51
|
Zhu C, Xiaoyu L, Junlan G, Yun X, Jie R. Integrating transcriptomic and metabolomic analysis of hormone pathways in Acer rubrum during developmental leaf senescence. BMC PLANT BIOLOGY 2020; 20:410. [PMID: 32883206 PMCID: PMC7650285 DOI: 10.1186/s12870-020-02628-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data. RESULTS Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified. CONCLUSIONS These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.
Collapse
Affiliation(s)
- Chen Zhu
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Lu Xiaoyu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui 230036 P.R. China
| | - Gao Junlan
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Xuan Yun
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Ren Jie
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| |
Collapse
|
52
|
Thirugnanasambantham K, Prabu G, Mandal AKA. Synergistic effect of cytokinin and gibberellins stimulates release of dormancy in tea ( Camellia sinensis (L.) O. Kuntze) bud. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1035-1045. [PMID: 32377051 PMCID: PMC7196570 DOI: 10.1007/s12298-020-00786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 05/14/2023]
Abstract
Reactivation of dormant meristem in banjhi (dormant) shoots is important to enhance the quality and quantity of tea production. The field grown tea bushes were subjected to treatment with dormancy breaking agents such as potassium nitrate (KNO3), thiourea, sodium nitro prusside (SNP), the phytohormones kinetin (Kn) and gibberellins (GA). The efficacy of Kn and GA were comparatively lesser than KNO3 while the combination of Kn and GA (50 and100 ppm respectively) resulted in better dormancy reduction in tea buds. This observation was supported by our results from gene expression study where accumulation patterns of mRNAs corresponding to histones (H2A, H2B, H3 and H4), cyclins (B2, D1 and D3), cyclin-dependent kinase (CDKA), ubiquitination enzymes (FUS, EXT CE2), cyclophilin, E2F, and tubulin were analyzed during growth-dormancy cycles in tea apical buds under the influence of Kn, GA and their combinations. The level of these mRNAs was low in dormant buds, which was significantly increased by foliar application of GA and Kn combination. The present study indicated that the foliar application of GA in combination with Kn will help to improve quality and quantity of tea production by breaking dormancy and stimulating the bud growth.
Collapse
Affiliation(s)
- Krishnaraj Thirugnanasambantham
- UPASI-Tea Research Foundation, Nirar Dam B.P.O, Valparai, Tamil Nadu 642127 India
- Pondicherry Centre for Biological Science and Educational Trust, Jawahar Nagar, Pondicherry, 605005 India
| | - Gajjeraman Prabu
- UPASI-Tea Research Foundation, Nirar Dam B.P.O, Valparai, Tamil Nadu 642127 India
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed University), Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu 641 021 India
| | - Abul Kalam Azad Mandal
- UPASI-Tea Research Foundation, Nirar Dam B.P.O, Valparai, Tamil Nadu 642127 India
- School of Bio Sciences and Technology (SBST), Department of Biotechnology, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
53
|
Cheng L, Wang D, Wang Y, Xue H, Zhang F. An integrative overview of physiological and proteomic changes of cytokinin-induced potato (Solanum tuberosum L.) tuber development in vitro. PHYSIOLOGIA PLANTARUM 2020; 168:675-693. [PMID: 31343748 DOI: 10.1111/ppl.13014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023]
Abstract
Potato tuberization is a complicated biological process regulated by multiple phytohormones, in particular cytokinins (CKs). The information available on the molecular mechanisms regulating tuber development by CKs remains largely unclear. Physiological results initially indicated that low 6-benzylaminopurine (BAP) concentration (3 mg l-1 ) advanced the tuberization beginning time and promoted tuber formation. A comparative proteomics approach was applied to investigate the proteome change of tuber development by two-dimensional gel electrophoresis in vitro, subjected to exogenous BAP treatments (0, 3, 6 and 13 mg l-1 ). Quantitative image analysis showed a total of 83 protein spots with significantly altered abundance (>2.5-fold, P < 0.05), and 55 differentially abundant proteins were identified by MALDI-TOF/TOF MS. Among these proteins, 22 proteins exhibited up-regulation with the increase of exogenous BAP concentration, and 31 proteins were upregulated at 3 mg l-1 BAP whereas being downregulated at higher BAP concentrations. These proteins were involved in metabolism and bioenergy, storage, redox homeostasis, cell defense and rescue, transcription and translation, chaperones, signaling and transport. The favorable effects of low BAP concentrations on tuber development were found in various cellular processes, mainly including the stimulation of starch and storage protein accumulation, the enhancement of the glycolysis pathway and ATP synthesis, the cellular homeostasis maintenance, the activation of pathogen defense, the higher efficiency of transcription and translation, as well as the enhanced metabolite transport. However, higher BAP concentration, especially 13 mg l-1 , showed disadvantageous effects. The proposed hypothetical model would explain the interaction of these proteins associated with CK-induced tuber development in vitro.
Collapse
Affiliation(s)
- Lixiang Cheng
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Dongxia Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hongwei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
54
|
Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci Rep 2020; 10:3437. [PMID: 32103086 PMCID: PMC7044434 DOI: 10.1038/s41598-020-60412-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
A number of scientific reports published to date contain data on endogenous levels of various phytohormones in potato (Solanum tuberosum L.) but a complete cytokinin profile of potato tissues, that would include data on all particular molecular forms of cytokinin, has still been missing. In this work, endogenous levels of all analytically detectable isoprenoid cytokinins, as well as the auxin indole-3-acetic acid (IAA), and abscisic acid (ABA) have been determined in shoots and roots of 30 day old in vitro grown potato (cv. Désirée). The results presented here are generally similar to other data reported for in vitro grown potato plants, whereas greenhouse-grown plants typically contain lower levels of ABA, possibly indicating that in vitro grown potato is exposed to chronic stress. Cytokinin N-glucosides, particularly N7-glucosides, are the dominant cytokinin forms in both shoots and roots of potato, whereas nucleobases, as the bioactive forms of cytokinins, comprise a low proportion of cytokinin levels in tissues of potato. Differences in phytohormone composition between shoots and roots of potato suggest specific patterns of transport and/or differences in tissue-specific metabolism of plant hormones. These results represent a contribution to understanding the hormonomics of potato, a crop species of extraordinary economic importance.
Collapse
|
55
|
Atif MJ, Ahanger MA, Amin B, Ghani MI, Ali M, Cheng Z. Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review. Int J Mol Sci 2020; 21:E1325. [PMID: 32079095 PMCID: PMC7072895 DOI: 10.3390/ijms21041325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.
Collapse
Affiliation(s)
- Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- Vegetable Crops Program, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Muhammad Imran Ghani
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| |
Collapse
|
56
|
Bao S, Owens RA, Sun Q, Song H, Liu Y, Eamens AL, Feng H, Tian H, Wang MB, Zhang R. Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathog 2019; 15:e1008110. [PMID: 31790500 PMCID: PMC6907872 DOI: 10.1371/journal.ppat.1008110] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/12/2019] [Accepted: 09/25/2019] [Indexed: 11/18/2022] Open
Abstract
Viroids are small, non-protein-coding RNAs which can induce disease symptoms in a variety of plant species. Potato (Solanum tuberosum L.) is the natural host of Potato spindle tuber viroid (PSTVd) where infection results in stunting, distortion of leaves and tubers and yield loss. Replication of PSTVd is accompanied by the accumulation of viroid-derived small RNAs (sRNAs) proposed to play a central role in disease symptom development. Here we report that PSTVd sRNAs direct RNA silencing in potato against StTCP23, a member of the TCP (teosinte branched1/Cycloidea/Proliferating cell factor) transcription factor family genes that play an important role in plant growth and development as well as hormonal regulation, especially in responses to gibberellic acid (GA). The StTCP23 transcript has 21-nucleotide sequence complementarity in its 3ʹ untranslated region with the virulence-modulating region (VMR) of PSTVd strain RG1, and was downregulated in PSTVd-infected potato plants. Analysis using 3ʹ RNA ligase-mediated rapid amplification of cDNA ends (3ʹ RLM RACE) confirmed cleavage of StTCP23 transcript at the expected sites within the complementarity with VMR-derived sRNAs. Expression of these VMR sRNA sequences as artificial miRNAs (amiRNAs) in transgenic potato plants resulted in phenotypes reminiscent of PSTVd-RG1-infected plants. Furthermore, the severity of the phenotypes displayed was correlated with the level of amiRNA accumulation and the degree of amiRNA-directed down-regulation of StTCP23. In addition, virus-induced gene silencing (VIGS) of StTCP23 in potato also resulted in PSTVd-like phenotypes. Consistent with the function of TCP family genes, amiRNA lines in which StTCP23 expression was silenced showed a decrease in GA levels as well as alterations to the expression of GA biosynthesis and signaling genes previously implicated in tuber development. Application of GA to the amiRNA plants minimized the PSTVd-like phenotypes. Taken together, our results indicate that sRNAs derived from the VMR of PSTVd-RG1 direct silencing of StTCP23 expression, thereby disrupting the signaling pathways regulating GA metabolism and leading to plant stunting and formation of small and spindle-shaped tubers. Potato spindle tuber viroid (PSTVd) is a small RNA pathogen that causes severe pandemic diseases in potato. How this non-protein-coding RNA induces disease symptom development in potato is unknown, thereby hindering the development of effective control measures. Here we report the first evidence that PSTVd disease is caused by the silencing of StTCP23, a potato transcription factor encoding gene, by PSTVd-derived small-interfering RNA (siRNAs). Specifically, we demonstrate that 3ʹ untranslated region (UTR) region of StTCP23 mRNA contains a 21-nt sequence that is complementary to the virulence-modulating region (VMR) of PSTVd. Furthermore, we show that StTCP23 expression is repressed in PSTVd-infected potato, and this repression is accompanied by StTCP23 transcript cleavage within the identified region of complementary. In planta expression of VMR sequences as 21-nt artificial microRNAs (amiRNAs) or infection of potato plants with a virus-induced gene silencing vector containing a portion the StTCP23 coding sequence, results in reduced StTCP23 transcript abundance and the expression of PSTVd-like disease symptoms. Consistent with the predicted functional role of StTCP23 in regulating the gibberellic acid (GA) biosynthesis and signaling pathways, GA levels were reduced both in PSTVd-infected and amiRNA-expressing plants. Our results provide compelling evidence that StTCP23 positively regulates potato sprouting and tuber development via a GA-related mechanism, and that the disease symptoms that develop upon PSTVd infection result from silencing of StTCP23 by VMR-derived siRNAs.
Collapse
Affiliation(s)
- Sarina Bao
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Robert A. Owens
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, Maryland, United States of America
| | - Qinghua Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hui Song
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanan Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Andrew Leigh Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Australia
| | - Hao Feng
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hongzhi Tian
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | | | - Ruofang Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- * E-mail:
| |
Collapse
|
57
|
Buchholz F, Antonielli L, Kostić T, Sessitsch A, Mitter B. The bacterial community in potato is recruited from soil and partly inherited across generations. PLoS One 2019; 14:e0223691. [PMID: 31703062 PMCID: PMC6839881 DOI: 10.1371/journal.pone.0223691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Strong efforts have been made to understand the bacterial communities in potato plants and the rhizosphere. Research has focused on the effect of the environment and plant genotype on bacterial community structures and dynamics, while little is known about the origin and assembly of the bacterial community, especially in potato tubers. The tuber microbiota, however, may be of special interest as it could play an important role in crop quality, such as storage stability. Here, we used 16S rRNA gene amplicon sequencing to study the bacterial communities that colonize tubers of different potato cultivars commonly used in Austrian potato production over three generations and grown in different soils. Statistical analysis of sequencing data showed that the bacterial community of potato tubers has changed over generations and has become more similar to the soil bacterial community, while the impact of the potato cultivar on the bacterial assemblage has lost significance over time. The communities in different tuber parts did not differ significantly, while the soil bacterial community showed significant differences to the tuber microbiota composition. Additionally, the presence of OTUs in subsequent tuber generation points to vertical transmission of a subset of the tuber microbiota. Four OTUs were common to all tuber generations and all potato varieties. In summary, we conclude that the microbiota of potato tubers is recruited from the soil largely independent from the plant variety. Furthermore, the bacterial assemblage in potato tubers consists of bacteria transmitted from one tuber generation to the next and bacteria recruited from the soil.
Collapse
Affiliation(s)
- Franziska Buchholz
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Tanja Kostić
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Angela Sessitsch
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Birgit Mitter
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
58
|
Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J. Light Regulation of Axillary Bud Outgrowth Along Plant Axes: An Overview of the Roles of Sugars and Hormones. FRONTIERS IN PLANT SCIENCE 2019; 10:1296. [PMID: 31681386 PMCID: PMC6813921 DOI: 10.3389/fpls.2019.01296] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
Apical dominance, the process by which the growing apical zone of the shoot inhibits bud outgrowth, involves an intricate network of several signals in the shoot. Auxin originating from plant apical region inhibits bud outgrowth indirectly. This inhibition is in particular mediated by cytokinins and strigolactones, which move from the stem to the bud and that respectively stimulate and repress bud outgrowth. The action of this hormonal network is itself modulated by sugar levels as competition for sugars, caused by the growing apical sugar sink, may deprive buds from sugars and prevents bud outgrowth partly by their signaling role. In this review, we analyze recent findings on the interaction between light, in terms of quantity and quality, and apical dominance regulation. Depending on growth conditions, light may trigger different pathways of the apical dominance regulatory network. Studies pinpoint to the key role of shoot-located cytokinin synthesis for light intensity and abscisic acid synthesis in the bud for R:FR in the regulation of bud outgrowth by light. Our analysis provides three major research lines to get a more comprehensive understanding of light effects on bud outgrowth. This would undoubtedly benefit from the use of computer modeling associated with experimental observations to deal with a regulatory system that involves several interacting signals, feedbacks, and quantitative effects.
Collapse
Affiliation(s)
- Anne Schneider
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon, France
| | | | | | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
59
|
Van Dingenen J, Hanzalova K, Abd Allah Salem M, Abel C, Seibert T, Giavalisco P, Wahl V. Limited nitrogen availability has cultivar-dependent effects on potato tuber yield and tuber quality traits. Food Chem 2019; 288:170-177. [DOI: 10.1016/j.foodchem.2019.02.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
|
60
|
Zhang G, Mao Z, Wang Q, Song J, Nie X, Wang T, Zhang H, Guo H. Comprehensive transcriptome profiling and phenotyping of rootstock and scion in a tomato/potato heterografting system. PHYSIOLOGIA PLANTARUM 2019; 166:833-847. [PMID: 30357855 DOI: 10.1111/ppl.12858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Tomato/potato heterografting-triggered phenotypic variations are well documented, yet the molecular mechanisms underlying grafting-induced phenotypic processes remain unknown. To investigate the phenotypic and transcriptomic responses of grafting parents in heterografting in comparison with self-grafting, tomato (Sl) was grafted onto potato rootstocks (St), and comparative phenotyping and transcriptome profiling were performed. Phenotypic analysis showed that Sl/St heterografting induced few phenotypic changes in the tomato scion. A total of 209 upregulated genes were identified in the tomato scion, some of which appear to be involved in starch and sucrose biosynthesis. Sl/St heterografting induced several modifications in the potato rootstocks (St-R), stolon number, stolon length and tuber number decreased significantly, together with an increase in GA3 content of stolon and tuber, compared with self-grafted potato (St-WT). These results indicate that the tomato scion is less effective at producing substances or signals to induce tuberization but promotes stolon development into aerial stems and sprouting. RNA-Seq data analysis showed that 1529 genes were upregulated and 1329 downregulated between St-WT and St-R; some of these genes are involved in plant hormone signal transduction, with GID1-like gibberellin receptor (StGID1) and DELLA protein (StDELLA) being upregulated. Several genes in auxin, abscisic acid and ethylene pathways were differentially expressed as well. Various hormone signals engage in crosstalk to regulate diverse phenotypic events after grafting. This work provides abundant transcriptome profile data and lays a foundation for further research on the molecular mechanisms underlying RNA-based interactions between rootstocks and scions after tomato/potato heterografting.
Collapse
Affiliation(s)
- Guanghai Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Jie Song
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuheng Nie
- Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Tingting Wang
- Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Han Zhang
- Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
61
|
Hou J, Liu T, Reid S, Zhang H, Peng X, Sun K, Du J, Sonnewald U, Song B. Silencing of α-amylase StAmy23 in potato tuber leads to delayed sprouting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:411-418. [PMID: 30981157 DOI: 10.1016/j.plaphy.2019.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Potato tuber dormancy is critical for the postharvest quality. The supply of carbohydrates is considered as one of the important factors controlling the rate of potato tuber sprouting. Starch is the major carbohydrate reserve in potato tuber, but very little is known about the specific starch degrading enzymes responsible for controlling tuber dormancy and sprouting. In this study, we demonstrate that an α-amylase gene StAmy23 is involved in starch breakdown and regulation of tuber dormancy. Silencing of StAmy23 delayed tuber sprouting by one to two weeks compared with the control. This phenotype is accompanied by reduced levels of reducing sugars and elevated levels of malto-oligosaccharides in tuber cortex and pith tissue below the bud eye of StAmy23-deficient potato tubers. Changes in soluble sugars is accompanied by a slight variation of phytoglycogen structure and starch granule size. Our results suggest that StAmy23 may stimulate sprouting by hydrolyzing soluble phytoglycogen to ensure supply of sugars during tuber dormancy.
Collapse
Affiliation(s)
- Juan Hou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany
| | - Huiling Zhang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Forestry, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Xiaojun Peng
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kaile Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Juan Du
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Uwe Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany.
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
62
|
Kolachevskaya OO, Lomin SN, Arkhipov DV, Romanov GA. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. PLANT CELL REPORTS 2019; 38:681-698. [PMID: 30739137 DOI: 10.1007/s00299-019-02395-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/02/2019] [Indexed: 05/04/2023]
Abstract
The study of the effects of auxins on potato tuberization corresponds to one of the oldest experimental systems in plant biology, which has remained relevant for over 70 years. However, only recently, in the postgenomic era, the role of auxin in tuber formation and other vital processes in potatoes has begun to emerge. This review describes the main results obtained over the entire period of auxin-potato research, including the effects of exogenous auxin; the content and dynamics of endogenous auxins; the effects of manipulating endogenous auxin content; the molecular mechanisms of auxin signaling, transport and inactivation; the role and position of auxin among other tuberigenic factors; the effects of auxin on tuber dormancy; the prospects for auxin use in potato biotechnology. Special attention is paid to recent insights into auxin function in potato tuberization and stress resistance. Taken together, the data discussed here leave no doubt on the important role of auxin in potato tuberization, particularly in the processes of tuber initiation, growth and sprouting. A new integrative model for the stage-dependent auxin action on tuberization is presented. In addition, auxin is shown to differentially affects the potato resistance to biotrophic and necrotrophic biopathogens. Thus, the modern auxin biology opens up new perspectives for further biotechnological improvement of potato crops.
Collapse
Affiliation(s)
- Oksana O Kolachevskaya
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Sergey N Lomin
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Dmitry V Arkhipov
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Georgy A Romanov
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
63
|
Wu J, Jin Y, Liu C, Vonapartis E, Liang J, Wu W, Gazzarrini S, He J, Yi M. GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1221-1237. [PMID: 30517656 PMCID: PMC6382327 DOI: 10.1093/jxb/ery428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Corm dormancy is an important trait for breeding in many bulb flowers, including the most cultivated Gladiolus hybridus. Gladiolus corms are modified underground stems that function as storage organs and remain dormant to survive adverse environmental conditions. Unlike seed dormancy, not much is known about corm dormancy. Here, we characterize the mechanism of corm dormancy release (CDR) in Gladiolus. We identified an important ABA (abscisic acid) signaling regulator, GhPP2C1 (protein phosphatase 2C1), by transcriptome analysis of CDR. GhPP2C1 expression increased during CDR, and silencing of GhPP2C1 expression in dormant cormels delayed CDR. Furthermore, we show that GhPP2C1 expression is directly regulated by GhNAC83, which was identified by yeast one-hybrid library screening. In planta assays show that GhNAC83 is a negative regulator of GhPP2C1, and silencing of GhNAC83 promoted CDR. As expected, silencing of GhNAC83 decreased the ABA level, but also dramatically increased cytokinin (CK; zeatin) content in cormels. Binding assays demonstrate that GhNAC83 associates with the GhIPT (ISOPENTENYLTRANSFERASE) promoter and negatively regulates zeatin biosynthesis. Taken together, our results reveal that GhNAC83 promotes ABA signaling and synthesis, and inhibits CK biosynthesis pathways, thereby inhibiting CDR. These findings demonstrate that GhNAC83 regulates the ABA and CK pathways, and therefore controls corm dormancy.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Yujie Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Chen Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Eliana Vonapartis
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Wenjing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Correspondence: or
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Correspondence: or
| |
Collapse
|
64
|
Morris WL, Alamar MC, Lopez-Cobollo RM, Castillo Cañete J, Bennett M, Van der Kaay J, Stevens J, Kumar Sharma S, McLean K, Thompson AJ, Terry LA, Turnbull CGN, Bryan GJ, Taylor MA. A member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family controls sprout growth in potato tubers. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:835-843. [PMID: 30395257 PMCID: PMC6363080 DOI: 10.1093/jxb/ery387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/02/2018] [Indexed: 05/16/2023]
Abstract
Potato tuber bud dormancy break followed by premature sprouting is a major commercial problem which results in quality losses and decreased tuber marketability. An approach to controlling premature tuber sprouting is to develop potato cultivars with a longer dormancy period and/or reduced rate of sprout growth. Our recent studies using a potato diploid population have identified several quantitative trait loci (QTLs) that are associated with tuber sprout growth. In the current study, we aim to characterize a candidate gene associated with one of the largest effect QTLs for rapid tuber sprout growth on potato chromosome 3. Underlying this QTL is a gene encoding a TERMINAL FLOWER 1/CENTRORADIALIS homologue (PGSC0003DMG400014322). Here, we use a transgenic approach to manipulate the expression level of the CEN family member in a potato tetraploid genotype (cv. Désirée). We demonstrate a clear effect of manipulation of StCEN expression, with decreased expression levels associated with an increased rate of sprout growth, and overexpressing lines showing a lower rate of sprout growth than controls. Associated with different levels of StCEN expression were different levels of abscisic acid and cytokinins, implying a role in controlling the levels of plant growth regulators in the apical meristem.
Collapse
Affiliation(s)
| | - M Carmen Alamar
- Plant Science Laboratory, Cranfield University, Bedfordshire, UK
| | | | | | - Mark Bennett
- Plant Science Laboratory, Cranfield University, Bedfordshire, UK
| | | | | | | | - Karen McLean
- The James Hutton Institute, Invergowrie, Dundee, UK
| | | | - Leon A Terry
- Plant Science Laboratory, Cranfield University, Bedfordshire, UK
| | | | | | - Mark A Taylor
- The James Hutton Institute, Invergowrie, Dundee, UK
- Correspondence:
| |
Collapse
|
65
|
Liu J, Sherif SM. Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. FRONTIERS IN PLANT SCIENCE 2019; 10:1136. [PMID: 31620159 PMCID: PMC6759871 DOI: 10.3389/fpls.2019.01136] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 05/03/2023]
Abstract
Woody perennials enter seasonal dormancy to avoid unfavorable environmental conditions. Plant hormones are the critical mediators regulating this complex process, which is subject to the influence of many internal and external factors. Over the last two decades, our knowledge of hormone-mediated dormancy has increased considerably, primarily due to advancements in molecular biology, omics, and bioinformatics. These advancements have enabled the elucidation of several aspects of hormonal regulation associated with bud dormancy in various deciduous tree species. Plant hormones interact with each other extensively in a context-dependent manner. The dormancy-associated MADS (DAM) transcription factors appear to enable hormones and other internal signals associated with the transition between different phases of bud dormancy. These proteins likely hold a great potential in deciphering the underlying mechanisms of dormancy initiation, maintenance, and release. In this review, a recent understanding of the roles of plant hormones, their cross talks, and their potential interactions with DAM proteins during dormancy is discussed.
Collapse
|
66
|
Wu J, Wu W, Liang J, Jin Y, Gazzarrini S, He J, Yi M. GhTCP19 Transcription Factor Regulates Corm Dormancy Release by Repressing GhNCED Expression in Gladiolus. PLANT & CELL PHYSIOLOGY 2019; 60:52-62. [PMID: 30192973 DOI: 10.1093/pcp/pcy186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Dormancy is one of the least understood phenomena in plant biology; however, bud/corm dormancy is an important economic trait in agricultural/horticultural breeding. In this study, we isolated an ABA biosynthesis gene, GhNCED, from the transcriptome database of corm dormancy release (CDR), and characterized its negative role in regulating CDR. To understand transcriptional regulation of GhNCED, yeast one-hybrid screening was conducted and GhTCP19 was identified and shown to regulate GhNCED expression directly. An in planta assay showed that GhTCP19 negatively regulates GhNCED expression. GhTCP19 is dramatically induced by exogenous cytokinins (CKs) and is induced during CDR. Silencing of GhTCP19 in dormant cormels delayed CDR, resulting in higher expression of GhNCED and ABA levels. Meanwhile, endogenous CK biosynthesis and signaling were inhibited in GhTCP19-silenced cormels. Taken together, our results reveal that GhTCP19 is a positive regulator of the CDR process by repressing expression of an ABA biosynthesis gene (GhNCED), promoting CK biosynthesis (GhIPT) and signal transduction (GhARR) as well as inducing cyclin genes. This study expands our knowledge on CDR which is mediated by TCP family members.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Wenjing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Yujie Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| |
Collapse
|
67
|
Shi Z, Halaly-Basha T, Zheng C, Weissberg M, Ophir R, Galbraith DW, Pang X, Or E. Transient induction of a subset of ethylene biosynthesis genes is potentially involved in regulation of grapevine bud dormancy release. PLANT MOLECULAR BIOLOGY 2018; 98:507-523. [PMID: 30392158 DOI: 10.1007/s11103-018-0793-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/28/2018] [Indexed: 05/26/2023]
Abstract
Transient increases in ethylene biosynthesis, achieved by tight regulation of transcription of specific ACC oxidase and ACC synthase genes, play a role in activation of grapevine bud dormancy release. The molecular mechanisms regulating dormancy release in grapevine buds are as yet unclear. It has been hypothesized that its core involves perturbation of respiration which induces an interplay between ethylene and ABA metabolism that removes repression and allows regrowth. Roles for hypoxia and ABA metabolism in this process have been previously supported. The potential involvement of ethylene biosynthesis in regulation of dormancy release, which has received little attention so far, is now explored. Our results indicate that (1) ethylene biosynthesis is induced by hydrogen cyanamide (HC) and azide (AZ), known artificial stimuli of dormancy release, (2) inhibitors of ethylene biosynthesis and signalling antagonize dormancy release by HC/AZ treatments, (3) ethylene application induces dormancy release, (4) there are two sets of bud-expressed ethylene biosynthesis genes which are differentially regulated, (5) only one set is transiently upregulated by HC/AZ and during the natural dormancy cycle, concomitant with changes in ethylene levels, and (6) levels of ACC oxidase transcripts and ethylene sharply decrease during natural dormancy release, whereas ACC accumulates. Given these results, we propose that transient increases in ethylene biosynthesis prior to dormancy release, achieved primarily by regulation of transcription of specific ACC oxidase genes, play a role in activation of dormancy release.
Collapse
Affiliation(s)
- Zhaowan Shi
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tamar Halaly-Basha
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Chuanlin Zheng
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Mira Weissberg
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Ron Ophir
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Etti Or
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel.
| |
Collapse
|
68
|
Zhang L, Zhang G, Dai Z, Bian P, Zhong N, Zhang Y, Cai D, Wu Z. Promoting Potato Seed Sprouting Using an Amphiphilic Nanocomposite. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9657-9666. [PMID: 30157371 DOI: 10.1021/acs.jafc.8b03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most potato tubers were used as seeds and sprouted relatively slowly in soil, greatly influencing potato production. To solve this problem, an amphiphilic nanocomposite was fabricated by loading hydrophobic silica (H-SiO2) in hydrophilic attapulgite nest-like and used as a nano presprouting agent (NPA). This technology could conveniently adjust the occupation area ratio of water and air (OARWA) on the potato surface. NPA could endow potatoes with an appropriate OARWA and, thus, effectively accelerate sprouting. Additionally, NPA greatly decreased soil bulk density, facilitated earthworm growth, promoted potato growth, and increased the yield by 14.1%. Besides, NPA did not pass through the potato skin and mainly existed on the surface of potatoes. Importantly, NPA showed tiny influence on the viability of fish and nematodes, demonstrating good biosafety. Therefore, this work provides a promising presprouting approach for potatoes, which may have a potential application prospect in ensuring food supply.
Collapse
Affiliation(s)
- Lihong Zhang
- University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | | | - Zhangyu Dai
- University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | | | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , 1 Beichen West Road , Beijing 100101 , People's Republic of China
| | - Yuanyuan Zhang
- School of Life Science , Anhui Medical University , 81 Meishan Road , Hefei , Anhui 230032 , People's Republic of China
| | | | | |
Collapse
|
69
|
Muñiz García MN, Cortelezzi JI, Fumagalli M, Capiati DA. Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance. PLANT MOLECULAR BIOLOGY 2018; 98:137-152. [PMID: 30143991 DOI: 10.1007/s11103-018-0769-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/21/2018] [Indexed: 05/23/2023]
Abstract
In this study we show that expression of the Arabidopsis ABF4 gene in potato increases tuber yield under normal and abiotic stress conditions, improves storage capability and processing quality of the tubers, and enhances salt and drought tolerance. Potato is the third most important food crop in the world. Potato plants are susceptible to salinity and drought, which negatively affect crop yield, tuber quality and market value. The development of new varieties with higher yields and increased tolerance to adverse environmental conditions is a main objective in potato breeding. In addition, tubers suffer from undesirable sprouting during storage that leads to major quality losses; therefore, the control of tuber sprouting is of considerable economic importance. ABF (ABRE-binding factor) proteins are bZIP transcription factors that regulate abscisic acid signaling during abiotic stress. ABF proteins also play an important role in the tuberization induction. We developed transgenic potato plants constitutively expressing the Arabidopsis ABF4 gene (35S::ABF4). In this study, we evaluated the performance of 35S::ABF4 plants grown in soil, determining different parameters related to tuber yield, tuber quality (carbohydrates content and sprouting behavior) and tolerance to salt and drought stress. Besides enhancing salt stress and drought tolerance, constitutive expression of ABF4 increases tuber yield under normal and stress conditions, enhances storage capability and improves the processing quality of the tubers.
Collapse
Affiliation(s)
- María Noelia Muñiz García
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Juan Ignacio Cortelezzi
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marina Fumagalli
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Daniela A Capiati
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
70
|
Luo R, Song X, Li Z, Zhang A, Yan X, Pang Q. Effect of soil salinity on fructan content and polymerization degree in the sprouting tubers of Jerusalem artichoke (Helianthus tuberosus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:27-34. [PMID: 29413628 DOI: 10.1016/j.plaphy.2018.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 05/07/2023]
Abstract
In addition to their role as reserve carbohydrates, fructans have been recognized as compounds that are protective against adverse environments. The aim of this study was to identify changes in the content and the degree of polymerization (DP) of fructan in sprouting tubers of Jerusalem artichoke under salt stress. Fructan was extracted from tubers at 1, 3, 5, and 7 days after planting in sandy loam soil irrigated with NaCl solution. Fructan accumulation and polymerization and the expression of genes encoding enzymes for fructan synthesis and degradation were evaluated. No significant differences between the control and treatment groups were observed until 5 days after sowing. The highest level of salinity (250 mM) not only inhibited sprouting and root growth but also decreased the level of fructan in the tubers. The proportion of fructan at DP 2-5 rapidly increased one day after sowing and then decreased over time. Under various NaCl treatments, at 7 days after sowing, all fructans except fructan at DP 6-10 were present in proportions less than or equal to the control. The variation in the DP of fructan was related to the transcription level of fructan metabolism genes. Fructan may support sprouting or resistance to salt stress by changing the DP of fructan molecules through hydrolysis without changing the total amount of fructan. The low-molecular-weight oligosaccharides (DP < 5) may be the major carbohydrates that support tuber sprouting or that are involved in protection from salt stress.
Collapse
Affiliation(s)
- Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Xiaoyang Song
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Ziwei Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Aiqin Zhang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, People's Republic of China.
| |
Collapse
|
71
|
Zheng C, Kwame Acheampong A, Shi Z, Halaly T, Kamiya Y, Ophir R, Galbraith DW, Or E. Distinct gibberellin functions during and after grapevine bud dormancy release. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1635-1648. [PMID: 29385616 PMCID: PMC5888973 DOI: 10.1093/jxb/ery022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It has been hypothesized that (i) abscisic acid (ABA) represses bud-meristem activity; (ii) perturbation of respiration induces an interplay between ethylene and ABA metabolism, which leads to removal of repression; and (iii) gibberellin (GA)-mediated growth is resumed. The first two hypothesis have been formally supported. The current study examines the third hypothesis regarding the potential involvement of GA in dormancy release. We found that during natural dormancy induction, levels of VvGA3ox, VvGA20ox, and VvGASA2 transcripts and of GA1 were decreased. However, during dormancy release, expression of these genes was enhanced, accompanied by decreased expression of the bud-expressed GA-deactivating VvGA2ox. Despite indications for its positive role during natural dormancy release, GA application had inhibitory effects on bud break. Hydrogen cyanamide up-regulated VvGA2ox and down-regulated VvGA3ox and VvGA20ox expression, reduced GA1 levels, and partially rescued the negative effect of GA. GA had an inhibitory effect only when applied simultaneously with bud-forcing initiation. Given these results, we hypothesize that during initial activation of the dormant bud meristem, the level of GA must be restricted, but after meristem activation an increase in its level serves to enhance primordia regrowth.
Collapse
Affiliation(s)
- Chuanlin Zheng
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Atiako Kwame Acheampong
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Zhaowan Shi
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Tamar Halaly
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yuji Kamiya
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Ron Ophir
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Etti Or
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
72
|
Vijay P, Ezekiel R, Pandey R. Use of CIPC as a potato sprout suppressant: health and environmental concerns and future options. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2018. [DOI: 10.3920/qas2017.1088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- P. Vijay
- ICAR-Central Potato Research Institute-Campus (CPRI-Campus), Modipuram, Meerut, UP 250 110, India
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, India
| | - R. Ezekiel
- Crop Physiology and Post-Harvest Technology, ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh 171 001, India
- National Agricultural Innovation Project (NAIP), Krishi Anusandhan Bhawan - II, Pusa Campus, New Delhi 110 012, India
| | - R. Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, India
| |
Collapse
|
73
|
Naz RMM, Li M, Ramzan S, Li G, Liu J, Cai X, Xie C. QTL mapping for microtuber dormancy and GA 3 content in a diploid potato population. Biol Open 2018; 7:bio.027375. [PMID: 29212796 PMCID: PMC5829492 DOI: 10.1242/bio.027375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The genetic control of dormancy is poorly understood in most plant species, but dormancy is a prominent feature for the potato industry. We used the microtuber system, in which tubers were produced in vitro and stored at 20°C, to perform quantitative trait locus (QTL) analysis for dormancy and gibberellic acid (GA3) content in an F1 population consisting of 178 genotypes derived from an interspecific cross between Solanum chacoense acc. PI 320285 (long dormancy) and Solanum phureja acc. DM1-3 516 R44 (short dormancy). In this analysis, 163 markers were used to construct a genetic map with a total length of 591.8 cM. Through QTL analysis, we identified 22 markers closely linked to the timing of dormancy release and GA3 content. The male parent alleles were closely related with long dormancy, with the most significant effect on chromosome I, which accounted for 9.4% of phenotypic variation. The dormancy and GA3 QTLs localized to the same position in the genome, confirming that same genomic region controls GA3 content at different developmental stages or in dormant and sprouting tubers. The identified QTLs may be useful for future breeding strategies and studies of dormancy in potato. Summary: Quantitative trait locus’ (QTLs) for dormancy and gibberellic acid production in potato are localized to the same genomic region in potato.
Collapse
Affiliation(s)
- Raja Mohib Muazzam Naz
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengtai Li
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Safia Ramzan
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gege Li
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jun Liu
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xingkui Cai
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Conghua Xie
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
74
|
Li LQ, Zou X, Deng MS, Peng J, Huang XL, Lu X, Fang CC, Wang XY. Comparative Morphology, Transcription, and Proteomics Study Revealing the Key Molecular Mechanism of Camphor on the Potato Tuber Sprouting Effect. Int J Mol Sci 2017; 18:ijms18112280. [PMID: 29084178 PMCID: PMC5713250 DOI: 10.3390/ijms18112280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023] Open
Abstract
Sprouting regulation in potato tubers is important for improving commercial value and producing new plants. Camphor shows flexible inhibition of tuber sprouting and prolongs the storage period of potato, but its underlying mechanism remains unknown. The results of the present study suggest that camphor inhibition caused bud growth deformities and necrosis, but after moving to more ventilated conditions, new sprouts grew from the bud eye of the tuber. Subsequently, the sucrose and fructose contents as well as polyphenol oxidase (PPO) activity were assessed after camphor inhibition. Transcription and proteomics data from dormancy (D), sprouting (S), camphor inhibition (C), and recovery sprouting (R) samples showed changes in the expression levels of approximately 4000 transcripts, and 700 proteins showed different abundances. KEGG (Kyoto encyclopaedia of genes and genomes) pathway analysis of the transcription levels indicated that phytohormone synthesis and signal transduction play important roles in tuber sprouting. Camphor inhibited these processes, particularly for gibberellic acid, brassinosteroids, and ethylene, leading to dysregulation of physiological processes such as cutin, suberine and wax biosynthesis, fatty acid elongation, phenylpropanoid biosynthesis, and starch and sucrose metabolism, resulting in bud necrosis and prolonged storage periods. The KEGG pathway correlation between transcripts and proteins revealed that terpenoid backbone biosynthesis and plant-pathogen interaction pathways showed significant differences in D vs. S samples, but 13 pathways were remarkably different in the D vs. C groups, as camphor inhibition significantly increased both the transcription levels and protein abundance of pathogenesis-related protein PR-10a (or STH-2), the pathogenesis-related P2-like precursor protein, and the kirola-like protein as compared to sprouting. In recovery sprouting, these genes and proteins were decreased at both the transcriptional level and in protein abundance. It was important to find that the inhibitory effect of camphor on potato tuber sprout was reversible, revealing the action mechanism was similar to resistance to pathogen infection. The present study provides a theoretical basis for the application of camphor in prolonging seed potato storage.
Collapse
Affiliation(s)
- Li-Qin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xue Zou
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
- Mianyang Academy of Agricultural Sciences, Mianyang 621023, China.
| | - Meng-Sheng Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Peng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xue-Li Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xue Lu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chen-Cheng Fang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xi-Yao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
75
|
Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS One 2017; 12:e0181444. [PMID: 28708852 PMCID: PMC5510849 DOI: 10.1371/journal.pone.0181444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/02/2017] [Indexed: 01/16/2023] Open
Abstract
Isoamylases hydrolyse (1–6)-alpha-D-glucosidic linkages in starch and are involved in both starch granule formation and starch degradation. In plants, three isoamylase isoforms with distinct functions in starch synthesis (ISA1 and ISA2) and degradation (ISA3) have been described. Here, we created transgenic potato plants with simultaneously decreased expression of all three isoamylases using a chimeric RNAi construct targeting all three isoforms. Constitutive expression of the hairpin RNA using the 35S CaMV promoter resulted in efficient silencing of all three isoforms in leaves, growing tubers, and sprouting tubers. Neither plant growth nor tuber yield was effected in isoamylase-deficient potato lines. Interestingly, starch metabolism was found to be impaired in a tissue-specific manner. While leaf starch content was unaffected, tuber starch was significantly reduced. The reduction in tuber starch content in the transgenic plants was accompanied by a decrease in starch granules size, an increased sucrose content and decreased hexose levels. Despite the effects on granule size, only little changes in chain length composition of soluble and insoluble glucose polymers were detected. The transgenic tubers displayed an early sprouting phenotype that was accompanied by an increased level of sucrose in parenchyma cells below the outgrowing bud. Since high sucrose levels promote sprouting, we propose that the increased number of small starch granules may cause an accelerated turnover of glucan chains and hence a more rapid synthesis of sucrose. This observation links alterations in starch structure/degradation with developmental processes like meristem activation and sprout outgrowth in potato tubers.
Collapse
|
76
|
Neilson J, Lagüe M, Thomson S, Aurousseau F, Murphy AM, Bizimungu B, Deveaux V, Bègue Y, Jacobs JME, Tai HH. Gene expression profiles predictive of cold-induced sweetening in potato. Funct Integr Genomics 2017; 17:459-476. [PMID: 28236275 DOI: 10.1007/s10142-017-0549-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/18/2017] [Accepted: 01/30/2017] [Indexed: 10/24/2022]
Abstract
Cold storage (2-4 °C) used in potato production to suppress diseases and sprouting during storage can result in cold-induced sweetening (CIS), where reducing sugars accumulate in tuber tissue leading to undesirable browning, production of bitter flavors, and increased levels of acrylamide with frying. Potato exhibits genetic and environmental variation in resistance to CIS. The current study profiles gene expression in post-harvest tubers before cold storage using transcriptome sequencing and identifies genes whose expression is predictive for CIS. A distance matrix for potato clones based on glucose levels after cold storage was constructed and compared to distance matrices constructed using RNA-seq gene expression data. Congruence between glucose and gene expression distance matrices was tested for each gene. Correlation between glucose and gene expression was also tested. Seventy-three genes were found that had significant p values in the congruence and correlation tests. Twelve genes from the list of 73 genes also had a high correlation between glucose and gene expression as measured by Nanostring nCounter. The gene annotations indicated functions in protein degradation, nematode resistance, auxin transport, and gibberellin response. These 12 genes were used to build models for prediction of CIS using multiple linear regression. Nine linear models were constructed that used different combinations of the 12 genes. An F-box protein, cellulose synthase, and a putative Lax auxin transporter gene were most frequently used. The findings of this study demonstrate the utility of gene expression profiles in predictive diagnostics for severity of CIS.
Collapse
Affiliation(s)
- Jonathan Neilson
- Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, 850 Lincoln Rd., Fredericton, N. B, E3B 4Z7, Canada.
| | - M Lagüe
- Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, 850 Lincoln Rd., Fredericton, N. B, E3B 4Z7, Canada
| | - S Thomson
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - F Aurousseau
- Station de Recherche du Comite Nord, Sipre-Responsable Scientifique Creation Varietale, 18 La Chaussée, 76110, Bretteville du Grand Caux, France
| | - A M Murphy
- Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, 850 Lincoln Rd., Fredericton, N. B, E3B 4Z7, Canada
| | - B Bizimungu
- Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, 850 Lincoln Rd., Fredericton, N. B, E3B 4Z7, Canada
| | - V Deveaux
- Station de Recherche du Comite Nord, Sipre-Responsable Scientifique Creation Varietale, 18 La Chaussée, 76110, Bretteville du Grand Caux, France
| | - Y Bègue
- Station de Recherche du Comite Nord, Sipre-Responsable Scientifique Creation Varietale, 18 La Chaussée, 76110, Bretteville du Grand Caux, France
| | - J M E Jacobs
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - H H Tai
- Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, 850 Lincoln Rd., Fredericton, N. B, E3B 4Z7, Canada
| |
Collapse
|
77
|
Gillespie LM, Volaire FA. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. ANNALS OF BOTANY 2017; 119:311-323. [PMID: 28087658 PMCID: PMC5314652 DOI: 10.1093/aob/mcw264] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/27/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dormancy in higher plants is an adaptive response enabling plant survival during the harshest seasons and has been more explored in woody species than in herbaceous species. Nevertheless, winter and summer shoot meristem dormancy are adaptive strategies that could play a major role in enhancing seasonal stress tolerance and resilience of widespread herbaceous plant communities. SCOPE This review outlines the symmetrical aspects of winter and summer dormancy in order to better understand plant adaptation to severe stress, and highlight research priorities in a changing climate. Seasonal dormancy is a good model to explore the growth-stress survival trade-off and unravel the relationships between growth potential and stress hardiness. Although photoperiod and temperature are known to play a crucial, though reversed, role in the induction and release of both types of dormancy, the thresholds and combined effects of these environmental factors remain to be identified. The biochemical compounds involved in induction or release in winter dormancy (abscisic acid, ethylene, sugars, cytokinins and gibberellins) could be a priority research focus for summer dormancy. To address these research priorities, herbaceous species, being more tractable than woody species, are excellent model plants for which both summer and winter dormancy have been clearly identified. CONCLUSIONS Summer and winter dormancy, although responding to inverse conditions, share many characteristics. This analogous nature can facilitate research as well as lead to insight into plant adaptations to extreme conditions and the evolution of phenological patterns of species and communities under climate change. The development of phenotypes showing reduced winter and/or enhanced summer dormancy may be expected and could improve adaptation to less predictable environmental stresses correlated with future climates. To this end, it is suggested to explore the inter- and intraspecific genotypic variability of dormancy and its plasticity according to environmental conditions to contribute to predicting and mitigating global warming.
Collapse
Affiliation(s)
| | - Florence A Volaire
- INRA USC 1338, CEFE UMR 5175, CNRS, 1919 Route de Mende, 34293 Montpellier cedex, France
| |
Collapse
|
78
|
Alamar MC, Tosetti R, Landahl S, Bermejo A, Terry LA. Assuring Potato Tuber Quality during Storage: A Future Perspective. FRONTIERS IN PLANT SCIENCE 2017; 8:2034. [PMID: 29234341 PMCID: PMC5712419 DOI: 10.3389/fpls.2017.02034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/14/2017] [Indexed: 05/11/2023]
Abstract
Potatoes represent an important staple food crop across the planet. Yet, to maintain tuber quality and extend availability, there is a necessity to store tubers for long periods often using industrial-scale facilities. In this context, preserving potato quality is pivotal for the seed, fresh and processing sectors. The industry has always innovated and invested in improved post-harvest storage. However, the pace of technological change has and will continue to increase. For instance, more stringent legislation and changing consumer attitudes have driven renewed interest in creating alternative or complementary post-harvest treatments to traditional chemically reliant sprout suppression and disease control. Herein, the current knowledge on biochemical factors governing dormancy, the use of chlorpropham (CIPC) as well as existing and chemical alternatives, and the effects of pre- and post-harvest factors to assure potato tuber quality is reviewed. Additionally, the role of genomics as a future approach to potato quality improvement is discussed. Critically, and through a more industry targeted research, a better mechanistic understanding of how the pre-harvest environment influences tuber quality and the factors which govern dormancy transition should lead to a paradigm shift in how sustainable storage can be achieved.
Collapse
|
79
|
Grandellis C, Fantino E, Muñiz García MN, Bialer MG, Santin F, Capiati DA, Ulloa RM. StCDPK3 Phosphorylates In Vitro Two Transcription Factors Involved in GA and ABA Signaling in Potato: StRSG1 and StABF1. PLoS One 2016; 11:e0167389. [PMID: 27907086 PMCID: PMC5131985 DOI: 10.1371/journal.pone.0167389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Calcium-dependent protein kinases, CDPKs, decode calcium (Ca2+) transients and initiate downstream responses in plants. In order to understand how CDPKs affect plant physiology, their specific target proteins must be identified. In tobacco, the bZIP transcription factor Repression of Shoot Growth (NtRSG) that modulates gibberellin (GA) content is a specific target of NtCDPK1. StCDPK3 from potato is homologous (88% identical) to NtCDPK1 even in its N-terminal variable domain. In this work, we observe that NtRSG is also phosphorylated by StCDPK3. The potato RSG family of transcription factors is composed of three members that share similar features. The closest homologue to NtRSG, which was named StRSG1, was amplified and sequenced. qRT-PCR data indicate that StRSG1 is mainly expressed in petioles, stems, lateral buds, and roots. In addition, GA treatment affected StRSG1 expression. StCDPK3 transcripts were detected in leaves, petioles, stolons, roots, and dormant tubers, and transcript levels were modified in response to GA. The recombinant StRSG1-GST protein was produced and tested as a substrate for StCDPK3 and StCDPK1. 6xHisStCDPK3 was able to phosphorylate the potato StRSG1 in a Ca2+-dependent way, while 6xHisStCDPK1 could not. StCDPK3 also interacts and phosphorylates the transcription factor StABF1 (ABRE binding factor 1) involved in ABA signaling, as shown by EMSA and phosphorylation assays. StABF1 transcripts were mainly detected in roots, stems, and stolons. Our data suggest that StCDPK3 could be involved in the cross-talk between ABA and GA signaling at the onset of tuber development.
Collapse
Affiliation(s)
- Carolina Grandellis
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Elisa Fantino
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - María Noelia Muñiz García
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Magalí Graciela Bialer
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Franco Santin
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Daniela Andrea Capiati
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Rita María Ulloa
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
80
|
Buskila Y, Sela N, Teper-Bamnolker P, Tal I, Shani E, Weinstain R, Gaba V, Tam Y, Lers A, Eshel D. Stronger sink demand for metabolites supports dominance of the apical bud in etiolated growth. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5495-5508. [PMID: 27580624 DOI: 10.1093/jxb/erw315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The potato tuber is a swollen underground stem that can sprout under dark conditions. Sprouting initiates in the tuber apical bud (AP), while lateral buds (LTs) are repressed by apical dominance (AD). Under conditions of lost AD, removal of tuber LTs showed that they partially inhibit AP growth only at the AD stage. Detached buds were inhibited by exogenous application of naphthaleneacetic acid (NAA), whereas 6-benzyladenine (6-BA) and gibberellic acid (GA3) induced bud burst and elongation, respectively. NAA, applied after 6-BA or GA3, nullified the latters' growth-stimulating effect in both the AP and LTs. GA3 applied to the fifth-position LT was transported mainly to the tuber's AP. GA3 treatment also resulted in increased indole-3-acetic acid (IAA) concentration and cis-zeatin O-glucoside in the AP. In a tuber tissue strip that included two or three buds connected by the peripheral vascular system, treatment of a LT with GA3 affected only the AP side of the strip, suggesting that the AP is the strongest sink for GA3, which induces its etiolated elongation. Dipping etiolated sprouts in labeled GA3 showed specific accumulation of the signal in the AP. Transcriptome analysis of GA3's effect showed that genes related to the cell cycle, cell proliferation, and hormone transport are up-regulated in the AP as compared to the LT. Sink demand for metabolites is suggested to support AD in etiolated stem growth by inducing differential gene expression in the AP.
Collapse
Affiliation(s)
- Yossi Buskila
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Iris Tal
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eilon Shani
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roy Weinstain
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Victor Gaba
- Department of Plant Pathology and Weed Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Yehudit Tam
- Department of Plant Pathology and Weed Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
81
|
Roman H, Girault T, Barbier F, Péron T, Brouard N, Pěnčík A, Novák O, Vian A, Sakr S, Lothier J, Le Gourrierec J, Leduc N. Cytokinins Are Initial Targets of Light in the Control of Bud Outgrowth. PLANT PHYSIOLOGY 2016; 172:489-509. [PMID: 27462085 PMCID: PMC5074613 DOI: 10.1104/pp.16.00530] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/24/2016] [Indexed: 05/18/2023]
Abstract
Bud outgrowth is controlled by environmental and endogenous factors. Through the use of the photosynthesis inhibitor norflurazon and of masking experiments, evidence is given here that light acts mainly as a morphogenic signal in the triggering of bud outgrowth and that initial steps in the light signaling pathway involve cytokinins (CKs). Indeed, in rose (Rosa hybrida), inhibition of bud outgrowth by darkness is suppressed solely by the application of CKs. In contrast, application of sugars has a limited effect. Exposure of plants to white light (WL) induces a rapid (after 3-6 h of WL exposure) up-regulation of CK synthesis (RhIPT3 and RhIPT5), of CK activation (RhLOG8), and of CK putative transporter RhPUP5 genes and to the repression of the CK degradation RhCKX1 gene in the node. This leads to the accumulation of CKs in the node within 6 h and in the bud at 24 h and to the triggering of bud outgrowth. Molecular analysis of genes involved in major mechanisms of bud outgrowth (strigolactone signaling [RwMAX2], metabolism and transport of auxin [RhPIN1, RhYUC1, and RhTAR1], regulation of sugar sink strength [RhVI, RhSUSY, RhSUC2, and RhSWEET10], and cell division and expansion [RhEXP and RhPCNA]) reveal that, when supplied in darkness, CKs up-regulate their expression as rapidly and as intensely as WL Additionally, up-regulation of CKs by WL promotes xylem flux toward the bud, as evidenced by Methylene Blue accumulation in the bud after CK treatment in the dark. Altogether, these results suggest that CKs are initial components of the light signaling pathway that controls the initiation of bud outgrowth.
Collapse
Affiliation(s)
- Hanaé Roman
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Tiffanie Girault
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - François Barbier
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Thomas Péron
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Nathalie Brouard
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Aleš Pěnčík
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Ondřej Novák
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Alain Vian
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Soulaiman Sakr
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Jérémy Lothier
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - José Le Gourrierec
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| | - Nathalie Leduc
- IRHS (Research Institute on Horticulture and Seeds), Université d'Angers, Agrocampus-Ouest, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, 49070 Beaucouzé, France (H.R., T.G., F.B., T.P., N.B., A.V., S.S., J.L., J.L.G., N.L.); andLaboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic (A.P., O.N.)
| |
Collapse
|
82
|
Umemoto N, Nakayasu M, Ohyama K, Yotsu-Yamashita M, Mizutani M, Seki H, Saito K, Muranaka T. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway. PLANT PHYSIOLOGY 2016; 171:2458-67. [PMID: 27307258 PMCID: PMC4972264 DOI: 10.1104/pp.16.00137] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/11/2016] [Indexed: 05/19/2023]
Abstract
α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Masaru Nakayasu
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Kiyoshi Ohyama
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Mari Yotsu-Yamashita
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Masaharu Mizutani
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Hikaru Seki
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Kazuki Saito
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Toshiya Muranaka
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| |
Collapse
|
83
|
Grandellis C, Giammaria V, Fantino E, Cerrudo I, Bachmann S, Santin F, Ulloa RM. Transcript profiling reveals that cysteine protease inhibitors are up-regulated in tuber sprouts after extended darkness. Funct Integr Genomics 2016; 16:399-418. [PMID: 27075731 DOI: 10.1007/s10142-016-0492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
Abstract
Potato (Solanum tuberosum L.) tubers are an excellent staple food due to its high nutritional value. When the tuber reaches physiological competence, sprouting proceeds accompanied by changes at mRNA and protein levels. Potato tubers become a source of carbon and energy until sprouts are capable of independent growth. Transcript profiling of sprouts grown under continuous light or dark conditions was performed using the TIGR 10K EST Solanaceae microarray. The profiles analyzed show a core of highly expressed transcripts that are associated to the reactivation of growth. Under light conditions, the photosynthetic machinery was fully activated; the highest up-regulation was observed for the Rubisco activase (RCA), the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the Photosystem II 22 kDa protein (CP22) genes, among others. On the other hand, sprouts exposed to continuous darkness elongate longer, and after extended darkness, synthesis of chloroplast components was repressed, the expression of proteases was reduced while genes encoding cysteine protease inhibitors (CPIs) and metallocarboxypeptidase inhibitors (MPIs) were strongly induced. Northern blot and RT-PCR analysis confirmed that MPI levels correlated with the length of the dark period; however, CPI expression was strong only after longer periods of darkness, suggesting a feedback loop (regulation mechanism) in response to dark-induced senescence. Prevention of cysteine protease activity in etiolated sprouts exposed to extended darkness could delay senescence until they emerge to light.
Collapse
Affiliation(s)
- Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490 2nd piso, C1428ADN, Buenos Aires, Argentina
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) Ocampo y Esmeralda, Rosario, Argentina
| | - Veronica Giammaria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490 2nd piso, C1428ADN, Buenos Aires, Argentina
| | - Elisa Fantino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490 2nd piso, C1428ADN, Buenos Aires, Argentina
| | - Ignacio Cerrudo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490 2nd piso, C1428ADN, Buenos Aires, Argentina
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, and Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Instituto de Biotecnología (IB), Universidad Nacional de Hurlingham, Av. Vergara 2222, Villa Tesei, Hurlingham, B1688GEZ, Buenos Aires, Argentina
| | - Sandra Bachmann
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490 2nd piso, C1428ADN, Buenos Aires, Argentina
| | - Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490 2nd piso, C1428ADN, Buenos Aires, Argentina
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490 2nd piso, C1428ADN, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
84
|
Porto DD, Bruneau M, Perini P, Anzanello R, Renou JP, dos Santos HP, Fialho FB, Revers LF. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2659-72. [PMID: 25750421 DOI: 10.1093/jxb/erv061] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57,000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene's chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy.
Collapse
Affiliation(s)
- Diogo Denardi Porto
- Centro de Pesquisa Agropecuária do Trópico Semi-Árido, Empresa Brasileira de Pesquisa Agropecuária, BR-428, Km 152, 56302-970, Petrolina, PE, Brazil
| | - Maryline Bruneau
- Institut de Recherche en Horticulture et Semences (IRHS), A, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Pâmela Perini
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Rua General Osório, 348, Centro, 95700-000, Bento Gonçalves, RS, Brazil
| | - Rafael Anzanello
- Fundação Estadual de Pesquisa Agropecuária, RSC-470, Km 170, 95330-000, Veranópolis, RS, Brazil
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences (IRHS), A, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Henrique Pessoa dos Santos
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento, 515, 95700-000, Bento Gonçalves, RS, Brazil
| | - Flávio Bello Fialho
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento, 515, 95700-000, Bento Gonçalves, RS, Brazil
| | - Luís Fernando Revers
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento, 515, 95700-000, Bento Gonçalves, RS, Brazil
| |
Collapse
|
85
|
Ordaz-Ortiz JJ, Foukaraki S, Terry LA. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry. HORTICULTURE RESEARCH 2015; 2:15002. [PMID: 26504563 PMCID: PMC4595984 DOI: 10.1038/hortres.2015.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 01/09/2015] [Indexed: 05/24/2023]
Abstract
Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography-full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, 7'-hydroxy-abscisic acid and abscisic acid glucose ester, cytokinins zeatin, zeatin riboside, gibberellins (GA1, GA3, GA4 and GA7) and indole-3-acetyl-L-aspartic acid. We measured the amount of plant hormones in the flesh and skin of two processing potato cvs. Sylvana and Russet Burbank stored for up to 30 weeks at 6 °C under ambient air conditions. Herein, we report for the first time that abscisic acid glucose ester seems to accumulate in the skin of potato tubers throughout storage time. The method achieved a lowest limit of detection of 0.22 ng g(-1) of dry weight and a limit of quantification of 0.74 ng g(-1) dry weight (zeatin riboside), and was able to recover, detect and quantify a total of 12 plant hormones spiked on flesh and skin of potato tubers. In addition, the mass accuracy for all compounds (<5 ppm) was evaluated.
Collapse
Affiliation(s)
| | - Sofia Foukaraki
- Plant Science Laboratory, Cranfield University, Bedfordshire, MK43 0AL, UK
| | | |
Collapse
|
86
|
Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato. J Biotechnol 2015; 198:17-30. [PMID: 25661840 DOI: 10.1016/j.jbiotec.2015.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/15/2022]
Abstract
Potato tuber dormancy release is a critical development process that allows potato to produce new plant. The first Illumina RNA sequencing to generate the expressed mRNAs at dormancy tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) was performed. We identified 26,639 genes including 5,912 (3,450 up-regulated while 2,462 down-regulated) and 3,885 (2,141 up-regulated while 1,744 down-regulated) genes were differentially expressed from DT vs DRT and DRT vs ST. The RNA-Seq results were further verified using qRT-PCR. We found reserve mobilization events were activated before the bud emergence (DT vs DRT) and highlighted after dormancy release (DRT vs ST). Overexpressed genes related to metabolism of auxin, gibberellic acid, cytokinin and barssinosteriod were dominated in DT vs DRT, whereas overexpressed genes involved in metabolism of ethylene, jasmonate and salicylate were prominent in DRT vs ST. Various histone and cyclin isoforms associated genes involved in cell division/cycle were mainly up-regulated in DT vs DRT. Dormancy release process was also companied by stress response and redox regulation, those genes related to biotic stress, cell wall and second metabolism was preferentially overexpressed in DRT vs ST, which might accelerate dormancy breaking and sprout outgrowth. The metabolic processes activated during tuber dormancy release were also supported by plant seed models. These results represented the first comprehensive picture of a large number of genes involved in tuber dormancy release process.
Collapse
|
87
|
Liu B, Zhang N, Zhao S, Chang J, Wang Z, Zhang G, Si H, Wang D. Proteomic changes during tuber dormancy release process revealed by iTRAQ quantitative proteomics in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:181-190. [PMID: 25514565 DOI: 10.1016/j.plaphy.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/03/2014] [Indexed: 05/28/2023]
Abstract
Given that limited information is available with regard to tuber dormancy release related proteome, we conducted proteome analysis of tuber dormancy release process at dormant tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) using the iTRAQ technology. A total of 1,752 proteins were identified. Among them, a subset of 316 proteins was screened as significant up- (137) and down regulated (179) between DT vs DRT. A subset of 120 proteins experienced significant up- (40) or down-regulation (80) between DRT vs ST. The differentially expressed proteins were grouped into 11 functional categories. Proteins enriched in functional categories of major carbohydrate (CHO) metabolism, glycolysis, fermentation, amino acid metabolism, protein and transport were highly up-regulated, while functional categories of photosynthesis and RNA were down-regulated between DT vs DRT. Proteins enriched in functional groups of protein, cell wall, lipid metabolism, miscellaneous, and signaling were strongly up-regulated, while functional categories of photosynthesis, hormone metabolism and protein were down-regulated between DRT vs ST. Consistent with previous documented differentially expressed genes, most of differentially expressed proteins were also identified between DT and DRT, indicating the metabolism shift from growth suspension to growth activation as tubers dormancy breaking. The changes in protein profiles showed lower concordance with corresponding alterations in transcript levels, indicating possible transcriptional and posttranscriptional regulation. Furthermore, the possible mechanism of tuber dormancy release was discussed in relation to what was known in transcripts change and other plant models from carbohydrate metabolism, protein metabolism, stress response, redox regulation, transcription regulation, DNA metabolism, amino acid metabolism, development, signaling as well as hormone metabolism.
Collapse
Affiliation(s)
- Bailin Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Shuo Zhao
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 6C2, Canada
| | - Jing Chang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zemin Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Guodong Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| | - Di Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
88
|
Takahashi H, Imamura T, Konno N, Takeda T, Fujita K, Konishi T, Nishihara M, Uchimiya H. The gentio-oligosaccharide gentiobiose functions in the modulation of bud dormancy in the herbaceous perennial Gentiana. THE PLANT CELL 2014; 26:3949-63. [PMID: 25326293 PMCID: PMC4247589 DOI: 10.1105/tpc.114.131631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/04/2014] [Accepted: 09/30/2014] [Indexed: 05/19/2023]
Abstract
Bud dormancy is an adaptive strategy that perennials use to survive unfavorable conditions. Gentians (Gentiana), popular alpine flowers and ornamentals, produce overwintering buds (OWBs) that can persist through the winter, but the mechanisms regulating dormancy are currently unclear. In this study, we conducted targeted metabolome analysis to obtain clues about the metabolic mechanisms involved in regulating OWB dormancy. Multivariate analysis of metabolite profiles revealed metabolite patterns characteristic of dormant states. The concentrations of gentiobiose [β-D-Glcp-(1→6)-D-Glc] and gentianose [β-D-Glcp-(1→6)-D-Glc-(1→2)-d-Fru] significantly varied depending on the stage of OWB dormancy, and the gentiobiose concentration increased prior to budbreak. Both activation of invertase and inactivation of β-glucosidase resulted in gentiobiose accumulation in ecodormant OWBs, suggesting that gentiobiose is seldom used as an energy source but is involved in signaling pathways. Furthermore, treatment with exogenous gentiobiose induced budbreak in OWBs cultured in vitro, with increased concentrations of sulfur-containing amino acids, GSH, and ascorbate (AsA), as well as increased expression levels of the corresponding genes. Inhibition of GSH synthesis suppressed gentiobiose-induced budbreak accompanied by decreases in GSH and AsA concentrations and redox status. These results indicate that gentiobiose, a rare disaccharide, acts as a signal for dormancy release of gentian OWBs through the AsA-GSH cycle.
Collapse
Affiliation(s)
| | - Tomohiro Imamura
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Naotake Konno
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Takumi Takeda
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
| | | | - Hirofumi Uchimiya
- Institute of Environmental Science and Technology, Saitama University, Sakura-Ku, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
89
|
Campbell M, Suttle J, Douches DS, Buell CR. Treatment of potato tubers with the synthetic cytokinin 1-(α-ethylbenzyl)-3-nitroguanidine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth. Funct Integr Genomics 2014; 14:789-99. [PMID: 25270889 DOI: 10.1007/s10142-014-0404-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 12/01/2022]
Abstract
Perennial plants undergo repression of meristematic activity in a process called dormancy. Dormancy is a complex metabolic process with implications for plant breeding and crop yield. Endodormancy, a specific subclass of dormancy, is characteristic of internal physiological mechanisms resulting in growth suppression. In this study, we examine transcriptional changes associated with the natural cessation of endodormancy in potato tuber meristems and in endodormant tubers treated with the cytokinin analog 1-(α-ethylbenzyl)-3-niroguanidine (NG), which terminates dormancy. RNA-sequencing was used to examine transcriptome changes between endodormant and non-dormant meristems from four different harvest years. A total of 35,091 transcripts were detected with 2132 differentially expressed between endodormant and non-dormant tuber meristems. Endodormant potato tubers were treated with the synthetic cytokinin NG and transcriptome changes analyzed using RNA-seq after 1, 4, and 7 days following NG exposure. A comparison of natural cessation of dormancy and NG-treated tubers demonstrated that by 4 days after NG exposure, potato meristems exhibited transcriptional profiles similar to the non-dormant state with elevated expression of multiple histones, a variety of cyclins, and other genes associated with proliferation and cellular replication. Three homologues encoding for CYCD3 exhibited elevated expression in both non-dormant and NG-treated potato tissues. These results suggest that NG terminates dormancy and induces expression cell cycle-associated transcripts within 4 days of treatment.
Collapse
Affiliation(s)
- Michael Campbell
- Penn State Erie, The Behrend College, School of Science, 4205 College Drive, Erie, PA, 16563, USA,
| | | | | | | |
Collapse
|
90
|
A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. Biochem J 2014; 458:225-37. [PMID: 24325449 DOI: 10.1042/bj20130792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.
Collapse
|
91
|
Suttle JC, Huckle LL, Lu S, Knauber DC. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:448-57. [PMID: 24594397 DOI: 10.1016/j.jplph.2013.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 05/25/2023]
Abstract
The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression.
Collapse
Affiliation(s)
- Jeffrey C Suttle
- U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Boulevard N, Fargo, ND 58102-2765, USA.
| | - Linda L Huckle
- U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Boulevard N, Fargo, ND 58102-2765, USA
| | - Shunwen Lu
- U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Boulevard N, Fargo, ND 58102-2765, USA
| | - Donna C Knauber
- U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Boulevard N, Fargo, ND 58102-2765, USA
| |
Collapse
|
92
|
Abelenda JA, Navarro C, Prat S. Flowering and tuberization: a tale of two nightshades. TRENDS IN PLANT SCIENCE 2014; 19:115-22. [PMID: 24139978 DOI: 10.1016/j.tplants.2013.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 05/27/2023]
Abstract
The concept of florigen, postulated in the early 1930s, has taken form after the identification of the FLOWERING LOCUS T (FT) protein as the flowering-inducing signal. Besides their role in flowering, FT genes were subsequently reported to play additional functions in other biological processes. This is particularly relevant in the nightshades, where the FT genes appear to have undergone considerable expansion at the functional level and gained a new role in the control of storage organ formation in potato (Solanum tuberosum). Neofunctionalization of FT homologs in the nightshades identifies these proteins as a new class of primary signaling components that modulate development and organogenesis in these agronomic relevant species.
Collapse
Affiliation(s)
- José A Abelenda
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC) Campus de Cantoblanco, c/Darwin 3, 28049 Madrid, Spain
| | - Cristina Navarro
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC) Campus de Cantoblanco, c/Darwin 3, 28049 Madrid, Spain
| | - Salomé Prat
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC) Campus de Cantoblanco, c/Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
93
|
Sonnewald S, Sonnewald U. Regulation of potato tuber sprouting. PLANTA 2014; 239:27-38. [PMID: 24100410 DOI: 10.1007/s00425-013-1968-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/25/2013] [Indexed: 05/07/2023]
Abstract
Following tuber induction, potato tubers undergo a period of dormancy during which visible bud growth is inhibited. The length of the dormancy period is under environmental, physiological and hormonal control. Sucrose availability is one prerequisite for bud break. In the absence of sucrose, no bud break occurs. Thus, sucrose is likely to serve as nutrient and signal molecule at the same time. The mode of sucrose sensing is only vaguely understood, but most likely involves trehalose-6-phosphate and SnRK1 signalling networks. This conclusion is supported by the observation that ectopically manipulation of trehalose-6-phosphate levels influences the length of the dormancy period. Once physiological competence is achieved, sprouting is controlled by the level of phytohormones. Two phytohormones, ABA and ethylene, are supposed to suppress tuber sprouting; however, the exact role of ethylene remains to be elucidated. Cytokinins and gibberellins are required for bud break and sprout growth, respectively. The fifth classical phytohormone, auxin, seems to play a role in vascular development. During the dormancy period, buds are symplastically isolated, which changes during bud break. In parallel to the establishment of symplastic connectivity, vascular tissue develops below the growing bud most likely to support the outgrowing sprout with assimilates mobilised in parenchyma cells. Sprouting leads to major quality losses of stored potato tubers. Therefore, control of tuber sprouting is a major objective in potato breeding. Although comparative transcriptome analysis revealed a large number of genes differentially expressed in growing versus dormant buds, no master-regulator of potato tuber sprouting has been identified so far.
Collapse
Affiliation(s)
- Sophia Sonnewald
- Lehrstuhl für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany,
| | | |
Collapse
|
94
|
|
95
|
Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. THE NEW PHYTOLOGIST 2013; 198:1108-1120. [PMID: 23496288 DOI: 10.1111/nph.12217] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/06/2013] [Indexed: 05/08/2023]
Abstract
· Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy.
Collapse
Affiliation(s)
- Stefania A Pasare
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Laurence J M Ducreux
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wayne L Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Raymond Campbell
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sanjeev K Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Efstathios Roumeliotis
- Laboratory of Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Wouter Kohlen
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Sander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Peter M Bramley
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Alison G Roberts
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Mark A Taylor
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
96
|
Liu Y, Sun Y, He S, Zhu Y, Ao M, Li J, Cao Y. Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications. Int J Biol Macromol 2013; 57:213-7. [PMID: 23511059 DOI: 10.1016/j.ijbiomac.2013.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 01/04/2023]
Abstract
Controlled release formulations (CRFs) are promising in improving the efficiency of pesticide and minimizing the spreading of hazardous residues in environment. By coupling with the pesticide covalently, chitosan can be used as a carrier material for the vulnerable ingredient. For the first time, gibberellic acid (GA3), one of plant growth regulators, was attached to chitosan (CS) to form a GA3-CS conjugate via the formation of an amide bound using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide. The novel conjugate was structurally characterized by fourier transform infrared spectroscopy, ultraviolet spectrophotometer, and thermal gravimetric analysis. Effects of pH, temperature, and UV irradiation on the release of this conjugate were investigated. The results showed that the new conjugate had a remarkable modification degree for CS (more than 60%, w/w) and the optimal coupling conditions were defined as: the molar ratio of GA3:EDC/NHS:CS was 1:1.2:1.2, at pH 6.0 for 24 h. The release data showed the novel conjugate protected GA3 against photo- and thermal-degradation effectively and the concentration of GA3 in GA3-CS kept unchangeable about 60 d in different pH conditions. Compared with GA3 technical, the conjugate had better water solubility and stability and have potential applications. The present study also provides a novel preparation method of CRFs comprising a pesticide with long duration, sustained-release performance and good environmental compatibility. This method may be extended to other pesticides that possess a carboxyl group.
Collapse
Affiliation(s)
- Yao Liu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
97
|
Eshel D, Teper-Bamnolker P. Can loss of apical dominance in potato tuber serve as a marker of physiological age? PLANT SIGNALING & BEHAVIOR 2012; 7:1158-62. [PMID: 22899056 PMCID: PMC3489651 DOI: 10.4161/psb.21324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The potato tuber constitutes a model system for the study of dormancy release and sprouting, suggested to be regulated by endogenous plant hormones and their balance inside the tuber. During dormancy, potato tubers cannot be induced to sprout without some form of stress or exogenous hormone treatment. When dormancy is released, sprouting of the apical bud may be inhibited by sprout control agents or cold temperature. Dominance of the growing apical bud over other lateral buds decreases during storage and is one of the earliest morphophysiological indicators of the tuber's physiological age. Three main types of loss of apical dominance (AD) affect sprouting shape. Hallmarks of programmed cell death (PCD) have been identified in the tuber apical bud meristem (TAB-meristem) during normal growth, and are more extensive when AD is lost following extended cold storage or chemical stress. Nevertheless, the role of hormonal regulation in TAB-meristem PCD remains unclear.
Collapse
Affiliation(s)
- Dani Eshel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Bet-Dagan, Israel.
| | | |
Collapse
|
98
|
Choubane D, Rabot A, Mortreau E, Legourrierec J, Péron T, Foucher F, Ahcène Y, Pelleschi-Travier S, Leduc N, Hamama L, Sakr S. Photocontrol of bud burst involves gibberellin biosynthesis in Rosa sp. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1271-80. [PMID: 22749285 DOI: 10.1016/j.jplph.2012.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 05/06/2023]
Abstract
Light is a critical determinant of plant shape by controlling branching patterns and bud burst in many species. To gain insight into how light induces bud burst, we investigated whether its inductive effect in rose was related to gibberellin (GA) biosynthesis. In axillary buds of beheaded plants subject to light, the expression of two GA biosynthesis genes (RoGA20ox and RoGA3ox) was promptly and strongly induced, while that of a GA-catabolism genes (RoGA2ox) was reduced. By contrast, lower expression levels of these two GA biosynthesis genes were found in darkness, and correlated with a total inhibition of bud burst. This effect was dependent on both light intensity and quality. In in vitro cultured buds, the inductive effect of light on the growth of preformed leaves and SAM organogenic activity was inhibited by ancymidol and paclobutrazol, two effectors of GA biosynthesis. This effect was concentration-dependent, and negated by GA(3). However, GA(3) alone could not rescue bud burst in the dark. GA biosynthesis was also required for the expression and activity of a vacuolar invertase, and therefore for light-induced sugar metabolism within buds. These findings are evidence that GA biosynthesis contributes to the light effect on bud burst and lay the foundations of a better understanding of its exact role in plant branching.
Collapse
Affiliation(s)
- Djillali Choubane
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Suttle JC, Abrams SR, De Stefano-Beltrán L, Huckle LL. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5717-25. [PMID: 22664582 DOI: 10.1093/jxb/ers146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting.
Collapse
Affiliation(s)
- Jeffrey C Suttle
- US Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N, Fargo, ND 58102-2765, USA.
| | | | | | | |
Collapse
|
100
|
Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense). Funct Integr Genomics 2012; 12:515-31. [PMID: 22580957 DOI: 10.1007/s10142-012-0280-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ~65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ~2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth.
Collapse
|