51
|
Guiry E, Robson HK. Deep antiquity of seagrasses supporting European eel fisheries in the western Baltic. Proc Biol Sci 2024; 291:20240674. [PMID: 39043239 PMCID: PMC11265904 DOI: 10.1098/rspb.2024.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/22/2024] [Indexed: 07/25/2024] Open
Abstract
Protecting ocean habitats is critical for international efforts to mitigate climate impacts and ensure food security, but the ecological data upon which policy makers base conservation and restoration targets often reflect ecosystems that have already been deeply impacted by anthropogenic change. The archaeological record is a biomolecular archive offering a temporal scope that cannot be gathered from historical records or contemporary fieldwork. Insights from biogeochemical and osteometric analyses of fish bones, combined with context from contemporary field studies, show how prehistoric fisheries in the western Baltic relied on seagrass meadows. European eels (Anguilla anguilla) harvested by Mesolithic and Neolithic peoples over millennia showed a strong fidelity for eelgrass foraging habitats, an ecological relationship that remains largely overlooked today, demonstrating the value of protecting these habitats. These data open new windows onto ecosystem- and species-level behaviours, highlighting the need for wider incorporation of archaeological data in strategies for protecting our oceans.
Collapse
Affiliation(s)
- Eric Guiry
- Department of Anthropology, Trent University, 1600 Westbank Drive, Peterborough, Ontario, Canada K9L 0G2
- School of Archaeology and Ancient History, University of Leicester, Mayor's Walk, Leicester LE1 7RH, UK
| | - Harry K. Robson
- BioArCh, Department of Archaeology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
52
|
Reustle JW, Belgrad BA, Pettis E, Smee DL. Hurricanes temporarily weaken human-ecosystem linkages in estuaries. Oecologia 2024; 205:545-559. [PMID: 39009889 DOI: 10.1007/s00442-024-05592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Intense disturbances such as hurricanes may drastically affect ecosystems, producing both acute and long-term changes along coastlines. By disrupting human activities (e.g., fishing), hurricanes can provide an opportunity to quantify the effects of these activities on coastal ecosystems. We performed predator-exclusion experiments on oyster reefs in 2016, one-year before a category-4 hurricane ("Harvey") and again in 2018 one-year post-hurricane where the storm made landfall. Additionally, we examined 8 years (2011-2018) of fisheries-independent data to gauge how fishing pressure and fish populations were affected by the storm in three locations that varied in storm impacts. In the month following Hurricane Harvey, fishing effort dropped by 90% in the area with wind and flooding damage, and predatory fish species commonly targeted by anglers were 300% more abundant than the year prior to the hurricane. The locations without damage to fishing infrastructure did not experience declines in fishing pressure or changes in fish abundance, regardless of flooding disturbance. Reef fish and invertebrate communities directly affected by the storm were significantly different after the hurricane and were ~ 30% more diverse. With low fishing pressure, sportfish CPUE were 1.7-6.9 × higher immediately after the hurricane. Intermediate consumers, such as crabs that prey on oysters, were 45% less abundant and 10% smaller. These results indicate that hurricanes can temporarily disrupt human-ecosystem linkages and reconstitute top-down control by sportfish in estuarine food webs. Disturbance events that interrupt or weaken those interactions may yield indirect ecological benefits and provide insights into the effects of human activities on food webs.
Collapse
Affiliation(s)
- Joseph W Reustle
- Department of Marine and Environmental Science, Hampton University, Hampton, VA, 23368, USA.
| | | | - Evan Pettis
- Texas Parks and Wildlife Department, Rockport, TX, 78382, USA
| | - Delbert L Smee
- Dauphin Island Sea Lab, Dauphin Island, AL, 36695, USA
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
53
|
Henley BJ, McGregor HV, King AD, Hoegh-Guldberg O, Arzey AK, Karoly DJ, Lough JM, DeCarlo TM, Linsley BK. Highest ocean heat in four centuries places Great Barrier Reef in danger. Nature 2024; 632:320-326. [PMID: 39112620 PMCID: PMC11306100 DOI: 10.1038/s41586-024-07672-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST)1. The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR2, but the long-term context of recent temperatures in the region is unclear. Here we show that the January-March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum. The 2016, 2004 and 2022 events were the next warmest, exceeding the 90th-percentile limit. Climate model analysis confirms that human influence on the climate system is responsible for the rapid warming in recent decades. This attribution, together with the recent ocean temperature extremes, post-1900 warming trend and observed mass coral bleaching, shows that the existential threat to the GBR ecosystem from anthropogenic climate change is now realized. Without urgent intervention, the iconic GBR is at risk of experiencing temperatures conducive to near-annual coral bleaching3, with negative consequences for biodiversity and ecosystems services. A continuation on the current trajectory would further threaten the ecological function4 and outstanding universal value5 of one of Earth's greatest natural wonders.
Collapse
Affiliation(s)
- Benjamin J Henley
- Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia.
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, New South Wales, Australia.
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Helen V McGregor
- Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew D King
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence for Climate Extremes, University of Melbourne, Parkville, Victoria, Australia
| | - Ove Hoegh-Guldberg
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Ariella K Arzey
- Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, New South Wales, Australia
| | - David J Karoly
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Janice M Lough
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Thomas M DeCarlo
- ARC Centre of Excellence for Coral Reef Studies and School of Earth Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA
| | - Braddock K Linsley
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| |
Collapse
|
54
|
Tribot AS, Faget D, Changeux T. Nature experiences affect the aesthetic reception of art: The case of paintings depicting aquatic animals. PLoS One 2024; 19:e0303584. [PMID: 39024209 PMCID: PMC11257337 DOI: 10.1371/journal.pone.0303584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/22/2024] [Indexed: 07/20/2024] Open
Abstract
Art is a promising pathway to raise emotional engagement with nature, while enabling an indirect exposure to nature through aesthetic experience. However, the precise relationships between aesthetic experiences of art and experiences of nature remain unclear. The aim of this observational study is to highlight the effect of nature experiences on the aesthetic reception art, based on Early Modern paintings (16th-18th century). By focusing on marine ecosystems, that are difficult to directly interact with, the results presented are intended to explore whether marine activities and fish consumption affect the aesthetic reception of artworks depicting marine biodiversity. A photo-questionnaire survey based on four paintings has been conducted with 332 French participants with a diverse range of marine practices, fish consumption and artistic sensitivity. Fish consumption and value attributed to fish as food had a significant positive impact on the aesthetic reception, suggesting that taste and food consumption could be considered as a relevant nature aesthetic experience that elicits affective and emotional responses. Results also showed an indirect effect of fishing and diving on the aesthetic reception of paintings whose iconography relates with the observers' experiences. These findings are of particular interest in both environmental psychology and ecological mediation through art. This study brings evidences of the connection between art and nature experiences, and that art could be an innovative way of experiencing nature. Finally, this study also highlights the need to broaden the scope of nature experiences, for instance by including food.
Collapse
Affiliation(s)
- Anne-Sophie Tribot
- UMR TELEMMe, MMSH, Aix-Marseille University, CNRS, Aix-en-Provence, France
| | - Daniel Faget
- UMR TELEMMe, MMSH, Aix-Marseille University, CNRS, Aix-en-Provence, France
| | - Thomas Changeux
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Campus Luminy - OCEANOMED Bâtiment Méditerranée, Marseille, France
| |
Collapse
|
55
|
Bas M, Ouled-Cheikh J, Julià L, Fuster-Alonso A, March D, Ramírez F, Cardona L, Coll M. Fish and tips: Historical and projected changes in commercial fish species' habitat suitability in the Southern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174752. [PMID: 39004360 DOI: 10.1016/j.scitotenv.2024.174752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Global warming has significantly altered fish distribution patterns in the ocean, shifting towards higher latitudes and deeper waters. This is particularly relevant in high-latitude marine ecosystems, where climate-driven environmental changes are occurring at higher rates than the global average. Species Distribution Models (SDMs) are increasingly being used for predicting distributional shifts in habitat suitability for marine species as a response to climate change. Here, we used SDMs to project habitat suitability changes for a range of high-latitude, pelagic and benthopelagic commercial fish species and crustaceans (10 species); from 1850 to two future climate change scenarios (SSP1-2.6: low climate forcing; and SSP5-8.5: high climate forcing). The study includes 11 Large Marine Ecosystems (LME) spanning South America, Southern Africa, Australia, and New Zealand. We identified declining and southward-shifting patterns in suitable habitat areas for most species, particularly under the SSP5-8.5 scenario and for some species such as Argentine hake (Merluccius hubbsi) in South America, or snoek (Thyrsites atun) off Southern Africa. Geographical constraints will likely result in species from Southern Africa, Australia, and New Zealand facing the most pronounced habitat losses due to rising sea surface temperatures (SST). In contrast, South American species might encounter greater opportunities for migrating southward. Additionally, the SSP5-8.5 scenario predicts that South America will be more environmentally stable compared to other regions. Overall, our findings suggest that the Patagonian shelf could serve as a climate refuge, due to higher environmental stability highlighting the importance of proactive management strategies in this area for species conservation. This study significantly contributes to fisheries and conservation management, providing valuable insights for future protection efforts in the Southern Hemisphere.
Collapse
Affiliation(s)
- Maria Bas
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Jazel Ouled-Cheikh
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Julià
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Alba Fuster-Alonso
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - David March
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Carrer del Catedràtic José Beltrán Martinez, 2, 46980 Paterna, Valencia, Spain; Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, TR10 9FE Penryn, Cornwall, United Kingdom
| | - Francisco Ramírez
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Luis Cardona
- Institut de Recerca de la Biodiversitat (IRBio), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Marta Coll
- Institut de Ciències del Mar (ICM-CSIC), Departament de Recursos Marins Renovables, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain; Ecopath International Initiative (EII), Barcelona, Spain
| |
Collapse
|
56
|
Clements CS, Pratte ZA, Stewart FJ, Hay ME. Biodiversity of macroalgae does not differentially suppress coral performance: The other side of a biodiversity issue. Ecology 2024; 105:e4329. [PMID: 38772876 DOI: 10.1002/ecy.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/16/2024] [Accepted: 04/13/2024] [Indexed: 05/23/2024]
Abstract
Hundreds of studies now document positive relationships between biodiversity and critical ecosystem processes, but as ecological communities worldwide shift toward new species configurations, less is known regarding how the biodiversity of undesirable species will shape the functioning of ecosystems or foundation species. We manipulated macroalgal species richness in experimental field plots to test whether and how the identity and diversity of competing macroalgae affected the growth, survival, and microbiome of a common coral in Mo'orea, French Polynesia. Compared to controls without algal competitors, coral growth was significantly suppressed across three macroalgal monocultures, a polyculture of the same three macroalgae, and plots containing inert seaweed mimics; coral mortality was limited and did not differ significantly among treatments. One macroalga suppressed coral growth significantly less than the other two, but none differed from the inert mimic in terms of coral suppression. The composition, dispersion, and diversity of coral microbiomes in treatments with live macroalgae or inert plastic mimics did not differ from controls experiencing no competition. Microbiome composition differed between two macroalgal monocultures and a monoculture versus plastic mimics, but no other microbiome differences were observed among macroalgal or mimic treatments. Together, these findings suggest that algal diversity does not alter harmful impacts of macroalgae on coral performance, which could be accounted for by physical structure alone in these field experiments. While enhancing biodiversity is a recognized strategy for promoting desirable species, it would be worrisome if biodiversity also enhanced the negative impacts of undesirable species. We documented no such effects in this investigation.
Collapse
Affiliation(s)
- Cody S Clements
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zoe A Pratte
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Mark E Hay
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
57
|
Johansen JL, Mitchell MD, Vaughan GO, Ripley DM, Shiels HA, Burt JA. Impacts of ocean warming on fish size reductions on the world's hottest coral reefs. Nat Commun 2024; 15:5457. [PMID: 38951524 PMCID: PMC11217398 DOI: 10.1038/s41467-024-49459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
The impact of ocean warming on fish and fisheries is vigorously debated. Leading theories project limited adaptive capacity of tropical fishes and 14-39% size reductions by 2050 due to mass-scaling limitations of oxygen supply in larger individuals. Using the world's hottest coral reefs in the Persian/Arabian Gulf as a natural laboratory for ocean warming - where species have survived >35.0 °C summer temperatures for over 6000 years and are 14-40% smaller at maximum size compared to cooler locations - we identified two adaptive pathways that enhance survival at elevated temperatures across 10 metabolic and swimming performance metrics. Comparing Lutjanus ehrenbergii and Scolopsis ghanam from reefs both inside and outside the Persian/Arabian Gulf across temperatures of 27.0 °C, 31.5 °C and 35.5 °C, we reveal that these species show a lower-than-expected rise in basal metabolic demands and a right-shifted thermal window, which aids in maintaining oxygen supply and aerobic performance to 35.5 °C. Importantly, our findings challenge traditional oxygen-limitation theories, suggesting a mismatch in energy acquisition and demand as the primary driver of size reductions. Our data support a modified resource-acquisition theory to explain how ocean warming leads to species-specific size reductions and why smaller individuals are evolutionarily favored under elevated temperatures.
Collapse
Affiliation(s)
- Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, HI, USA.
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Matthew D Mitchell
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Grace O Vaughan
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- BiOrbic, Bioeconomy SFI Research Centre, O'Brien Centre for Science, University College Dublin, Dublin, Ireland
| | - Daniel M Ripley
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - John A Burt
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
58
|
Guo S, Li J, Yang X, Qin Y, Zhao Y, Wei J, Ma H, Yu Z, Zhao L, Zhang Y. Resistance of an intertidal oyster(Saccostrea mordax)to marine heatwaves and the implication for reef building. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172474. [PMID: 38621527 DOI: 10.1016/j.scitotenv.2024.172474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/01/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Marine heatwaves (MHWs) have a significant impact on intertidal bivalves and the ecosystems they sustain, causing the destruction of organisms' original habitats. Saccostrea mordax mainly inhabits the intertidal zone around the equator, exhibiting potential tolerance to high temperatures and maybe a species suitable for habitat restoration. However, an understanding about the tolerance mechanism of S. mordax to high temperatures is unclear. It is also unknown the extent to which S. mordax can tolerate repeated heatwaves of increasing intensity and frequency. Here, we simulated the effects of two scenarios of MHWs and measured the physiological and biochemical responses and gene expression spectrum of S. mordax. The predicted responses varied greatly across heatwaves, and no heatwave had a significant impact on the survival of S. mordax. Specifically, there were no statistically significant changes apparent in the standard metabolic rate and the activities of enzymes of the oyster during repeated heatwaves. S. mordax exposed to high-intensity heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance and increasing activity of SOD and expression of HSP70/90. These strategies are presumably at the expense of functions related to immunity and growth, as best exemplified by significant depressions in activities of enzymes (NaK, CaMg, T-ATP, and AKP) and expression levels of genes (Rab, eEF-2, HMGR, Rac1, SGK, Rab8, etc.). The performance status of S. mordax tends to improve by implementing a suite of less energy-costly compensatory mechanisms at various levels of biological organization when re-exposed to heatwaves. The adaptive abilities shown by S. mordax indicate that they can play a crucial role in the restoration of oyster reefs in tropical seas.
Collapse
Affiliation(s)
- Shuming Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China
| | - Xiaogang Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China
| | - Yanping Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China
| | - Yuexin Zhao
- Dalian Ocean University, Dalian 116023, China
| | - Jinkuan Wei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China
| | - Liqiang Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; Guangdong Ocean University, Zhangjiang 524088, China.
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Marine Eco-environment Engineering Research Institute, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572024, China.
| |
Collapse
|
59
|
Appleby M, Raoult V, Broadhurst MK, Gaston T. Can denticle morphology help identify southeastern Australian elasmobranchs? JOURNAL OF FISH BIOLOGY 2024; 104:1848-1859. [PMID: 38491854 DOI: 10.1111/jfb.15704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Elasmobranchs are covered in scale-like structures called dermal denticles, comprising dentine and enameloid. These structures vary across the body of an individual and between species, and are frequently shed and preserved in marine sediments. With a good understanding of denticle morphology, current and historical elasmobranch diversity and abundance might be assessed from sediment samples. Here, replicate samples of denticles from the bodies of several known (deceased) shark species were collected and characterized for morphology before being assigned morphotypes. These data were used to expand the established literature describing denticles and to investigate intra- and interspecific variability, with the aim of increasing the viability of using sediment samples to assess elasmobranch diversity and abundance. Denticle morphology was influenced more by life-history traits than by species, where demersal species were largely characterized by generalized function and defense denticles, whereas pelagic and benthopelagic species were characterized by drag-reduction denticles. Almost all species possessed abrasion strength or defense denticles on the snout, precluding their utility for separating species. In a separate manipulative experiment, samples of denticles were collected from sediments in two aquaria with known elasmobranchs to determine their utility for reliably separating species. Visual examination of denticles, morphometric measurements, scaled photographs, and reference collections allowed for some precise identification, but not always to the species level. Ongoing work to develop denticle reference collections could help to identify past and present families and, in some cases, species.
Collapse
Affiliation(s)
- Mariah Appleby
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Vincent Raoult
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
- Marine Ecology Group, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Matt K Broadhurst
- NSW Department of Primary Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Troy Gaston
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| |
Collapse
|
60
|
Zhang Y, Ko H, Calicchia MA, Ni R, Lauder GV. Collective movement of schooling fish reduces the costs of locomotion in turbulent conditions. PLoS Biol 2024; 22:e3002501. [PMID: 38843284 PMCID: PMC11156351 DOI: 10.1371/journal.pbio.3002501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
The ecological and evolutionary benefits of energy-saving in collective behaviors are rooted in the physical principles and physiological mechanisms underpinning animal locomotion. We propose a turbulence sheltering hypothesis that collective movements of fish schools in turbulent flow can reduce the total energetic cost of locomotion by shielding individuals from the perturbation of chaotic turbulent eddies. We test this hypothesis by quantifying energetics and kinematics in schools of giant danio (Devario aequipinnatus) and compared that to solitary individuals swimming under laminar and turbulent conditions over a wide speed range. We discovered that, when swimming at high speeds and high turbulence levels, fish schools reduced their total energy expenditure (TEE, both aerobic and anaerobic energy) by 63% to 79% compared to solitary fish (e.g., 228 versus 48 kj kg-1). Solitary individuals spend approximately 22% more kinematic effort (tail beat amplitude•frequency: 1.7 versus 1.4 BL s-1) to swim in turbulence at higher speeds than in laminar conditions. Fish schools swimming in turbulence reduced their three-dimensional group volume by 41% to 68% (at higher speeds, approximately 103 versus 33 cm3) and did not alter their kinematic effort compared to laminar conditions. This substantial energy saving highlights that schooling behaviors can mitigate turbulent disturbances by sheltering fish (within schools) from the eddies of sufficient kinetic energy that can disrupt locomotor gaits. Therefore, providing a more desirable internal hydrodynamic environment could be one of the ecological drivers underlying collective behaviors in a dense fluid environment.
Collapse
Affiliation(s)
- Yangfan Zhang
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hungtang Ko
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Michael A. Calicchia
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States of America
| | - Rui Ni
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States of America
| | - George V. Lauder
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
61
|
Ko CY, Lee YC, Wang YC, Hsu HH, Chow CH, Chen RG, Liu TH, Chen CS, Chiu TS, Chiang DH, Wu RF, Tseng WL. Modulations of ocean-atmosphere interactions on squid abundance over Southwest Atlantic. ENVIRONMENTAL RESEARCH 2024; 250:118444. [PMID: 38360168 DOI: 10.1016/j.envres.2024.118444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Anthropogenic shifts in seas are reshaping fishing trends, with significant implications for aquatic food sources throughout this century. Examining a 21-year abundance dataset of Argentine shortfin squids Illex argentinus paired with a regional oceanic analysis, we noted strong correlations between squid annual abundance and sea surface temperature (SST) in January and February and eddy kinetic energy (EKE) from March to May in the Southwest Atlantic. A deeper analysis revealed combined ocean-atmosphere interactions, pinpointed as the primary mode in a rotated empirical orthogonal function analysis of SST. This pattern produced colder SST and amplified EKE in the surrounding seas, factors crucial for the unique life stages of squids. Future projections from the CMIP6 archive indicated that this ocean-atmosphere pattern, referred to as the Atlantic symmetric pattern, would persist in its cold SST phase, promoting increased squid abundance. However, rising SSTs due to global warming might counteract the abundance gains. Our findings uncover a previously unrecognized link between squids and specific environmental conditions governed by broader ocean-atmosphere interactions in the Southwest Atlantic. Integrating these insights with seasonal and decadal projections can offer invaluable information to stakeholders in squid fisheries and marine conservation under a changing climate.
Collapse
Affiliation(s)
- Chia-Ying Ko
- Institute of Fisheries Science, National Taiwan University, Taiwan; Biodiversity Research Center, Institute of Ecology and Evolutionary Biology, Department of Life Science, and Master's Program in Biodiversity, National Taiwan University, Taiwan; Ocean Center, National Taiwan University, Taiwan.
| | - Yu-Chi Lee
- Research Center for Environmental Changes, Academia Sinica, Taiwan; Department of Earth and Planetary Sciences, University of California, Riverside, USA.
| | - Yi-Chi Wang
- Research Center for Environmental Changes, Academia Sinica, Taiwan.
| | - Huang-Hsiung Hsu
- Research Center for Environmental Changes, Academia Sinica, Taiwan.
| | - Chun Hoe Chow
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Taiwan.
| | - Ruei-Gu Chen
- Fisheries Research Institute, Ministry of Agriculture, Taiwan.
| | - Tsung-Han Liu
- Institute of Fisheries Science, National Taiwan University, Taiwan.
| | - Chih-Shin Chen
- Institute of Marine Affairs and Resource Management, National Taiwan Ocean University, Taiwan.
| | - Tai-Sheng Chiu
- Biodiversity Research Center, Institute of Ecology and Evolutionary Biology, Department of Life Science, and Master's Program in Biodiversity, National Taiwan University, Taiwan.
| | - Don-Hsieh Chiang
- Overseas Fisheries Development Council of the Republic of China, Taiwan.
| | - Ren-Fen Wu
- Overseas Fisheries Development Council of the Republic of China, Taiwan.
| | - Wan-Ling Tseng
- Ocean Center, National Taiwan University, Taiwan; International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taiwan.
| |
Collapse
|
62
|
Sun Y, Sun Z, Zhang Y, Qiao Q. How can governments and fishermen collaborate to participate in a fishing ban for ecological restoration? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:120958. [PMID: 38744206 DOI: 10.1016/j.jenvman.2024.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
To safeguard aquatic ecosystems and fishery resources while facilitating cooperative engagement between local governments and fishermen, an evolutionary game model featuring both stakeholders has been constructed in this study. The model examines the degree of compliance with ecological restoration policies linked to fishing bans, as well as the adaptive strategies of different types of fishermen with varied incentives while simulating the ecological restoration policy under diverse scenarios. The findings suggest that: (1) Compliance with the fishing ban policy among fishermen is determined by their economic interests, environmental preferences, and government regulations, while its enforcement by local authorities is influenced by regulatory costs, political performance, and reputation. (2) Variations in the ecological restoration policy of fishing bans result from several factors, including punitive measures and compensation. The higher the penalty, the greater the chance of compliance among fishermen, and the higher the restoration degree of the watershed ecosystem. Conversely, the higher the compensation, the more satisfied the fishermen are with the fishing ban policy, and the smoother the transformation of their livelihoods. (3) To enhance the effectiveness and sustainability of fishing bans, it is essential to consider the interests of multiple stakeholders and adopt a coordination mechanism that facilitates the design of a reasonable and effective incentive-compatible system, thereby increasing the fairness and acceptability of the policy. This study provides a new theoretical framework and methodology applicable to ecological restoration policies for fishery closures on a global scale, accompanied by robust data support and theoretical guidance for developing and implementing fishery closure policies.
Collapse
Affiliation(s)
- Yong Sun
- School of Public Administration, Guangzhou University, Guangzhou 510006, China; Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China.
| | - Zhongrui Sun
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy (Jiaxing), Beijing Institute of Technology, Jiaxing 314001, China.
| | - Yanmei Zhang
- School of Public Administration, Guangzhou University, Guangzhou 510006, China.
| | - Qin Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,Beijing 100012,China.
| |
Collapse
|
63
|
Vriesman VP, Bean JR, Palmer HM, Banker RMW. Interpreting life-history traits, seasonal cycles, and coastal climate from an intertidal mussel species: Insights from 9000 years of synthesized stable isotope data. PLoS One 2024; 19:e0302945. [PMID: 38776326 PMCID: PMC11111024 DOI: 10.1371/journal.pone.0302945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Understanding past coastal variability is valuable for contextualizing modern changes in coastal settings, yet existing Holocene paleoceanographic records for the North American Pacific Coast commonly originate from offshore marine sediments and may not represent the dynamic coastal environment. A potential archive of eastern Pacific Coast environmental variability is the intertidal mussel species Mytilus californianus. Archaeologists have collected copious stable isotopic (δ18O and δ13C) data from M. californianus shells to study human history at California's Channel Islands. When analyzed together, these isotopic data provide windows into 9000 years of Holocene isotopic variability and M. californianus life history. Here we synthesize over 6000 δ18O and δ13C data points from 13 published studies to investigate M. californianus shell isotopic variability across ontogenetic, geographic, seasonal, and millennial scales. Our analyses show that M. californianus may grow and record environmental information more irregularly than expected due to the competing influences of calcification, ontogeny, metabolism, and habitat. Stable isotope profiles with five or more subsamples per shell recorded environmental information ranging from seasonal to millennial scales, depending on the number of shells analyzed and the resolution of isotopic subsampling. Individual shell profiles contained seasonal cycles and an accurate inferred annual temperature range of ~ 5°C, although ontogenetic growth reduction obscured seasonal signals as organisms aged. Collectively, the mussel shell record reflected millennial-scale climate variability and an overall 0.52‰ depletion in δ18Oshell from 8800 BP to the present. The archive also revealed local-scale oceanographic variability in the form of a warmer coastal mainland δ18Oshell signal (-0.32‰) compared to a cooler offshore islands δ18Oshell signal (0.33‰). While M. californianus is a promising coastal archive, we emphasize the need for high-resolution subsampling from multiple individuals to disentangle impacts of calcification, metabolism, ontogeny, and habitat and more accurately infer environmental and biological patterns recorded by an intertidal species.
Collapse
Affiliation(s)
- Veronica Padilla Vriesman
- Department of Geosciences, Oberlin College, Oberlin, Ohio, United States of America
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States of America
| | - Jessica R. Bean
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, California, United States of America
| | - Hannah M. Palmer
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States of America
| | - Roxanne M. W. Banker
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| |
Collapse
|
64
|
Kucinick M, Charles KE, Carter K, Edwards J, Costlow C, Wilkerson M, Seddon D, Marancik D. Comparative plasma biochemistry analyte data in nesting leatherback ( Dermochelys coriacea), foraging green ( Chelonia mydas) and foraging and nesting hawksbill ( Eretmochelys imbricata) sea turtles in Grenada, West Indies. CONSERVATION PHYSIOLOGY 2024; 12:coae028. [PMID: 38765884 PMCID: PMC11099945 DOI: 10.1093/conphys/coae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Blood biochemistry represents a minimally invasive tool for monitoring sea turtle health, assessing injured sea turtles and supporting conservation strategies. In Grenada, West Indies, plasma biochemical variables were examined in 33 nesting leatherback (Dermochelys coriacea), 49 foraging green (Chelonia mydas), 49 foraging hawksbill (Eretmochelys imbricata) and 12 nesting hawksbill sea turtles sampled between 2017 and 2022. Plasma biochemistry reference intervals are described herein except for nesting hawksbills, which are represented by descriptive statistics due to the low sample size. Select analyte concentrations were positively correlated with curved carapace length in leatherbacks (chloride), green turtles (total protein, albumin and globulin) and foraging hawksbills (total protein, albumin and phosphorus). Cholesterol (7.8 mmol/l ± 1.6 SD) and triglyceride (6.9 mmol/l ± 1.9 SD) concentrations were significantly higher in leatherbacks compared to foraging green turtles, foraging hawksbills and nesting hawksbills (P < 0.001 for all). Cholesterol was significantly higher in nesting hawksbills compared to foraging green turtles (P = 0.050) and foraging hawksbills (P = 0.050). Foraging hawksbills demonstrated significantly higher aspartate transaminase activities than leatherbacks (P = 0.002), green turtles (P = 0.009) and nesting hawksbills (P < 0.001). Biochemical results provide baseline population health data and support guidance for treatments during clinical sea turtle rehabilitation efforts. They also provide insight into species-specific physiologic differences and preludes further studies to better characterize the impacts of life-stage class on biochemistry reference intervals to better support wild sea turtle populations in Grenada.
Collapse
Affiliation(s)
- Madison Kucinick
- Department of Pathobiology, St. George’s University School of Veterinary Medicine, True Blue, Grenada, West Indies
| | | | - Kenrith Carter
- Ocean Spirits, Inc, Levera, Grenada, West Indies
- Dr Carter Veterinary Services, St. David's, Grenada, West Indies
| | - Jonnel Edwards
- Department of Pathobiology, St. George’s University School of Veterinary Medicine, True Blue, Grenada, West Indies
| | - Catherine Costlow
- Department of Pathobiology, St. George’s University School of Veterinary Medicine, True Blue, Grenada, West Indies
| | - Melinda Wilkerson
- Department of Pathobiology, St. George’s University School of Veterinary Medicine, True Blue, Grenada, West Indies
| | - Dawn Seddon
- Department of Pathobiology, St. George’s University School of Veterinary Medicine, True Blue, Grenada, West Indies
| | - David Marancik
- Department of Pathobiology, St. George’s University School of Veterinary Medicine, True Blue, Grenada, West Indies
| |
Collapse
|
65
|
Swaminathan SD, Lafferty KD, Knight NS, Altieri AH. Stony coral tissue loss disease indirectly alters reef communities. SCIENCE ADVANCES 2024; 10:eadk6808. [PMID: 38701216 PMCID: PMC11068009 DOI: 10.1126/sciadv.adk6808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Many Caribbean coral reefs are near collapse due to various threats. An emerging threat, stony coral tissue loss disease (SCTLD), is spreading across the Western Atlantic and Caribbean. Data from the U.S. Virgin Islands reveal how SCTLD spread has reduced the abundance of susceptible coral and crustose coralline algae and increased cyanobacteria, fire coral, and macroalgae. A Caribbean-wide structural equation model demonstrates versatility in reef fish and associations with rugosity independent of live coral. Model projections suggest that some reef fishes will decline due to SCTLD, with the largest changes on reefs that lose the most susceptible corals and rugosity. Mapping these projected declines in space indicates how the indirect effects of SCTLD range from undetectable to devastating.
Collapse
Affiliation(s)
- Sara D. Swaminathan
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kevin D. Lafferty
- Western Ecological Research Center, US Geological Survey, Santa Barbara, CA 93455, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Nicole S. Knight
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Andrew H. Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
- Smithsonian Tropical Research Center, Ancon 0843-03092, Republic of Panama
| |
Collapse
|
66
|
Camins E, Stanton LM, Correia M, Foster SJ, Koldewey HJ, Vincent ACJ. Advances in life-history knowledge for 35 seahorse species from community science. JOURNAL OF FISH BIOLOGY 2024; 104:1548-1565. [PMID: 38408838 DOI: 10.1111/jfb.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Marine community science presents an important route to gather valuable scientific information while also influencing local management and policy, thus contributing to marine conservation efforts. Because seahorses are cryptic but charismatic species, they are good candidates for engaging diverse people to help overcome the many gaps in biological knowledge. We have synthesized information contributed to the community science project iSeahorse from October 2013 to April 2022 for 35 of 46 known seahorse species. We then compared the obtained results with information in existing IUCN Red List assessments, executed from 2014 to 2017, to explore the potential of iSeahorse in expanding seahorse knowledge. Our results show updated geographic ranges for 7 seahorse species, new habitats described for 24 species, observations outside the previously recorded depth range for 14 species, and new information on sex ratio for 15 species and on pregnancy seasonality for 11 species. As one example of the power of iSeahorse, contributed observations on Coleman's pygmy seahorse (Hippocampus colemani) indicated that its geographic range is thousands of square kilometers larger, its habitat more diverse, and its depth range shallower than previously known. It is clear that iSeahorse is expanding knowledge on seahorses to a level that will help improve IUCN Red List assessments. The power of community science for marine conservation in general needs to be fully explored.
Collapse
Affiliation(s)
- Elsa Camins
- Project Seahorse, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Seahorse, Pipefish, and Seadragon Specialist Group, IUCN Species Survival Commission, Gland, Switzerland
| | - Lily M Stanton
- Project Seahorse, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Seahorse, Pipefish, and Seadragon Specialist Group, IUCN Species Survival Commission, Gland, Switzerland
| | - Miguel Correia
- Project Seahorse, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Seahorse, Pipefish, and Seadragon Specialist Group, IUCN Species Survival Commission, Gland, Switzerland
| | - Sarah J Foster
- Project Seahorse, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Seahorse, Pipefish, and Seadragon Specialist Group, IUCN Species Survival Commission, Gland, Switzerland
| | - Heather J Koldewey
- Seahorse, Pipefish, and Seadragon Specialist Group, IUCN Species Survival Commission, Gland, Switzerland
- Project Seahorse, Zoological Society of London, Regent's Park, London, UK
| | - Amanada C J Vincent
- Project Seahorse, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Seahorse, Pipefish, and Seadragon Specialist Group, IUCN Species Survival Commission, Gland, Switzerland
| |
Collapse
|
67
|
Clark AJ, Atkinson SR, Scarponi V, Cane T, Geraldi NR, Hendy IW, Shipway JR, Peck M. Cost-effort analysis of Baited Remote Underwater Video (BRUV) and environmental DNA (eDNA) in monitoring marine ecological communities. PeerJ 2024; 12:e17091. [PMID: 38708339 PMCID: PMC11067900 DOI: 10.7717/peerj.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/20/2024] [Indexed: 05/07/2024] Open
Abstract
Monitoring the diversity and distribution of species in an ecosystem is essential to assess the success of restoration strategies. Implementing biomonitoring methods, which provide a comprehensive assessment of species diversity and mitigate biases in data collection, holds significant importance in biodiversity research. Additionally, ensuring that these methods are cost-efficient and require minimal effort is crucial for effective environmental monitoring. In this study we compare the efficiency of species detection, the cost and the effort of two non-destructive sampling techniques: Baited Remote Underwater Video (BRUV) and environmental DNA (eDNA) metabarcoding to survey marine vertebrate species. Comparisons were conducted along the Sussex coast upon the introduction of the Nearshore Trawling Byelaw. This Byelaw aims to boost the recovery of the dense kelp beds and the associated biodiversity that existed in the 1980s. We show that overall BRUV surveys are more affordable than eDNA, however, eDNA detects almost three times as many species as BRUV. eDNA and BRUV surveys are comparable in terms of effort required for each method, unless eDNA analysis is carried out externally, in which case eDNA requires less effort for the lead researchers. Furthermore, we show that increased eDNA replication yields more informative results on community structure. We found that using both methods in conjunction provides a more complete view of biodiversity, with BRUV data supplementing eDNA monitoring by recording species missed by eDNA and by providing additional environmental and life history metrics. The results from this study will serve as a baseline of the marine vertebrate community in Sussex Bay allowing future biodiversity monitoring research projects to understand community structure as the ecosystem recovers following the removal of trawling fishing pressure. Although this study was regional, the findings presented herein have relevance to marine biodiversity and conservation monitoring programs around the globe.
Collapse
Affiliation(s)
- Alice J. Clark
- Department of Ecology & Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sophie R. Atkinson
- Department of Ecology & Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Valentina Scarponi
- Department of Ecology & Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tim Cane
- Department of Geography, University of Sussex, Brighton, United Kingdom
| | | | - Ian W. Hendy
- School of Biological Science, University of Portsmouth, Portsmouth, United Kingdom
| | - J. Reuben Shipway
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Mika Peck
- Department of Ecology & Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
68
|
Pinna F, Fois N, Mura F, Ruiu A, Ceccherelli G. Predation risk of the sea urchin Paracentrotus lividus juveniles in an overfished area reveal system stability mechanisms and restocking challenges. PLoS One 2024; 19:e0301143. [PMID: 38635595 PMCID: PMC11025834 DOI: 10.1371/journal.pone.0301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Where sea urchin harvest has been so intense that populations have drastically regressed, concerns have arisen about the effectiveness of harvesting management. According to the theory of phase transition in shallow rocky reefs between vegetated and barren habitats, sea urchin recruitment, a key population structuring process, seems hampered by some stabilizing feedback despite an end to local human harvest of sea urchins. To shed a light on predation effects on sea urchin recruits, a 27-day field experiment was conducted using mega-predator exclusion cages (40x40x40 cm, 1 cm in mesh size) in barren and turf substrates. To facilitate this, 672 recruits (1.1 ± 0.02 cm in size) reared under control conditions were positioned in groups of 42 in each experimental unit (n = 4). Exclusion of mega-predators had a significant effect regardless the substrate, since a higher number of recruits was found under cages both in turf and barren. However, the results showed that in uncaged treatments the size of recruits that survived was larger in turf than in barren, as in the former substrate predation had reduced the abundance of the smallest recruits, highlighting that mega-predator presence affects differently the size of the recruits that had survived depending on the substrate. Overall, these results provide valuable information to address restocking actions of sea urchin populations in overharvested areas, where algal turfs are widespread, and assist studies on habitat stability mechanisms.
Collapse
Affiliation(s)
- Federico Pinna
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Nicola Fois
- AGRIS Sardegna–Research Service for Fishery Products, Olmedo (SS), Italia
| | - Francesco Mura
- AGRIS Sardegna–Research Service for Fishery Products, Olmedo (SS), Italia
| | - Alberto Ruiu
- Capo Caccia–Isola Piana Marine Protected Area, Alghero, (SS), Italia
| | - Giulia Ceccherelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
69
|
Williams J, Pettorelli N, Hartmann AC, Quinn RA, Plaisance L, O'Mahoney M, Meyer CP, Fabricius KE, Knowlton N, Ransome E. Decline of a distinct coral reef holobiont community under ocean acidification. MICROBIOME 2024; 12:75. [PMID: 38627822 PMCID: PMC11022381 DOI: 10.1186/s40168-023-01683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/28/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. RESULTS We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. CONCLUSIONS We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem changed. Video Abstract.
Collapse
Affiliation(s)
- Jake Williams
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Aaron C Hartmann
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Laetitia Plaisance
- Laboratoire Evolution Et Diversité Biologique, CNRS/UPS, Toulouse, France
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Michael O'Mahoney
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Chris P Meyer
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | | | - Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Emma Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY, UK.
| |
Collapse
|
70
|
Hao Y, Wang XF, Guo Y, Li TY, Yang J, Ainouche ML, Salmon A, Ju RT, Wu JH, Li LF, Li B. Genomic and phenotypic signatures provide insights into the wide adaptation of a global plant invader. PLANT COMMUNICATIONS 2024; 5:100820. [PMID: 38221758 PMCID: PMC11009367 DOI: 10.1016/j.xplc.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Invasive alien species are primary drivers of biodiversity loss and species extinction. Smooth cordgrass (Spartina alterniflora) is one of the most aggressive invasive plants in coastal ecosystems around the world. However, the genomic bases and evolutionary mechanisms underlying its invasion success have remained largely unknown. Here, we assembled a chromosome-level reference genome and performed phenotypic and population genomic analyses between native US and introduced Chinese populations. Our phenotypic comparisons showed that introduced Chinese populations have evolved competitive traits, such as early flowering time and greater plant biomass, during secondary introductions along China's coast. Population genomic and transcriptomic inferences revealed distinct evolutionary trajectories of low- and high-latitude Chinese populations. In particular, genetic mixture among different source populations, together with independent natural selection acting on distinct target genes, may have resulted in high genome dynamics of the introduced Chinese populations. Our study provides novel phenotypic and genomic evidence showing how smooth cordgrass rapidly adapts to variable environmental conditions in its introduced ranges. Moreover, candidate genes related to flowering time, fast growth, and stress tolerance (i.e., salinity and submergence) provide valuable genetic resources for future improvement of cereal crops.
Collapse
Affiliation(s)
- Yan Hao
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Feng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaolin Guo
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tian-Yang Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Malika L Ainouche
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Armel Salmon
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Rui-Ting Ju
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji-Hua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Lin-Feng Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China.
| |
Collapse
|
71
|
Antoine PO, Wieringa LN, Adnet S, Aguilera O, Bodin SC, Cairns S, Conejeros-Vargas CA, Cornée JJ, Ežerinskis Ž, Fietzke J, Gribenski NO, Grouard S, Hendy A, Hoorn C, Joannes-Boyau R, Langer MR, Luque J, Marivaux L, Moissette P, Nooren K, Quillévéré F, Šapolaitė J, Sciumbata M, Valla PG, Witteveen NH, Casanova A, Clavier S, Bidgrain P, Gallay M, Rhoné M, Heuret A. A Late Pleistocene coastal ecosystem in French Guiana was hyperdiverse relative to today. Proc Natl Acad Sci U S A 2024; 121:e2311597121. [PMID: 38527199 PMCID: PMC10998618 DOI: 10.1073/pnas.2311597121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.
Collapse
Affiliation(s)
- Pierre-Olivier Antoine
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Linde N. Wieringa
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Sylvain Adnet
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Orangel Aguilera
- Paleoecology and Global Changes Laboratory, Marine Biology Department, Fluminense Federal University, Niterói 24210-201, Rio de Janeiro, Brazil
| | - Stéphanie C. Bodin
- Department of Paleoanthropology, Senckenberg Research Institute, Frankfurt am Main60325, Germany
| | - Stephen Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, Washington D.C.20013-7012
| | - Carlos A. Conejeros-Vargas
- Departamento de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, México
| | - Jean-Jacques Cornée
- Equipe Dynamique de la Lithosphère, Géosciences Montpellier, Univ Montpellier, CNRS, Montpellier34095, France
| | - Žilvinas Ežerinskis
- Mass Spectrometry Laboratory, Center for Physical Sciences and Technology, Vilnius10257, Lithuania
| | - Jan Fietzke
- Geomar, Helmholtz Centre for Ocean Research Kiel, Kiel24148, Germany
| | - Natacha O. Gribenski
- Institute of Geological Sciences, Oeschger Centre for Climate Change Research, University of Bern, Bern3012, Switzerland
| | - Sandrine Grouard
- Archéozoologie et Archéobotanique—Sociétés, Pratiques et Environnements, CNRS, Muséum National d’Histoire Naturelle, Paris75005, France
| | - Austin Hendy
- Invertebrate Paleontology Department, Natural History Museum of Los Angeles County, Los Angeles, CA90007
| | - Carina Hoorn
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group, Southern Cross GeoScience, Southern Cross University, East Lismore, NSW2480, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg2092, South Africa
| | - Martin R. Langer
- Arbeitsgruppe Mikropaläontologie, Institut für Geowissenschaften, Paläontologie, Universität Bonn, Bonn53115, Germany
| | - Javier Luque
- Department of Zoology, Museum of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Laurent Marivaux
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Pierre Moissette
- Department of Historical Geology-Paleontology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens15784, Greece
| | - Kees Nooren
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Frédéric Quillévéré
- Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS, VilleurbanneF-69622, France
| | - Justina Šapolaitė
- Mass Spectrometry Laboratory, Center for Physical Sciences and Technology, Vilnius10257, Lithuania
| | - Matteo Sciumbata
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
- Section Systems Ecology, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam1081 BT, The Netherlands
| | - Pierre G. Valla
- Equipe Tectonique, Reliefs et Bassins, Institut des Sciences de la Terre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Université Gustave Eiffel, Grenoble38058, France
| | - Nina H. Witteveen
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Alexandre Casanova
- Département Formation et Recherche Sciences et Technologie, Université de Guyane, Cayenne97300, Guyane
| | | | - Philibert Bidgrain
- Département Formation et Recherche Sciences et Technologie, Université de Guyane, Cayenne97300, Guyane
| | | | | | - Arnauld Heuret
- Equipe Dynamique de la Lithosphère, Géosciences Montpellier, Univ Montpellier, CNRS, Montpellier34095, France
- Département Formation et Recherche Sciences et Technologie, Université de Guyane, Cayenne97300, Guyane
| |
Collapse
|
72
|
Rademaker M, Peck MA, van Leeuwen A. Local reflects global: Life stage-dependent changes in the phenology of coastal habitat use by North Sea herring. GLOBAL CHANGE BIOLOGY 2024; 30:e17285. [PMID: 38660809 DOI: 10.1111/gcb.17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Climate warming is affecting the suitability and utilization of coastal habitats by marine fishes around the world. Phenological changes are an important indicator of population responses to climate-induced changes but remain difficult to detect in marine fish populations. The design of large-scale monitoring surveys does not allow fine-grained temporal inference of population responses, while the responses of ecologically and economically important species groups such as small pelagic fish are particularly sensitive to temporal resolution. Here, we use the longest, highest resolution time series of species composition and abundance of marine fishes in northern Europe to detect possible phenological shifts in the small pelagic North Sea herring. We detect a clear forward temporal shift in the phenology of nearshore habitat use by small juvenile North Sea herring. This forward shift might be linked to changes in water temperatures in the North Sea. We next assessed the robustness of the effects we found with respect to monitoring design. We find that reducing the temporal resolution of our data to reflect the resolution typical of larger surveys makes it difficult to detect phenological shifts and drastically reduces the effect sizes of environmental covariates such as seawater temperature. Our study therefore shows how local, long-term, high-resolution time series of fish catches are essential to understand the general phenological responses of marine fishes to climate warming and to define ecological indicators of system-level changes.
Collapse
Affiliation(s)
- Mark Rademaker
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, AB Den Burg (Texel), The Netherlands
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, AB Den Burg (Texel), The Netherlands
- Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anieke van Leeuwen
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, AB Den Burg (Texel), The Netherlands
| |
Collapse
|
73
|
Holm P, Hayes P, Nicholls J. Historical marine footprint for Atlantic Europe, 1500-2019. AMBIO 2024; 53:624-636. [PMID: 38281258 PMCID: PMC10920564 DOI: 10.1007/s13280-023-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 09/19/2023] [Indexed: 01/30/2024]
Abstract
Over the last 500 years, Europe (excluding Russia) consumed over 2500 million tonnes of ocean biomass. This is based on detailed historical data that we provide for human consumption per capita which was stable from 1500 to 1899 and tripled in the twentieth century. In the last 300 years, cod and herring dominated human seafood consumption. Whaling for non-food uses peaked in the 1830s and declined as cetaceans became scarce. Seafood consumption increased rapidly after 1900, and by the late 1930s, annual marine consumption in Atlantic Europe reached 7 million tonnes of biomass, facilitated by the globalisation of whaling. Atlantic European consumption, including fishmeal for animal feed, peaked at more than 12 million tonnes annually in the 1970s, but declined thereafter. The marine footprint of Atlantic Europe was significant well before modern fisheries statistics commenced. Our findings can inform future assessments of ocean health and marine life's importance for human society.
Collapse
Affiliation(s)
- Poul Holm
- Trinity Centre for Environmental Humanities, A6.002, Trinity College Dublin, 2 College Green, Dublin 2, D02 PN40, Ireland
| | - Patrick Hayes
- University of Victoria, British Columbia, Office B225, David Turpin Building, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - John Nicholls
- Trinity Centre for Environmental Humanities, A6.003, Trinity College Dublin, 2 College Green, Dublin 2, D02 PN40, Ireland.
| |
Collapse
|
74
|
Gose MA, Humble E, Brownlow A, Wall D, Rogan E, Sigurðsson GM, Kiszka JJ, Thøstesen CB, IJsseldijk LL, Ten Doeschate M, Davison NJ, Øien N, Deaville R, Siebert U, Ogden R. Population genomics of the white-beaked dolphin (Lagenorhynchus albirostris): Implications for conservation amid climate-driven range shifts. Heredity (Edinb) 2024; 132:192-201. [PMID: 38302666 PMCID: PMC10997624 DOI: 10.1038/s41437-024-00672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Climate change is rapidly affecting species distributions across the globe, particularly in the North Atlantic. For highly mobile and elusive cetaceans, the genetic data needed to understand population dynamics are often scarce. Cold-water obligate species such as the white-beaked dolphin (Lagenorhynchus albirostris) face pressures from habitat shifts due to rising sea surface temperatures in addition to other direct anthropogenic threats. Unravelling the genetic connectivity between white-beaked dolphins across their range is needed to understand the extent to which climate change and anthropogenic pressures may impact species-wide genetic diversity and identify ways to protect remaining habitat. We address this by performing a population genomic assessment of white-beaked dolphins using samples from much of their contemporary range. We show that the species displays significant population structure across the North Atlantic at multiple scales. Analysis of contemporary migration rates suggests a remarkably high connectivity between populations in the western North Atlantic, Iceland and the Barents Sea, while two regional populations in the North Sea and adjacent UK and Irish waters are highly differentiated from all other clades. Our results have important implications for the conservation of white-beaked dolphins by providing guidance for the delineation of more appropriate management units and highlighting the risk that local extirpation may have on species-wide genetic diversity. In a broader context, this study highlights the importance of understanding genetic structure of all species threatened with climate change-driven range shifts to assess the risk of loss of species-wide genetic diversity.
Collapse
Affiliation(s)
- Marc-Alexander Gose
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Emily Humble
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Dave Wall
- Irish Whale and Dolphin Group (IWDG), Kilrush, Ireland
| | - Emer Rogan
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | | | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Lonneke L IJsseldijk
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mariel Ten Doeschate
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Nils Øien
- Institute of Marine Research (IMR), Bergen, Norway
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
75
|
Hong X, Zhang K, Li J, Xu Y, Sun M, Xu S, Cai Y, Qiu Y, Chen Z. Stock Assessment of the Commercial Small Pelagic Fishes in the Beibu Gulf, the South China Sea, 2006-2020. BIOLOGY 2024; 13:226. [PMID: 38666839 PMCID: PMC11048411 DOI: 10.3390/biology13040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Long-term variations in population structure, growth, mortality, exploitation rate, and recruitment pattern of two major commercial small pelagic fishes (CSPFs) (Decapterus maruadsi and Trachurus japonicus) are reported based on bottom trawl survey data collected during 2006-2020 in the Beibu Gulf, South China Sea. All individuals collected during each sampling quarter over a period of 15 years were subjected to laboratory-based analysis. In this study, the stock of D. maruadsi and T. japonicus inhabiting the Beibu Gulf was assessed using length-based methods (bootstrapped electronic length frequency analysis (ELEFAN)) to complete stock assessment in different fishery management periods (the division of fisheries management periods was based on China's input and output in the South China Sea offshore fisheries over 15 years, specifically divided into period I (2006-2010), period II (2011-2015), and period III (2016-2020)). The results showed that the mean body length, dominant body size, and estimated asymptotic length of two CSPFs decreased, whereas their growth coefficient decreased, indicating miniaturization and slower growth, respectively. Estimated exploitation rates and catching body length for two CSPFs indicated that both stocks in the Beibu Gulf were overexploited in period I and moderately exploited after 2011. These stocks were taking a good turn in status in period III, with the exploitation rate much lower than the initial period and reversing the downward trend in catching body length. Furthermore, the variations in the spawning season of the two CSPF stocks and their barely satisfactory expected yield indicated the complexity of the current fishery management in the Beibu Gulf. These results suggest that management measures to reduce fishing pressure may have a positive influence on the biological characteristics of those CSPFs in the Beibu Gulf; however, the stock structure already affected by overfishing will be a huge challenge for the conservation and restoration of fisheries resources in the future. Given that the current stocks of D. maruadsi and T. japonicus in the Beibu Gulf still have low first-capture body length (Lc) and high fishing mortality (F) (compared to F0.1), we identify a need to refine population structure by controlling fishing efforts and increasing catchable size, and more consideration should be given to the local fishery resource status in fisheries management.
Collapse
Affiliation(s)
- Xiaofan Hong
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Kui Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Jiajun Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Youwei Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Mingshuai Sun
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Shannan Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Yancong Cai
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Yongsong Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Zuozhi Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (K.Z.); (J.L.); (Y.X.); (M.S.); (S.X.); (Y.C.); (Y.Q.)
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| |
Collapse
|
76
|
Huang W, Wei L, Yang Y, Sun J, Ding L, Wu X, Zheng L, Huang Q. Estuarine environmental flow assessment based on the flow-ecological health index relation model: a case study in Yangtze River Estuary, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:348. [PMID: 38446276 DOI: 10.1007/s10661-024-12487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Environmental flow (e-flow) is the water demand of one given ecosystem, which can become the flow regulation target for protection and restoration of river or estuarine ecosystems. In this study, an e-flow assessment based on the flow-ecological health index (EHI) relation model was conducted to improve ecosystem health of the Yangtze River Estuary (YRE). Monitoring data of hydrology, biology, and water environment in the last decades were used for the model establishment. For the description of the YRE ecosystem, an EHI system was developed by cumulative frequency distribution curves and adaption of national standards. After preprocessing original flow values into proportional flow values, the generalized additive model and Monte Carlo random sampling were used for the establishment of the flow-EHI relation model. From the model calculation, the e-flow assessment results were that, in proportional flow values, the suitable flow range was 1.05-1.35, and the optimum flow range was 1.15-1.25 (flows in Yangtze River Datong Station). For flow regulation in two crucial periods, flows of 42,630-65,545 m3/s or over 14,675 m3/s are needed for the suitable flow of YRE in summer (June-August) or January, respectively. An adaptive management framework of ecological health-based estuarine e-flow assessment for YRE was contrived due to the limitation of current established model when facing the extreme drought in summer, 2022. The methodology and framework in this study are expected to provide valuable management and data support for the sustainable development of estuarine ecosystems and to bring inspiration for further studies at even continental or global levels.
Collapse
Affiliation(s)
- Weizheng Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ya Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jinnuo Sun
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ling Ding
- Shanghai Investigation, Design and Research Institute Co., Ltd. (SIDRI), Shanghai, 200335, China
| | - Xinghua Wu
- Research Center for Eco-Environmental Engineering, China Three Gorges Corporation (CTG), Beijing, 100038, China
| | - Leifu Zheng
- Shanghai Investigation, Design and Research Institute Co., Ltd. (SIDRI), Shanghai, 200335, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
77
|
Jones NP, Gilliam DS. Temperature and local anthropogenic pressures limit stony coral assemblage viability in southeast Florida. MARINE POLLUTION BULLETIN 2024; 200:116098. [PMID: 38310721 DOI: 10.1016/j.marpolbul.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Climate change is viewed as the primary threat to coral reefs, with local pressures exacerbating coral cover decline. The consensus is that improving water quality may increase resilience, but disentangling water quality and temperature impacts is difficult. We used distance-based linear models and random forests to analyze spatiotemporal variation in benthic community structure and interannual changes in the coral assemblage, in relation to specific environmental metrics in Southeast Florida. Temperature accounted for most of the variation, recruitment doubled and interannual increases in coral abundance tripled when mean annual temperature reached 27 °C, until maximum temperatures exceeded 31 °C. Benefits associated with warmer temperatures were negated by poor water quality, as nutrient enrichment was related to increased macroalgal cover, reduced coral recruitment and higher coral partial mortality. We suggest reducing local pressures will contribute to reduced macroalgae and enhance coral recovery, but that temperature is the predominant influence on coral assemblages.
Collapse
Affiliation(s)
- Nicholas P Jones
- National Coral Reef Institute, Halmos College of Arts and Sciences, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL 33004, USA.
| | - David S Gilliam
- National Coral Reef Institute, Halmos College of Arts and Sciences, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL 33004, USA
| |
Collapse
|
78
|
Gawroński P, Kwapień J, Kułakowski K. Transient chaos and memory effect in the Rosenzweig-MacArthur system with dynamics of consumption rates. Phys Rev E 2024; 109:034210. [PMID: 38632751 DOI: 10.1103/physreve.109.034210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
We consider the system of the Rosenzweig-MacArthur equations with one consumer and two resources. Recently, the model has been generalized by including an optimization of the consumption rates β_{i} [P. Gawroński et al., Chaos 32, 093121 (2022)1054-150010.1063/5.0105340]. Also, we have assumed that β_{1}+β_{2}=1, which reflects the limited amount of time that can be devoted to a given type of resource. Here we investigate the transition to the phase where one of the resources becomes extinct. The goal is to show that the stability of the phase with two resources strongly depends on the initial value of β_{i}. Our second goal is to demonstrate signatures of transient chaos in the time evolution.
Collapse
Affiliation(s)
- Przemysław Gawroński
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, PL-30059 Kraków, Poland
| | - Jarosław Kwapień
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31342 Kraków, Poland
| | - Krzysztof Kułakowski
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, PL-30059 Kraków, Poland
| |
Collapse
|
79
|
Hernández-Andreu R, Félix-Hackradt FC, Schiavetti A, S Texeira JL, Hackradt CW. Marine protected areas are a useful tool to protect coral reef fishes but not representative to conserve their functional role. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119656. [PMID: 38042082 DOI: 10.1016/j.jenvman.2023.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Anthropogenic actions have direct and indirect impacts on natural systems, leading to significant alterations in marine ecosystems worldwide. One of the most notable problems is species loss, as the disappearance of species from an area can compromise ecological functions. This is at the core of a severe biodiversity crisis. To address and reverse these processes, marine protected areas (MPAs) have been utilized as a crucial tool to mitigate species loss, increase biomass, and serve as a fisheries management tool. However, there is a lack of information assessing MPAs from the perspective of their contribution to maintaining ecological functions. In recent decades, functional diversity (FD) indices have been widely used to assess ecosystem functioning. In this paper, we conducted an assessment using a global database of reef fish abundance to analyze the effect of No-Take Zones (NTZ) on the FD and "true" diversity (TD) indices of tropical reef fish assemblages in seven tropical biogeographic regions. We found a significant protective effect for some indices, although these responses were dependent on the bioregion. At the bioregional level, NTZs included lower numbers of species and functional entities than open access areas. Consequently, the functional richness protected within these zones partially represented the functional diversity in each biogeographic province. However, smaller-scale functional diversity indices responded to NTZ protection depending on the bioregion. Therefore, these results reinforce that the assessed NTZs are responsive to the protection of functional diversity, although they are not sufficient for safeguarding ecosystem functions in tropical reefs. This highlights the importance of expanding the number of protection entities worldwide with management strategies focused on coral reef fish functionality, as well as effective local/regional assessments. Thus, a new paradigm is necessary in the planning and creation of MPAs to safeguard ecosystem functions, with a priority given to the protection of ecosystem functions and habitats.
Collapse
Affiliation(s)
- Ramón Hernández-Andreu
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil; Ethnoconservation and Protected Areas Laboratory, Department of Agrarian and Environmental Sciences, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil.
| | - Fabiana C Félix-Hackradt
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil
| | - Alexandre Schiavetti
- Ethnoconservation and Protected Areas Laboratory, Department of Agrarian and Environmental Sciences, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil
| | - Jessyca L S Texeira
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil
| | - Carlos W Hackradt
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil
| |
Collapse
|
80
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
81
|
Yarbro LA, Carlson PR, Johnsey E. Extensive and Continuing Loss of Seagrasses in Florida's Big Bend (USA). ENVIRONMENTAL MANAGEMENT 2023:10.1007/s00267-023-01920-y. [PMID: 38103093 DOI: 10.1007/s00267-023-01920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Florida's Big Bend in the northeastern Gulf of Mexico contains the second-largest contiguous seagrass meadow in the continental United States, providing numerous ecosystem functions and services, including carbon cycling and storage. We present 21 years of mapping data and 13 years of annual in-water monitoring that reveal extensive declines in area, species frequency of occurrence (FO), and percent cover of seagrass. Seagrass area declined by 15% to 85,170 ha in 2022. Subregions in the southern Big Bend experienced extensive seagrass losses of 90-100%. North of the Steinhatchee River, the Northern Big Bend contained 85% of the total seagrass area and experienced losses of only 8.4%. The FO of seagrass and bare quadrats exhibited similar trends to areal coverage. The lowest FO along with complete loss of species was observed near the mouth of the Suwannee River. At a distance from the Suwannee River, FO also declined, but no species were lost. In the remainder of the Big Bend, FO remained stable except for short-term reductions in 2013-2014, which were likely related to anomalously high runoff from rainfall and tropical storm activity. Mean percent cover, however, declined throughout Big Bend, reaching minimal levels in 2014, with little to no recovery through 2019. The persistence of low percent cover may increase vulnerability of beds to continuing areal losses, but the persistence of seagrass species at a distance from the Suwannee River mouth may allow recovery if environmental conditions improve.
Collapse
Affiliation(s)
- L A Yarbro
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 Eighth Avenue SE, St. Petersburg, FL, 33701, USA.
| | - P R Carlson
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 Eighth Avenue SE, St. Petersburg, FL, 33701, USA
| | - E Johnsey
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 Eighth Avenue SE, St. Petersburg, FL, 33701, USA
| |
Collapse
|
82
|
Rees MJ, Knott NA, Astles KL, Swadling DS, West GJ, Ferguson AM, Delamont J, Gibson PT, Neilson J, Birch GF, Glasby TM. Cumulative effects of multiple stressors impact an endangered seagrass population and fish communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166706. [PMID: 37659560 DOI: 10.1016/j.scitotenv.2023.166706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Coastal ecosystems are becoming increasingly threatened by human activities and there is growing appreciation that management must consider the impacts of multiple stressors. Cumulative effects assessments (CEAs) have become a popular tool for identifying the distribution and intensity of multiple human stressors in coastal ecosystems. Few studies, however, have demonstrated strong correlations between CEAs and change in ecosystem condition, questioning its management use. Here, we apply a CEA to the endangered seagrass Posidonia australis in Pittwater, NSW, Australia, using spatial data on known stressors to seagrass related to foreshore development, water quality, vessel traffic and fishing. We tested how well cumulative effects scores explained changes in P. australis extent measured between 2005 and 2019 using high-resolution aerial imagery. A negative correlation between P. australis and estimated cumulative effects scores was observed (R2 = 22 %), and we identified a threshold of cumulative effects above which losses of P. australis became more likely. Using baited remote underwater video, we surveyed fishes over P. australis and non-vegetated sediments to infer and quantify how impacts of cumulative effects to P. australis extent would flow on to fish assemblages. P. australis contained a distinct assemblage of fish, and on non-vegetated sediments the abundance of sparids, which are of importance to fisheries, increased with closer proximity to P. australis. Our results demonstrate the negative impact of multiple stressors on P. australis and the consequences for fish biodiversity and fisheries production across much of the estuary. Management actions aimed at reducing or limiting cumulative effects to low and moderate levels will help conserve P. australis and its associated fish biodiversity and productivity.
Collapse
Affiliation(s)
- Matthew J Rees
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia.
| | - Nathan A Knott
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia
| | - Karen L Astles
- New South Wales Department of Primary Industries, Fisheries Research, P.O. Box 5106, Wollongong 2520, Australia
| | - Daniel S Swadling
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Greg J West
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Adrian M Ferguson
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia
| | - Jason Delamont
- New South Wales Department of Primary Industries, Marine Ecosystems, Fisheries Research, 4 Woollamia Road, Huskisson, NSW, 2540, Australia
| | - Peter T Gibson
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Joseph Neilson
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| | - Gavin F Birch
- Geocoastal Research Group, School of Geosciences, The University of Sydney, New South Wales, 2006, Australia
| | - Tim M Glasby
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, New South Wales, 2315 Nelson Bay, Australia
| |
Collapse
|
83
|
Buss DL, van den Hurk Y, Falahati-Anbaran M, Elliott D, Evans S, Frasier BA, Mulville JA, Rankin LK, Stebergløkken H, Whitridge P, Barrett JH. Archaeological evidence of resource utilisation of the great whales over the past two millennia: A systematic review protocol. PLoS One 2023; 18:e0295604. [PMID: 38096207 PMCID: PMC10721060 DOI: 10.1371/journal.pone.0295604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023] Open
Abstract
Archaeological faunal remains provide key insights into human societies in the past, alongside information on previous resource utilisation and exploitation of wildlife populations. The great whales (Mysticete and sperm whales) were hunted unsustainably throughout the 16th - 20th centuries (herein defined as the modern period) leading to large population declines and variable recovery patterns among species. Humans have utilised whales as a resource through carcass scavenging for millennia; however, increasing local and regional ethnographic and archaeological evidence suggests that, prior to the modern period, hunting of the great whales was more common than previously thought; impacts of earlier hunting pressures on the population ecology of many whale species remains relatively unknown. Hunting guided by traditional ecological knowledge may have been sustainable and likely originated in societies that also incorporated opportunistic use of stranded individuals. The collation of georeferenced zooarchaeological data of the great whales between the 1st - 20th centuries CE worldwide will provide insight into the timescale and distribution of resource utilisation of the great whales and how this varied within and between societies, and may have changed over time. By comparing regions of known resource utilisation and breeding and feeding grounds of current-day whale populations, this information will subsequently be used to infer regions where whale populations were possibly lost or extirpated prior to detailed historical records. This systematic review protocol also provides a template for archaeologists, ecologists, and historians interested in using faunal remains to infer historical ecology and resource use of wild animal populations. The transparency of our data collection approach provides opportunities for reproducibility and comparability with future datasets.
Collapse
Affiliation(s)
- Danielle L. Buss
- Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| | - Youri van den Hurk
- Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| | | | - Deirdre Elliott
- Department of Archaeology, Memorial University of Newfoundland and Labrador, St John’s, Newfoundland, Canada
| | - Sally Evans
- MSDS Marine and MSDS Heritage, Holbrook, United Kingdom
| | | | - Jacqueline A. Mulville
- School of History, Archaeology and Religion, Cardiff University, Cardiff, United Kingdom
| | - Lisa K. Rankin
- Department of Archaeology, Memorial University of Newfoundland and Labrador, St John’s, Newfoundland, Canada
| | | | - Peter Whitridge
- Department of Archaeology, Memorial University of Newfoundland and Labrador, St John’s, Newfoundland, Canada
| | - James H. Barrett
- Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| |
Collapse
|
84
|
Olsen EM, Karlsen Ø, Skjæraasen JE. Large females connect Atlantic cod spawning sites. Science 2023; 382:1181-1184. [PMID: 38060630 DOI: 10.1126/science.adi1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
The Earth's ecosystems are increasingly deprived of large animals. Global simulations suggest that this downsizing of nature has serious consequences for biosphere functioning. However, the historical loss of large animals means that it is now often impossible to secure empirical data revealing their true ecological importance. We tracked 465 mature Atlantic cod (Gadus morhua) during their winter spawning season and show that large females (up to 114 centimeters in length), which are still found in mid-Norway, were characterized by more complex movement networks compared with smaller females. Large males were sparse but displayed similar movement patterns. Our finding implies that management programs promoting large fish will have positive impacts on population resilience by facilitating the continued use of a diversity of spawning habitats and the connectivity between them.
Collapse
Affiliation(s)
- Esben Moland Olsen
- Institute of Marine Research; Flødevigen, Arendal 4817, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder; Kristiansand 4604, Norway
| | | | | |
Collapse
|
85
|
Lehtonen TK, Gilljam D, Veneranta L, Keskinen T, Bergenius Nord M. The ecology and fishery of the vendace (Coregonus albula) in the Baltic Sea. JOURNAL OF FISH BIOLOGY 2023; 103:1463-1475. [PMID: 37642401 DOI: 10.1111/jfb.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
Brackish water ecosystems often have high primary production, intermediate salinities, and fluctuating physical conditions and therefore provide challenging environments for many of their inhabitants. This is especially true of the Baltic Sea, which is a large body of brackish water under strong anthropogenic influence. One freshwater species that is able to cope under these conditions in the northern Baltic Sea is the vendace (Coregonus albula), a small salmonid fish. Here, we review the current knowledge of its ecology and fishery in this brackish water environment. The literature shows that, by competing for resources with other planktivores and being an important prey for a range of larger species, C. albula plays a notable role in the northern Baltic Sea ecosystem. It also sustains significant fisheries in the coastal waters of Sweden and Finland. We identify the need to better understand these C. albula populations in terms of the predator-prey interactions, distributions of anadromous and sea spawning populations and other putative (eco)morphs, extent of gene exchange between the populations, and effects of climate change on their future. In this regard, we recommend strengthening C. albula-related research and management efforts by improved collaboration and coordination between research institutions, other governmental agencies, and fishers, as well as by harmonization of fishery policies across national borders.
Collapse
Affiliation(s)
| | - David Gilljam
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal Research, Öregrund, Sweden
| | | | | | - Mikaela Bergenius Nord
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| |
Collapse
|
86
|
Synnes AW, Olsen EM, Jorde PE, Knutsen H, Moland E. Contrasting management regimes indicative of mesopredator release in temperate coastal fish assemblages. Ecol Evol 2023; 13:e10745. [PMID: 38077503 PMCID: PMC10710310 DOI: 10.1002/ece3.10745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 10/16/2024] Open
Abstract
The absence of functional top predators has been proposed as a mechanism acting to shape fish assemblages in temperate marine ecosystems, with cascading effects on lower trophic levels. We explore this scenario by comparing the trophic and functional status of fish assemblages in Norwegian marine national parks, open to fishing, to a nearby coastal seascape that harbors a system of marine protected areas (MPAs) including a no-take zone. Demersal fish assemblages were sampled using fyke nets over three consecutive seasons. Atlantic cod (Gadus morhua) is potentially a dominant top predator in this ecosystem, and historically, this and other gadids have been targeted by the full range of former and present fisheries. In the present study, we find that average body size of the Atlantic cod was significantly larger in the zoned seascape compared to the unprotected areas (mean ± SD: 36.6 cm ± 14.38 vs. 23.4 ± 7.50; p < .001) and that the unprotected seascape was characterized by a higher abundance of mesopredator fish species. These observations are consistent with the hypothesis that the protection of top predators within MPAs aids to control the mesopredator populations and provides empirical support to the notion that the present state of many coastal fish assemblages is driven by mesopredator release linked to functional depletion of large top predators.
Collapse
Affiliation(s)
- Ann‐Elin Wårøy Synnes
- Centre for Coastal Research Department of Natural SciencesUniversity of AgderKristiansandNorway
| | - Esben Moland Olsen
- Centre for Coastal Research Department of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | | | - Halvor Knutsen
- Centre for Coastal Research Department of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - Even Moland
- Centre for Coastal Research Department of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| |
Collapse
|
87
|
Ruberti N, Brundu G, Ceccherelli G, Grech D, Guala I, Loi B, Farina S. Intensive sea urchin harvest rescales Paracentrotus lividus population structure and threatens self-sustenance. PeerJ 2023; 11:e16220. [PMID: 38025682 PMCID: PMC10666612 DOI: 10.7717/peerj.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
The harvest of the edible sea urchin Paracentrotus lividus is intensively practiced in some regions of the Western Mediterranean Sea. The removal of the largest individuals can determine an overall reduction in population size and a size class truncation that can lead to a drastic drop the self-sustenance. The aim of this study is to evaluate the variability of the population reproductive potential across 5 years in one of the main harvest hotspots of Sardinia (Western Mediterranean Sea). The breeding stock consists of commercial and under-commercial size individuals which were sampled on a monthly basis to estimate their GonadoSomatic Index (GSI) and the Individual Gamete Output (IGO). In addition, the reproductive potential of the population-Total Gamete Output (TGO)-was calculated across the 5-year period in relation with the variation of the density of the breeding stock. During the last year, the reproductive potential was also estimated in a well-conserved population of a nearby Marine Protected Area. No significant variability in GSI and IGO was found over the 5 years nor when compared with the ones of protected population in the last year. However, the intensive harvest drastically rescaled the population body-size: although density of the commercial size class remained low, density of the under-commercial size-class halved from the beginning to the end of the study. Accordingly, the proportional decrease of their gamete output contribution led to a 40% loss of the reproductive potential of the whole population in the 5-year period. Interestingly, despite the loss of reproductive potential due to the decrease of the breeding stock density, the average values of IGO slightly increased across the years leading to the highest Annual Gamete Output (AGO) during the fourth year of sampling. This positive pattern could suggest a mechanism of reproductive investments of the survivors in terms of gonad production rate or increase in spawning intensity. This work provides evidence of the direct effect of size-selective harvesting on the rapid loss of population self-sustenance. Furthermore, it lays new prospective for future research of the indirect effects of the rescaling population body-size in functional traits of the sea urchin P. lividus and that could become important for both, sustainable exploitation and ecosystem conservation management.
Collapse
Affiliation(s)
- Nicole Ruberti
- Department of Architecture, Design and Planning, University of Sassari, Sassari, Italy
| | - Gianni Brundu
- IMC-International Marine Centre, Torre Grande (OR), Italy
| | - Giulia Ceccherelli
- Department of Chemical Physical Mathematical and Natural Science, University of Sassari, Sassari, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniele Grech
- IMC-International Marine Centre, Torre Grande (OR), Italy
| | - Ivan Guala
- IMC-International Marine Centre, Torre Grande (OR), Italy
| | - Barbara Loi
- IMC-International Marine Centre, Torre Grande (OR), Italy
| | - Simone Farina
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn–National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre, Genoa, Italy
- National Research Council, Institute for the study of Anthropic Impacts and Sustainability in the Marine Environment (CNR-IAS), Torre Grande, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
88
|
Bak TM, Camp RJ, Heim NA, McCauley DJ, Payne JL, Knope ML. A global ecological signal of extinction risk in marine ray-finned fishes (class Actinopterygii). CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e25. [PMID: 40078675 PMCID: PMC11895746 DOI: 10.1017/ext.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 03/14/2025]
Abstract
Many marine fish species are experiencing population declines, but their extinction risk profiles are largely understudied in comparison to their terrestrial vertebrate counterparts. Selective extinction of marine fish species may result in rapid alteration of the structure and function of ocean ecosystems. In this study, we compiled an ecological trait dataset for 8,185 species of marine ray-finned fishes (class Actinopterygii) from FishBase and used phylogenetic generalized linear models to examine which ecological traits are associated with increased extinction risk, based on the International Union for the Conservation of Nature Red List. We also assessed which threat types may be driving these species toward greater extinction risk and whether threatened species face a greater average number of threat types than non-threatened species. We found that larger body size and/or fishes with life histories involving movement between marine, brackish, and freshwater environments are associated with elevated extinction risk. Commercial harvesting threatens the greatest number of species, followed by pollution, development, and then climate change. We also found that threatened species, on average, face a significantly greater number of threat types than non-threatened species. These results can be used by resource managers to help address the heightened extinction risk patterns we found.
Collapse
Affiliation(s)
- Trevor M. Bak
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawaiʻi at Hilo, Hilo, HI, USA
| | - Richard J. Camp
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI, USA
| | - Noel A. Heim
- Department of Earth & Ocean Sciences, Tufts University, Medford, MA, USA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Matthew L. Knope
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, HI, USA
| |
Collapse
|
89
|
Stahl F, Mezger SD, Migani V, Rohlfs M, Fahey VJ, Schoenig E, Wild C. Recent and rapid reef recovery around Koh Phangan Island, Gulf of Thailand, driven by plate-like hard corals. PeerJ 2023; 11:e16115. [PMID: 38025748 PMCID: PMC10640840 DOI: 10.7717/peerj.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/27/2023] [Indexed: 12/01/2023] Open
Abstract
Mass bleaching events and local anthropogenic influences have changed the benthic communities of many coral reefs with pronounced spatial differences that are linked to resilience patterns. The Gulf of Thailand is an under-investigated region with only few existing datasets containing long-term developments of coral reef communities using the same method at fixed sites. We thus analyzed benthic community data from seven reefs surrounding the island of Koh Phangan collected between 2014 and 2022. Findings revealed that the average live hard coral cover around Koh Phangan increased from 37% to 55% over the observation period, while turf algae cover decreased from 52% to 29%, indicating some recovery of local reefs. This corresponds to a mean increased rate of coral cover by 2.2% per year. The increase in live hard coral cover was mainly driven by plate-like corals, which quadrupled in proportion over the last decade from 7% to 28% while branching corals decreased in proportion from 9% to 2%. Furthermore, the hard coral genus richness increased, indicating an increased hard coral diversity. While in other reefs, increasing live hard coral cover is often attributed to fast-growing, branching coral species, considered more susceptible to bleaching and other disturbances, the reefs around Koh Phangan recovered mainly via growth of plate-like corals, particularly of the genus Montipora. Although plate-like morphologies are not necessarily more bleaching tolerant, they are important for supporting reef fish abundance and structural complexity on reefs, aiding reef recovery and sturdiness. Hence, our findings indicate that the intensity of local stressors around Kho Phangan allows reef recovery driven by some hard coral species.
Collapse
Affiliation(s)
- Florian Stahl
- Faculty of Biology and Chemistry, Marine Botany Group, Universität Bremen, Bremen, Germany
- Faculty of Biology and Chemistry, Marine Ecology Group, Universität Bremen, Bremen, Germany
| | - Selma D. Mezger
- Faculty of Biology and Chemistry, Marine Ecology Group, Universität Bremen, Bremen, Germany
| | - Valentina Migani
- Faculty of Biology and Chemistry, Evolutionary Biology Group, Universität Bremen, Bremen, Germany
| | - Marko Rohlfs
- Faculty of Biology and Chemistry, Chemical Ecology Group, Universität Bremen, Bremen, Germany
| | - Victoria J. Fahey
- Center for Oceanic Research and Education (COREsea), Chaloklum, Koh Phangan, Thailand
| | - Eike Schoenig
- Center for Oceanic Research and Education (COREsea), Chaloklum, Koh Phangan, Thailand
| | - Christian Wild
- Faculty of Biology and Chemistry, Marine Ecology Group, Universität Bremen, Bremen, Germany
| |
Collapse
|
90
|
Kowalewski M, Nawrot R, Scarponi D, Tomašových A, Zuschin M. Marine conservation palaeobiology: What does the late Quaternary fossil record tell us about modern-day extinctions and biodiversity threats? CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e24. [PMID: 40078671 PMCID: PMC11895752 DOI: 10.1017/ext.2023.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 03/14/2025]
Abstract
Near-time conservation palaeobiology uses palaeontological, archaeological and other geohistorical records to study the late Quaternary transition of the biosphere from its pristine past to its present-day, human-altered state. Given the scarcity of data on recent extinctions in the oceans, geohistorical records are critical for documenting human-driven extinctions and extinction threats in the marine realm. The historical perspective can provide two key insights. First, geohistorical records archive the state of pre-industrial oceans at local, regional and global scales, thus enabling the detection of recent extinctions and extirpations as well as shifts in species distribution, abundance, body size and ecosystem function. Second, we can untangle the contributions of natural and anthropogenic processes by documenting centennial-to-millennial changes in the composition and diversity of marine ecosystems before and after the onset of major human impacts. This long-term perspective identifies recently emerging patterns and processes that are unprecedented, thus allowing us to better assess human threats to marine biodiversity. Although global-scale extinctions are not well documented for brackish and marine invertebrates, geohistorical studies point to numerous extirpations, declines in ecosystem functions, increases in range fragmentation and dwindling abundance of previously widespread species, indicating that marine ecosystems are accumulating a human-driven extinction debt.
Collapse
Affiliation(s)
- Michał Kowalewski
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Bologna, Italy
| | - Adam Tomašových
- Earth Science Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
91
|
Park JY, Jo JW, An YJ, Lee JJ, Kim BS. Alterations in sea urchin (Mesocentrotus nudus) microbiota and their potential contributions to host according to barren severity. NPJ Biofilms Microbiomes 2023; 9:83. [PMID: 37907565 PMCID: PMC10618176 DOI: 10.1038/s41522-023-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Sea urchins are biotic factors driving the decline of kelp forests in marine ecosystems. However, few studies have analyzed the microbiota of surviving sea urchins in barren regions with scarce diet resources. Here, we analyzed the microbiota in the pharynx and gut of the sea urchin Mesocentrotus nudus located along the coast of an expanding barren region in South Korea. The ecological adaptation of genera in sea urchins was predicted using the neutral assembly model. The pharynx and gut microbiota were different, and microbes in the surrounding habitats dispersed more to the pharynx than to the gut. The gut microbiota in sea urchins is altered by barren severity and plays different roles in host energy metabolism. These findings help to understand the microbiota in sea urchins according to urchin barren and its contribution to the survival of sea urchins in severe barren regions with limited macroalgae.
Collapse
Affiliation(s)
- Joon-Young Park
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Jae-Won Jo
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Yu-Jeong An
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Jin-Jae Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Gangwon-do, Republic of Korea.
| |
Collapse
|
92
|
Peleg O, Blain CO, Shears NT. Long-term marine protection enhances kelp forest ecosystem stability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2895. [PMID: 37282356 DOI: 10.1002/eap.2895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Trophic downgrading destabilizes ecosystems and can drive large-scale shifts in ecosystem state. While restoring predatory interactions in marine reserves can reverse anthropogenic-driven shifts, empirical evidence of increased ecosystem stability and persistence in the presence of predators is scant. We compared temporal variation in rocky reef ecosystem state in New Zealand's oldest marine reserve to nearby fished reefs to examine whether protection of predators led to more persistent and stable reef ecosystem states in the marine reserve. Contrasting ecosystem states were found between reserve and fished sites, and this persisted over the 22-year study period. Fished sites were predominantly urchin barrens but occasionally fluctuated to short-lived turfs and mixed algal forests, while reserve sites displayed unidirectional successional trajectories toward stable kelp forests (Ecklonia radiata) taking up to three decades following protection. This provides empirical evidence that long-term protection of predators facilitates kelp forest recovery, resists shifts to denuded alternate states, and enhances kelp forest stability.
Collapse
Affiliation(s)
- Ohad Peleg
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Caitlin O Blain
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Nick T Shears
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
93
|
Lavin CP, Pauly D, Dimarchopoulou D, Liang C, Costello MJ. Fishery catch is affected by geographic expansion, fishing down food webs and climate change in Aotearoa, New Zealand. PeerJ 2023; 11:e16070. [PMID: 37750081 PMCID: PMC10518166 DOI: 10.7717/peerj.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/20/2023] [Indexed: 09/27/2023] Open
Abstract
Historical fishing effort has resulted, in many parts of the ocean, in increasing catches of smaller, lower trophic level species once larger higher trophic level species have been depleted. Concurrently, changes in the geographic distribution of marine species have been observed as species track their thermal affinity in line with ocean warming. However, geographic shifts in fisheries, including to deeper waters, may conceal the phenomenon of fishing down the food web and effects of climate warming on fish stocks. Fisheries-catch weighted metrics such as the Mean Trophic Level (MTL) and Mean Temperature of the Catch (MTC) are used to investigate these phenomena, although apparent trends of these metrics can be masked by the aforementioned geographic expansion and deepening of fisheries catch across large areas and time periods. We investigated instances of both fishing down trophic levels and climate-driven changes in the geographic distribution of fished species in New Zealand waters from 1950-2019, using the MTL and MTC. Thereafter, we corrected for the masking effect of the geographic expansion of fisheries within these indices by using the Fishing-in-Balance (FiB) index and the adapted Mean Trophic Level (aMTL) index. Our results document the offshore expansion of fisheries across the New Zealand Exclusive Economic Zone (EEZ) from 1950-2019, as well as the pervasiveness of fishing down within nearshore fishing stock assemblages. We also revealed the warming of the MTC for pelagic-associated fisheries, trends that were otherwise masked by the depth- and geographic expansion of New Zealand fisheries across the study period.
Collapse
Affiliation(s)
| | - Daniel Pauly
- Sea Around Us, Institute for the Ocean and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donna Dimarchopoulou
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States
| | - Cui Liang
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | |
Collapse
|
94
|
Miller EC. Historical biogeography supports Point Conception as the site of turnover between temperate East Pacific ichthyofaunas. PLoS One 2023; 18:e0291776. [PMID: 37725614 PMCID: PMC10508600 DOI: 10.1371/journal.pone.0291776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
The cold temperate and subtropical marine faunas of the Northeastern Pacific meet within California as part of one of the few eastern boundary upwelling ecosystems in the world. Traditionally, it is believed that Point Conception is the precise site of turnover between these two faunas due to sharp changes in oceanographic conditions. However, evidence from intraspecific phylogeography and species range terminals do not support this view, finding stronger biogeographic breaks elsewhere along the coast. Here I develop a new application of historical biogeographic approaches to uncover sites of transition between faunas without needing an a priori hypothesis of where these occur. I used this approach to determine whether the point of transition between northern and southern temperate faunas occurs at Point Conception or elsewhere within California. I also examined expert-vetted latitudinal range data of California fish species from the 1970s and the 2020s to assess how biogeography could change with the backdrop of climate change. The site of turnover was found to occur near Point Conception, in concordance with the traditional view. I suggest that recent species- and population-level processes could be expected to give signals of different events from historical biogeography, possibly explaining the discrepancy across studies. Species richness of California has increased since the 1970s, mostly due to species's ranges expanding northward from Baja California (Mexico). Range shifts under warming conditions seem to be increasing the disparity between northern and southern faunas of California, creating a more divergent biogeography.
Collapse
Affiliation(s)
- Elizabeth Christina Miller
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
95
|
Guo Y, Tang J, Zhuo Z, Huang J, Fu Z, Song J, Liu M, Dong Z, Wang Z. The first high-quality chromosome-level genome of Eretmochelys imbricata using HiFi and Hi-C data. Sci Data 2023; 10:604. [PMID: 37689728 PMCID: PMC10492850 DOI: 10.1038/s41597-023-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Eretmochelys imbricata, a critically endangered sea turtle inhabiting tropical oceans and protected across the world, had an unknown genome sequence until now. In this study, we used HiFi reads and Hi-C technology to assemble a high-quality, chromosome-level genome of E. imbricata. The genome size was 2,138.26 Mb, with contig N50 length of 123.49 Mb and scaffold N50 of 137.21 Mb. Approximately 97.52% of the genome sequence was anchored to 28 chromosomes. A total of 20,206 protein-coding genes were predicted. We also analyzed the evolutionary relationships, gene family expansions, and positive selection of E. imbricata. Our results revealed that E. imbricata diverged from Chelonia mydas 38 million years ago and had enriched olfactory receptors and aging-related genes. Our genome will be useful for studying E. imbricata and its conservation.
Collapse
Affiliation(s)
- Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiao Tang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zixuan Zhuo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jingru Huang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhenli Fu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiahao Song
- State Key Laboratory of Marine Environmental Science and College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Min Liu
- State Key Laboratory of Marine Environmental Science and College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
96
|
Huang S, Edie SM, Collins KS, Crouch NMA, Roy K, Jablonski D. Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves. Nat Commun 2023; 14:4639. [PMID: 37582749 PMCID: PMC10427664 DOI: 10.1038/s41467-023-40053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Marine bivalves are important components of ecosystems and exploited by humans for food across the world, but the intrinsic vulnerability of exploited bivalve species to global changes is poorly known. Here, we expand the list of shallow-marine bivalves known to be exploited worldwide, with 720 exploited bivalve species added beyond the 81 in the United Nations FAO Production Database, and investigate their diversity, distribution and extinction vulnerability using a metric based on ecological traits and evolutionary history. The added species shift the richness hotspot of exploited species from the northeast Atlantic to the west Pacific, with 55% of bivalve families being exploited, concentrated mostly in two major clades but all major body plans. We find that exploited species tend to be larger in size, occur in shallower waters, and have larger geographic and thermal ranges-the last two traits are known to confer extinction-resistance in marine bivalves. However, exploited bivalve species in certain regions such as the tropical east Atlantic and the temperate northeast and southeast Pacific, are among those with high intrinsic vulnerability and are a large fraction of regional faunal diversity. Our results pinpoint regional faunas and specific taxa of likely concern for management and conservation.
Collapse
Affiliation(s)
- Shan Huang
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt (Main), Germany.
| | - Stewart M Edie
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | | | - Nicholas M A Crouch
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Kaustuv Roy
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - David Jablonski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
97
|
McAfee D, Connell SD. Rapid reversal of ecological extinction. Science 2023; 381:613. [PMID: 37561869 DOI: 10.1126/science.adi7443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Affiliation(s)
- Dominic McAfee
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia, and Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Sean D Connell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia, and Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
98
|
Coogan M, Xing D, Su B, Alston V, Johnson A, Khan M, Khalil K, Elaswad A, Li S, Wang J, Lu C, Wang W, Hettiarachchi D, Shang M, Hasin T, Qin Z, Cone R, Butts IAE, Dunham RA. CRISPR/Cas9-mediated knock-in of masu salmon (Oncorhyncus masou) elongase gene in the melanocortin-4 (mc4r) coding region of channel catfish (Ictalurus punctatus) genome. Transgenic Res 2023; 32:251-264. [PMID: 37468714 DOI: 10.1007/s11248-023-00346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/24/2023] [Indexed: 07/21/2023]
Abstract
Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccβA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, β-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%. Fish containing both the ccβA-msElovl2 transgene knock-in and mc4r knockout (Elovl2) were 41.8% larger than controls at 6 months post-hatch (p = 0.005). Mean eicosapentaenoic acid (EPA, C20:5n-3) levels in Elov2 mutants and mc4r knockout mutants (MC4R) were 121.6% and 94.1% higher than in controls, respectively (p = 0.045; p = 0.025). Observed mean docosahexaenoic acid (DHA, C22:6n-3) and total EPA + DHA content was 32.8% and 45.1% higher, respectively, in Elovl2 transgenic channel catfish than controls (p = 0.368; p = 0.025). To our knowledge this is the first example of genome engineering to simultaneously target transgenesis and knock-out a gene in a commercially important aquaculture species for multiple improved performance traits. With a high transgene integration rate, improved growth, and higher omega-3 fatty acid content, the use of Elovl2 transgenic channel catfish appears beneficial for application on commercial farms.
Collapse
Affiliation(s)
- Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohd Khan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tasnuba Hasin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhenkui Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
99
|
Boussarie G, Kopp D, Lavialle G, Mouchet M, Morfin M. Marine spatial planning to solve increasing conflicts at sea: A framework for prioritizing offshore windfarms and marine protected areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117857. [PMID: 37031598 DOI: 10.1016/j.jenvman.2023.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Direct and indirect anthropogenic pressures on biodiversity and ecosystems are expected to lower the provided ecosystem services (ES) in the near future. To limit these impacts, protected areas will be implemented as part of the Post-2020 Global Biodiversity Framework. Simultaneously, as an answer to climate change, renewable energies are being rapidly developed on a worldwide scale, leading to a significant increase in space use in the coming decades. Sharing space is an increasingly complex task, especially because of the high rate of emergence of such competitors for space. In fisheries-dominated socio-ecosystems, acceptability of offshore windfarms (OWFs) and marine protected areas (MPAs) is usually very low, partly due to an underrepresentation of fisheries in spatial plans and poor attention to equity in the spatial distribution of restrictive areas. Here we developed a framework with a marine spatial planning case study in the Bay of Biscay represented by the socio-ecosystem of the Grande Vasière, a mid-shelf mud belt spanning over 21,000 km2. We collected biological, environmental, and anthropogenic data to model the distribution of 62 bentho-demersal species, 7 regulating ES layers related to nutrient cycling, life cycle maintenance and food web functioning, as well as provisioning ES of 18 commercial species and 82 fisheries subdivisions. We used these spatial layers and a prioritization algorithm to explore siting scenarios of OWFs and two types of MPAs (benthic and total protection), aimed at conserving species, regulating and provisioning ES, while also ensuring that fisheries are equitably impacted. We demonstrate that equitable scenarios are not necessarily costlier and provide alternative spatial prioritizations. We emphasize the importance of exploring multiple targets with a Shiny app to visualize results and stimulate dialogue among stakeholders and policymakers. Overall, we show how our flexible, inclusive framework with particular attention to equity could be an ideal discussion tool to improve management practices.
Collapse
Affiliation(s)
- Germain Boussarie
- UMR MNHN-SU-CNRS 7204 CESCO, 43 rue Buffon, CP 135, 75005 Paris, France.
| | - Dorothée Kopp
- UMR IFREMER-INRAE-Institut Agro DECOD, 8 rue François Toullec, CS60012, 56325 Lorient Cedex, France
| | - Gaël Lavialle
- UMR MNHN-SU-CNRS 7204 CESCO, 43 rue Buffon, CP 135, 75005 Paris, France
| | - Maud Mouchet
- UMR MNHN-SU-CNRS 7204 CESCO, 43 rue Buffon, CP 135, 75005 Paris, France
| | - Marie Morfin
- UMR IFREMER-INRAE-Institut Agro DECOD, 8 rue François Toullec, CS60012, 56325 Lorient Cedex, France
| |
Collapse
|
100
|
Pettitt-Wade H, Hussey NE, Gallagher CP, Lea EV, Orrell DL, Loseto LL. Contrasting intra-individual variation in size-based trophic and habitat shifts for two coastal Arctic fish species. Oecologia 2023:10.1007/s00442-023-05423-9. [PMID: 37488308 PMCID: PMC10386975 DOI: 10.1007/s00442-023-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Within and among species variation in trophic and habitat shifts with body size can indicate the potential adaptive capacity of species to ecosystem change. In Arctic coastal ecosystems, which experience dramatic seasonal shifts and are undergoing rapid change, quantifying the trophic flexibility of coastal fishes with different migratory tactics has received limited attention. We examined the relationships among body length and condition (Fulton's K, phase angle from Bioelectrical Impedance Analysis) with trophic and habitat shifts (differences in δ15N and δ13C between blood tissues with different turnover rates) of two abundant and culturally important species, anadromous Arctic char (Salvelinus alpinus, n = 38) and sedentary Greenland cod (Gadus ogac, n = 65) during summer in coastal marine waters near Ulukhaktok, Northwest Territories, Canada. Habitat shifts (δ13C) increased with length (i.e., pelagic to benthic-littoral) and crossed-equilibrium (zero) at mid-sizes for both species. Seasonal trophic shifts (δ15N) were generally positive (i.e., increasing trophic level) for Arctic char and negative for Greenland cod. As hypothesised, intra-individual variation in size-based trophic shifts (δ15N-length residuals) increased with length for Arctic char. However, there were no trends with length in Greenland cod. Our findings highlight the importance of flexibility through ontogeny and mobility for Arctic char, whereas Greenland cod were generalist to localized prey and habitat across all sizes. The significant effect of body condition (phase angle) on size-based trophic shifts in Arctic char, and size-based habitat shifts in Greenland cod, highlight the potential trade-offs of contrasting life history strategies and capacity for ontogenetic niche plasticity.
Collapse
Affiliation(s)
- Harri Pettitt-Wade
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, R3T 2N6, Canada.
- Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| | - Nigel E Hussey
- Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Colin P Gallagher
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, R3T 2N6, Canada
| | - Ellen V Lea
- Fisheries and Oceans Canada, Inuvik, NT, X0E 0T0, Canada
| | - Danielle L Orrell
- Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Lisa L Loseto
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, R3T 2N6, Canada
- Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|