51
|
Palfree RGE, Bennett HPJ, Bateman A. The Evolution of the Secreted Regulatory Protein Progranulin. PLoS One 2015; 10:e0133749. [PMID: 26248158 PMCID: PMC4527844 DOI: 10.1371/journal.pone.0133749] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide sequence conservation of mammalian granulin modules identified potential structure-activity relationships that may be informative in designing progranulin based therapeutics.
Collapse
Affiliation(s)
- Roger G. E. Palfree
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Hugh P. J. Bennett
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrew Bateman
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
52
|
Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:7303-8. [PMID: 26016527 DOI: 10.1073/pnas.1507714112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (responsive to desiccation 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles' heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP.
Collapse
|
53
|
Bar-Ziv A, Levy Y, Citovsky V, Gafni Y. The Tomato yellow leaf curl virus (TYLCV) V2 protein inhibits enzymatic activity of the host papain-like cysteine protease CYP1. Biochem Biophys Res Commun 2015; 460:525-9. [PMID: 25797621 DOI: 10.1016/j.bbrc.2015.03.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 01/26/2023]
Abstract
The viral V2 protein is one of the key factors that Tomato yellow leaf curl geminivirus (TYLCV), a major tomato pathogen worldwide, utilizes to combat the host defense. Besides suppressing the plant RNA silencing defense by targeting the host SGS3 component of the silencing machinery, V2 also interacts with the host CYP1 protein, a papain-like cysteine protease likely involved in hypersensitive response reactions. The biological effects of the V2-CYP1 interaction, however, remain unknown. We addressed this question by demonstrating that V2 inhibits the enzymatic activity of CYP1, but does not interfere with post-translational maturation of this protein.
Collapse
Affiliation(s)
- Amalia Bar-Ziv
- Institute of Plant Sciences, A.R.O., The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yael Levy
- Institute of Plant Sciences, A.R.O., The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
| | - Yedidya Gafni
- Institute of Plant Sciences, A.R.O., The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
54
|
Xie F, Wang Q, Sun R, Zhang B. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:789-804. [PMID: 25371507 PMCID: PMC4321542 DOI: 10.1093/jxb/eru437] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drought and salinity are two major environmental factors adversely affecting plant growth and productivity. However, the regulatory mechanism is unknown. In this study, the potential roles of small regulatory microRNAs (miRNAs) in cotton response to those stresses were investigated. Using next-generation deep sequencing, a total of 337 miRNAs with precursors were identified, comprising 289 known miRNAs and 48 novel miRNAs. Of these miRNAs, 155 miRNAs were expressed differentially. Target prediction, Gene Ontology (GO)-based functional classification, and Kyoto Encyclopedia of Genes and Genomes (KEGG)-based functional enrichment show that these miRNAs might play roles in response to salinity and drought stresses through targeting a series of stress-related genes. Degradome sequencing analysis showed that at least 55 predicted target genes were further validated to be regulated by 60 miRNAs. CitationRank-based literature mining was employed to determinhe the importance of genes related to drought and salinity stress. The NAC, MYB, and MAPK families were ranked top under the context of drought and salinity, indicating their important roles for the plant to combat drought and salinity stress. According to target prediction, a series of cotton miRNAs are associated with these top-ranked genes, including miR164, miR172, miR396, miR1520, miR6158, ghr-n24, ghr-n56, and ghr-n59. Interestingly, 163 cotton miRNAs were also identified to target 210 genes that are important in fibre development. These results will contribute to cotton stress-resistant breeding as well as understanding fibre development.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qinglian Wang
- Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, PR China
| | - Runrun Sun
- Department of Biology, East Carolina University, Greenville, NC 27858, USA Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
55
|
Davies LJ, Zhang L, Elling AA. The Arabidopsis thaliana papain-like cysteine protease RD21 interacts with a root-knot nematode effector protein. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The root-knot nematode Meloidogyne chitwoodi secretes effector proteins into the cells of host plants to manipulate plant-derived processes in order to achieve successful parasitism. Mc1194 is a M. chitwoodi effector that is highly expressed in pre-parasitic second-stage juvenile nematodes. Yeast two-hybrid assays revealed Mc1194 specifically interacts with a papain-like cysteine protease (PLCP), RD21A in Arabidopsis thaliana. Mc1194 interacts with both the protease and granulin domains of RD21A. PLCPs are targeted by effectors secreted by bacterial, fungal and oomycete pathogens and the hypersusceptibility of rd21-1 mutants to M. chitwoodi indicates RD21A plays a role in plant-parasitic nematode infection.
Collapse
Affiliation(s)
- Laura J. Davies
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Axel A. Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
56
|
Islam N, Li G, Garrett WM, Lin R, Sriram G, Cooper B, Coleman GD. Proteomics of Nitrogen Remobilization in Poplar Bark. J Proteome Res 2014; 14:1112-26. [DOI: 10.1021/pr501090p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nazrul Islam
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Gen Li
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Wesley M. Garrett
- Animal
Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Rongshuang Lin
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Ganesh Sriram
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Bret Cooper
- Soybean
Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Gary D. Coleman
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
57
|
Zhang B, Tremousaygue D, Denancé N, van Esse HP, Hörger AC, Dabos P, Goffner D, Thomma BPHJ, van der Hoorn RAL, Tuominen H. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1009-19. [PMID: 24947605 PMCID: PMC4321228 DOI: 10.1111/tpj.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 05/18/2023]
Abstract
PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R. solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis.
Collapse
Affiliation(s)
- Bo Zhang
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| | - Dominique Tremousaygue
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Nicolas Denancé
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - H Peter van Esse
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Anja C Hörger
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Patrick Dabos
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Deborah Goffner
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Hannele Tuominen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| |
Collapse
|
58
|
Ahmad R, Zuily-Fodil Y, Passaquet C, Bethenod O, Roche R, Repellin A. Identification and characterization of MOR-CP, a cysteine protease induced by ozone and developmental senescence in maize (Zea mays L.) leaves. CHEMOSPHERE 2014; 108:245-250. [PMID: 24594488 DOI: 10.1016/j.chemosphere.2014.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
Among the different classes of endoproteases, cysteine proteases are consistently associated with senescence, defense signaling pathways and cellular responses to abiotic stresses. The objectives of this work were to study the effects of various concentrations of ozone on gene expression and enzymatic activity for papain-like cysteine proteases (PLCPs), in the leaves of maize plants grown under field conditions. Leaves from ranks 12 and 10 (cob leaf) were harvested regularly over a long-term artificial ozone fumigation experiment (50 d). Tissues were tested for transcriptional and activity changes concerning cysteine proteases, using qRT-PCR for the newly identified ozone-responsive PLCP gene (Mor-CP) and synthetic oligopeptide Boc-Val-Leu-Lys-AMC as a PLCP-specific substrate, respectively. Results showed that developmental senescence induced a significant and progressive rise in CP activity, only in the older leaves 10 and had no effect on Mor-CP gene expression levels. On the other hand, ozone dramatically enhanced Mor-CP mRNA levels and global PLCP enzymatic activity in leaves 12 and 10, particularly toward the end of the treatment. Ozone impact was more pronounced in the older leaves 10. Together, these observations concurred to conclude that ozone stress enhances natural senescence processes, such as those related to proteolysis.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Equipe IPE, iEES Paris UMR 7618, Université Paris Est-Créteil, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Yasmine Zuily-Fodil
- Equipe IPE, iEES Paris UMR 7618, Université Paris Est-Créteil, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Chantal Passaquet
- Equipe IPE, iEES Paris UMR 7618, Université Paris Est-Créteil, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Olivier Bethenod
- UMR 1091 Environnement et Grandes Cultures, INRA, 78850 Thiverval-Grignon, France
| | - Romain Roche
- UMR 1091 Environnement et Grandes Cultures, INRA, 78850 Thiverval-Grignon, France
| | - Anne Repellin
- Equipe IPE, iEES Paris UMR 7618, Université Paris Est-Créteil, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France.
| |
Collapse
|
59
|
Díaz-Mendoza M, Velasco-Arroyo B, González-Melendi P, Martínez M, Díaz I. C1A cysteine protease-cystatin interactions in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3825-33. [PMID: 24600023 DOI: 10.1093/jxb/eru043] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.
Collapse
Affiliation(s)
- Mercedes Díaz-Mendoza
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Blanca Velasco-Arroyo
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
60
|
Stagi M, Klein ZA, Gould TJ, Bewersdorf J, Strittmatter SM. Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci 2014; 61:226-40. [PMID: 25066864 PMCID: PMC4145808 DOI: 10.1016/j.mcn.2014.07.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/14/2022] Open
Abstract
Fronto-temporal lobar degeneration with TDP-43 (FTLD-TDP) is a fatal neurodegeneration. TMEM106B variants are linked to FTLD-TDP risk, and TMEM106B is lysosomal. Here, we focus on neuronal TMEM106B, and demonstrate co-localization and traffic with lysosomal LAMP-1. pH-sensitive reporters demonstrate that the TMEM106B C-terminus is lumenal. The TMEM106B N-terminus interacts with endosomal adaptors and other TMEM106 proteins. TMEM106B knockdown reduces neuronal lysosomal number and diameter by STED microscopy, and overexpression enlarges LAMP-positive structures. Reduction of TMEM106B increases axonally transported lysosomes, while TMEM106B elevation inhibits transport and yields large lysosomes in the soma. TMEM106B overexpression alters lysosomal stress signaling, causing a translocation of the mTOR-sensitive transcription factor, TFEB, to neuronal nuclei. TMEM106B loss-of-function delays TFEB translocation after Torin-1-induced stress. Enlarged TMEM106B-overexpressing lysosomes maintain organelle integrity longer after lysosomal photodamage than do control lysosomes, while small TMEM106B-knockdown lysosomes are more sensitive to illumination. Thus, neuronal TMEM106B plays a central role in regulating lysosomal size, motility and responsiveness to stress, highlighting the possible role of lysosomal biology in FTLD-TDP.
Collapse
Affiliation(s)
- Massimiliano Stagi
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zoe A Klein
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Travis J Gould
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
61
|
Hierl G, Höwing T, Isono E, Lottspeich F, Gietl C. Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles. PLANT MOLECULAR BIOLOGY 2014; 84:605-20. [PMID: 24287716 PMCID: PMC3950626 DOI: 10.1007/s11103-013-0157-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/19/2013] [Indexed: 05/24/2023]
Abstract
Ricinosomes are specialized ER-derived organelles that store the inactive pro-forms of KDEL-tailed cysteine endopeptidases (KDEL-CysEP) associated with programmed cell death (PCD). The Arabidopsis genome encodes three KDEL-CysEP (AtCEP1, AtCEP2, and AtCEP3) that are differentially expressed in vegetative and generative tissues undergoing PCD. These Arabidopsis proteases have not been characterized at a biochemical level, nor have they been localized intracellularly. In this study, we characterized AtCEP2. A 3xHA-mCherry-AtCEP2 gene fusion including pro-peptide and KDEL targeting sequences expressed under control of the endogenous promoter enabled us to isolate AtCEP2 "ex vivo". The purified protein was shown to be activated in a pH-dependent manner. After activation, however, protease activity was pH-independent. Analysis of substrate specificity showed that AtCEP2 accepts proline near the cleavage site, which is a rare feature specific for KDEL-CysEPs. mCherry-AtCEP2 was detected in the epidermal layers of leaves, hypocotyls and roots; in the root, it was predominantly found in the elongation zone and root cap. Co-localization with an ER membrane marker showed that mCherry-AtCEP2 was stored in two different types of ER-derived organelles: 10 μm long spindle shaped organelles as well as round vesicles with a diameter of approximately 1 μm. The long organelles appear to be ER bodies, which are found specifically in Brassicacae. The round vesicles strongly resemble the ricinosomes first described in castor bean. This study provides a first evidence for the existence of ricinosomes in Arabidopsis, and may open up new avenues of research in the field of PCD and developmental tissue remodeling.
Collapse
Affiliation(s)
- Georg Hierl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Timo Höwing
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Erika Isono
- Center of Life and Food Sciences Weihenstephan, Department of Plant Systems Biology, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Friedrich Lottspeich
- Max Planck Institute of Biochemistry, Protein Analysis, 82152 Martinsried, Germany
| | - Christine Gietl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| |
Collapse
|
62
|
Nodzynski T, Feraru MI, Hirsch S, De Rycke R, Niculaes C, Boerjan W, Van Leene J, De Jaeger G, Vanneste S, Friml J. Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. MOLECULAR PLANT 2013; 6:1849-62. [PMID: 23770835 DOI: 10.1093/mp/sst044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based forward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFP. While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compartments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lytic vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting.
Collapse
Affiliation(s)
- Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ-625 00, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Judy ME, Nakamura A, Huang A, Grant H, McCurdy H, Weiberth KF, Gao F, Coppola G, Kenyon C, Kao AW. A shift to organismal stress resistance in programmed cell death mutants. PLoS Genet 2013; 9:e1003714. [PMID: 24068943 PMCID: PMC3778000 DOI: 10.1371/journal.pgen.1003714] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/26/2013] [Indexed: 11/27/2022] Open
Abstract
Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective) mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1) mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance. As an animal interacts with its environment, it invariably encounters stressful conditions such as extreme temperatures, drought, UV exposure and harmful xenobiotics. Since the ability to respond appropriately to stressful stimuli is paramount to survival, organisms have developed sophisticated stress response programs. Some stressful conditions cause damaged cells to commit suicide (undergo apoptosis), whereas others cause the entire organism to develop mechanisms to resist environmental stress. Studying the small roundworm C. elegans, we find that these two responses are somehow linked: perturbing the mechanisms that allow cells to undergo apoptosis changes the whole animal's response to environmental stress. In fact, perturbing the apoptosis machinery in any way—through mutations that prevent apoptosis altogether, or through mutations that either slow or accelerate the clearance of dying cells—causes the animal to become more stress resistant. Together our findings raise the possibility that the animal may have a way of detecting defects in the normal programmed cell death pathway, and that in response it induces a new program that protects itself from a harsh environment.
Collapse
Affiliation(s)
- Meredith E. Judy
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ayumi Nakamura
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Anne Huang
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Harli Grant
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Helen McCurdy
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Kurt F. Weiberth
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Fuying Gao
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Cynthia Kenyon
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Aimee W. Kao
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
64
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, De la Rosa MÁ. New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants. Mol Cell Proteomics 2013; 12:3666-76. [PMID: 24019145 DOI: 10.1074/mcp.m113.030692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41092, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kim JH, Kim WT. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. PLANT PHYSIOLOGY 2013; 162:1733-49. [PMID: 23696092 PMCID: PMC3707541 DOI: 10.1104/pp.113.220103] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Really Interesting New Gene (RING) E3 ubiquitin ligases have been implicated in cellular responses to the stress hormone abscisic acid (ABA) as well as to environmental stresses in higher plants. Here, an ABA-insensitive RING protein3 (atairp3) loss-of-function mutant line in Arabidopsis (Arabidopsis thaliana) was isolated due to its hyposensitivity to ABA during its germination stage as compared with wild-type plants. AtAIRP3 contains a single C3HC4-type RING motif, a putative myristoylation site, and a domain associated with RING2 (DAR2) domain. Unexpectedly, AtAIRP3 was identified as LOSS OF GDU2 (LOG2), which was recently shown to participate in an amino acid export system via interaction with GLUTAMINE DUMPER1. Thus, AtAIRP3 was renamed as AtAIRP3/LOG2. Transcript levels of AtAIRP3/LOG2 were up-regulated by drought, high salinity, and ABA, suggesting a role for this factor in abiotic stress responses. The atairp3/log2-2 knockout mutant and 35S:AtAIRP3-RNAi knockdown transgenic plants displayed impaired ABA-mediated seed germination and stomata closure. Cosuppression and complementation studies further supported a positive role for AtAIRP3/LOG2 in ABA responses. Suppression of AtAIRP3/LOG2 resulted in marked hypersensitive phenotypes toward high salinity and water deficit relative to wild-type plants. These results suggest that Arabidopsis RING E3 AtAIRP3/LOG2 is a positive regulator of the ABA-mediated drought and salt stress tolerance mechanism. Using yeast (Saccharomyces cerevisiae) two-hybrid, in vitro, and in vivo immunoprecipitation, cell-free protein degradation, and in vitro ubiquitination assays, RESPONSIVE TO DEHYDRATION21 was identified as a substrate protein of AtAIRP3/LOG2. Collectively, our data suggest that AtAIRP3/LOG2 plays dual functions in ABA-mediated drought stress responses and in an amino acid export pathway in Arabidopsis.
Collapse
|
66
|
Lampl N, Alkan N, Davydov O, Fluhr R. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:498-510. [PMID: 23398119 DOI: 10.1111/tpj.12141] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/01/2013] [Indexed: 05/23/2023]
Abstract
Programmed cell death (PCD) in plants plays a key role in defense response and is promoted by the release of compartmentalized proteases to the cytoplasm. Yet the exact identity and control of these proteases is poorly understood. Serpins are an important group of proteins that uniquely curb the activity of proteases by irreversible inhibition; however, their role in plants remains obscure. Here we show that during cell death the Arabidopsis serpin protease inhibitor, AtSerpin1, exhibits a pro-survival function by inhibiting its target pro-death protease, RD21. AtSerpin1 accumulates in the cytoplasm and RD21 accumulates in the vacuole and in endoplasmic reticulum bodies. Elicitors of cell death, including the salicylic acid agonist benzothiadiazole and the fungal toxin oxalic acid, stimulated changes in vacuole permeability as measured by the changes in the distribution of marker dye. Concomitantly, a covalent AtSerpin1-RD21 complex was detected indicative of a change in protease compartmentalization. Furthermore, mutant plants lacking RD21 or plants with AtSerpin1 over-expression exhibited significantly less elicitor-stimulated PCD than plants lacking AtSerpin1. The necrotrophic fungi Botrytis cinerea and Sclerotina sclerotiorum secrete oxalic acid as a toxin that stimulates cell death. Consistent with a pro-death function for RD21 protease, the growth of these necrotrophs was compromised in plants lacking RD21 but accelerated in plants lacking AtSerpin1. The results indicate that AtSerpin1 controls the pro-death function of compartmentalized protease RD21 by determining a set-point for its activity and limiting the damage induced during cell death.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
67
|
Rakkhumkaew N, Shibatani S, Kawasaki T, Fujie M, Yamada T. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: cytological studies. Biotechnol Bioeng 2013; 110:1174-9. [PMID: 23404209 DOI: 10.1002/bit.24783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 11/06/2022]
Abstract
Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA.
Collapse
Affiliation(s)
- Numfon Rakkhumkaew
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
68
|
Li QG, Zhang YM. The origin and functional transition of P34. Heredity (Edinb) 2013; 110:259-66. [PMID: 23211789 PMCID: PMC3668652 DOI: 10.1038/hdy.2012.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
P34, a storage protein and major soybean allergen, has undergone a functional transition from a cysteine peptidase to a syringolide receptor. An exploration of the evolutionary mechanism of this functional transition is made. To identify homologous genes of P34, syntenic network was constructed using syntenic relationships from the Plant Genome Duplication Database. The collected homologous genes, along with SPE31, a highly homologous protein to P34 from the seeds of Pachyrhizus erosus, were used to construct a phylogenetic tree. The results show that multiple gene duplications, exon shuffling and following granulin domain loss and some critical point mutations are associated with the functional transition. Although some tests suggested the existence of positive selection, the possibility that random fixation under relaxation of purifying selection results in the functional transition is also supported. In addition, the genes Glyma08g12340 and Medtr8g086470 may belong to a new group within the papain family.
Collapse
Affiliation(s)
- Q-G Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, College of Agriculture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Y-M Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
69
|
Wu XY, Kuai BK, Jia JZ, Jing HC. Regulation of leaf senescence and crop genetic improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:936-52. [PMID: 23131150 DOI: 10.1111/jipb.12005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence can impact crop production by either changing photosynthesis duration, or by modifying the nutrient remobilization efficiency and harvest index. The doubling of the grain yield in major cereals in the last 50 years was primarily achieved through the extension of photosynthesis duration and the increase in crop biomass partitioning, two things that are intrinsically coupled with leaf senescence. In this review, we consider the functionality of a leaf as a function of leaf age, and divide a leaf's life into three phases: the functionality increasing phase at the early growth stage, the full functionality phase, and the senescence and functionality decreasing phase. A genetic framework is proposed to describe gene actions at various checkpoints to regulate leaf development and senescence. Four categories of genes contribute to crop production: those which regulate (I) the speed and transition of early leaf growth, (II) photosynthesis rate, (III) the onset and (IV) the progression of leaf senescence. Current advances in isolating and characterizing senescence regulatory genes are discussed in the leaf aging and crop production context. We argue that the breeding of crops with leaf senescence ideotypes should be an essential part of further crop genetic improvement.
Collapse
Affiliation(s)
- Xiao-Yuan Wu
- The Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
70
|
van der Linde K, Mueller AN, Hemetsberger C, Kashani F, van der Hoorn RA, Doehlemann G. The maize cystatin CC9 interacts with apoplastic cysteine proteases. PLANT SIGNALING & BEHAVIOR 2012; 7:1397-401. [PMID: 22960758 PMCID: PMC3548856 DOI: 10.4161/psb.21902] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In a recent study we identified corn cystain9 (CC9) as a novel compatibility factor for the interaction of the biotrophic smut fungus Ustilago maydis with its host plant maize. CC9 is transcriptionally induced during the compatible interaction with U. maydis and localizes in the maize apoplast where it inhibits apoplastic papain-like cysteine proteases. The proteases are activated during incompatible interaction and salicylic acid (SA) treatment and, in turn, are sufficient to induce SA signaling including PR-gene expression. Therefore the inhibition of apoplastic papain-like cysteine proteases by CC9 is essential to suppress host immunity during U. maydis infection. Here were present new experimental data on the cysteine protease-cystatin interaction and provide an in silco analysis of plant cystatins and the identified apoplastic cysteine proteases.
Collapse
Affiliation(s)
| | - André N. Mueller
- Max Planck Institute for Terrestrial Microbiology; Marburg, Germany
| | | | - Farnusch Kashani
- Plant Chemetics Lab; Max Planck Institute for Plant Breeding Research; Cologne, Germany
| | | | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology; Marburg, Germany
- Correspondence to: Gunther Doehlemann,
| |
Collapse
|
71
|
Bar-Ziv A, Levy Y, Hak H, Mett A, Belausov E, Citovsky V, Gafni Y. The tomato yellow leaf curl virus (TYLCV) V2 protein interacts with the host papain-like cysteine protease CYP1. PLANT SIGNALING & BEHAVIOR 2012; 7:983-9. [PMID: 22827939 PMCID: PMC3474700 DOI: 10.4161/psb.20935] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The V2 protein of Tomato yellow leaf curl geminivirus (TYLCV) is an RNA-silencing suppressor that counteracts the innate immune response of the host plant. However, this anti-host defense function of V2 may include targeting of other defensive mechanisms of the plant. Specifically, we show that V2 recognizes and directly binds the tomato CYP1 protein, a member of the family of papain-like cysteine proteases which are involved in plant defense against diverse pathogens. This binding occurred both in vitro and in vivo, within living plant cells. The V2 binding site within mCYP1 was identified in the direct proximity to the papain-like cysteine protease active site.
Collapse
Affiliation(s)
- Amalia Bar-Ziv
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, Israel
| | - Yael Levy
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
| | - Hagit Hak
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
- Department of Biological Chemistry; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem; Jerusalem, Israel
| | - Anahit Mett
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
| | - Eduard Belausov
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology; State University of New York; Stony Brook, NY USA
| | - Yedidya Gafni
- Institute of Plant Sciences; A.R.O.; The Volcani Center; Bet Dagan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, Israel
- Correspondence to: Yedidya Gafni;
| |
Collapse
|
72
|
Abstract
Protease inhibitors of the serpin family are ubiquitous in the plant kingdom but relatively little is known about their biological functions in comparison with their counterparts in animals. X-ray crystal structures have provided crucial insights into animal serpin functions. The recently solved structure of AtSerpin1 from Arabidopsis thaliana, which has the highly conserved reactive center P2-P1' Leu-Arg-Xaa (Xaa = small residue), displays both conserved and plant-specific serpin features. Sequence homology suggests that AtSerpin1 belongs to serpin Clade B, composed of intracellular mammalian serpins, which is consistent with the lack of strong evidence for secretion of serpins from plant cells. The major in vivo target protease for AtSerpin1 is the papain-like cysteine RD21 protease, a match reminiscent of the inhibition of cathepsins K, L and S by the Clade-B mammalian serpin, SCCA-1 (SERPINB3). The function of AtSerpin1 and other serpins that contain P2-P1' Leu-Arg-Xaa (the 'LR' serpins) in plants remains unknown. However, based on its homology and interactive partners, AtSerpin1 and perhaps other serpins are likely to be involved in regulating programmed cell death or associated processes such as senescence. Abundant accumulation of serpins in seeds and their presence in phloem sap suggest additional functions in plant defense by irreversible inhibition of digestive proteases from pests or pathogens. Here we review the most recent findings in plant serpin biology, focusing on advances in describing the structure and inhibitory specificity of the LR serpins.
Collapse
Affiliation(s)
- Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
73
|
Martínez M, Cambra I, González-Melendi P, Santamaría ME, Díaz I. C1A cysteine-proteases and their inhibitors in plants. PHYSIOLOGIA PLANTARUM 2012; 145:85-94. [PMID: 22221156 DOI: 10.1111/j.1399-3054.2012.01569.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant cysteine-proteases (CysProt) represent a well-characterized type of proteolytic enzymes that fulfill tightly regulated physiological functions (senescence and seed germination among others) and defense roles. This article is focused on the group of papain-proteases C1A (family C1, clan CA) and their inhibitors, phytocystatins (PhyCys). In particular, the protease-inhibitor interaction and their mutual participation in specific pathways throughout the plant's life are reviewed. C1A CysProt and PhyCys have been molecularly characterized, and comparative sequence analyses have identified consensus functional motifs. A correlation can be established between the number of identified CysProt and PhyCys in angiosperms. Thus, evolutionary forces may have determined a control role of cystatins on both endogenous and pest-exogenous proteases in these species. Tagging the proteases and inhibitors with fluorescence proteins revealed common patterns of subcellular localization in the endoplasmic reticulum-Golgi network in transiently transformed onion epidermal cells. Further in vivo interactions were demonstrated by bimolecular fluorescent complementation, suggesting their participation in the same physiological processes.
Collapse
Affiliation(s)
- Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
74
|
Richau KH, Kaschani F, Verdoes M, Pansuriya TC, Niessen S, Stüber K, Colby T, Overkleeft HS, Bogyo M, Van der Hoorn RA. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. PLANT PHYSIOLOGY 2012; 158:1583-99. [PMID: 22371507 PMCID: PMC3320171 DOI: 10.1104/pp.112.194001] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/24/2012] [Indexed: 05/18/2023]
Abstract
Papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes associated with development, immunity, and senescence. Although many properties have been described for individual proteases, the distribution of these characteristics has not been studied collectively. Here, we analyzed 723 plant PLCPs and classify them into nine subfamilies that are present throughout the plant kingdom. Analysis of these subfamilies revealed previously unreported distinct subfamily-specific functional and structural characteristics. For example, the NPIR and KDEL localization signals are distinctive for subfamilies, and the carboxyl-terminal granulin domain occurs in two PLCP subfamilies, in which some individual members probably evolved by deletion of the granulin domains. We also discovered a conserved double cysteine in the catalytic site of SAG12-like proteases and two subfamily-specific disulfides in RD19A-like proteases. Protease activity profiling of representatives of the PLCP subfamilies using novel fluorescent probes revealed striking polymorphic labeling profiles and remarkably distinct pH dependency. Competition assays with peptide-epoxide scanning libraries revealed common and unique inhibitory fingerprints. Finally, we expand the detection of PLCPs by identifying common and organ-specific protease activities and identify previously undetected proteases upon labeling with cell-penetrating probes in vivo. This study provides the plant protease research community with tools for further functional annotation of plant PLCPs.
Collapse
|
75
|
Gu C, Shabab M, Strasser R, Wolters PJ, Shindo T, Niemer M, Kaschani F, Mach L, van der Hoorn RAL. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana. PLoS One 2012; 7:e32422. [PMID: 22396764 PMCID: PMC3292552 DOI: 10.1371/journal.pone.0032422] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/26/2012] [Indexed: 12/18/2022] Open
Abstract
RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs) or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-)activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation.
Collapse
Affiliation(s)
- Christian Gu
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mohammed Shabab
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Pieter J. Wolters
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takayuki Shindo
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Melanie Niemer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Farnusch Kaschani
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
76
|
Shindo T, Misas-Villamil JC, Hörger AC, Song J, van der Hoorn RAL. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS One 2012; 7:e29317. [PMID: 22238602 PMCID: PMC3253073 DOI: 10.1371/journal.pone.0029317] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/24/2011] [Indexed: 01/02/2023] Open
Abstract
Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf) during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.
Collapse
Affiliation(s)
- Takayuki Shindo
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johana C. Misas-Villamil
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anja C. Hörger
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jing Song
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
77
|
Nieuwenhuizen NJ, Maddumage R, Tsang GK, Fraser LG, Cooney JM, De Silva HN, Green S, Richardson KA, Atkinson RG. Mapping, complementation, and targets of the cysteine protease actinidin in kiwifruit. PLANT PHYSIOLOGY 2012; 158:376-88. [PMID: 22039217 PMCID: PMC3252086 DOI: 10.1104/pp.111.187989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/26/2011] [Indexed: 05/27/2023]
Abstract
Cysteine proteases (CPs) accumulate to high concentration in many fruit, where they are believed to play a role in fungal and insect defense. The fruit of Actinidia species (kiwifruit) exhibit a range of CP activities (e.g. the Actinidia chinensis variety YellowA shows less than 2% of the activity of Actinidia deliciosa variety Hayward). A major quantitative trait locus for CP activity was mapped to linkage group 16 in a segregating population of A. chinensis. This quantitative trait locus colocated with the gene encoding actinidin, the major acidic CP in ripe Hayward fruit encoded by the ACT1A-1 allele. Sequence analysis indicated that the ACT1A locus in the segregating A. chinensis population contained one functional allele (A-2) and three nonfunctional alleles (a-3, a-4, and a-5) each containing a unique frameshift mutation. YellowA kiwifruit contained two further alleles: a-6, which was nonfunctional because of a large insertion, and a-7, which produced an inactive enzyme. Site-directed mutagenesis of the act1a-7 protein revealed a residue that restored CP activity. Expression of the functional ACT1A-1 cDNA in transgenic plants complemented the natural YellowA mutations and partially restored CP activity in fruit. Two consequences of the increase in CP activity were enhanced degradation of gelatin-based jellies in vitro and an increase in the processing of a class IV chitinase in planta. These results provide new insight into key residues required for CP activity and the in vivo protein targets of actinidin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ross G. Atkinson
- New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (N.J.N., R.M., G.K.T., L.G.F., H.N.D.S., S.G., K.A.R., R.G.A.); New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton 3240, New Zealand (J.M.C.)
| |
Collapse
|
78
|
Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E, van der Hoorn RAL, Kamoun S. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci U S A 2011; 108:20832-7. [PMID: 22143776 PMCID: PMC3251060 DOI: 10.1073/pnas.1112708109] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to pathogen attack, plant cells secrete antimicrobial molecules at the site of infection. However, how plant pathogens interfere with defense-related focal secretion remains poorly known. Here we show that the host-translocated RXLR-type effector protein AVRblb2 of the Irish potato famine pathogen Phytophthora infestans focally accumulates around haustoria, specialized infection structures that form inside plant cells, and promotes virulence by interfering with the execution of host defenses. AVRblb2 significantly enhances susceptibility of host plants to P. infestans by targeting the host papain-like cysteine protease C14 and specifically preventing its secretion into the apoplast. Plants altered in C14 expression were significantly affected in susceptibility to P. infestans in a manner consistent with a positive role of C14 in plant immunity. Our findings point to a unique counterdefense strategy that plant pathogens use to neutralize secreted host defense proteases. Effectors, such as AVRblb2, can be used as molecular probes to dissect focal immune responses at pathogen penetration sites.
Collapse
Affiliation(s)
- Tolga O. Bozkurt
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Sebastian Schornack
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Takayuki Shindo
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Muhammad Ilyas
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ricardo Oliva
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Liliana M. Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Alexandra M. E. Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Edgar Huitema
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| |
Collapse
|
79
|
Mosolov VV, Valueva TA. Inhibitors of proteolytic enzymes under abiotic stresses in plants (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811050097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Dutta S, Choudhury D, Dattagupta JK, Biswas S. C-Terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism. FEBS J 2011; 278:3012-24. [PMID: 21707922 DOI: 10.1111/j.1742-4658.2011.08221.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The amino acid sequence of ervatamin-C, a thermostable cysteine protease from a tropical plant, revealed an additional 24-amino-acid extension at its C-terminus (CT). The role of this extension peptide in zymogen activation, catalytic activity, folding and stability of the protease is reported. For this study, we expressed two recombinant forms of the protease in Escherichia coli, one retaining the CT-extension and the other with it truncated. The enzyme with the extension shows autocatalytic zymogen activation at a higher pH of 8.0, whereas deletion of the extension results in a more active form of the enzyme. This CT-extension was not found to be cleaved during autocatalysis or by limited proteolysis by different external proteases. Molecular modeling and simulation studies revealed that the CT-extension blocks some of the substrate-binding unprimed subsites including the specificity-determining subsite (S2) of the enzyme and thereby partially occludes accessibility of the substrates to the active site, which also corroborates the experimental observations. The CT-extension in the model structure shows tight packing with the catalytic domain of the enzyme, mediated by strong hydrophobic and H-bond interactions, thus restricting accessibility of its cleavage sites to the protease itself or to the external proteases. Kinetic stability analyses (T(50) and t(1/2) ) and refolding experiments show similar thermal stability and refolding efficiency for both forms. These data suggest that the CT-extension has an inhibitory role in the proteolytic activity of ervatamin-C but does not have a major role either in stabilizing the enzyme or in its folding mechanism.
Collapse
Affiliation(s)
- Sruti Dutta
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | |
Collapse
|
82
|
Seema, Khokhar M, Mukherjee D. Role of kinetin and a morphactin in leaf disc senescence of Raphanus sativus L. under low light. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2011; 17:247-53. [PMID: 23573016 PMCID: PMC3550581 DOI: 10.1007/s12298-011-0077-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects of exogenous application of plant growth regulators (PGRs) like kinetin and a morphactin were investigated in leaf discs obtained from detached senescent Raphanus sativus L. Chetki long leaves under continuous light with fluorescent tube of 8.12 μmol photon m(-2) s(-1) PFD. Senescence induced changes were characterized by a gradual breakdown of chlorophylls, carotenoids and protein whereas, POD (peroxidase) and protease activity; and total sugars revealed an increment. Application of kinetin (KN) and a morphactin (MOR; chlorflurenol methyl ester-CME 74050) found to be effective in senescence delay, by minimizing breakdown of chlorophylls and carotenoids; and by bringing down peroxidase and protease activity, and sugar accumulation. Although both PGR's were able to minimize senescence, their higher concentration found to be more effective than the lower one.
Collapse
Affiliation(s)
- Seema
- Department of Botany, Kurukshetra University, Kurukshetra, 136119 India
| | - Mansee Khokhar
- Department of Botany, Kurukshetra University, Kurukshetra, 136119 India
| | - Dibakar Mukherjee
- Department of Botany, Kurukshetra University, Kurukshetra, 136119 India
| |
Collapse
|
83
|
Abstract
Almost all plant cells have large vacuoles that contain both hydrolytic enzymes and a variety of defense proteins. Plants use vacuoles and vacuolar contents for programmed cell death (PCD) in two different ways: for a destructive way and for a non-destructive way. Destruction is caused by vacuolar membrane collapse, followed by the release of vacuolar hydrolytic enzymes into the cytosol, resulting in rapid and direct cell death. The destructive way is effective in the digestion of viruses proliferating in the cytosol, in susceptible cell death induced by fungal toxins, and in developmental cell death to generate integuments (seed coats) and tracheary elements. On the other hand, the non-destructive way involves fusion of the vacuolar and the plasma membrane, which allows vacuolar defense proteins to be discharged into the extracellular space where the bacteria proliferate. Membrane fusion, which is normally suppressed, was triggered in a proteasome-dependent manner. Intriguingly, both ways use enzymes with caspase-like activity; the membrane-fusion system uses proteasome subunit PBA1 with caspase-3-like activity, and the vacuolar-collapse system uses vacuolar processing enzyme (VPE) with caspase-1-like activity. This review summarizes two different ways of vacuole-mediated PCD and discusses how plants use them to attack pathogens that invade unexpectedly.
Collapse
Affiliation(s)
- I Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
84
|
Tajima T, Yamaguchi A, Matsushima S, Satoh M, Hayasaka S, Yoshimatsu K, Shioi Y. Biochemical and molecular characterization of senescence-related cysteine protease-cystatin complex from spinach leaf. PHYSIOLOGIA PLANTARUM 2011; 141:97-116. [PMID: 21044083 DOI: 10.1111/j.1399-3054.2010.01425.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cysteine proteases (CPs) with N-succinyl-Leu-Tyr-4-methylcoumaryl-7-amide (Suc-LY-MCA) cleavage activity were investigated in green and senescent leaves of spinach. The enzyme activity was separated into two major and several faint minor peaks by hydrophobic chromatography. These peaks were conventionally designated as CP1, CP2 and CP3, according to their order of elution. From the analyses of molecular mass, subunit structure, amino acid sequences and cDNA cloning, CP2 was a monomer complex (SoCP-CPI) (51 kDa) composed of a 41-kDa core protein, SoCP (Spinacia oleracea cysteine protease), and 14-kDa cystatin, a cysteine protease inhibitor (CPI), while CP3 was a trimer complex (SoCP-CPI)(3) (151 kDa) of the same subunits as SoCP-CPI and showed a wider range of specificity toward natural substrates than SoCP-CPI. Trimer (SoCP-CPI)(3) was irreversibly formed from monomers through association. The results of reverse transcription-polymerase chain reaction (RT-PCR) revealed that mRNAs of CPI and SoCP are hardly expressed in green leaves, but they are coordinately expressed in senescent leaves, suggesting that these proteases involve in senescence. Purified recombinant CPI had strong inhibitory activity against trimer SoCP, (SoCP)(3) , which had a cystatin deleted with K(i) value of 1.33 × 10(-9) M. After treatment of the enzyme with a succinate buffer (pH 5) at the most active pH of the enzyme, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and activity analyses showed that cystatin was released from both monomer SoCP-CPI and trimer (SoCP-CPI)(3) complexes with a concomitant activation. Thus, the removal of a cystatin is necessary to activate the enzyme activity.
Collapse
Affiliation(s)
- Takayuki Tajima
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | |
Collapse
|
85
|
Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, Ilyas M, Win J, Kamoun S, van der Hoorn RA. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. PLANT PHYSIOLOGY 2010; 154:1794-804. [PMID: 20940351 PMCID: PMC2996022 DOI: 10.1104/pp.110.158030] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 10/11/2010] [Indexed: 05/18/2023]
Abstract
Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.
Collapse
|
86
|
Grudkowska M, Zagdańska B. Acclimation to frost alters proteolytic response of wheat seedlings to drought. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1321-1327. [PMID: 20674076 DOI: 10.1016/j.jplph.2010.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
A comparative examination of cysteine proteinases in winter wheat (Triticum aestivum L.) seedlings differing in sensitivity to frost and drought revealed many similarities and differences in response to water deprivation. Azocaseinolytic activity was enhanced under water deficiency, but the enhancement was significantly lower in the tolerant genotype (Kobra cultivar). On the contrary, acclimation of wheat seedlings at low temperature had no effect on the proteolytic activity of the tolerant cultivar and depressed the azocaseinolytic activity of the sensitive cultivar (Tortija). However, the observed depression of enzyme activity was fully reversible under dehydration. The content of soluble proteins was reduced in dehydrated non-acclimated and in acclimated seedlings of the frost-sensitive cultivar, but increased in acclimated seedlings of the tolerant cultivar. The cysteine proteinases were preferentially induced under water deficiency when assessment was based on the inhibitory effect of iodoacetate on azocasein hydrolysis. Separation of cysteine proteinases by SDS-PAGE containing gelatin as a substrate showed two bands with apparent molecular masses of 36 and 38 kDa in the sensitive cultivar, and a third band was detected (42 kDa) in the resistant cultivar. Water deficit and low temperature induced the new cysteine proteinases of molecular masses about 29, 33 and 42 kDa in sensitive non-acclimated seedlings. Polyclonal antibodies raised against Arabidopsis proteinase responsive to drought (RD21) cross-reacted with the protein in the 33 kDa region, and a slight signal was obtained in the 42 kDa region, but only in dehydrated seedlings acclimated to frost. Several polypeptides of molecular masses of 30, 22, 20 and 18 kDa were recognized by the Arabidopsis aleurain-like proteinase (AtALEU) antibodies. The results presented indicate that cysteine proteinases are potentially responsible for both low temperature and drought tolerance.
Collapse
Affiliation(s)
- Małgorzata Grudkowska
- Institute of Plant Breeding and Acclimatization, Department of Plant Physiology and Biochemistry, Radzików, POB 1019, 00-950 Warsaw, Poland
| | | |
Collapse
|
87
|
Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RAL. Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:160-70. [PMID: 20042019 DOI: 10.1111/j.1365-313x.2009.04122.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The proteasome plays essential roles in nearly all biological processes in plant defense and development, yet simple methods for displaying proteasome activities in extracts and living tissues are not available to plant science. Here, we introduce an easy and robust method to simultaneously display the activities of all three catalytic proteasome subunits in plant extracts or living plant tissues. The method is based on a membrane-permeable, small-molecule fluorescent probe that irreversibly reacts with the catalytic site of the proteasome catalytic subunits in an activity-dependent manner. Activities can be quantified from fluorescent protein gels and used to study proteasome activities in vitro and in vivo. We demonstrate that proteasome catalytic subunits can be selectively inhibited by aldehyde-based inhibitors, including the notorious caspase-3 inhibitor DEVD. Furthermore, we show that the proteasome activity, but not its abundance, is significantly increased in Arabidopsis upon treatment with benzothiadiazole (BTH). This upregulation of proteasome activity depends on NPR1, and occurs mostly in the cytoplasm. The simplicity, robustness and versatility of this method will make this method widely applicable in plant science.
Collapse
Affiliation(s)
- Christian Gu
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Lampl N, Budai-Hadrian O, Davydov O, Joss TV, Harrop SJ, Curmi PMG, Roberts TH, Fluhr R. Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J Biol Chem 2010; 285:13550-60. [PMID: 20181955 DOI: 10.1074/jbc.m109.095075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 A. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Adamczyk B, Godlewski M, Smolander A, Kitunen V. Degradation of proteins by enzymes exuded by Allium porrum roots - a potentially important strategy for acquiring organic nitrogen by plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:919-925. [PMID: 19540770 DOI: 10.1016/j.plaphy.2009.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/31/2009] [Indexed: 05/27/2023]
Abstract
Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography-mass spectrometry (LC-MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.
Collapse
Affiliation(s)
- Bartosz Adamczyk
- Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FIN-01301 Vantaa, Finland.
| | | | | | | |
Collapse
|
90
|
Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 2009; 9:3580-608. [PMID: 19609964 DOI: 10.1002/pmic.200800984] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our goal was to identify the leaf proteomic changes which appeared during N remobilisation that were associated or not associated with senescence of oilseed rape in response to contrasting nitrate availability. Remobilisation of N and leaf senescence status were followed using (15)N tracing, patterns of chlorophyll level, total protein content and a molecular indicator based on expression of senescence-associated gene 12/Cab genes. Three phases associated with N remobilisation were distinguished. Proteomics revealed that 55 proteins involved in metabolism, energy, detoxification, stress response, proteolysis and protein folding, were significantly induced during N remobilisation. Four proteases were specifically identified. FtsH, a chloroplastic protease, was induced transiently during the early stages of N remobilisation. Considering the dynamics of N remobilisation, chlorophyll and protein content, the pattern of FtsH expression indicated that this protease could be involved in the degradation of chloroplastic proteins. Aspartic protease increased at the beginning of senescence and was maintained at a high level, implicating this protease in proteolysis during the course of leaf senescence. Two proteases, proteasome beta subunit A1 and senescence-associated gene 12, were induced and continued to increase during the later phase of senescence, suggesting that these proteases are more specifically involved in the proteolysis processes occurring at the final stages of leaf senescence.
Collapse
Affiliation(s)
- Marie Desclos
- INRA, UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie et nutritions N C S, IFR 146 ICORE, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, Caen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. THE NEW PHYTOLOGIST 2009; 183:62-75. [PMID: 19402879 DOI: 10.1111/j.1469-8137.2009.02838.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
* Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Ying-Hui Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yue-Ping Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chang-Ai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guo-Dong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jin-Guang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cheng-Chao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
92
|
Peng SQ, Zhu JH, Li HL, Tian WM. Cloning and characterization of a novel cysteine protease gene (HbCP1) from Hevea brasiliensis. J Biosci 2009; 33:681-90. [PMID: 19179756 DOI: 10.1007/s12038-008-0088-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The full-length cDNA encoding a cysteine protease,designated HbCP1, was isolated for the first time from Hevea brasiliensis by the rapid amplification of cDNA ends (RACE) method. HbCP1 contained a 1371 bp open reading frame encoding 457 amino acids.The deduced HbCP1 protein,which showed high identity to cysteine proteases of other plant species,was predicted to possess a putative repeat in toxin (RTX) domain at the N-terminal and a granulin (GRAN) domain at the C-terminal.Southern blot analysis indicated that the HbCP1 gene is present as a single copy in the rubber tree.Transcription pattern analysis revealed that HbCP1 had high transcription in laticifer,and low transcription in bark and leaf.The transcription of HbCP1 in latex was induced by ethylene and tapping.Cloning of the HbCP1 gene will enable us to further understand the molecular characterization of cysteine protease and its possible function in the rubber tree.
Collapse
Affiliation(s)
- Shi-Qing Peng
- State Key Laboratory of Tropical Crop Biotechnology,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | | | | | | |
Collapse
|
93
|
Kaschani F, Verhelst SHL, van Swieten PF, Verdoes M, Wong CS, Wang Z, Kaiser M, Overkleeft HS, Bogyo M, van der Hoorn RAL. Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using 'click chemistry'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:373-85. [PMID: 18786180 DOI: 10.1111/j.1365-313x.2008.03683.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small molecules offer unprecedented opportunities for plant research since plants respond to, metabolize, and react with a diverse range of endogenous and exogenous small molecules. Many of these small molecules become covalently attached to proteins. To display these small molecule targets in plants, we introduce a two-step labelling method for minitagged small molecules. Minitags are small chemical moieties (azide or alkyne) that are inert under biological conditions and have little influence on the membrane permeability and specificity of the small molecule. After labelling, proteomes are extracted under denaturing conditions and minitagged proteins are coupled to reporter tags through a 'click chemistry' reaction. We introduce this two-step labelling procedure in plants by studying the well-characterized targets of E-64, a small molecule cysteine protease inhibitor. In contrast to biotinylated E-64, minitagged E-64 efficiently labels vacuolar proteases in vivo. We displayed, purified and identified targets of a minitagged inhibitor that targets the proteasome and cysteine proteases in living plant cells. Chemical interference assays with inhibitors showed that MG132, a frequently used proteasome inhibitor, preferentially inhibits cysteine proteases in vivo. The two-step labelling procedure can be applied on detached leaves, cell cultures, seedlings and other living plant tissues and, when combined with photoreactive groups, can be used to identify targets of herbicides, phytohormones and reactive small molecules selected from chemical genetic screens.
Collapse
Affiliation(s)
- Farnusch Kaschani
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Konagaya KI, Ando S, Kamachi S, Tsuda M, Tabei Y. Efficient production of genetically engineered, male-sterile Arabidopsis thaliana using anther-specific promoters and genes derived from Brassica oleracea and B. rapa. PLANT CELL REPORTS 2008; 27:1741-54. [PMID: 18758783 DOI: 10.1007/s00299-008-0598-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/05/2008] [Accepted: 08/08/2008] [Indexed: 05/22/2023]
Abstract
Prevention of transgene flow from genetically modified crops to food crops and wild relatives is of concern in agricultural biotechnology. We used genes derived from food crops to produce complete male sterility as a strategy for gene confinement as well as to reduce the food purity concerns of consumers. Anther-specific promoters (A3, A6, A9, MS2, and MS5) were isolated from Brassica oleracea and B. rapa and fused to the beta-glucuronidase (GUS) reporter gene and candidate genes for male sterility, including the cysteine proteases BoCysP1 and BoCP3, and negative regulatory components of phytohormonal responses involved in male development. These constructs were then introduced into Arabidopsis thaliana. GUS analyses revealed that A3, A6, and A9 had tapetum-specific promoter activity from the anther meiocyte stage. Male sterility was confirmed in tested constructs with protease or gibberellin insensitive (gai) genes. In particular, constructs with BoCysP1 driven by the A3 or A9 promoter most efficiently produced plants with complete male sterility. The tapetum and middle layer cells of anthers expressing BoCysP1 were swollen and excessively vacuolated when observed in transverse section. This suggests that the ectopic expression of cysteine protease in the meiocyte stage may inhibit programmed cell death. The gai gene also induced male sterility, although at a low frequency. This is the first report to show that plant cysteine proteases and gai from food crops are available as a novel tool for the development of genetically engineered male-sterile plants.
Collapse
Affiliation(s)
- Ken-ichi Konagaya
- Division of Plant Science, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
95
|
Avci U, Earl Petzold H, Ismail IO, Beers EP, Haigler CH. Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:303-315. [PMID: 18573193 DOI: 10.1111/j.1365-313x.2008.03592.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Establishing the mechanisms regulating the autolysis of xylem tracheary elements (TEs) is important for understanding this programmed cell death process. These data demonstrate that two paralogous Arabidopsis thaliana proteases, XYLEM CYSTEINE PROTEASE1 (XCP1) and XCP2, participated in micro-autolysis within the intact central vacuole before mega-autolysis was initiated by tonoplast implosion. The data acquisition was aided by the predictable pattern of seedling root xylogenesis, the availability of single and double total knock-out T-DNA lines, anti-sera that recognized XCP1 and XCP2, and the microwave-assisted processing of whole seedlings prior to immunolabeling and observation in the transmission electron microscope. During secondary wall thickening, XCP1 and XCP2 (in wild type), XCP1 (in xcp2 seedlings) or XCP2 (in xcp1 seedlings) were imported into the TE central vacuole. Both XCP1 and XCP2 heavily labeled dense aggregates of material within the vacuole. However, because of XCP1 deficiency in xcp1 and xcp1 xcp2 TEs, non-degraded cellular remnants first accumulated in the vacuole and then persisted in the TE lumen (longer than in the wild type) after the final mega-autolysis was otherwise complete. This delayed TE clearing phenotype in xcp1 was rescued by complementation with wild-type XCP1. Although TEs in the xcp2 single knock-out cleared comparably with wild type, the non-degraded remnants in xcp1 xcp2 TEs were more densely packed than in xcp1 TEs. Therefore, XCP2 has a minor but distinct role in micro-autolysis. After tonoplast implosion, XCP1 and XCP2 remained associated with disintegrating cellular material as mega-autolysis, aided by additional lytic enzymes, destroyed the bulk of the cellular contents.
Collapse
Affiliation(s)
- Utku Avci
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA,Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, andDepartment of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - H Earl Petzold
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA,Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, andDepartment of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ihab O Ismail
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA,Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, andDepartment of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Eric P Beers
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA,Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, andDepartment of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA,Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, andDepartment of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
96
|
Salas CE, Gomes MTR, Hernandez M, Lopes MTP. Plant cysteine proteinases: evaluation of the pharmacological activity. PHYTOCHEMISTRY 2008; 69:2263-9. [PMID: 18614189 DOI: 10.1016/j.phytochem.2008.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
Cysteine proteinases are involved in virtually every aspect of plant physiology and development. They play a role in development, senescence, programmed cell death, storage and mobilization of germinal proteins, and in response to various types of environmental stress. In this review, we focus on a group of plant defensive enzymes occurring in germinal tissue of Caricaceae. These enzymes elicit a protective response in the unripe fruit after physical stress. We propose that these enzymes follow a strategy similar to mammalian serine proteinases involved in blood clotting and wound healing. We show evidence for the pharmacological role of plant cysteine proteinases in mammalian wound healing, immunomodulation, digestive conditions, and neoplastic alterations.
Collapse
Affiliation(s)
- Carlos E Salas
- Departamentos de Bioquímica e Imunologia, Farmacologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte 31270-901, Brazil.
| | | | | | | |
Collapse
|
97
|
Andème Ondzighi C, Christopher DA, Cho EJ, Chang SC, Staehelin LA. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. THE PLANT CELL 2008; 20:2205-20. [PMID: 18676877 PMCID: PMC2553623 DOI: 10.1105/tpc.108.058339] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Protein disulfide isomerase (PDI) oxidizes, reduces, and isomerizes disulfide bonds, modulates redox responses, and chaperones proteins. The Arabidopsis thaliana genome contains 12 PDI genes, but little is known about their subcellular locations and functions. We demonstrate that PDI5 is expressed in endothelial cells about to undergo programmed cell death (PCD) in developing seeds. PDI5 interacts with three different Cys proteases in yeast two-hybrid screens. One of these traffics together with PDI5 from the endoplasmic reticulum through the Golgi to vacuoles, and its recombinant form is functionally inhibited by recombinant PDI5 in vitro. Peak PDI5 expression in endothelial cells precedes PCD, whereas decreasing PDI5 levels coincide with the onset of PCD-related cellular changes, such as enlargement and subsequent collapse of protein storage vacuoles, lytic vacuole shrinkage and degradation, and nuclear condensation and fragmentation. Loss of PDI5 function leads to premature initiation of PCD during embryogenesis and to fewer, often nonviable, seeds. We propose that PDI5 is required for proper seed development and regulates the timing of PCD by chaperoning and inhibiting Cys proteases during their trafficking to vacuoles before PCD of the endothelial cells. During this transitional phase of endothelial cell development, the protein storage vacuoles become the de facto lytic vacuoles that mediate PCD.
Collapse
Affiliation(s)
- Christine Andème Ondzighi
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | | | | | |
Collapse
|
98
|
Beta-lactone probes identify a papain-like peptide ligase in Arabidopsis thaliana. Nat Chem Biol 2008; 4:557-63. [PMID: 18660805 DOI: 10.1038/nchembio.104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/03/2008] [Indexed: 11/08/2022]
Abstract
New activity-based probes are essential for expanding studies on the hundreds of serine and cysteine proteases encoded by the genome of Arabidopsis thaliana. To monitor protease activities in plant extracts, we generated biotinylated peptides containing a beta-lactone reactive group. These probes cause strong labeling in leaf proteomes. Unexpectedly, labeling was detected at the N terminus of PsbP, nonproteolytic protein of photosystem II. Inhibitor studies and reverse genetics led to the discovery that this unusual modification is mediated by a single plant-specific, papain-like protease called RD21. In cellular extracts, RD21 accepts both beta-lactone probes and peptides as donor molecules and ligates them, probably through a thioester intermediate, to unmodified N termini of acceptor proteins.
Collapse
|
99
|
Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RAL. Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. THE PLANT CELL 2008; 20:1169-83. [PMID: 18451324 PMCID: PMC2390736 DOI: 10.1105/tpc.107.056325] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/12/2008] [Accepted: 04/04/2008] [Indexed: 05/07/2023]
Abstract
The interaction between the fungal pathogen Cladosporium fulvum and its host tomato (Solanum lycopersicum) is an ideal model to study suppression of extracellular host defenses by pathogens. Secretion of protease inhibitor AVR2 by C. fulvum during infection suggests that tomato papain-like cysteine proteases (PLCPs) are part of the tomato defense response. We show that the tomato apoplast contains a remarkable diversity of PLCP activities with seven PLCPs that fall into four different subfamilies. Of these PLCPs, transcription of only PIP1 and RCR3 is induced by treatment with benzothiadiazole, which triggers the salicylic acid-regulated defense pathway. Sequencing of PLCP alleles of tomato relatives revealed that only PIP1 and RCR3 are under strong diversifying selection, resulting in variant residues around the substrate binding groove. The doubled number of variant residues in RCR3 suggests that RCR3 is under additional adaptive selection, probably to prevent autoimmune responses. AVR2 selectively inhibits only PIP1 and RCR3, and one of the naturally occurring variant residues in RCR3 affects AVR2 inhibition. The higher accumulation of PIP1 protein levels compared with RCR3 indicates that PIP1 might be the real virulence target of AVR2 and that RCR3 acts as a decoy for AVR2 perception in plants carrying the Cf-2 resistance gene.
Collapse
Affiliation(s)
- Mohammed Shabab
- Plant Chemetics Lab, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM. Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. THE NEW PHYTOLOGIST 2008; 177:333-349. [PMID: 18028296 DOI: 10.1111/j.1469-8137.2007.02270.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To identify genes involved in the regulation and execution of leaf senescence and whole-plant nitrogen reallocation, near-isogenic barley germplasm divergent in senescence timing and protein concentration of mature grains was contrasted. Barley lines differing in allelic state at a major locus on chromosome six, controlling grain protein concentration, were obtained after four generations of backcrossing. Based on physiological data indicating major differences between low- and high-grain protein germplasm at 14-21 d past anthesis, the flag leaf and kernel transcriptomes of the low-protein parent and one high-protein near-isogenic line were compared at these time points, using the 22-k Barley1 Affymetrix microarray. Our data associate several genes with both known (based on sequence comparisons) and unknown functions with the senescence process. These include leucine-rich repeat transmembrane protein kinases, a glycine-rich RNA-binding protein with homology to AtGRP7 and a 'mother of FT/TF1' gene. Our data also indicate upregulation of genes coding for both plastidial and extraplastidial proteases in germplasm with accelerated leaf senescence. Functional characterization of candidate genes identified by this research may contribute to our understanding of the molecular network underlying leaf senescence and nitrogen reallocation.
Collapse
Affiliation(s)
| | | | | | | | - Kate McInnerney
- Functional Genomics Core Facility, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|