8] (50.06%), G9P[8] (36.16%), G1P[8] (8.92%), G2P[4] (4.63%), G3P[3] (0.12%), and G3P[9] (0.12%). In rodents and shrews sampled from the same locality we identified a novel genotype constellation (G32-P[46]-I24-R18-C17-M17-A28-N17-T19-E24-H19), a novel P genotype (P[45]), and two different AU-1-like rotaviruses associated with a G3P[3] genotype combination. Of particular note was a novel rotavirus from a human patient that was closely related to viruses sampled from rodents in the same region, indicative of a local species jump. In sum, these data are suggestive of the cross-species transmission of rodent rotaviruses into humans and for reassortment among human and animal rotaviruses. Rotaviruses are an important cause of severe diarrheal illness. Although rotaviruses are associated with a diverse range of animals, relatively little attention has been directed toward rotaviruses in rodents. However, as rodents often live in close proximity to humans and domestic animals, rodents may play an important role in the cross-species transmission of rotaviruses among animals and perhaps directly or indirectly to humans. Our data suggest the direct spill-over of rodent rotaviruses in human populations, as well as the reassortment between human and zoonotic rotaviruses.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang Province, China
| | - Kai-Yu Huang
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bing Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Mang Shi
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Wen-Ping Guo
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Miao-Ruo Wang
- Longquan Center for Disease Control and Prevention, Longquan, Zhejiang Province, China
| | - Wen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Jian-Guang Xing
- Wencheng Center for Disease Control and Prevention, Wencheng, Zhejiang Province, China
| | - Ming-Hui Li
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Wang-Sheng Hong
- Ruian Center for Disease Control and Prevention, Ruian, Zhejiang Province, China
| | - Edward C Holmes
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
100
|
Dong HJ, Qian Y, Zhang Y, Zhao LQ, Zhu RN, Nong Y, Mo ZJ, Li RC. G2 rotavirus within an emergent VP7 evolutionary lineage circulating in children with acute diarrhea in Guangxi Province of China, 2014. Arch Virol 2016; 161:1987-92. [PMID: 27101073 DOI: 10.1007/s00705-016-2852-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 01/21/2023]
Abstract
Routine surveillance revealed that the prevalence of P[4] rotaviruses circulating in children with acute diarrhea in Guangxi Province, China, increased in 2014. However, VP7 genotyping for these P[4] rotaviruses was unsuccessful. Exhaustive database searching and sequence analysis indicated that the G genotype of these P[4] rotaviruses was G2, and the VP7 genes clustered with recently emerging G2 strains in several countries within an emergent evolutionary lineage that was distinct from the previously designated lineages I-IV as well as lineage V including porcine rotaviruses. Further studies are essential to monitor the potential global spread of this emerging G2 rotavirus.
Collapse
Affiliation(s)
- Hui Jin Dong
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - You Zhang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Qing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ru Nan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yi Nong
- Centers for Disease Control and Prevention of Guangxi Province, Nanning, 530028, Guangxi, China
| | - Zhao Jun Mo
- Centers for Disease Control and Prevention of Guangxi Province, Nanning, 530028, Guangxi, China
| | - Rong Cheng Li
- Centers for Disease Control and Prevention of Guangxi Province, Nanning, 530028, Guangxi, China
| |
Collapse
|