51
|
Wali JA, Solon-Biet SM, Freire T, Brandon AE. Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. BIOLOGY 2021; 10:336. [PMID: 33923531 PMCID: PMC8072595 DOI: 10.3390/biology10040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Obesity caused by the overconsumption of calories has increased to epidemic proportions. Insulin resistance is often associated with an increased adiposity and is a precipitating factor in the development of cardiovascular disease, type 2 diabetes, and altered metabolic health. Of the various factors contributing to metabolic impairments, nutrition is the major modifiable factor that can be targeted to counter the rising prevalence of obesity and metabolic diseases. However, the macronutrient composition of a nutritionally balanced "healthy diet" are unclear, and so far, no tested dietary intervention has been successful in achieving long-term compliance and reductions in body weight and associated beneficial health outcomes. In the current review, we briefly describe the role of the three major macronutrients, carbohydrates, fats, and proteins, and their role in metabolic health, and provide mechanistic insights. We also discuss how an integrated multi-dimensional approach to nutritional science could help in reconciling apparently conflicting findings.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
52
|
Growth and Body Composition in PKU Children-A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes. Nutrients 2021; 13:nu13041323. [PMID: 33923714 PMCID: PMC8073059 DOI: 10.3390/nu13041323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 01/15/2023] Open
Abstract
Protein quality and quantity are important factors in determining lean body (muscle) mass (LBM). In phenylketonuria (PKU), protein substitutes provide most of the nitrogen, either as amino acids (AA) or glycomacropeptide with supplementary amino acids (CGMP-AA). Body composition and growth are important indicators of long-term health. In a 3-year prospective study comparing the impact of AA and CGMP-AA on body composition and growth in PKU, 48 children were recruited. N = 19 (median age 11.1 years, range 5–15 years) took AA only, n = 16 (median age 7.3 years, range 5–15 years) took a combination of CGMP-AA and AA, (CGMP50) and 13 children (median age 9.2 years, range 5–16 years) took CGMP-AA only (CGMP100). A dual energy X-ray absorptiometry (DXA) scan at enrolment and 36 months measured LBM, % body fat (%BF) and fat mass (FM). Height was measured at enrolment, 12, 24 and 36 months. No correlation or statistically significant differences (after adjusting for age, gender, puberty and phenylalanine blood concentrations) were found between the three groups for LBM, %BF, FM and height. The change in height z scores, (AA 0, CGMP50 +0.4 and CGMP100 +0.7) showed a trend that children in the CGMP100 group were taller, had improved LBM with decreased FM and % BF but this was not statistically significant. There appeared to be no advantage of CGMP-AA compared to AA on body composition after 3-years of follow-up. Although statistically significant differences were not reached, a trend towards improved body composition was observed with CGMP-AA when it provided the entire protein substitute requirement.
Collapse
|
53
|
Vendramini THA, Macedo HT, Zafalon RVA, Macegoza MV, Pedrinelli V, Risolia LW, Ocampos FMM, Jeremias JT, Pontieri CFF, Ferriolli E, Colnago LA, Brunetto MA. Serum metabolomics analysis reveals that weight loss in obese dogs results in a similar metabolic profile to dogs in ideal body condition. Metabolomics 2021; 17:27. [PMID: 33594460 DOI: 10.1007/s11306-020-01753-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The study of metabolic profile can be an important tool to better understand, at a systemic level, metabolic alterations caused by different pathological conditions, such as obesity. Furthermore, it allows the discovery of metabolic biomarkers, which may help to diagnose alterations caused by obesity. OBJECTIVE To investigate the metabolic profile of blood serum of obese dogs, control dogs, and dogs that were subjected to a weight loss program. METHODS Ten obese adult spayed female dogs were included, and their body composition was determined by the deuterium isotope dilution method. The dogs were subjected to a weight loss program and formed a new experimental group after losing 20% of the initial body weight. A third experimental group was composed of ten lean adult spayed female dogs. The metabolic profile of blood serum was evaluated through nuclear magnetic resonance (NMR). Principal Component Analyses (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models were constructed using Pareto scaling pre-processing. Pathway analysis was also performed using the MetaboAnalist online tool. RESULTS The PCA shows that the control and after weight loss groups presented a trend to negative PC1, indicating similarities between these two groups. In contrast, obese animals presented a tendency to appear on negative PC2 indicating a different metabolic profile. The OPLS-DA analysis of the serum indicated that healthy groups presented higher content of glucose, while animals that lost weight had higher levels of cholesterol and lactate than the control group. On the other hand, the analysis showed that lipid content, cholesterol, and branched-chain amino acids were highest in obese animals. Variable Influence on Projection (VIP) analysis demonstrated that Lactate is the most important metabolite for the OPLS-DA model and Hierarchical Cluster Analysis (HCA) corroborated the similarity between the control group and the obese after weight loss groups. Moreover, the pathway analysis indicated the most important metabolic pathways related to this dataset. CONCLUSIONS The metabolomic assessment based on NMR of blood serum differed between obese dogs and animals in optimal body condition. Moreover, the weight loss resulted in metabolic profiles similar to those observed in lean animals.
Collapse
Affiliation(s)
- Thiago H A Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Henrique T Macedo
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Rafael V A Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Matheus V Macegoza
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Larissa W Risolia
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Fernanda M M Ocampos
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | | | | | - Eduardo Ferriolli
- Medical School of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, 14049900, Brazil
| | - Luiz A Colnago
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | - Marcio A Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil.
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil.
| |
Collapse
|
54
|
Shirolkar A, Yadav A, Mandal TK, Dabur R. Intervention of Ayurvedic drug Tinospora cordifolia attenuates the metabolic alterations in hypertriglyceridemia: a pilot clinical trial. J Diabetes Metab Disord 2021; 19:1367-1379. [PMID: 33520840 DOI: 10.1007/s40200-020-00657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
Purpose Hypertriglyceridemia (HG) is an independent risk factor with more prevalence than hypercholesterolemia and its attributes to cardiovascular disease (CVD) and pancreatitis. Hence, it becomes imperative to search for new triglyceride (TG) lowering agents. Tinospora cordifolia (TC) is a well-known Ayurvedic drug and a rich source of protoberberine alkaloids hence can contribute to TG lowering without side effects. Hence, to explore the therapeutic efficacy of T. cordifolia and its effects on biochemistry and metabolome in the patients of hyper-triglyceridemia, clinical trials were conducted. Methods Patients (n = 24) with hypertriglyceridemia were randomized into two groups to receive T. cordifolia extract (TCE) (3.0 g/per day) and metformin (850 mg/day) for 14 days having >300 mg/dl triglyceride level and cholesterol in the range of 130-230 mg/dl. Lipid profiles of blood samples were analyzed. Urine samples were subjected to HPLC-QTOF-MS to quantify oxidative damage and abnormal metabolic regulation. Results Intervention with TCE reduced the triglyceride, LDL, and VLDL levels to 380.45 ± 17.44, 133.25 ± 3.18, and 31.85 ± 5.88 mg/dL and increased the HDL to 47.50 ± 9.05 mg/dL significantly (p < 0.05) in the HG patients after 14 days treatment. TCE dosage potently suppressed the inflammatory and oxidative stress marker's i.e. levels of isoprostanes significantly (p < 0.01). Qualitative metabolomics approach i.e. PCA and PLS-DA showed significant alterations (p < 0.05) in the levels of 40 metabolites in the urine samples from different groups. Conclusion TCE administration depleted the levels of markers of HG i.e. VLDL, TG, and LDL significantly. Metabolomics studies established that the anti-HG activity of TCE was due to its antioxidative potential and modulation of the biopterin, butanoate, amino acid, and vitamin metabolism. Clinical trials registry India (CTRI) registration no. CTRI- 2016-08-007187.
Collapse
Affiliation(s)
- Amey Shirolkar
- Department of Biochemistry, National Research Institute of Basic Ayurvedic Sciences (NRIBAS), Kothrud, Pune, Maharashtra 411038 India
| | - Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharishi Dayanand University, Rohtak, Haryana 124001 India
| | - T K Mandal
- Department of Biochemistry, National Research Institute of Basic Ayurvedic Sciences (NRIBAS), Kothrud, Pune, Maharashtra 411038 India
| | - Rajesh Dabur
- Department of Biochemistry, National Research Institute of Basic Ayurvedic Sciences (NRIBAS), Kothrud, Pune, Maharashtra 411038 India.,Clinical Biochemistry Laboratory, Department of Biochemistry, Maharishi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
55
|
Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R. Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166082. [PMID: 33486097 DOI: 10.1016/j.bbadis.2021.166082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The dysfunction of respiratory chain complex I (CI) is the most common form of mitochondrial disease that most often presents as Leigh syndrome (LS) in children - a severe neurometabolic disorder defined by progressive focal lesions in specific brain regions. The mechanisms underlying this region-specific vulnerability to CI deficiency, however, remain elusive. Here, we examined brain regional respiratory chain enzyme activities and metabolic profiles in a mouse model of LS with global CI deficiency to gain insight into regional vulnerability to neurodegeneration. One lesion-resistant and three lesion-prone brain regions were investigated in Ndufs4 knockout (KO) mice at the late stage of LS. Enzyme assays confirmed significantly decreased (60-80%) CI activity in all investigated KO brain regions, with the lesion-resistant region displaying the highest residual CI activity (38% of wild type). A higher residual CI activity, and a less perturbed NADH/NAD+ ratio, correlate with less severe metabolic perturbations in KO brain regions. Moreover, less perturbed BCAA oxidation and increased glutamate oxidation seem to distinguish lesion-resistant from -prone KO brain regions, thereby identifying key areas of metabolism to target in future therapeutic intervention studies.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Janeé Coetzer
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Jeremy Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa.
| |
Collapse
|
56
|
Ruocco C, Segala A, Valerio A, Nisoli E. Essential amino acid formulations to prevent mitochondrial dysfunction and oxidative stress. Curr Opin Clin Nutr Metab Care 2021; 24:88-95. [PMID: 33060458 DOI: 10.1097/mco.0000000000000704] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Both restriction and supplementation of specific amino acids or branched-chain amino acids (BCAAs) are described to improve metabolic homeostasis, energy balance, and health span. This review will discuss the recent findings of the role of amino acid supplements in the regulation of mitochondrial health. RECENT FINDINGS A mixture of essential amino acids (EAAs), BCAA enriched mixture, was found to extend healthy life span in elderly mice and prevent multiple diseases associated with an energy deficit, similarly to caloric restriction or fasting-mimicking diets. A growing body of evidence highlights mitochondria as the central target of this supplement: it promotes mitochondrial biogenesis and the activation of antioxidant defence systems in different physiological (e.g., exercise or ageing) or pathological conditions (e.g., sarcopenia, muscular dystrophy, liver steatosis, or impaired cognition). Based on these results, new formulas have been created enriched with Krebs cycle substrates, behaving more efficiently than BCAA enriched mixture. SUMMARY EAA-BCAA balanced supplements might be valuable not only for healthy individuals undergoing to energy deficit (e.g., athletes) during strenuous exercise or training but also against diseases characterized by a dysregulated catabolic state or mitochondrial dysfunction, such as age-related disorders. The associated mechanistic processes should be identified as potential pharmacological targets.
Collapse
Affiliation(s)
- Chiara Ruocco
- Department of Biomedical Technology and Translational Medicine, Center for Study and Research on Obesity, University of Milan, Milan
| | - Agnese Segala
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Enzo Nisoli
- Department of Biomedical Technology and Translational Medicine, Center for Study and Research on Obesity, University of Milan, Milan
| |
Collapse
|
57
|
Hamida RS, Shami A, Ali MA, Almohawes ZN, Mohammed AE, Bin-Meferij MM. Kefir: A protective dietary supplementation against viral infection. Biomed Pharmacother 2021; 133:110974. [PMID: 33186795 PMCID: PMC7655491 DOI: 10.1016/j.biopha.2020.110974] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a recently discovered coronavirus termed 'severe acute respiratory syndrome coronavirus 2' (SARS-CoV-2). Several scholars have tested antiviral drugs and compounds to overcome COVID-19. 'Kefir' is a fermented milk drink similar to a thin yogurt that is made from kefir grains. Kefir and its probiotic contents can modulate the immune system to suppress infections from viruses (e.g., Zika, hepatitis C, influenza, rotaviruses). The antiviral mechanisms of kefir involve enhancement of macrophage production, increasing phagocytosis, boosting production of cluster of differentiation-positive (CD4+), CD8+, immunoglobulin (Ig)G+ and IgA+ B cells, T cells, neutrophils, as well as cytokines (e.g., interleukin (IL)-2, IL-12, interferon gamma-γ). Kefir can act as an anti-inflammatory agent by reducing expression of IL-6, IL-1, TNF-α, and interferon-γ. Hence, kefir might be a significant inhibitor of the 'cytokine storm' that contributes to COVID-19. Here, we review several studies with a particular emphasis on the effect of kefir consumption and their microbial composition against viral infection, as well as discussing the further development of kefir as a protective supplementary dietary against SARS-CoV-2 infection via modulating the immune response.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Egypt.
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia.
| | - Zakiah Nasser Almohawes
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
58
|
Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling. Biochem J 2020; 477:1579-1599. [PMID: 32297642 DOI: 10.1042/bcj20190754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Osteosarcoma and chondrosarcoma are sarcomas of the bone and the cartilage that are primarily treated by surgical intervention combined with high toxicity chemotherapy. In search of alternative metabolic approaches to address the challenges in treating bone sarcomas, we assessed the growth dependence of these cancers on leucine, one of the branched-chain amino acids (BCAAs), and BCAA metabolism. Tumor biopsies from bone sarcoma patients revealed differential expression of BCAA metabolic enzymes. The cytosolic branched-chain aminotransferase (BCATc) that is commonly overexpressed in cancer cells, was down-regulated in chondrosarcoma (SW1353) in contrast with osteosarcoma (143B) cells that expressed both BCATc and its mitochondrial isoform BCATm. Treating SW1353 cells with gabapentin, a selective inhibitor of BCATc, further revealed that these cells failed to respond to gabapentin. Application of the structural analog of leucine, N-acetyl-leucine amide (NALA) to disrupt leucine uptake, indicated that all bone sarcoma cells used leucine to support their energy metabolism and biosynthetic demands. This was evident from the increased activity of the energy sensor AMP-activated protein kinase (AMPK), down-regulation of complex 1 of the mammalian target of rapamycin (mTORC1), and reduced cell viability in response to NALA. The observed changes were most profound in the 143B cells, which appeared highly dependent on cytosolic and mitochondrial BCAA metabolism. This study thus demonstrates that bone sarcomas rely on leucine and BCAA metabolism for energy and growth; however, the differential expression of BCAA enzymes and the presence of other carbon sources may dictate how efficiently these cancer cells take advantage of BCAA metabolism.
Collapse
|
59
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
60
|
Ruocco C, Ragni M, Rossi F, Carullo P, Ghini V, Piscitelli F, Cutignano A, Manzo E, Ioris RM, Bontems F, Tedesco L, Greco CM, Pino A, Severi I, Liu D, Ceddia RP, Ponzoni L, Tenori L, Rizzetto L, Scholz M, Tuohy K, Bifari F, Di Marzo V, Luchinat C, Carruba MO, Cinti S, Decimo I, Condorelli G, Coppari R, Collins S, Valerio A, Nisoli E. Manipulation of Dietary Amino Acids Prevents and Reverses Obesity in Mice Through Multiple Mechanisms That Modulate Energy Homeostasis. Diabetes 2020; 69:2324-2339. [PMID: 32778569 PMCID: PMC7576563 DOI: 10.2337/db20-0489] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Pierluigi Carullo
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
| | - Veronica Ghini
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Rafael Maciel Ioris
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franck Bontems
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Annachiara Pino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Luisa Ponzoni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
- Institute of Neuroscience, National Research Council, Milan, Italy
| | - Leonardo Tenori
- FiorGen Foundation, Sesto Fiorentino, Italy
- Center of Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Matthias Scholz
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Vincenzo Di Marzo
- Canada Excellence Research Chair Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
- Joint International Research Unit for Chemical and Biochemical Research on the Microbiome and Its Impact on Metabolic Health and Nutrition, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy and Université Laval, Quebec City, Canada
| | - Claudio Luchinat
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Ilaria Decimo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gianluigi Condorelli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
- Humanitas University, Rozzano, Italy
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
61
|
Ancu O, Mickute M, Guess ND, Hurren NM, Burd NA, Mackenzie RW. Does high dietary protein intake contribute to the increased risk of developing prediabetes and type 2 diabetes? Appl Physiol Nutr Metab 2020; 46:1-9. [PMID: 32755490 DOI: 10.1139/apnm-2020-0396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a complex metabolic disorder implicated in the development of many chronic diseases. While it is generally accepted that body mass loss should be the primary approach for the management of insulin resistance-related disorders in overweight and obese individuals, there is no consensus among researchers regarding optimal protein intake during dietary restriction. Recently, it has been suggested that increased plasma branched-chain amino acids concentrations are associated with the development of insulin resistance and type 2 diabetes. The exact mechanism by which excessive amino acid availability may contribute to insulin resistance has not been fully investigated. However, it has been hypothesised that mammalian target of rapamycin (mTOR) complex 1 hyperactivation in the presence of amino acid overload contributes to reduced insulin-stimulated glucose uptake because of insulin receptor substrate (IRS) degradation and reduced Akt-AS160 activity. In addition, the long-term effects of high-protein diets on insulin sensitivity during both weight-stable and weight-loss conditions require more research. This review focusses on the effects of high-protein diets on insulin sensitivity and discusses the potential mechanisms by which dietary amino acids can affect insulin signalling. Novelty: Excess amino acids may over-activate mTOR, resulting in desensitisation of IRS-1 and reduced insulin-mediated glucose uptake.
Collapse
Affiliation(s)
- Oana Ancu
- Department of Life Sciences, University of Roehampton, London SW15 4DJ, UK
| | - Monika Mickute
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, LE17RH, UK
| | - Nicola D Guess
- Department of Nutritional Sciences, King's College London, London, WC2R2LS, UK
| | - Nicholas M Hurren
- Department of Life Sciences, University of Roehampton, London SW15 4DJ, UK
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61820, USA
| | | |
Collapse
|
62
|
Ergogenic Effect of BCAAs and L-Alanine Supplementation: Proof-of-Concept Study in a Murine Model of Physiological Exercise. Nutrients 2020; 12:nu12082295. [PMID: 32751732 PMCID: PMC7468919 DOI: 10.3390/nu12082295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism. Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism. Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, mix 2 (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices. Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.
Collapse
|
63
|
Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism. Pharmacol Res 2020; 158:104863. [PMID: 32407957 DOI: 10.1016/j.phrs.2020.104863] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Neural stem cell (NSC) neuronal differentiation requires a metabolic shift towards oxidative phosphorylation. We now show that a branched-chain amino acids-driven, persistent metabolic shift toward energy metabolism is required for full neuronal maturation. We increased energy metabolism of differentiating neurons derived both from murine NSCs and human induced pluripotent stem cells (iPSCs) by supplementing the cell culture medium with a mixture composed of branched-chain amino acids, essential amino acids, TCA cycle precursors and co-factors. We found that treated differentiating neuronal cells with enhanced energy metabolism increased: i) total dendritic length; ii) the mean number of branches and iii) the number and maturation of the dendritic spines. Furthermore, neuronal spines in treated neurons appeared more stable with stubby and mushroom phenotype and with increased expression of molecules involved in synapse formation. Treated neurons modified their mitochondrial dynamics increasing the mitochondrial fusion and, consistently with the increase of cellular ATP content, they activated cellular mTORC1 dependent p70S6 K1 anabolism. Global transcriptomic analysis further revealed that treated neurons induce Nrf2 mediated gene expression. This was correlated with a functional increase in the Reactive Oxygen Species (ROS) scavenging mechanisms. In conclusion, persistent branched-chain amino acids-driven metabolic shift toward energy metabolism enhanced neuronal differentiation and antioxidant defences. These findings offer new opportunities to pharmacologically modulate NSC neuronal differentiation and to develop effective strategies for treating neurodegenerative diseases.
Collapse
|
64
|
Lang S, Martin A, Farowski F, Wisplinghoff H, Vehreschild MJ, Liu J, Krawczyk M, Nowag A, Kretzschmar A, Herweg J, Schnabl B, Tu XM, Lammert F, Goeser T, Tacke F, Heinzer K, Kasper P, Steffen H, Demir M. High Protein Intake Is Associated With Histological Disease Activity in Patients With NAFLD. Hepatol Commun 2020; 4:681-695. [PMID: 32363319 PMCID: PMC7193126 DOI: 10.1002/hep4.1509] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
Overconsumption of carbohydrates and lipids are well known to cause nonalcoholic fatty liver disease (NAFLD), while the role of nutritional protein intake is less clear. In Western diet, meat and other animal products are the main protein source, with varying concentrations of specific amino acids. Whether the amount or composition of protein intake is associated with a higher risk for disease severity has not yet been examined. In this study, we investigated associations of dietary components with histological disease activity by analyzing detailed 14-day food records in a cohort of 61 patients with biopsy-proven NAFLD. Furthermore, we used 16S ribosomal RNA gene sequencing to detect associations with different abundances of the gut microbiota with dietary patterns. Patients with definite nonalcoholic steatohepatitis (NAFLD activity score of 5-8 on liver biopsy) had a significantly higher daily relative intake of protein compared with patients with a NAFLD activity score of 0-4 (18.0% vs. 15.8% of daily protein-based calories, P = 0.018). After adjustment for several potentially confounding factors, a higher protein intake (≥17.3% of daily protein-based calories) remained associated with definite nonalcoholic steatohepatitis, with an odds ratio of 5.09 (95% confidence interval 1.22-21.25, P = 0.026). This association was driven primarily by serine, glycine, arginine, proline, phenylalanine, and methionine. A higher protein intake correlated with a lower Bacteroides abundance and an altered abundance of several other bacterial taxa. Conclusion: A high protein intake was independently associated with more active and severe histological disease activity in patients with NAFLD. Further studies are needed to investigate the potential harmful role of dietary amino acids on NAFLD, with special attention to meat as their major source.
Collapse
Affiliation(s)
- Sonja Lang
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Anna Martin
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
| | - Fedja Farowski
- Department of Internal MedicineFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
- German Center for Infection ResearchPartner Site Bonn/CologneCologneGermany
| | - Hilmar Wisplinghoff
- Wisplinghoff LaboratoriesCologneGermany
- Faculty of MedicineInstitute for Medical Microbiology, Immunology and HygieneUniversity of CologneUniversity Hospital of CologneCologneGermany
- Institute for Virology and Medical MicrobiologyUniversity Witten/HerdeckeWittenGermany
| | - Maria J.G.T. Vehreschild
- Department of Internal MedicineFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
- German Center for Infection ResearchPartner Site Bonn/CologneCologneGermany
- Department of Internal MedicineInfectious DiseasesGoethe University FrankfurtFrankfurtGermany
| | - Jinyuan Liu
- Division of Biostatistics and BioinformaticsDepartment of Family Medicine and Public HealthUniversity of California San DiegoSan DiegoCA
| | - Marcin Krawczyk
- Department of MedicineSaarland University Medical CenterHomburgGermany
- Laboratory of Metabolic Liver DiseasesDepartment of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Angela Nowag
- Wisplinghoff LaboratoriesCologneGermany
- Faculty of MedicineInstitute for Medical Microbiology, Immunology and HygieneUniversity of CologneUniversity Hospital of CologneCologneGermany
| | | | | | - Bernd Schnabl
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of MedicineVA San Diego Healthcare SystemSan DiegoCA
| | - Xin M. Tu
- Division of Biostatistics and BioinformaticsDepartment of Family Medicine and Public HealthUniversity of California San DiegoSan DiegoCA
| | - Frank Lammert
- Department of MedicineSaarland University Medical CenterHomburgGermany
| | - Tobias Goeser
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
| | - Frank Tacke
- Department of Hepatology and GastroenterologyCharité University MedicineCampus Virchow ClinicBerlinGermany
| | - Kathrin Heinzer
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
| | - Philipp Kasper
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
| | - Hans‐Michael Steffen
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
| | - Münevver Demir
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
- Department of Hepatology and GastroenterologyCharité University MedicineCampus Virchow ClinicBerlinGermany
| |
Collapse
|
65
|
The ergogenic activity of cider vinegar: A randomized cross-over, double-blind, clinical trial. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:38-43. [PMID: 35783333 PMCID: PMC9219283 DOI: 10.1016/j.smhs.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 12/01/2022] Open
Abstract
This randomized, double-blind, clinical trial was designed to compare the endurance capacity (ergogenic property) in healthy athletes after consumption of apple cider vinegar (ACV) and a commercial sports drink (CSD) before and during endurance exercise. Fourteen healthy participants were enrolled in this trial and were divided into two groups as ACV and CSD with seven participants in each. Participants were requested to consume 500 mL of either commercial ACV or CSD 1 h before endurance exercise (bicycle ergometer). Blood samples were collected at baseline, 0, 20, 40, 60 min until exhaustion to assess glucose, lactate, ammonia and non-esterified fatty acids (NEFA). Respiratory exchange rate (RER) score was measured every 15 min and the heart rate (HR) was measured every 5 min. The outcome of the present trial clearly showed that no significant differences were observed between ACV and CSD except in the blood level of ammonia (only at exhaustion time). Thus, these results show that ACV and the CSD both possessing the ergogenic property, enhanced blood glucose, NEFA, and suppress the production of lactate as well as maintains normal RER score, and HR throughout the endurance exercise. Overall this trial showcases that ACV did not significantly improve the ergogenic activity over the CSD.
Collapse
|
66
|
Farag MA, Jomaa SA, Abd El-Wahed A, R. El-Seedi H. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 2020; 12:E346. [PMID: 32013044 PMCID: PMC7071183 DOI: 10.3390/nu12020346] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
Kefir is a dairy product that can be prepared from different milk types, such as goat, buffalo, sheep, camel, or cow via microbial fermentation (inoculating milk with kefir grains). As such, kefir contains various bacteria and yeasts which influence its chemical and sensory characteristics. A mixture of two kinds of milk promotes kefir sensory and rheological properties aside from improving its nutritional value. Additives such as inulin can also enrich kefir's health qualities and organoleptic characters. Several metabolic products are generated during kefir production and account for its distinct flavour and aroma: Lactic acid, ethanol, carbon dioxide, and aroma compounds such as acetoin and acetaldehyde. During the storage process, microbiological, physicochemical, and sensory characteristics of kefir can further undergo changes, some of which improve its shelf life. Kefir exhibits many health benefits owing to its antimicrobial, anticancer, gastrointestinal tract effects, gut microbiota modulation and anti-diabetic effects. The current review presents the state of the art relating to the role of probiotics, prebiotics, additives, and different manufacturing practices in the context of kefir's physicochemical, sensory, and chemical properties. A review of kefir's many nutritional and health benefits, underlying chemistry and limitations for usage is presented.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo 11562, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Suzan A. Jomaa
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Aida Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
67
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
68
|
A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res Int 2020; 131:109002. [PMID: 32247480 DOI: 10.1016/j.foodres.2020.109002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Improper nutrition provokes many types of chronic diseases and health problems, which consequently are associated with particularly high costs of treatments. Nowadays, consumer's interest in healthy eating is shifting towards specific foods or food ingredients. As a consequence, bioactive peptides as a promising source of health promoting food additives are currently an intensely debated topic in research. Process design is still on its early stages and is significantly influenced by important preliminary decisions. Thus, parameters like peptide bioactivity within the product, selection of the protein source, enzyme selection for hydrolysis, peptide enrichment method, as well as stability of the peptides within the food matrix and bioavailability are sensitive decision points, which have to be purposefully coordinated, as they are directly linked to amino acid content and structure properties of the peptides. Branched chain amino acids (BCAA) are essential components for humans, possessing various important physiologic functions within the body. Incorporated within peptide sequences, they may induce dual functions, when used as nutraceuticals in functional food, thus preserving the foodstuff and prevent several widespread diseases. Furthermore, there is evidence that consuming this peptide-class can be a nutritional support for elderly people or improve human health to prevent diseases caused by incorrect nutrition. Based on the knowledge about the role of BCAA within various peptide functions, discussed in the review, special attention is given to different approaches for systematic selection of the protein source and enzymes used in hydrolysis, as well as suitable peptide enrichment methods, thereby showing current trends in research.
Collapse
|
69
|
Shen K, Wang L, He Q, Jin Z, Chen W, Sun C, Pan Y. Sensitive Bromine-Labeled Probe D-BPBr for Simultaneous Identification and Quantification of Chiral Amino Acids and Amino-Containing Metabolites Profiling in Human Biofluid by HPLC/MS. Anal Chem 2019; 92:1763-1769. [DOI: 10.1021/acs.analchem.9b03252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kexin Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lin Wang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhe Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Weiyi Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
70
|
Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients 2019; 11:nu11112824. [PMID: 31752260 PMCID: PMC6893734 DOI: 10.3390/nu11112824] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.
Collapse
|
71
|
Krebs A, Baum A, Doerfer J, Gempel K, Wurm M, Brichta C, Sass JO, Winkler K, Schwab KO. Short-Term Effects of Growth Hormone on Lipolysis, Glucose and Amino Acid Metabolism Assessed in Serum and Microdialysate of Healthy Young Men. Exp Clin Endocrinol Diabetes 2019; 128:819-826. [PMID: 31698478 DOI: 10.1055/a-1027-6620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We investigated direct effects of a therapeutic growth hormone dose on lipolysis, glucose and amino acid metabolism. METHODS This crossover microdialysis trial involved six healthy male volunteers receiving single subcutaneous injections of both growth hormone (0.035 mg/kg) and placebo (0.9% sodium chloride). The investigation comprised three test days with standard diet. The first day served for adaptation, the second and third one for determining study data during 9 night hours with or without growth hormone. Abdominal subcutaneous microdialysate and blood were continuously collected and forwarded to a separate room next door where hourly taken samples were centrifuged and frozen until analysed. RESULTS Growth hormone achieved the peak serum level after 3 h followed by a plateau-like course for the next 6 h. Glycerol in microdialysate started to rise 2 h following growth hormone injection achieving significance compared to placebo after 9 h (P<0.05). Serum glycerol increased 4 h after growth hormone administration achieving significance after 6 h (P<0.05). Glucose and amino acid concentrations showed neither in microdialysate nor in serum significant differences between growth hormone and placebo. Serum values of insulin and C-peptide revealed no significant difference between growth hormone and placebo. SUMMARY AND CONCLUSION As the result of a high single subcutaneous dose of GH, persistent lipolysis can be shown in continuously collected microdialysate and blood, but no indication for gluconeogenesis or protein anabolism.
Collapse
Affiliation(s)
- Andreas Krebs
- Department of Pediatrics and Adolescence Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Andreas Baum
- Department of Pediatrics and Adolescence Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Jürgen Doerfer
- Department of Pediatrics and Adolescence Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Klaus Gempel
- Department of Clinical Chemistry, München Klinik Schwabing, München, Germany
| | - Michael Wurm
- Department of Pediatrics and Adolescence Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Corinna Brichta
- Department of Pediatrics and Adolescence Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Jörn Oliver Sass
- Department of Pediatrics and Adolescence Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Karl Winkler
- Department of Clinical Chemistry, Faculty of Medicine, University of Freiburg, Germany
| | - Karl Otfried Schwab
- Department of Pediatrics and Adolescence Medicine, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
72
|
Somvanshi PR, Tomar M, Kareenhalli V. Computational Analysis of Insulin-Glucagon Signalling Network: Implications of Bistability to Metabolic Homeostasis and Disease states. Sci Rep 2019; 9:15298. [PMID: 31653897 PMCID: PMC6814820 DOI: 10.1038/s41598-019-50889-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin and glucagon control plasma macronutrient homeostasis through their signalling network composed of multiple feedback and crosstalk interactions. To understand how these interactions contribute to metabolic homeostasis and disease states, we analysed the steady state response of metabolic regulation (catabolic or anabolic) with respect to structural and input perturbations in the integrated signalling network, for varying levels of plasma glucose. Structural perturbations revealed: the positive feedback of AKT on IRS is responsible for the bistability in anabolic zone (glucose >5.5 mmol); the positive feedback of calcium on cAMP is responsible for ensuring ultrasensitive response in catabolic zone (glucose <4.5 mmol); the crosstalk between AKT and PDE3 is responsible for efficient catabolic response under low glucose condition; the crosstalk between DAG and PKC regulates the span of anabolic bistable region with respect to plasma glucose levels. The macronutrient perturbations revealed: varying plasma amino acids and fatty acids from normal to high levels gradually shifted the bistable response towards higher glucose range, eventually making the response catabolic or unresponsive to increasing glucose levels. The analysis reveals that certain macronutrient composition may be more conducive to homeostasis than others. The network perturbations that may contribute to disease states such as diabetes, obesity and cancer are discussed.
Collapse
Affiliation(s)
- Pramod R Somvanshi
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.,Bioengineering Division, John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, USA
| | - Manu Tomar
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Venkatesh Kareenhalli
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.
| |
Collapse
|
73
|
Wang J, Liu Y, Lian K, Shentu X, Fang J, Shao J, Chen M, Wang Y, Zhou M, Sun H. BCAA Catabolic Defect Alters Glucose Metabolism in Lean Mice. Front Physiol 2019; 10:1140. [PMID: 31551816 PMCID: PMC6738029 DOI: 10.3389/fphys.2019.01140] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
Recent studies show branched-chain amino acid (BCAA) catabolic pathway is defective in obese animals and humans, contributing to the pathogenesis of insulin resistance and diabetes. However, in the context of obesity, various processes including the dysfunctional lipid metabolism can affect insulin sensitivity and glycemic regulation. It remains unclear how BCAA catabolic defect may exert direct impacts on glucose metabolism without the disturbance of obesity. The current study characterized the glucose metabolism in lean mice in which the genetic deletion of PP2Cm leads to moderate BCAA catabolic defect. Interestingly, compared to the wildtype control, lean PP2Cm deficient mice showed enhanced insulin sensitivity and glucose tolerance, lower body weight, and the preference for carbohydrate over lipids utilization. Metabolomics profiling of plasma and tissues revealed significantly different metabolic patterns in the PP2Cm deficient mice, featured by the marked alterations in glucose metabolic processes, including gluconeogenesis/glycolysis, glycogen metabolism, and tricarboxylic acid cycle. The metabolic changes of glucose were predominantly observed in liver but not skeletal muscle or white adipose tissue. The elevated branched-chain keto acids (BCKAs) resulted from the BCAA catabolic defect may play a critical role in regulating the expression of key regulators of glucose metabolic processes and the activity of respiratory Complex II/succinate dehydrogenase in TCA cycle. Together, these results show BCAA catabolic defect significantly alters glucose metabolism in lean mice with some impacts different or even opposite from those in obese mice, highlighting the critical role of BCAA catabolism in glycemic regulation and the complex interplay between macronutrients in lean and obese animals.
Collapse
Affiliation(s)
- Ji Wang
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Liu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyi Shentu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Fang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shao
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengping Chen
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Wang
- Departments of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Meiyi Zhou
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haipeng Sun
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
74
|
Zhou M, Shao J, Wu CY, Shu L, Dong W, Liu Y, Chen M, Wynn RM, Wang J, Wang J, Gui WJ, Qi X, Lusis AJ, Li Z, Wang W, Ning G, Yang X, Chuang DT, Wang Y, Sun H. Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes 2019; 68:1730-1746. [PMID: 31167878 PMCID: PMC6702639 DOI: 10.2337/db18-0927] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Recent studies implicate a strong association between elevated plasma branched-chain amino acids (BCAAs) and insulin resistance (IR). However, a causal relationship and whether interrupted BCAA homeostasis can serve as a therapeutic target for diabetes remain to be established experimentally. In this study, unbiased integrative pathway analyses identified a unique genetic link between obesity-associated IR and BCAA catabolic gene expression at the pathway level in human and mouse populations. In genetically obese (ob/ob) mice, rate-limiting branched-chain α-keto acid (BCKA) dehydrogenase deficiency (i.e., BCAA and BCKA accumulation), a metabolic feature, accompanied the systemic suppression of BCAA catabolic genes. Restoring BCAA catabolic flux with a pharmacological inhibitor of BCKA dehydrogenase kinase (BCKDK) ( a suppressor of BCKA dehydrogenase) reduced the abundance of BCAA and BCKA and markedly attenuated IR in ob/ob mice. Similar outcomes were achieved by reducing protein (and thus BCAA) intake, whereas increasing BCAA intake did the opposite; this corroborates the pathogenic roles of BCAAs and BCKAs in IR in ob/ob mice. Like BCAAs, BCKAs also suppressed insulin signaling via activation of mammalian target of rapamycin complex 1. Finally, the small-molecule BCKDK inhibitor significantly attenuated IR in high-fat diet-induced obese mice. Collectively, these data demonstrate a pivotal causal role of a BCAA catabolic defect and elevated abundance of BCAAs and BCKAs in obesity-associated IR and provide proof-of-concept evidence for the therapeutic validity of manipulating BCAA metabolism for treating diabetes.
Collapse
Affiliation(s)
- Meiyi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Shao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Yang Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Weibing Dong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengping Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jun Gui
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiangbing Qi
- Chemistry Center, National Institute of Biological Science, Beijing, China
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California at Los Angeles, Los Angeles, CA
| | - Zhaoping Li
- Department of Clinical Nutrition, University of California at Los Angeles, Los Angeles, CA
| | - Weiqing Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Haipeng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Departments of Anesthesiology, Medicine, and Physiology, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
75
|
Siddik MAB, Shin AC. Recent Progress on Branched-Chain Amino Acids in Obesity, Diabetes, and Beyond. Endocrinol Metab (Seoul) 2019; 34:234-246. [PMID: 31565875 PMCID: PMC6769348 DOI: 10.3803/enm.2019.34.3.234] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids that are not synthesized in our body; thus, they need to be obtained from food. They have shown to provide many physiological and metabolic benefits such as stimulation of pancreatic insulin secretion, milk production, adipogenesis, and enhanced immune function, among others, mainly mediated by mammalian target of rapamycin (mTOR) signaling pathway. After identified as a reliable marker of obesity and type 2 diabetes in recent years, an increasing number of studies have surfaced implicating BCAAs in the pathophysiology of other diseases such as cancers, cardiovascular diseases, and even neurodegenerative disorders like Alzheimer's disease. Here we discuss the most recent progress and review studies highlighting both correlational and potentially causative role of BCAAs in the development of these disorders. Although we are just beginning to understand the intricate relationships between BCAAs and some of the most prevalent chronic diseases, current findings raise a possibility that they are linked by a similar putative mechanism.
Collapse
Affiliation(s)
- Md Abu Bakkar Siddik
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Andrew C Shin
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
76
|
Ribeiro RV, Solon-Biet SM, Pulpitel T, Senior AM, Cogger VC, Clark X, O'Sullivan J, Koay YC, Hirani V, Blyth FM, Seibel MJ, Waite LM, Naganathan V, Cumming RG, Handelsman DJ, Simpson SJ, Le Couteur DG. Of Older Mice and Men: Branched-Chain Amino Acids and Body Composition. Nutrients 2019; 11:E1882. [PMID: 31412601 PMCID: PMC6723310 DOI: 10.3390/nu11081882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Protein and branched-chain amino acid (BCAA) intake are associated with changes in circulating BCAAs and influence metabolic health in humans and rodents. However, the relationship between BCAAs and body composition in both species is unclear, with many studies questioning the translatability of preclinical findings to humans. Here, we assessed and directly compared the relationship between circulating BCAAs, body composition, and intake in older mice and men. Body weight and body fat were positively associated with circulating BCAA levels in both mouse and human, which remained significant after adjustments for age, physical activity, number of morbidities, smoking status, and source of income in the human cohort. Macronutrient intakes were similarly associated with circulating BCAA levels; however, the relationship between protein intake and BCAAs were more pronounced in the mice. These findings indicate that the relationship between circulating BCAAs, body composition, and intakes are comparable in both species, suggesting that the mouse is an effective model for examining the effects of BCAAs on body composition in older humans.
Collapse
Affiliation(s)
- Rosilene V Ribeiro
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia.
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia.
| | - Samantha M Solon-Biet
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia.
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia.
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney 2006, Australia.
| | - Tamara Pulpitel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
| | - Alistair M Senior
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney 2006, Australia
| | - Ximonie Clark
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
| | - John O'Sullivan
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
- Heart Research Institute, The University of Sydney, Sydney 2006, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
- Heart Research Institute, The University of Sydney, Sydney 2006, Australia
| | - Vasant Hirani
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
- ARC Centre of Excellence in Population Ageing Research (CEPAR), Kensington 2033, Australia
| | - Fiona M Blyth
- Concord Clinical School, Faculty of Health and Medicine, The University of Sydney, Concord 2139, Australia
| | - Markus J Seibel
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney 2006, Australia
- Concord Clinical School, Faculty of Health and Medicine, The University of Sydney, Concord 2139, Australia
- ANZAC Research Institute, The University of Sydney, Concord 2139, Australia
| | - Louise M Waite
- ARC Centre of Excellence in Population Ageing Research (CEPAR), Kensington 2033, Australia
| | - Vasi Naganathan
- Concord Clinical School, Faculty of Health and Medicine, The University of Sydney, Concord 2139, Australia
| | - Robert G Cumming
- School of Public Health, University of Sydney, Sydney 2006, Australia
- ARC Centre of Excellence in Population Ageing Research (CEPAR), Kensington 2033, Australia
| | - David J Handelsman
- ANZAC Research Institute, The University of Sydney, Concord 2139, Australia
| | - Stephen J Simpson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, Camperdown, The University of Sydney, Sydney 2006, Australia
- Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney 2006, Australia
- Ageing and Alzheimers Institute, Concord Hospital, University of Sydney, Concord 2139, Australia
| |
Collapse
|
77
|
Jing X, Sun C, Chen H, Sun J, Zhang Y, Wu J. Protection of paeonol against epirubicin-induced hepatotoxicity: A metabolomic study. Biosci Trends 2019; 13:253-260. [PMID: 31231109 DOI: 10.5582/bst.2019.01105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Paeonol extracted from the Moutan Cortex, possesses hepatoprotective activity against epirubicin (EPI)-induced liver damage. This study evaluated the protective effect of paeonol on EPI-induced hepatotoxicity and explored the underlying metabolomic mechanism. Breast tumor-bearing mice were randomly divided into three groups: control, EPI, and EPI + paeonol treatment. Mice received a tail i.v. injection of EPI every other day for 3 cycles or/and intragastrically (i.g.) administered paeonol daily for 6 days. Hematoxylin-eosin (HE) staining and biochemical detection were used to determine the degree of damage. A gas chromatography-mass spectrometry (GC-MS) technique was established to determine the metabolites. PLS-DA and PCA were used to investigate metabolic changes. HE staining and biochemical detection results showed that EPI caused serious liver damage while paeonol ameliorated it. The results of mass spectrogram, partial least squares-discriminate analysis (PLS-DA), and principal component analysis (PCA) demonstrated that lipid, amino acid, and energy metabolism involving seven metabolites were obviously changed by EPI and reversed by paeonol. Additionally, paeonol inhibited EPI-induced activation of adenosine monophosphate activated protein kinase/mammalian target of Rapamycin (AMPK/mTOR) signalling pathway. Our results demonstrated the hepatoprotective effect of paeonol on EPI-induced hepatotoxicity in mice, provided potential biomarkers for early assessment of EPI-induced liver injury and illuminated the metabolic mechanism underlying paeonol-related hepatic protection.
Collapse
Affiliation(s)
- Xu Jing
- Laboratory Medical Center, The Second Hospital of Shandong University
| | - Chao Sun
- Department of Pharmacy, The Second Hospital of Shandong University
| | - Huigang Chen
- Department of Pathological Obstetrics, ZhuCheng Maternal and Child Health Hospital
| | - Jing Sun
- Department of Pharmacy, The Second Hospital of Shandong University
| | - Ying Zhang
- Department of Pharmacy, The Second Hospital of Shandong University
| | - Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University
| |
Collapse
|
78
|
Orts A, Revilla E, Rodriguez-Morgado B, Castaño A, Tejada M, Parrado J, García-Quintanilla A. Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: isoflavones and peptides. Heliyon 2019; 5:e01958. [PMID: 31294110 PMCID: PMC6595185 DOI: 10.1016/j.heliyon.2019.e01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
This work presents a new bioprocess process for the extraction of bioactive components from soy pulp by-product (okara) using an enzymatic technology that was compared to a conventional water extraction. Okara is rich in fiber, fat, protein, and bioactive compounds such as isoflavones but its low solubility hampers the use in food and fertilizer industry. After the enzymatic attack with endoproteases half of the original insoluble proteins were converted into soluble peptides. Linked to this process occured the solubilization of isoflavones trapped in the insoluble protein matrix. We were able to extract up to 62.5% of the total isoflavones content, specially aglycones, the more bioactive isoflavone forms, whose values rose 9.12 times. This was probably due to the increased solubilization and interconversion from the original isoflavones. In conclusion, our process resulted in the formulation of a new functional product rich in aglycones and bioactive peptides with higher antioxidant potency than the original source. Therefore, we propose that the enzymatic extraction of okara bioactive compounds is an advantageous tool to replace conventional extraction.
Collapse
Affiliation(s)
- Angel Orts
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Elisa Revilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Bruno Rodriguez-Morgado
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Angélica Castaño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Manuel Tejada
- Department of Crystallography, Mineralogy and Agricultural Chemistry, ETSIA, University of Seville. Ctr. Utrera Km 1, Seville 41013, Spain
| | - Juan Parrado
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Albert García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| |
Collapse
|
79
|
Martano G, Borroni EM, Lopci E, Cattaneo MG, Mattioli M, Bachi A, Decimo I, Bifari F. Metabolism of Stem and Progenitor Cells: Proper Methods to Answer Specific Questions. Front Mol Neurosci 2019; 12:151. [PMID: 31249511 PMCID: PMC6584756 DOI: 10.3389/fnmol.2019.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023] Open
Abstract
Stem cells can stay quiescent for a long period of time or proliferate and differentiate into multiple lineages. The activity of stage-specific metabolic programs allows stem cells to best adapt their functions in different microenvironments. Specific cellular phenotypes can be, therefore, defined by precise metabolic signatures. Notably, not only cellular metabolism describes a defined cellular phenotype, but experimental evidence now clearly indicate that also rewiring cells towards a particular cellular metabolism can drive their cellular phenotype and function accordingly. Cellular metabolism can be studied by both targeted and untargeted approaches. Targeted analyses focus on a subset of identified metabolites and on their metabolic fluxes. In addition, the overall assessment of the oxygen consumption rate (OCR) gives a measure of the overall cellular oxidative metabolism and mitochondrial function. Untargeted approach provides a large-scale identification and quantification of the whole metabolome with the aim to describe a metabolic fingerprinting. In this review article, we overview the methodologies currently available for the study of invitro stem cell metabolism, including metabolic fluxes, fingerprint analyses, and single-cell metabolomics. Moreover, we summarize available approaches for the study of in vivo stem cell metabolism. For all of the described methods, we highlight their specificities and limitations. In addition, we discuss practical concerns about the most threatening steps, including metabolic quenching, sample preparation and extraction. A better knowledge of the precise metabolic signature defining specific cell population is instrumental to the design of novel therapeutic strategies able to drive undifferentiated stem cells towards a selective and valuable cellular phenotype.
Collapse
Affiliation(s)
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Milena Mattioli
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
80
|
Thoen RU, Barther NN, Schemitt E, Bona S, Fernandes S, Coral G, Marroni NP, Tovo C, Guedes RP, Porawski M. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl Physiol Nutr Metab 2019; 44:580-586. [PMID: 30339765 DOI: 10.1139/apnm-2018-0519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rates of obesity have been growing at alarming rates, compromising the health of the world population. Thus, the search for interventions that address the metabolic repercussions of obesity are necessary. Here we evaluated the metabolic and antioxidant effects of zinc and branched-chain amino acids (BCAA) supplementation on obese rats. Male Wistar rats were fed either a high-fat/high-fructose diet (HFD) or a standard diet (SD) for 19 weeks. From the fifteenth week until the end of the experiment, HFD- and SD-fed rats received zinc (6 mg/kg) or BCAA (750 mg/kg) supplementation. Body weight, abdominal fat, lipid profile, blood glucose, insulin, leptin, and hepatic transaminases were evaluated. In the liver, superoxide dismutase and catalase activities and lipid peroxidation were also analyzed. HFD-fed animals showed increased weight gain, abdominal fat pad, plasma insulin, leptin, and triglycerides levels in comparison with SD-fed rats. Zinc supplementation reduced all these parameters, suggesting a beneficial role for the treatment of obesity. BCAA, on the other hand, did not show any beneficial effect. Liver antioxidant enzymes and hepatic transaminases plasma levels did not change among groups. Lipid peroxidation was higher in HFD-fed rats and was not reverted by zinc or BCAA supplementation. In conclusion, zinc supplementation may be a useful strategy for the treatment of the metabolic dysfunction associated with obesity.
Collapse
Affiliation(s)
- Rutiane Ullmann Thoen
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Nathaniele Nebel Barther
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Elizângela Schemitt
- b Postgraduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-007, Brazil
| | - Sílvia Bona
- b Postgraduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-007, Brazil
| | - Sabrina Fernandes
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Gabriela Coral
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Norma Possa Marroni
- b Postgraduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-007, Brazil
| | - Cristiane Tovo
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Renata Padilha Guedes
- c Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS 90050-170, Brazil
- d Postgraduate Program in Biosciences, UFCSPA, Porto Alegre, RS 90050-170, Brazil
| | - Marilene Porawski
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
- d Postgraduate Program in Biosciences, UFCSPA, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
81
|
Locci E, Stocchero M, Noto A, Chighine A, Natali L, Napoli PE, Caria R, De-Giorgio F, Nioi M, d'Aloja E. A 1H NMR metabolomic approach for the estimation of the time since death using aqueous humour: an animal model. Metabolomics 2019; 15:76. [PMID: 31069551 DOI: 10.1007/s11306-019-1533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The estimation of the time since death, or post-mortem interval (PMI), still remains a main conundrum in forensic science. Several approaches have been so far proposed from either a qualitative or a quantitative point of view, but they still lack reliability and robustness. Recently, metabolomics has shown to be a potential tool to investigate the time-related post-mortem metabolite modifications in animal models. OBJECTIVES Here we propose, for the first time, the use of a 1H NMR metabolomic approach for the estimation of PMI from aqueous humour (AH) in an ovine model. METHODS AH samples were collected at different times after death (from 118 to 1429 min). 1H NMR experiments were performed and spectral data analysed by multivariate statistical tools. RESULTS A multivariate calibration model was built to estimate PMI on the basis of the metabolite content of the samples. The model was validated with an independent test set, obtaining a prediction error of 59 min for PMI < 500 min, 104 min for PMI from 500 to 1000 min, and 118 min for PMI > 1000 min. Moreover, the metabolomic approach suggested a picture of the mechanisms underlying the post-mortem biological modifications, highlighting the role played by taurine, choline, and succinate. CONCLUSION The time-related modifications of the 1H NMR AH metabolomic profile seem to be encouraging in addressing the issue of a reproducible and robust model to be employed for the estimation of the time since death.
Collapse
Affiliation(s)
- Emanuela Locci
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy.
| | - Matteo Stocchero
- Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Alberto Chighine
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Luca Natali
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | | | - Roberto Caria
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Matteo Nioi
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Ernesto d'Aloja
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| |
Collapse
|
82
|
Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev 2019; 177:186-200. [PMID: 30044947 PMCID: PMC6333505 DOI: 10.1016/j.mad.2018.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although the beneficial effects of calorie restriction (CR) on health and aging were first observed a century ago, the specific macronutrients and molecular processes that mediate the effect of CR have been heavily debated. Recently, it has become clear that dietary protein plays a key role in regulating both metabolic health and longevity, and that both the quantity and quality - the specific amino acid composition - of dietary protein mediates metabolic health. Here, we discuss recent findings in model organisms ranging from yeast to mice and humans regarding the influence of dietary protein as well as specific amino acids on metabolic health, and the physiological and molecular mechanisms which may mediate these effects. We then discuss recent findings which suggest that the restriction of specific dietary amino acids may be a potent therapy to treat or prevent metabolic syndrome. Finally, we discuss the potential for dietary restriction of specific amino acids - or pharmaceuticals which harness these same mechanisms - to promote healthy aging.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
83
|
Bonvini A, Coqueiro AY, Tirapegui J, Calder PC, Rogero MM. Immunomodulatory role of branched-chain amino acids. Nutr Rev 2018; 76:840-856. [PMID: 30124936 DOI: 10.1093/nutrit/nuy037] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Branched-chain amino acids (BCAAs) have been associated with immunomodulation since the mid-1970s and 1980s and have been used in the nutritional therapy of critically ill patients. Evidence shows that BCAAs can directly contribute to immune cell function, aiding recovery of an impaired immune system, as well as improving the nutritional status in cancer and liver diseases. Branched-chain amino acids may also play a role in treatment of patients with sepsis or trauma, contributing to improved clinical outcomes and survival. Branched-chain amino acids, especially leucine, are activators of the mammalian target of rapamycin (mTOR), which, in turn, interacts with several signaling pathways involved in biological mechanisms of insulin action, protein synthesis, mitochondrial biogenesis, inflammation, and lipid metabolism. Although many in vitro and human and animal model studies have provided evidence for the biological activity of BCAAs, findings have been conflicting, and the mechanisms of action of these amino acids are still poorly understood. This review addresses several aspects related to BCAAs, including their transport, oxidation, and mechanisms of action, as well as their role in nutritional therapy and immunomodulation.
Collapse
Affiliation(s)
- Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Audrey Y Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Marcelo M Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
84
|
Dato S, Hoxha E, Crocco P, Iannone F, Passarino G, Rose G. Amino acids and amino acid sensing: implication for aging and diseases. Biogerontology 2018; 20:17-31. [DOI: 10.1007/s10522-018-9770-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/16/2018] [Indexed: 11/30/2022]
|
85
|
Grajeda-Iglesias C, Aviram M. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article. Rambam Maimonides Med J 2018; 9:RMMJ.10337. [PMID: 29944113 PMCID: PMC6115485 DOI: 10.5041/rmmj.10337] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.
Collapse
|
86
|
Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond) 2018; 15:33. [PMID: 29755574 PMCID: PMC5934885 DOI: 10.1186/s12986-018-0271-1] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids with protein anabolic properties, which have been studied in a number of muscle wasting disorders for more than 50 years. However, until today, there is no consensus regarding their therapeutic effectiveness. In the article is demonstrated that the crucial roles in BCAA metabolism play: (i) skeletal muscle as the initial site of BCAA catabolism accompanied with the release of alanine and glutamine to the blood; (ii) activity of branched-chain keto acid dehydrogenase (BCKD); and (iii) amination of branched-chain keto acids (BCKAs) to BCAAs. Enhanced consumption of BCAA for ammonia detoxification to glutamine in muscles is the cause of decreased BCAA levels in liver cirrhosis and urea cycle disorders. Increased BCKD activity is responsible for enhanced oxidation of BCAA in chronic renal failure, trauma, burn, sepsis, cancer, phenylbutyrate-treated subjects, and during exercise. Decreased BCKD activity is the main cause of increased BCAA levels and BCKAs in maple syrup urine disease, and plays a role in increased BCAA levels in diabetes type 2 and obesity. Increased BCAA concentrations during brief starvation and type 1 diabetes are explained by amination of BCKAs in visceral tissues and decreased uptake of BCAA by muscles. The studies indicate beneficial effects of BCAAs and BCKAs in therapy of chronic renal failure. New therapeutic strategies should be developed to enhance effectiveness and avoid adverse effects of BCAA on ammonia production in subjects with liver cirrhosis and urea cycle disorders. Further studies are needed to elucidate the effects of BCAA supplementation in burn, trauma, sepsis, cancer and exercise. Whether increased BCAA levels only markers are or also contribute to insulin resistance should be known before the decision is taken regarding their suitability in obese subjects and patients with type 2 diabetes. It is concluded that alterations in BCAA metabolism have been found common in a number of disease states and careful studies are needed to elucidate their therapeutic effectiveness in most indications.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| |
Collapse
|
87
|
Tedesco L, Corsetti G, Ruocco C, Ragni M, Rossi F, Carruba MO, Valerio A, Nisoli E. A specific amino acid formula prevents alcoholic liver disease in rodents. Am J Physiol Gastrointest Liver Physiol 2018; 314:G566-G582. [PMID: 29368944 DOI: 10.1152/ajpgi.00231.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic alcohol consumption promotes mitochondrial dysfunction, oxidative stress, defective protein metabolism, and fat accumulation in hepatocytes (liver steatosis). Inadequate amino acid metabolism is worsened by protein malnutrition, frequently present in alcohol-consuming patients, with reduced circulating branched-chain amino acids (BCAAs). Here we asked whether dietary supplementation with a specific amino acid mixture, enriched in BCAAs (BCAAem) and able to promote mitochondrial function in muscle of middle-aged rodents, would prevent mitochondrial dysfunction and liver steatosis in Wistar rats fed on a Lieber-DeCarli ethanol (EtOH)-containing liquid diet. Supplementation of BCAAem, unlike a mixture based on the amino acid profile of casein, abrogated the EtOH-induced fat accumulation, mitochondrial impairment, and oxidative stress in liver. These effects of BCAAem were accompanied by normalization of leucine, arginine, and tryptophan levels, which were reduced in liver of EtOH-consuming rats. Moreover, although the EtOH exposure of HepG2 cells reduced mitochondrial DNA, mitochondrial transcription factors, and respiratory chain proteins, the BCAAem but not casein-derived amino acid supplementation halted this mitochondrial toxicity. Nicotinamide adenine dinucleotide levels and sirtuin 1 (Sirt1) expression, as well as endothelial nitric oxide (eNOS) and mammalian/mechanistic target of rapamycin (mTOR) signaling pathways, were downregulated in the EtOH-exposed HepG2 cells. BCAAem reverted these molecular defects and the mitochondrial dysfunction, suggesting that the mitochondrial integrity obtained with the amino acid supplementation could be mediated through a Sirt1-eNOS-mTOR pathway. Thus a dietary activation of the mitochondrial biogenesis and function by a specific amino acid supplement protects against the EtOH toxicity and preserves the liver integrity in mammals. NEW & NOTEWORTHY Dietary supplementation of a specific amino acid formula prevents both fat accumulation and mitochondrial dysfunction in hepatocytes of alcohol-consuming rats. These effects are accompanied also by increased expression of anti-reactive oxygen species genes. The amino acid-protective effects likely reflect activation of sirtuin 1-endothelial nitric oxide synthase-mammalian target of rapamycin pathway able to regulate the cellular energy balance of hepatocytes exposed to chronic, alcoholic damage.
Collapse
Affiliation(s)
- Laura Tedesco
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan , Milan , Italy
| | - Giovanni Corsetti
- Department of Clinical and Experimental Sciences, University of Brescia , Brescia , Italy
| | - Chiara Ruocco
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan , Milan , Italy
| | - Maurizio Ragni
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan , Milan , Italy
| | - Fabio Rossi
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan , Milan , Italy
| | - Michele O Carruba
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan , Milan , Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan , Milan , Italy
| |
Collapse
|
88
|
Affiliation(s)
- Claudia Grajeda-Iglesias
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Israel
| | - Oren Rom
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Michael Aviram
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Israel
| |
Collapse
|
89
|
Abstract
Caloric restriction (CR) extends lifespan and delays the onset of age-related disorders in diverse species. Metabolic regulatory pathways have been implicated in the mechanisms of CR, but the molecular details have not been elucidated. Here, we show that CR engages RNA processing of genes associated with a highly integrated reprogramming of hepatic metabolism. We conducted molecular profiling of liver biopsies collected from adult male rhesus monkeys (Macaca mulatta) at baseline and after 2 years on control or CR (30% restricted) diet. Quantitation of over 20,000 molecules from the hepatic transcriptome, proteome, and metabolome indicated that metabolism and RNA processing are major features of the response to CR. Predictive models identified lipid, branched-chain amino acid, and short-chain carbon metabolic pathways, with alternate transcript use for over half of the genes in the CR network. We conclude that RNA-based mechanisms are central to the CR response and integral in metabolic reprogramming.
Collapse
|
90
|
Gannon NP, Schnuck JK, Vaughan RA. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Mol Nutr Food Res 2018; 62:e1700756. [PMID: 29377510 DOI: 10.1002/mnfr.201700756] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease.
Collapse
Affiliation(s)
| | - Jamie K Schnuck
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC
| |
Collapse
|
91
|
Salinas-Rubio D, Tovar AR, Noriega LG. Emerging perspectives on branched-chain amino acid metabolism during adipocyte differentiation. Curr Opin Clin Nutr Metab Care 2018; 21:49-57. [PMID: 29035970 DOI: 10.1097/mco.0000000000000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Adipogenesis has been extensively studied in the context of carbohydrate and lipid metabolism. However, little information exists on the role of amino acid metabolism during adipocyte differentiation. Here, we review how branched-chain amino acid (BCAA) metabolism is modified during adipogenesis and, due to the limited information in the area, address questions that remain to be answered with further research. RECENT FINDINGS BCAAs are rapidly consumed during adipocyte differentiation and are indispensable for this process. Furthermore, we describe how BCAA catabolic enzymes and the metabolic fate of BCAAs are modified during adipogenesis. SUMMARY Obesity is a chronic disease characterized by increased adipose tissue due to either an increase in the size (hypertrophy) and/or number of adipocytes (hyperplasia). Hyperplasia is determined by the rate of adipogenesis. Therefore, understanding the mechanism that modulates adipogenesis in the context of amino acid metabolism will help to establish pharmacological and dietary interventions involving the type and amount of dietary protein for the treatment of obesity and its associated comorbidities.Video abstract http://links.lww.com/COCN/A11.
Collapse
Affiliation(s)
- Daniela Salinas-Rubio
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | | |
Collapse
|
92
|
Myles JG, Manoli I, Venditti CP. Effects of medical food leucine content in the management of methylmalonic and propionic acidemias. Curr Opin Clin Nutr Metab Care 2018; 21:42-48. [PMID: 29035969 PMCID: PMC5815322 DOI: 10.1097/mco.0000000000000428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The current review highlights the varied effects of medical foods high in leucine (Leu) and devoid of valine (Val) and isoleucine (Ile) in the management of methylmalonic acidemia (MMA) and propionic acidemia and cobalamin C (cblC) deficiency, aiming to advance dietary practices. RECENT FINDINGS Leu is a key metabolic regulator with a multitude of effects on different organ systems. Recent observational studies have demonstrated that these effects can have unintended consequences in patients with MMA as a result of liberal use of medical foods. The combination of protein restriction and medical food use in MMA and propionic acidemia results in an imbalanced branched-chain amino acid (BCAA) dietary content with a high Leu-to-Val and/or Ile ratio. This leads to decreased plasma levels of Val and Ile and predicts impaired brain uptake of multiple essential amino acids. Decreased transport of methionine (Met) across the blood-brain barrier due to high circulating Leu levels is of particular concern in cblC deficiency in which endogenous Met synthesis is impaired. SUMMARY Investigations into the optimal composition of medical foods for MMA and propionic acidemia, and potential scenarios in which Leu supplementation may be beneficial are needed. Until then, MMA/propionic acidemia medical foods should be used judiciously in the dietary management of these patients and avoided altogether in cblC deficiency.
Collapse
Affiliation(s)
| | - Irini Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
93
|
Andrew R, Izzo AA. Principles of pharmacological research of nutraceuticals. Br J Pharmacol 2017; 174:1177-1194. [PMID: 28500635 DOI: 10.1111/bph.13779] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Ruth Andrew
- Centre for Cardiovascular Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
94
|
Sánchez-Pintos P, de Castro MJ, Roca I, Rite S, López M, Couce ML. Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Sci Rep 2017; 7:16267. [PMID: 29176728 PMCID: PMC5701125 DOI: 10.1038/s41598-017-15809-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Large for gestational age (LGA) newborns have an increased risk of obesity, insulin resistance, and metabolic syndrome. Acylcarnitine profiles in obese children and adults are characterized by increased levels of C3, C5, and certain medium-chain (C12) and long-chain (C14:1 and C16) acylcarnitines. C2 is also increased in insulin-resistant states. In this 1-year observational study of 2514 newborns (246 LGA newborns, 250 small for gestational age (GA) newborns, and 2018 appropriate for GA newborns), we analyzed and compared postnatal acylcarnitine profiles in LGA newborns with profiles described for obese individuals. Acylcarnitine analysis was performed by tandem mass spectrometry on dried-blood spots collected on day 3 of life. LGA newborns had higher levels of total short-chain acylcarnitines (p < 0.001), C2 (p < 0.01) and C3 (p < 0.001) acylcarnitines, and all C12, C14, and C16 acylcarnitines except C12:1. They also had a higher tendency towards carnitine insufficiency (p < 0.05) and carnitine deficiency (p < 0.001). No significant differences were observed between LGA newborns born to mothers with or without a history of gestational diabetes. This novel study describes a postnatal acylcarnitine profile in LGA with higher levels of C2, C3, total acylcarnitines, and total short-chain acylcarnitines that is characteristic of childhood and adult obesity and linked to an unhealthy metabolic phenotype.
Collapse
Affiliation(s)
- Paula Sánchez-Pintos
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain.
| | - Maria-Jose de Castro
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| | - Iria Roca
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| | - Segundo Rite
- Neonatology Unit. University Hospital Miguel Servet, Zaragoza, Spain
| | - Miguel López
- NeurObesity Group. Department of Physiology, CIMUS. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela (IDIS), 15706, Spain
| | - Maria-Luz Couce
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| |
Collapse
|
95
|
Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget 2017; 8:88882-88893. [PMID: 29179484 PMCID: PMC5687654 DOI: 10.18632/oncotarget.21489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are promising for their potential anti-aging effects. However, findings in adults suggest that circulating BCAAs are associated with cardiometabolic risk. Moreover, little information is available about how BCAAs influence clustered cardiometabolic traits in the oldest-old (>85 years), which are the fastest-growing segment of the population in developed countries. Here, we applied a targeted metabolomics approach to measure serum BCAAs in Chinese participants (aged 21-110 years) based on a longevity cohort. The differences of quantitative and dichotomous cardiometabolic traits were compared across BCAAs tertiles. A generalized additive model (GAM) was used to explore the dose-response relationship between BCAAs and the risk of metabolic syndrome (MetS). Overall, BCAAs were correlated with most of the examined cardiometabolic traits. The odds ratios for MetS across the increasing BCAA tertiles were 3.22 (1.70 - 6.12) and 5.27 (2.88 - 9.94, referenced to tertile 1) after adjusting for age and gender (Ptrend < 0.001). The association still existed after further controlling for lifestyle factors and inflammation factors. However, the correlations between circulating BCAAs and quantitative traits were weakened in the oldest-old, except for lipids, the levels of which were distinctly different from those in adults. The stratified analysis also suggested that the risky BCAAs-MetS association was more pronounced in adults than in the oldest-old. Moreover, generalized additive model (GAM)-based curve-fitting suggested that only when BCAAs exceeded a threshold (approximately 450 μmol/L) was the BCAAs-MetS association significant. The relationship might be aging-dependent and was more pronounced in adults than in the oldest-old.
Collapse
|
96
|
Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E. Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. GENES & NUTRITION 2017; 12:27. [PMID: 29043007 PMCID: PMC5628494 DOI: 10.1186/s12263-017-0582-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/17/2017] [Indexed: 01/12/2023]
Abstract
Dietary supplementation of essential amino acids (EAAs) has been shown to promote healthspan. EAAs regulate, in fact, glucose and lipid metabolism and energy balance, increase mitochondrial biogenesis, and maintain immune homeostasis. Basic science and epidemiological results indicate that dietary macronutrient composition affects healthspan through multiple and integrated mechanisms, and their effects are closely related to the metabolic status to which they act. In particular, EAA supplementation can trigger different and even opposite effects depending on the catabolic and anabolic states of the organisms. Among others, gut-associated microbial communities (referred to as gut microbiota) emerged as a major regulator of the host metabolism. Diet and host health influence gut microbiota, and composition of gut microbiota, in turn, controls many aspects of host health, including nutrient metabolism, resistance to infection, and immune signals. Altered communication between the innate immune system and the gut microbiota might contribute to complex diseases. Furthermore, gut microbiota and its impact to host health change largely during different life phases such as lactation, weaning, and aging. Here we will review the accumulating body of knowledge on the impact of dietary EAA supplementation on the host metabolic health and healthspan from a holistic perspective. Moreover, we will focus on the current efforts to establish causal relationships among dietary EAAs, gut microbiota, and health during human development.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
97
|
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci 2017; 18:ijms18061188. [PMID: 28574454 PMCID: PMC5486011 DOI: 10.3390/ijms18061188] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM.
Collapse
|
98
|
Liu R, Li H, Fan W, Jin Q, Chao T, Wu Y, Huang J, Hao L, Yang X. Leucine Supplementation Differently Modulates Branched-Chain Amino Acid Catabolism, Mitochondrial Function and Metabolic Profiles at the Different Stage of Insulin Resistance in Rats on High-Fat Diet. Nutrients 2017; 9:nu9060565. [PMID: 28574481 PMCID: PMC5490544 DOI: 10.3390/nu9060565] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/09/2023] Open
Abstract
The available findings concerning the association between branched-chain amino acids (BCAAs)—particularly leucine—and insulin resistance are conflicting. BCAAs have been proposed to elicit different or even opposite effects, depending on the prevalence of catabolic and anabolic states. We tested the hypothesis that leucine supplementation may exert different effects at different stages of insulin resistance, to provide mechanistic insights into the role of leucine in the progression of insulin resistance. Male Sprague-Dawley rats were fed a normal chow diet, high-fat diet (HFD), HFD supplemented with 1.5% leucine, or HFD with a 20% calorie restriction for 24 or 32 weeks. Leucine supplementation led to abnormal catabolism of BCAA and the incompletely oxidized lipid species that contributed to mitochondrial dysfunction in skeletal muscle in HFD-fed rats in the early stage of insulin resistance (24 weeks). However, leucine supplementation induced no remarkable alternations in BCAA catabolism, but did enhance mitochondrial biogenesis with a concomitant improvement in lipid oxidation and mitochondrial function during the hyperglycaemia stage (32 weeks). These findings suggest that leucine trigger different effects on metabolic signatures at different stages of insulin resistance, and the overall metabolic status of the organisms should be carefully considered to potentiate the benefits of leucine.
Collapse
Affiliation(s)
- Rui Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Hui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wenjuan Fan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Jin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Tingting Chao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yuanjue Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Junmei Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
99
|
Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol 2017; 174:1366-1377. [PMID: 27638647 PMCID: PMC5429325 DOI: 10.1111/bph.13624] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
Substantial evidence has been accumulated suggesting that branched-chain amino acid (BCAA) supplementation or BCAA-rich diets have a positive effect on the regulation of body weight, muscle protein synthesis, glucose homeostasis, the ageing process and extend healthspan. Despite these beneficial effects, epidemiological studies have shown that BCAA plasma concentrations and BCAA metabolism are altered in several metabolic disorders, including type 2 diabetes mellitus and cardiovascular diseases. In this review article, we present an overview of the current literature on the different effects of BCAAs in health and disease. We also highlight the results showing the most promising therapeutic effects of dietary BCAA supplementation and discuss how BCAAs can trigger different and even opposite effects, depending on the catabolic and anabolic states of the organisms. Moreover, we consider the effects of BCAAs when metabolism is abnormal, in the presence of a mixture of different anabolic and catabolic signals. These unique pharmacodynamic properties may partially explain some of the markedly different effects found in BCAA supplementation studies. To predict accurately these effects, the overall catabolic/anabolic status of patients should be carefully considered. In wider terms, a correct modulation of metabolic disorders would make nutraceutical interventions with BCAAs more effective. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| |
Collapse
|
100
|
Zhang P, Li W, Chen J, Li R, Zhang Z, Huang Y, Xu F. Branched-Chain Amino Acids as Predictors for Individual Differences of Cisplatin Nephrotoxicity in Rats: A Pharmacometabonomics Study. J Proteome Res 2017; 16:1753-1762. [PMID: 28271897 DOI: 10.1021/acs.jproteome.7b00014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pei Zhang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu
Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
- State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Li
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu
Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
- State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaqing Chen
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu
Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
- State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ruiting Li
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu
Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
- State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zunjian Zhang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu
Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
- State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yin Huang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu
Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
- State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fengguo Xu
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu
Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
- State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|