51
|
Walker SLM, Muthoo C, Sanchez J, Del Arroyo AG, Ackland GL. Sex-specific differences in cardiac function, inflammation and injury during early polymicrobial sepsis. Intensive Care Med Exp 2022; 10:27. [PMID: 35723764 PMCID: PMC9209626 DOI: 10.1186/s40635-022-00454-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sex differences in sepsis are underexplored and incompletely understood. Cardiac function in early sepsis is pivotal in determining survival; hyperdynamic left ventricular ejection fraction is associated with higher mortality. Female sex may be cardioprotective, but variable experimental findings have not controlled for hypovolaemia. Sex-specific local cardiac versus peripheral inflammation in causing cardiovascular dysfunction also remain unclear. We therefore examined whether there are sex-specific differences in cardiac function in early sepsis, controlling for volaemic status and sex-specific differences in the peripheral inflammatory response initiated by tumour necrosis factor (TNFα). METHODS We used an experimental polymicrobial sepsis (faecal slurry) model titrated to minimise hypovolaemia as a confounding factor. We quantified cardiac function (transthoracic cardiac echocardiography) 1 week before, and 18 h after, sepsis. Cardiac injury (troponin I), inflammation and immune cell infiltration (flow cytometry) were quantified in naïve and septic female and male mice 18 h after sepsis. To evaluate the sex-specific influence of TNFα derived from peripheral leukocytes, we repeated the experiments in iRHOM2-/- mice that are unable to shed TNFα exclusively from circulating leucocytes. RESULTS Serum troponin I increased to 1.39 ± 0.38 ng mL-1 (from undetectable levels in controls) 18 h after onset of normovolaemic sepsis to a similar extent in both sexes. Stroke volume in male mice increased by 8 µL [(3-13); p = 0.004], compared to individualised pre-sepsis values. By contrast, stroke volume remained at baseline levels in females [mean difference: 4 µL (- 1 to 9)]. Messenger RNA levels of markers for cardiac injury/inflammation after sepsis (real-time polymerase-chain reaction) were elevated in male wild-type mice compared to female wild types (n = 10/sex), with higher cardiac mRNA levels of atrial natriuretic peptide, inflammation (TNFα) and oxidative stress (superoxide dismutase-1), although serum troponin I values were similarly elevated. Flow cytometry analysis of cardiac tissue showed doubling of CD4 + leukocyte infiltration in male mice. Sex-specific cardiac physiologic differences were similar in iRHOM2-/- mice that are unable to shed TNFα exclusively from leucocytes. CONCLUSIONS In early normovolaemic polymicrobial sepsis, a relative hyperdynamic response develops in male mice. Myocardial stress/injury after early sepsis is limited in females, with less cardiac infiltration of CD4 + leukocytes but independent of shedding of TNFα from peripheral circulating leukocytes.
Collapse
Affiliation(s)
- Sophie L M Walker
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Chand Muthoo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jenifer Sanchez
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
52
|
Prasad M, Jayaraman S, Rajagopal P, Veeraraghavan VP, Kumar PK, Piramanayagam S, Pari L. Diosgenin inhibits ER stress-induced inflammation in aorta via iRhom2/TACE mediated signaling in experimental diabetic rats: An in vivo and in silico approach. Chem Biol Interact 2022; 358:109885. [PMID: 35305976 DOI: 10.1016/j.cbi.2022.109885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/03/2022]
|
53
|
iRhom pseudoproteases regulate ER stress-induced cell death through IP 3 receptors and BCL-2. Nat Commun 2022; 13:1257. [PMID: 35273168 PMCID: PMC8913617 DOI: 10.1038/s41467-022-28930-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
The folding capacity of membrane and secretory proteins in the endoplasmic reticulum (ER) can be challenged by physiological and pathological perturbations, causing ER stress. If unresolved, this leads to cell death. We report a role for iRhom pseudoproteases in controlling apoptosis due to persistent ER stress. Loss of iRhoms causes cells to be resistant to ER stress-induced apoptosis. iRhom1 and iRhom2 interact with IP3 receptors, critical mediators of intracellular Ca2+ signalling, and regulate ER stress-induced transport of Ca2+ into mitochondria, a primary trigger of mitochondrial membrane depolarisation and cell death. iRhoms also bind to the anti-apoptotic regulator BCL-2, attenuating the inhibitory interaction between BCL-2 and IP3 receptors, which promotes ER Ca2+ release. The discovery of the participation of iRhoms in the control of ER stress-induced cell death further extends their potential pathological significance to include diseases dependent on protein misfolding and aggregation. Cells that cannot cope with persistent endoplasmic reticulum stress will die. Here, the authors show that iRhom pseudoproteases regulate cell death by modulating the ability of BCL-2 to inhibit calcium flow through IP3R channels.
Collapse
|
54
|
Alzheimer's disease protease-containing plasma extracellular vesicles transfer to the hippocampus via the choroid plexus. EBioMedicine 2022; 77:103903. [PMID: 35220044 PMCID: PMC8889140 DOI: 10.1016/j.ebiom.2022.103903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background Plasma extracellular vesicles (pEV) can harbor a diverse array of factors including active proteases and the amyloid-precursor-protein (APP) cleavage product Aβ, involved in plaque formation in Alzheimer`s diseases (AD). A potential role of such vesicles in AD pathology is unexplored. Methods In a case-control study of randomly selected patients with AD and other neurological diseases (n = 14), and healthy controls (n = 7), we systematically analyzed the content of pEV, using different assay systems. In addition, we determined their entry path into brain tissue, employing animal (mice) injection experiments with ex vivo generated EV that were similar to AD-pEV, followed by multi antigen analysis (MAA) of brain tissue (n = 4 per condition). The results were compared with an IHC staining of human brain tissue in a small cohort of AD patients (n = 3) and controls with no neurodegenerative diseases (n = 3). Findings We show that pEV levels are considerably upregulated in AD patients. Besides numerous inflammatory effectors, AD-pEV contained α-, β- and γ-secretases, able to cleave APP in in target cells. In vitro generated EV with similar characteristics as AD-pEV accumulated in the choroid plexus (CP) of injected animals and reached primarily hippocampal neurons. Corroborating findings were made in human brain samples. An inhibitor of hyaluronic-acid-synthetase (HAS) blocked uploading of proteases and Hyaluronan onto EV in vitro and abolished CP targeting in animal injection experiments. Interpretation We conclude that protease-containing pEV could be part of a communication axis between the periphery and the brain that could be become detrimental depending on pEV concentration and duration of target cell impact.
Collapse
|
55
|
Niehues RV, Wozniak J, Wiersch F, Lilienthal E, Tacken N, Schumertl T, Garbers C, Ludwig A, Düsterhöft S. The collectrin-like part of the SARS-CoV-1 and -2 receptor ACE2 is shed by the metalloproteinases ADAM10 and ADAM17. FASEB J 2022; 36:e22234. [PMID: 35199397 PMCID: PMC9111296 DOI: 10.1096/fj.202101521r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
The transmembrane protease angiotensin converting enzyme 2 (ACE2) is a protective regulator within the renin angiotensin system and additionally represents the cellular receptor for SARS‐CoV. The release of soluble ACE2 (sACE2) from the cell surface is hence believed to be a crucial part of its (patho)physiological functions, as both, ACE2 protease activity and SARS‐CoV binding ability, are transferred from the cell membrane to body fluids. Yet, the molecular sources of sACE2 are still not completely investigated. In this study, we show different sources and prerequisites for the release of sACE2 from the cell membrane. By using inhibitors as well as CRISPR/Cas9‐derived cells, we demonstrated that, in addition to the metalloprotease ADAM17, also ADAM10 is an important novel shedding protease of ACE2. Moreover, we observed that ACE2 can also be released in extracellular vesicles. The degree of either ADAM10‐ or ADAM17‐mediated ACE2 shedding is dependent on stimulatory conditions and on the expression level of the pro‐inflammatory ADAM17 regulator iRhom2. Finally, by using structural analysis and in vitro verification, we determined for the first time that the susceptibility to ADAM10‐ and ADAM17‐mediated shedding is mediated by the collectrin‐like part of ACE2. Overall, our findings give novel insights into sACE2 release by several independent molecular mechanisms.
Collapse
Affiliation(s)
- Rabea Victoria Niehues
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Wiersch
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lilienthal
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nikola Tacken
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tim Schumertl
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
56
|
ADAM17 Is an Essential Factor for the Infection of Bovine Cells with Pestiviruses. Viruses 2022; 14:v14020381. [PMID: 35215974 PMCID: PMC8875743 DOI: 10.3390/v14020381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The entry of BVDV into bovine cells was studied using CRIB cells (cells resistant to infection with bovine viral diarrhea virus [BVDV]) that have evolved from MDBK cells by a spontaneous loss of susceptibility to BVDV. Recently, larger genetic deletions were reported but no correlation of the affected genes and the resistance to BVDV infection could be established. The metalloprotease ADAM17 was reported as an essential attachment factor for the related classical swine fever virus (CSFV). To assess whether ADAM17 might be involved in the resistance of CRIB-1 cells to pestiviruses, we analyzed its expression in CRIB-1 and MDBK cells. While ADAM17 protein was detectable in MBDK cells, it was absent from CRIB-1 cells. No functional full-length ADAM17 mRNA could be detected in CRIB cells and genetic analysis revealed the presence of two defective alleles. Transcomplementation of functional ADAM17 derived from MDBK cells in CRIB-1 cells resulted in a nearly complete reversion of their resistance to pestiviral infection. Our results demonstrate that ADAM17 is a key cellular factor for the pestivirus resistance of CRIB-1 cells and establishes its essential role for a broader range of pestiviruses.
Collapse
|
57
|
Hannemann C, Schecker JH, Brettschneider A, Grune J, Rösener N, Weller A, Stangl V, Fisher EA, Stangl K, Ludwig A, Hewing B. Deficiency of inactive rhomboid protein 2 (iRhom2) attenuates diet-induced hyperlipidaemia and early atherogenesis. Cardiovasc Res 2022; 118:156-168. [PMID: 33576385 PMCID: PMC8932158 DOI: 10.1093/cvr/cvab041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
AIMS Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and anti-inflammatory treatment strategies are currently pursued to lower cardiovascular disease burden. Modulation of recently discovered inactive rhomboid protein 2 (iRhom2) attenuates shedding of tumour necrosis factor-alpha (TNF-α) selectively from immune cells. The present study aims at investigating the impact of iRhom2 deficiency on the development of atherosclerosis. METHODS AND RESULTS Low-density lipoprotein receptor (LDLR)-deficient mice with additional deficiency of iRhom2 (LDLR-/-iRhom2-/-) and control (LDLR-/-) mice were fed a Western-type diet (WD) for 8 or 20 weeks to induce early or advanced atherosclerosis. Deficiency of iRhom2 resulted in a significant decrease in the size of early atherosclerotic plaques as determined in aortic root cross-sections. LDLR-/-iRhom2-/- mice exhibited significantly lower serum levels of TNF-α and lower circulating and hepatic levels of cholesterol and triglycerides compared to LDLR-/- mice at 8 weeks of WD. Analyses of hepatic bile acid concentration and gene expression at 8 weeks of WD revealed that iRhom2 deficiency prevented WD-induced repression of hepatic bile acid synthesis in LDLR-/- mice. In contrast, at 20 weeks of WD, plaque size, plaque composition, and serum levels of TNF-α or cholesterol were not different between genotypes. CONCLUSION Modulation of inflammation by iRhom2 deficiency attenuated diet-induced hyperlipidaemia and early atherogenesis in LDLR-/- mice. iRhom2 deficiency did not affect diet-induced plaque burden and composition in advanced atherosclerosis in LDLR-/- mice.
Collapse
Affiliation(s)
- Carmen Hannemann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Division of Cardiology, Department of Medicine, New York University School of Medicine, Hannemann435 East 30th St., 10016 New York, NY, USA
| | - Johannes H Schecker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alica Brettschneider
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicole Rösener
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrea Weller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Verena Stangl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, Hannemann435 East 30th St., 10016 New York, NY, USA
| | - Karl Stangl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Antje Ludwig
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Radiologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernd Hewing
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- Zentrum für Kardiologie, Kardiologische Gemeinschaftspraxis, Loerstr. 19, 48143, Muenster, Germany
- Department of Cardiology III-Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Muenster, Germany
| |
Collapse
|
58
|
Kubo S, Fritz JM, Raquer-McKay HM, Kataria R, Vujkovic-Cvijin I, Al-Shaibi A, Yao Y, Zheng L, Zou J, Waldman AD, Jing X, Farley TK, Park AY, Oler AJ, Charles AK, Makhlouf M, AbouMoussa EH, Hasnah R, Saraiva LR, Ganesan S, Al-Subaiey AA, Matthews H, Flano E, Lee HH, Freeman AF, Sefer AP, Sayar E, Çakır E, Karakoc-Aydiner E, Baris S, Belkaid Y, Ozen A, Lo B, Lenardo MJ. Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease. Nat Immunol 2022; 23:75-85. [PMID: 34937930 PMCID: PMC11060421 DOI: 10.1038/s41590-021-01093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in two kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including tumor-necrosis factor and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia, whereas infection with Citrobacter rodentium caused worse inflammatory colitis than in wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.
Collapse
Affiliation(s)
- Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jill M Fritz
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Cooley, LLP in Washington, Washington, DC, USA
| | - Hayley M Raquer-McKay
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Rhea Kataria
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex D Waldman
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xinyi Jing
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Reem Hasnah
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- Monell Chemical Senses Center, Philadelphia, PA, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emilio Flano
- Discovery Oncology and Immunology, Merck & Co., Inc., Boston, MA, USA
| | - Hyun Hee Lee
- Discovery Oncology and Immunology, Merck & Co., Inc., Boston, MA, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Asena Pınar Sefer
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ersin Sayar
- Department of Pediatric Gastroenterology, Altinbas University Medical Park Bahcelievler Hospital, Istanbul, Turkey
| | - Erkan Çakır
- Division of Pediatric Pulmonology, Department of Pediatrics, Bezmialem Vakif University, School of Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Ozen
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
59
|
Giese AA, Babendreyer A, Krappen P, Gross A, Strnad P, Düsterhöft S, Ludwig A. Inflammatory activation of surface molecule shedding by upregulation of the pseudoprotease iRhom2 in colon epithelial cells. Sci Rep 2021; 11:24230. [PMID: 34930929 PMCID: PMC8688420 DOI: 10.1038/s41598-021-03522-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/26/2021] [Indexed: 01/09/2023] Open
Abstract
The metalloproteinase ADAM17 contributes to inflammatory and proliferative responses by shedding of cell-surface molecules. By this ADAM17 is implicated in inflammation, regeneration, and permeability regulation of epithelial cells in the colon. ADAM17 maturation and surface expression requires the adapter proteins iRhom1 or iRhom2. Here we report that expression of iRhom2 but not iRhom1 is upregulated in intestinal tissue of mice with acute colitis. Our analysis of public databases indicates elevated iRhom2 expression in mucosal tissue and epithelial cells from patients with inflammatory bowel disease (IBD). Consistently, expression of iRhom2 but not iRhom1 is upregulated in colon or intestinal epithelial cell lines after co-stimulation with tumor necrosis factor (TNF) and interferon gamma (IFNgamma). This upregulation can be reduced by inhibition of Janus kinases or transcription factors NF-kappaB or AP-1. Upregulation of iRhom2 can be mimicked by iRhom2 overexpression and is associated with enhanced maturation and surface expression of ADAM17 which then results in increased cleavage of transforming growth factor (TGF) alpha and junctional adhesion molecule (JAM)-A. Finally, the induction of these responses is suppressed by inhibition of iRhom2 transcription. Thus, inflammatory induction of iRhom2 may contribute to upregulated ADAM17-dependent mediator and adhesion molecule release in IBD. The development of iRhom2-dependent inhibitors may allow selective targeting of inflammatory ADAM17 activities.
Collapse
Affiliation(s)
- Anja Adelina Giese
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Peter Krappen
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Annika Gross
- Division of Gastroenterology and Hepatology, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Division of Gastroenterology and Hepatology, Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
60
|
Wang K, Gheblawi M, Nikhanj A, Munan M, MacIntyre E, O'Neil C, Poglitsch M, Colombo D, Del Nonno F, Kassiri Z, Sligl W, Oudit GY. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Hypertension 2021; 79:365-378. [PMID: 34844421 DOI: 10.1161/hypertensionaha.121.18295] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Mahmoud Gheblawi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Anish Nikhanj
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Matt Munan
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.)
| | - Erika MacIntyre
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Respirology, Department of Medicine, University of Alberta, Edmonton, Canada. (E.M.)
| | - Conar O'Neil
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | | | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| |
Collapse
|
61
|
Liao K, Lv DY, Yu HL, Chen H, Luo SX. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. Int Immunopharmacol 2021; 101:108334. [PMID: 34768128 DOI: 10.1016/j.intimp.2021.108334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cigarette smoke (CS) is associated with vascular injury and dysfunction, which may be mediated by iNOS and NLRP3. However, the exact mechanism is unknown. METHODS iNOS-knockout and NLRP3-knockout C57BL/6 mice were exposed to air or CS. The vascular structure was examined by hematoxylin-eosin staining. The vascular tension was measured by a vascular reactivity assay. The expression of iNOS, NLRP3, caspase-1p20, IL-1β and eNOS were measured by western blotting. Human aortic endothelial cells (HAECs) were exposed to L-NIL (iNOS inhibitor), MCC950 (NLRP3 inhibitor), ODQ (sGC inhibitor), KT5823 (PKG inhibitor) or TAPI-1 (TACE/ADAM17 inhibitor) for 1 h prior to cigarette smoke extract (CSE) treatment. The cell viability and lactate dehydrogenase activity were assessed and pyroptosis was determined by scanning electron microscopy. The mRNA expression of TNF-α, and protein expression of iNOS, active-TACE, NLRP3, caspase-1p20, IL-1β, and eNOS were measured. RESULTS CS resulted in shrinkage of endothelial cells, impaired aorta relaxation, reduced eNOS expression, and induced expression of iNOS, NLRP3, caspase-1p20 and IL-1β, which could be prevented by knockdown of iNOS and NLRP3. CSE reduced cell viability, induced LDH release and pyroptosis, and promoted iNOS, NLRP3, caspase-1p20, and IL-1β expression and reduced eNOS reduction, which could be reversed by inhibition of iNOS or NLRP3 in HAECs. Altogether, activation of the NLRP3 inflammasome by iNOS in CS-exposed HAECs may be mediated by the sGC/cGMP/PKG/TACE/TNF- α pathway. CONCLUSION These results link iNOS to NLRP3 in CSE-stimulated HAECs through the sGC/cGMP/PKG/TACE/TNF-α pathway. The findings identify a mechanism through which iNOS and NLRP3 contribute to the pathogenesis of CS-induced pyroptosis and impaired aorta relaxation in HAECs.
Collapse
Affiliation(s)
- Ke Liao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ding-Yi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hui-Lin Yu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| | - Su-Xin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
62
|
Wang L, Liu XX, Yang YM, Wang Y, Song YY, Gao S, Li LY, Zhang ZS. RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression. Cancer Cell Int 2021; 21:590. [PMID: 34736454 PMCID: PMC8567583 DOI: 10.1186/s12935-021-02277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Background The rhomboids are a family of multi-transmembrane proteins, many of which have been implicated in facilitating tumor progression. Little is yet known, however, about rhomboid-associated biomarkers in cancers. An analysis of such biomarkers could yield important insights into the role of the rhomboids in cancer pathology. Methods In this study, we carried out the univariate Cox regression analysis and compared gene expression patterns of several rhomboid genes in 30 types of cancers by using The Cancer Genome Atlas (TCGA) database and the methods delineated in Gene Expression Profiling Interactive Analysis (GEPIA). We then used datasets GSE47032, GSE126964, GSE68417 and 75 paired pathological specimens to verify the influences of the rhomboid genes in cancer progression. Moreover, we carried out Weighted Gene Correlation Network Analysis (WGCNA) to investigate gene-related functions and we exploited potential correlations between rhomboid genes expression and immune cell infiltration in cancer tissues. Furthermore, we constructed gene-knockdown cancer cell lines to investigate rhomboid gene functions. Results We find that kidney renal clear cell carcinoma (KIRC) disease progression is affected by fluctuations in the expression of a number of the rhomboid family of genes and, more specifically, high levels of RHBDF2 gene expression are a good indicator of poor prognosis of the disease, as patients with high RHBDF2 expression levels exhibit less favorable survival rates compared to those with low RHBDF2 levels. Silencing of the RHBDF2 gene in KIRC cell lines leads to significantly diminished cell proliferation and migration; this is in good agreement with the identification of an enhanced presence of a number of cell growth and migration promoting signaling molecules in KIRC tumors. We found that, although high level of RHBDF2 correlated with increased infiltration of lymphocytes in cancer tissues, artificially overexpressed RHBDF2 led to an inhibition of the activity of the infiltrated immune cells through sustaining PD-L1 protein level. Furthermore, we show that RHBDF2 related cell migration and PD-L1 regulation were potentially mediated by EGFR signaling pathway. Conclusions RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression and may serve as a critical prognostic biomarker for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02277-0.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xiu-Xiu Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yu-Meng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yuan-Yuan Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
63
|
Tüshaus J, Müller SA, Shrouder J, Arends M, Simons M, Plesnila N, Blobel CP, Lichtenthaler SF. The pseudoprotease iRhom1 controls ectodomain shedding of membrane proteins in the nervous system. FASEB J 2021; 35:e21962. [PMID: 34613632 DOI: 10.1096/fj.202100936r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Proteolytic ectodomain shedding of membrane proteins is a fundamental mechanism to control the communication between cells and their environment. A key protease for membrane protein shedding is ADAM17, which requires a non-proteolytic subunit, either inactive Rhomboid 1 (iRhom1) or iRhom2 for its activity. While iRhom1 and iRhom2 are co-expressed in most tissues and appear to have largely redundant functions, the brain is an organ with predominant expression of iRhom1. Yet, little is known about the spatio-temporal expression of iRhom1 in mammalian brain and about its function in controlling membrane protein shedding in the nervous system. Here, we demonstrate that iRhom1 is expressed in mouse brain from the prenatal stage to adulthood with a peak in early postnatal development. In the adult mouse brain iRhom1 was widely expressed, including in cortex, hippocampus, olfactory bulb, and cerebellum. Proteomic analysis of the secretome of primary neurons using the hiSPECS method and of cerebrospinal fluid, obtained from iRhom1-deficient and control mice, identified several membrane proteins that require iRhom1 for their shedding in vitro or in vivo. One of these proteins was 'multiple-EGF-like-domains protein 10' (MEGF10), a phagocytic receptor in the brain that is linked to the removal of amyloid β and apoptotic neurons. MEGF10 was further validated as an ADAM17 substrate using ADAM17-deficient mouse embryonic fibroblasts. Taken together, this study discovers a role for iRhom1 in controlling membrane protein shedding in the mouse brain, establishes MEGF10 as an iRhom1-dependent ADAM17 substrate and demonstrates that iRhom1 is widely expressed in murine brain.
Collapse
Affiliation(s)
- Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joshua Shrouder
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Arends
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carl P Blobel
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
64
|
ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119141. [PMID: 34610348 DOI: 10.1016/j.bbamcr.2021.119141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
It was realized in the 1990s that some membrane proteins such as TNFα, both TNF receptors, ligands of the EGF-R and the Interleukin-6 receptor are proteolytically cleaved and are shed from the cell membrane as soluble proteins. The major responsible protease is a metalloprotease named ADAM17. So far, close to 100 substrates, including cytokines, cytokine receptors, chemokines and adhesion molecules of ADAM17 are known. Therefore, ADAM17 orchestrates many different signaling pathways and is a central signaling hub in inflammation and carcinogenesis. ADAM17 plays an important role in the biology of Interleukin-6 (IL-6) since the generation of the soluble Interleukin-6 receptor (sIL-6R) is needed for trans-signaling, which has been identified as the pro-inflammatory activity of this cytokine. In contrast, Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is mostly regenerative and protective. Probably due to its broad substrate spectrum, ADAM17 is essential for life and most of the few human individuals identified with ADAM17 gene defects died at young age. Although the potential of ADAM17 as a therapeutic target has been recognized, specific blockade of ADAM17 is not trivial since the metalloprotease domain of ADAM17 shares high structural homology with other proteases, in particular matrix metalloproteases. Here, the critical functions of ADAM17 in IL-6, TNFα and EGF-R pathways and strategies of therapeutic interventions are discussed.
Collapse
|
65
|
Ng KE, Delaney PJ, Thenet D, Murtough S, Webb CM, Zaman N, Tsisanova E, Mastroianni G, Walker SLM, Westaby JD, Pennington DJ, Pink R, Kelsell DP, Tinker A. Early inflammation precedes cardiac fibrosis and heart failure in desmoglein 2 murine model of arrhythmogenic cardiomyopathy. Cell Tissue Res 2021; 386:79-98. [PMID: 34236518 PMCID: PMC8526453 DOI: 10.1007/s00441-021-03488-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/18/2021] [Indexed: 12/19/2022]
Abstract
The study of a desmoglein 2 murine model of arrhythmogenic cardiomyopathy revealed cardiac inflammation as a key early event leading to fibrosis. Arrhythmogenic cardiomyopathy (AC) is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure due to abnormalities in the cardiac desmosome. We examined how loss of desmoglein 2 (Dsg2) in the young murine heart leads to development of AC. Apoptosis was an early cellular phenotype, and RNA sequencing analysis revealed early activation of inflammatory-associated pathways in Dsg2-null (Dsg2-/-) hearts at postnatal day 14 (2 weeks) that were absent in the fibrotic heart of adult mice (10 weeks). This included upregulation of iRhom2/ADAM17 and its associated pro-inflammatory cytokines and receptors such as TNFα, IL6R and IL-6. Furthermore, genes linked to specific macrophage populations were also upregulated. This suggests cardiomyocyte stress triggers an early immune response to clear apoptotic cells allowing tissue remodelling later on in the fibrotic heart. Our analysis at the early disease stage suggests cardiac inflammation is an important response and may be one of the mechanisms responsible for AC disease progression.
Collapse
Affiliation(s)
- K E Ng
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - P J Delaney
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - D Thenet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - S Murtough
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - C M Webb
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - N Zaman
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - E Tsisanova
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - G Mastroianni
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - S L M Walker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - J D Westaby
- CRY Dept. of Cardiovascular Pathology, Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, Jenner WingCranmer Terrace, London, SW17 0RE, UK
| | - D J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - R Pink
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - D P Kelsell
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - A Tinker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
66
|
Inactive rhomboid proteins RHBDF1 and RHBDF2 (iRhoms): a decade of research in murine models. Mamm Genome 2021; 32:415-426. [PMID: 34477920 PMCID: PMC8580931 DOI: 10.1007/s00335-021-09910-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022]
Abstract
Rhomboid proteases, first discovered in Drosophila, are intramembrane serine proteases. Members of the rhomboid protein family that are catalytically deficient are known as inactive rhomboids (iRhoms). iRhoms have been implicated in wound healing, cancer, and neurological disorders such as Alzheimer’s and Parkinson’s diseases, inflammation, and skin diseases. The past decade of mouse research has shed new light on two key protein domains of iRhoms—the cytosolic N-terminal domain and the transmembrane dormant peptidase domain—suggesting new ways to target multiple intracellular signaling pathways. This review focuses on recent advances in uncovering the unique functions of iRhom protein domains in normal growth and development, growth factor signaling, and inflammation, with a perspective on future therapeutic opportunities.
Collapse
|
67
|
Al-Salihi M, Bornikoel A, Zhuang Y, Stachura P, Scheller J, Lang KS, Lang PA. The role of ADAM17 during liver damage. Biol Chem 2021; 402:1115-1128. [PMID: 34192832 DOI: 10.1515/hsz-2021-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 17 is a membrane bound protease, involved in the cleavage and thus regulation of various membrane proteins, which are critical during liver injury. Among ADAM17 substrates are tumor necrosis factor α (TNFα), tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), the epidermal growth factor receptor (EGFR) ligands amphiregulin (AR) and heparin-binding-EGF-like growth factor (HB-EGF), the interleukin-6 receptor (IL-6R) and the receptor for a hepatocyte growth factor (HGF), c-Met. TNFα and its binding receptors can promote liver injury by inducing apoptosis and necroptosis in liver cells. Consistently, hepatocyte specific deletion of ADAM17 resulted in increased liver cell damage following CD95 stimulation. IL-6 trans-signaling is critical for liver regeneration and can alleviate liver damage. EGFR ligands can prevent liver damage and deletion of amphiregulin and HB-EGF can result in increased hepatocyte death and reduced proliferation. All of which indicates that ADAM17 has a central role in liver injury and recovery from it. Furthermore, inactive rhomboid proteins (iRhom) are involved in the trafficking and maturation of ADAM17 and have been linked to liver damage. Taken together, ADAM17 can contribute in a complex way to liver damage and injury.
Collapse
Affiliation(s)
- Mazin Al-Salihi
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Anna Bornikoel
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
68
|
Abstract
Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) belong to the metzincin family of zinc-containing multidomain molecules, and can act as soluble or membrane-bound proteases. These enzymes inactivate or activate other soluble or membrane-expressed mediator molecules, which enables them to control developmental processes, tissue remodelling, inflammatory responses and proliferative signalling pathways. The dysregulation of MMPs and ADAMs has long been recognized in acute kidney injury and in chronic kidney disease, and genetic targeting of selected MMPs and ADAMs in different mouse models of kidney disease showed that they can have detrimental and protective roles. In particular, MMP-2, MMP-7, MMP-9, ADAM10 and ADAM17 have been shown to have a mainly profibrotic effect and might therefore represent therapeutic targets. Each of these proteases has been associated with a different profibrotic pathway that involves tissue remodelling, Wnt-β-catenin signalling, stem cell factor-c-kit signalling, IL-6 trans-signalling or epidermal growth factor receptor (EGFR) signalling. Broad-spectrum metalloproteinase inhibitors have been used to treat fibrotic kidney diseases experimentally but more targeted approaches have since been developed, including inhibitory antibodies, to avoid the toxic side effects initially observed with broad-spectrum inhibitors. These advances not only provide a solid foundation for additional preclinical studies but also encourage further translation into clinical research.
Collapse
|
69
|
You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol 2021; 9:727075. [PMID: 34395451 PMCID: PMC8361451 DOI: 10.3389/fcell.2021.727075] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as immunomodulation, fever, inflammatory response, inhibition of tumor formation, and inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in developing organs and they regulate the survival, proliferation, and apoptosis of embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory factor that also regulates the inflammatory response during organogenesis, and its cytotoxic effects can interfere with normal developmental processes, even leading to the onset of diseases. This review summarizes the various roles of TNF-α in organogenesis in terms of its secreting pattern, concentration-dependent activities, and interactions with other signaling pathways. We also explored new potential functions of TNF-α.
Collapse
Affiliation(s)
- Kai You
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewen Xu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
70
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
71
|
Düsterhöft S, Kahveci-Türköz S, Wozniak J, Seifert A, Kasparek P, Ohm H, Liu S, Kopkanova J, Lokau J, Garbers C, Preisinger C, Sedlacek R, Freeman M, Ludwig A. The iRhom homology domain is indispensable for ADAM17-mediated TNFα and EGF receptor ligand release. Cell Mol Life Sci 2021; 78:5015-5040. [PMID: 33950315 PMCID: PMC8233286 DOI: 10.1007/s00018-021-03845-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
Membrane-tethered signalling proteins such as TNFα and many EGF receptor ligands undergo shedding by the metalloproteinase ADAM17 to get released. The pseudoproteases iRhom1 and iRhom2 are important for the transport, maturation and activity of ADAM17. Yet, the structural and functional requirements to promote the transport of the iRhom-ADAM17 complex have not yet been thoroughly investigated. Utilising in silico and in vitro methods, we here map the conserved iRhom homology domain (IRHD) and provide first insights into its structure and function. By focusing on iRhom2, we identified different structural and functional factors within the IRHD. We found that the structural integrity of the IRHD is a key factor for ADAM17 binding. In addition, we identified a highly conserved motif within an unstructured region of the IRHD, that, when mutated, restricts the transport of the iRhom-ADAM17 complex through the secretory pathway in in vitro, ex vivo and in vivo systems and also increases the half-life of iRhom2 and ADAM17. Furthermore, the disruption of this IRHD motif was also reflected by changes in the yet undescribed interaction profile of iRhom2 with proteins involved in intracellular vesicle transport. Overall, we provide the first insights into the forward trafficking of iRhoms which is critical for TNFα and EGF receptor signalling.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Selcan Kahveci-Türköz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Henrike Ohm
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Shixin Liu
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Jana Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
72
|
Lora J, Weskamp G, Li TM, Maretzky T, Shola DTN, Monette S, Lichtenthaler SF, Lu TT, Yang C, Blobel CP. Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. J Biol Chem 2021; 296:100733. [PMID: 33957124 PMCID: PMC8191336 DOI: 10.1016/j.jbc.2021.100733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a cell-surface metalloprotease that serves as the principle sheddase for tumor necrosis factor α (TNFα), interleukin-6 receptor (IL-6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17Δcyto). Homozygous Adam17Δcyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17Δcyto mice resembled Adam17−/− mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17Δcyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17Δcyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function.
Collapse
Affiliation(s)
- Jose Lora
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Thorsten Maretzky
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dorjee T N Shola
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Sloan-Kettering Institute, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Technical University of Munich, Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Technical University of Munich, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Chingwen Yang
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Carl P Blobel
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany; Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
73
|
Taguchi T, Mukai K, Takaya E, Shindo R. STING Operation at the ER/Golgi Interface. Front Immunol 2021; 12:646304. [PMID: 34012437 PMCID: PMC8126659 DOI: 10.3389/fimmu.2021.646304] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
DNA is present in the nucleus and mitochondria of eukaryotic cells. There are, however, certain instances in which DNA emerges in the cytosol. The two major sources of cytosolic DNA are self DNA that is leaked out from the nucleus or mitochondria, and non-self DNA from DNA viruses. The cytosolic DNA triggers the host immune response. Recent studies have identified two key molecules, cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) in this immune response. STING is an endoplasmic reticulum (ER) protein. After STING binding to cGAMP, STING exits the ER and translocates to the Golgi, where STING triggers the type I interferon- and proinflammatory responses through the activation of interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB). STING also activates other cellular responses including cell senescence, autophagy, and cell death. In this review, we focus on emerging issues regarding the regulation of STING by membrane traffic, with a particular focus on the retrograde membrane traffic from the Golgi to the ER. The retrograde membrane traffic is recently shown by us and others to be critical for silencing the STING signaling pathway and the defect in this traffic underlies the pathogenesis of the COPA syndrome, a monogenic autoinflammatory disease caused by missense mutations of coatomer protein complex subunit α (COP-α).
Collapse
Affiliation(s)
- Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Eiko Takaya
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ruri Shindo
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
74
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
75
|
Chao-Chu J, Murtough S, Zaman N, Pennington DJ, Blaydon DC, Kelsell DP. iRHOM2: A Regulator of Palmoplantar Biology, Inflammation, and Viral Susceptibility. J Invest Dermatol 2021; 141:722-726. [PMID: 33080304 PMCID: PMC7568177 DOI: 10.1016/j.jid.2020.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/04/2022]
Abstract
The palmoplantar epidermis is a specialized area of the skin that undergoes high levels of mechanical stress. The palmoplantar keratinization and esophageal cancer syndrome, tylosis with esophageal cancer, is linked to mutations in RHBDF2 encoding the proteolytically inactive rhomboid protein, iRhom2. Subsequently, iRhom2 was found to affect palmoplantar thickening to modulate the stress keratin response and to mediate context-dependent stress pathways by p63. iRhom2 is also a direct regulator of the sheddase, ADAM17, and the antiviral adaptor protein, stimulator of IFN genes. In this perspective, the pleiotropic functions of iRhom2 are discussed with respect to the skin, inflammation, and the antiviral response.
Collapse
Affiliation(s)
- Jennifer Chao-Chu
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stephen Murtough
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Najwa Zaman
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Diana C Blaydon
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David P Kelsell
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
76
|
Xu M, Ge C, Zhu L, Qin Y, Du C, Lou D, Li Q, Hu L, Sun Y, Dai X, Xiong M, Long T, Zhan J, Kuang Q, Li H, Yang Q, Huang P, Teng X, Feng J, Wu Y, Dong W, Wang B, Tan J. iRhom2 Promotes Hepatic Steatosis by Activating MAP3K7-Dependent Pathway. Hepatology 2021; 73:1346-1364. [PMID: 32592194 DOI: 10.1002/hep.31436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) has been widely recognized as a precursor to metabolic complications. Elevated inflammation levels are predictive of NAFLD-associated metabolic disorder. Inactive rhomboid-like protein 2 (iRhom2) is regarded as a key regulator in inflammation. However, the precise mechanisms by which iRhom2-regulated inflammation promotes NAFLD progression remain to be elucidated. APPROACH AND RESULTS Here, we report that insulin resistance, hepatic steatosis, and specific macrophage inflammatory activation are significantly alleviated in iRhom2-deficient (knockout [KO]) mice, but aggravated in iRhom2 overexpressing mice. We further show that, mechanistically, in response to a high-fat diet (HFD), iRhom2 KO mice and mice with iRhom2 deficiency in myeloid cells only showed less severe hepatic steatosis and insulin resistance than controls. Inversely, transplantation of bone marrow cells from healthy mice to iRhom2 KO mice expedited the severity of insulin resistance and hepatic dyslipidemia. Of note, in response to HFD, hepatic iRhom2 binds to mitogen-activated protein kinase kinase kinase 7 (MAP3K7) to facilitate MAP3K7 phosphorylation and nuclear factor kappa B cascade activation, thereby promoting the activation of c-Jun N-terminal kinase/insulin receptor substrate 1 signaling, but disturbing AKT/glycogen synthase kinase 3β-associated insulin signaling. The iRhom2/MAP3K7 axis is essential for iRhom2-regulated liver steatosis. CONCLUSIONS iRhom2 may represent a therapeutic target for the treatment of HFD-induced hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chengjiang Du
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Mingxin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Tingting Long
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Jianxia Zhan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Huanhuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Qiufeng Yang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Ping Huang
- Department Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuepeng Teng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Wei Dong
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
77
|
Kaaij MH, van Tok MN, Blijdorp IC, Ambarus CA, Stock M, Pots D, Knaup VL, Armaka M, Christodoulou-Vafeiadou E, van Melsen TK, Masdar H, Eskes HJPP, Yeremenko NG, Kollias G, Schett G, Tas SW, van Duivenvoorde LM, Baeten DLP. Transmembrane TNF drives osteoproliferative joint inflammation reminiscent of human spondyloarthritis. J Exp Med 2021; 217:151943. [PMID: 32662821 PMCID: PMC7537402 DOI: 10.1084/jem.20200288] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
TNF plays a key role in immune-mediated inflammatory diseases including rheumatoid arthritis (RA) and spondyloarthritis (SpA). It remains incompletely understood how TNF can lead to different disease phenotypes such as destructive peripheral polysynovitis in RA versus axial and peripheral osteoproliferative inflammation in SpA. We observed a marked increase of transmembrane (tm) versus soluble (s) TNF in SpA versus RA together with a decrease in the enzymatic activity of ADAM17. In contrast with the destructive polysynovitis observed in classical TNF overexpression models, mice overexpressing tmTNF developed axial and peripheral joint disease with synovitis, enthesitis, and osteitis. Histological and radiological assessment evidenced marked endochondral new bone formation leading to joint ankylosis over time. SpA-like inflammation, but not osteoproliferation, was dependent on TNF-receptor I and mediated by stromal tmTNF overexpression. Collectively, these data indicate that TNF can drive distinct inflammatory pathologies. We propose that tmTNF is responsible for the key pathological features of SpA.
Collapse
Affiliation(s)
- Merlijn H Kaaij
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa N van Tok
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iris C Blijdorp
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Carmen A Ambarus
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Stock
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Désiree Pots
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Véronique L Knaup
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Marietta Armaka
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Tessa K van Melsen
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Huriatul Masdar
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Harry J P P Eskes
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nataliya G Yeremenko
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georg Schett
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Leonie M van Duivenvoorde
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
78
|
Analysis of the Conditions That Affect the Selective Processing of Endogenous Notch1 by ADAM10 and ADAM17. Int J Mol Sci 2021; 22:ijms22041846. [PMID: 33673337 PMCID: PMC7918056 DOI: 10.3390/ijms22041846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is critical for controlling a variety of cell fate decisions during metazoan development and homeostasis. This unique, highly conserved signaling pathway relies on cell-to-cell contact, which triggers the proteolytic release of the cytoplasmic domain of the membrane-anchored transcription factor Notch from the membrane. A disintegrin and metalloproteinase (ADAM) proteins are crucial for Notch activation by processing its S2 site. While ADAM10 cleaves Notch1 under physiological, ligand-dependent conditions, ADAM17 mainly cleaves Notch1 under ligand-independent conditions. However, the mechanism(s) that regulate the distinct contributions of these ADAMs in Notch processing remain unclear. Using cell-based assays in mouse embryonic fibroblasts (mEFs) lacking ADAM10 and/or ADAM17, we aimed to clarify what determines the relative contributions of ADAM10 and ADAM17 to ligand-dependent or ligand-independent Notch processing. We found that EDTA-stimulated ADAM17-dependent Notch1 processing is rapid and requires the ADAM17-regulators iRhom1 and iRhom2, whereas the Delta-like 4-induced ligand-dependent Notch1 processing is slower and requires ADAM10. The selectivity of ADAM17 for EDTA-induced Notch1 processing can most likely be explained by a preference for ADAM17 over ADAM10 for the Notch1 cleavage site and by the stronger inhibition of ADAM10 by EDTA. The physiological ADAM10-dependent processing of Notch1 cannot be compensated for by ADAM17 in Adam10-/- mEFs, or by other ADAMs shown here to be able to cleave the Notch1 cleavage site, such as ADAMs9, 12, and 19. Collectively, these results provide new insights into the mechanisms underlying the substrate selectivity of ADAM10 and ADAM17 towards Notch1.
Collapse
|
79
|
Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021; 26:molecules26040944. [PMID: 33579029 PMCID: PMC7916773 DOI: 10.3390/molecules26040944] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions. Furthermore, here, we comprehensively encompass the approaches that have been developed to accomplish ADAM17 selective inhibition, from the newest non-zinc-binding ADAM17 synthetic inhibitors to the exploitation of iRhom2 to specifically target ADAM17 in immune cells.
Collapse
|
80
|
Li K, Qiu H, Yan J, Shen X, Wei X, Duan M, Yang J. The involvement of TNF-α and TNF-β as proinflammatory cytokines in lymphocyte-mediated adaptive immunity of Nile tilapia by initiating apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103884. [PMID: 33045273 DOI: 10.1016/j.dci.2020.103884] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factors (TNFs) are pleiotropic cytokines with important functions in homeostasis and disease pathogenesis. Recent advances have shown that TNFs are also involved in the regulation of adaptive immune responses. However, the knowledge about how TNF participates in and regulates adaptive immune response in early vertebrates is still limited. In present study, we identified two isoforms of TNF, TNF-α and TNF-β, from Nile tilapia Oreochromis niloticus (On-TNF-α and β). After analyzing the sequence characteristics, we investigated their regulatory roles in adaptive immune response of this fish species. On-TNF-α and β are evolutionarily conserved compare with their homologs from other vertebrates. Both TNFs were distributed in a wide range of tissues in O. niloticus, and with relative higher expression level in gill. After the animals were infected by Streptococcus agalactiae, mRNA levels of On-TNF-α and TNF-β in spleen lymphocytes were significantly upregulated during the primary response stage of adaptive immunity. Meanwhile, both TNF proteins in spleen lymphocytes were also dramatically elevated during the adaptive immune stage after bacterial infection. These results indicate the potential participation of On-TNF-α and TNF-β in adaptive immune response of Nile tilapia. Furthermore, On-TNF-α and β transcripts were obviously augmented, once spleen lymphocytes were activated by T cell-specific mitogen PHA. More importantly, both recombinant On-TNF-α and β could induce the apoptosis of head-kidney leukocytes of Nile tilapia. And On-TNF-β but not On-TNF-α promoted the apoptosis by activating caspase-8 in the target cells. Altogether, our study revealed that TNF-α and TNF-β participated in the lymphocyte-mediated adaptive immune response of Nile tilapia by initiating the apoptosis, and thus shed novel perspective for the regulatory mechanism of adaptive immunity in teleost.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hong Qiu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaotong Shen
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
81
|
Skurski J, Dixit G, Blobel CP, Issuree PD, Maretzky T. The Threshold Effect: Lipopolysaccharide-Induced Inflammatory Responses in Primary Macrophages Are Differentially Regulated in an iRhom2-Dependent Manner. Front Cell Infect Microbiol 2021; 10:620392. [PMID: 33585287 PMCID: PMC7878383 DOI: 10.3389/fcimb.2020.620392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
A well-controlled innate immune response is characterized by a rapid yet self-limiting inflammatory response. Although much is known about the range of inflammatory stimuli capable of triggering an innate immune response, the mechanisms which govern the degree of inflammation induced by inflammatory insults and the mechanisms in place to reset or maintain homeostasis are poorly understood. Tumor necrosis factor (TNF) is a potent early response pro-inflammatory cytokine produced by immune cells following a broad range of insults spanning autoimmunity and metabolic diseases to pathogenic infections. Previous studies have shown that a disintegrin and metalloproteinase (ADAM) 17 controls the release of soluble TNF and epidermal growth factor receptor signaling. Utilizing a genetic model of ADAM17 deficiency through the deletion of its regulator, the inactive rhomboid 2 (iRhom2), we show that loss of ADAM17 activity in innate immune cells leads to decreased expression of various cytokines in response to low levels of pathogen-associated molecular pattern (PAMP) stimulation but not at high-dose stimulation. In addition, TNF receptor (TNFR) 1/2-deficient bone marrow-derived macrophages yielded significantly reduced TNF expression following low levels of PAMP stimulation, suggesting that signaling through the TNFRs in immune cells drives a feed-forward regulatory mechanism wherein low levels of TNF allow sustained enhancement of TNF expression in an iRhom2/ADAM17-dependent manner. Thus, we demonstrate that inflammatory expression of TNF and IL1β is differentially regulated following high or low doses of PAMP stimulation, invoking the activation of a previously unknown regulatory mechanism of inflammation.
Collapse
Affiliation(s)
- Joseph Skurski
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Garima Dixit
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Carl P Blobel
- Departments of Medicine and of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, United States.,Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, United States
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Molecular Medicine Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Molecular Medicine Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
82
|
Fisetin protects against high fat diet-induced nephropathy by inhibiting inflammation and oxidative stress via the blockage of iRhom2/NF-κB signaling. Int Immunopharmacol 2021; 92:107353. [PMID: 33429334 DOI: 10.1016/j.intimp.2020.107353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Promoted inflammation enhances the development of nephropathy in obesity. Fisetin (3,3',4',7-tetrahydroxyflavone, FIS) is a naturally occurring dietary flavonoid, and exhibits anti-inflammatory and anti-oxidative properties. Inactive rhomboid protein 2 (iRhom2), an inactive member of the rhomboid intramembrane proteinase family, is an essential inflammation-associated regulator. Here, we attempted to investigate the protective mechanisms of FIS against high fat diet (HFD)-induced nephropathy, with particular focus on iRhom2. We found that HFD induced systematic and renal pro-inflammatory cytokine production. Furthermore, iRhom2 expression was markedly elevated in kidney of HFD-fed mice, and in PAL-incubated macrophages, accompanied with high phosphorylation of NF-κB. Significant oxidative stress was observed in kidney of HFD-fed mice through suppressing Nrf-2/HO-1 signaling. Moreover, activation of iRhom2/NF-κB signaling and oxidative stress by PAL was detected in macrophages, which were effectively reversed by FIS. Importantly, we showed that iRhom2 knockdown significantly abrogated the ability of FIS to restrain inflammation and oxidative stress induced by PAL in macrophages, indicating that iRhom2 might be a potential therapeutic target for FIS during nephropathy treatment. Together, these results revealed that FIS could mitigate HFD-induced renal injury by regulating iRhom2/NF-κB and Nrf-2/HO-1 signaling pathways.
Collapse
|
83
|
Bunker EN, Wheeler GE, Chapnick DA, Liu X. Suppression of α-catenin and adherens junctions enhances epithelial cell proliferation and motility via TACE-mediated TGF-α autocrine/paracrine signaling. Mol Biol Cell 2020; 32:348-361. [PMID: 33378218 PMCID: PMC8098817 DOI: 10.1091/mbc.e19-08-0474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sustained cell migration is essential for wound healing and cancer metastasis. The epidermal growth factor receptor (EGFR) signaling cascade is known to drive cell migration and proliferation. While the signal transduction downstream of EGFR has been extensively investigated, our knowledge of the initiation and maintenance of EGFR signaling during cell migration remains limited. The metalloprotease TACE (tumor necrosis factor alpha converting enzyme) is responsible for producing active EGFR family ligands in the via ligand shedding. Sustained TACE activity may perpetuate EGFR signaling and reduce a cell’s reliance on exogenous growth factors. Using a cultured keratinocyte model system, we show that depletion of α-catenin perturbs adherens junctions, enhances cell proliferation and motility, and decreases dependence on exogenous growth factors. We show that the underlying mechanism for these observed phenotypical changes depends on enhanced autocrine/paracrine release of the EGFR ligand transforming growth factor alpha in a TACE-dependent manner. We demonstrate that proliferating keratinocyte epithelial cell clusters display waves of oscillatory extracellular signal–regulated kinase (ERK) activity, which can be eliminated by TACE knockout, suggesting that these waves of oscillatory ERK activity depend on autocrine/paracrine signals produced by TACE. These results provide new insights into the regulatory role of adherens junctions in initiating and maintaining autocrine/paracrine signaling with relevance to wound healing and cellular transformation.
Collapse
Affiliation(s)
- Eric N Bunker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Graycen E Wheeler
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | | | - Xuedong Liu
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| |
Collapse
|
84
|
Argañaraz GA, Palmeira JDF, Argañaraz ER. Phosphatidylserine inside out: a possible underlying mechanism in the inflammation and coagulation abnormalities of COVID-19. Cell Commun Signal 2020; 18:190. [PMID: 33357215 PMCID: PMC7765775 DOI: 10.1186/s12964-020-00687-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid ability of SARS-CoV-2 to spread among humans, along with the clinical complications of coronavirus disease 2019-COVID-19, have represented a significant challenge to the health management systems worldwide. The acute inflammation and coagulation abnormalities appear as the main causes for thousands of deaths worldwide. The intense inflammatory response could be involved with the formation of thrombi. For instance, the presence of uncleaved large multimers of von Willebrand (vWF), due to low ADAMTS13 activity in plasma could be explained by the inhibitory action of pro-inflammatory molecules such as IL-1β and C reactive protein. In addition, the damage to endothelial cells after viral infection and/or activation of endothelium by pro-inflammatory cytokines, such as IL-1β, IL-6, IFN-γ, IL-8, and TNF-α induces platelets and monocyte aggregation in the vascular wall and expression of tissue factor (TF). The TF expression may culminate in the formation of thrombi, and activation of cascade by the extrinsic pathway by association with factor VII. In this scenario, the phosphatidylserine-PtdSer exposure on the outer leaflet of the cell membrane as consequence of viral infection emerges as another possible underlying mechanism to acute immune inflammatory response and activation of coagulation cascade. The PtdSer exposure may be an important mechanism related to ADAM17-mediated ACE2, TNF-α, EGFR and IL-6R shedding, and the activation of TF on the surface of infected endothelial cells. In this review, we address the underlying mechanisms involved in the pathophysiology of inflammation and coagulation abnormalities. Moreover, we introduce key biochemical and pathophysiological concepts that support the possible participation of PtdSer exposure on the outer side of the SARS-CoV-2 infected cells membrane, in the pathophysiology of COVID-19. Video Abstract.
Collapse
Affiliation(s)
- Gustavo A. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, 70910-900 Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, 70910-900 Brazil
| | - Enrique R. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, 70910-900 Brazil
| |
Collapse
|
85
|
Pinci F, Gaidt MM, Jung C, Kuut G, Jackson MA, Bauernfried S, Hornung V. C-tag TNF: a reporter system to study TNF shedding. J Biol Chem 2020; 295:18065-18075. [PMID: 33082141 PMCID: PMC7939438 DOI: 10.1074/jbc.ra120.015248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
TNF is a highly pro-inflammatory cytokine that contributes not only to the regulation of immune responses but also to the development of severe inflammatory diseases. TNF is synthesized as a transmembrane protein, which is further matured via proteolytic cleavage by metalloproteases such as ADAM17, a process known as shedding. At present, TNF is mainly detected by measuring the precursor or the mature cytokine of bulk cell populations by techniques such as ELISA or immunoblotting. However, these methods do not provide information on the exact timing and extent of TNF cleavage at single-cell resolution and they do not allow the live visualization of shedding events. Here, we generated C-tag TNF as a genetically encoded reporter to study TNF shedding at the single-cell level. The functionality of the C-tag TNF reporter is based on the exposure of a cryptic epitope on the C terminus of the transmembrane portion of pro-TNF on cleavage. In both denatured and nondenatured samples, this epitope can be detected by a nanobody in a highly sensitive and specific manner only upon TNF shedding. As such, C-tag TNF can successfully be used for the detection of TNF cleavage in flow cytometry and live-cell imaging applications. We furthermore demonstrate its applicability in a forward genetic screen geared toward the identification of genetic regulators of TNF maturation. In summary, the C-tag TNF reporter can be employed to gain novel insights into the complex regulation of ADAM-dependent TNF shedding.
Collapse
Affiliation(s)
- Francesca Pinci
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz M Gaidt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gunnar Kuut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Margaret A Jackson
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Bauernfried
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
86
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
87
|
Geesala R, Issuree PD, Maretzky T. The Role of iRhom2 in Metabolic and Cardiovascular-Related Disorders. Front Cardiovasc Med 2020; 7:612808. [PMID: 33330676 PMCID: PMC7732453 DOI: 10.3389/fcvm.2020.612808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic obesity is associated with metabolic imbalance leading to diabetes, dyslipidemia, and cardiovascular diseases (CVDs), in which inflammation is caused by exposure to inflammatory stimuli, such as accumulating sphingolipid ceramides or intracellular stress. This inflammatory response is likely to be prolonged by the effects of dietary and blood cholesterol, thereby leading to chronic low-grade inflammation and endothelial dysfunction. Elevated levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF) are predictive of CVDs and have been widely studied for potential therapeutic strategies. The release of TNF is controlled by a disintegrin and metalloprotease (ADAM) 17 and both are positively associated with CVDs. ADAM17 also cleaves most of the ligands of the epidermal growth factor receptor (EGFR) which have been associated with hypertension, atherogenesis, vascular dysfunction, and cardiac remodeling. The inactive rhomboid protein 2 (iRhom2) regulates the ADAM17-dependent shedding of TNF in immune cells. In addition, iRhom2 also regulates the ADAM17-mediated cleavage of EGFR ligands such as amphiregulin and heparin-binding EGF-like growth factor. Targeting iRhom2 has recently become a possible alternative therapeutic strategy in chronic inflammatory diseases such as lupus nephritis and rheumatoid arthritis. However, what role this intriguing interacting partner of ADAM17 plays in the vasculature and how it functions in the pathologies of obesity and associated CVDs, are exciting questions that are only beginning to be elucidated. In this review, we discuss the role of iRhom2 in cardiovascular-related pathologies such as atherogenesis and obesity by providing an evaluation of known iRhom2-dependent cellular and inflammatory pathways.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Priya D Issuree
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thorsten Maretzky
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
88
|
Zhou C, Chen R, Gao F, Zhang J, Lu F. 4-Hydroxyisoleucine relieves inflammation through iRhom2-dependent pathway in co-cultured macrophages and adipocytes with LPS stimulation. BMC Complement Med Ther 2020; 20:373. [PMID: 33298044 PMCID: PMC7724822 DOI: 10.1186/s12906-020-03166-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022] Open
Abstract
Background 4-Hydroxyisoleucine (4-HIL) is an active ingredient extracted from Trigonella foenum-graecum L., a Chinese traditional herbal medicine, which exerts the efficacy of anti-obesity and anti-diabetes. We previously reported that 4-HIL potentiates anti-inflammatory and anti-insulin resistance effects through down-regulation of TNF-α and TNF-α converting enzyme (TACE) in 3 T3-L1 adipocytes and HepG2 cells. In the present study, we further investigate the effects and mechanisms of 4-HIL on obesity-induced inflammation in RAW264.7 macrophages and 3 T3-L1 adipocytes co-culture system. Methods RAW264.7 macrophages and 3 T3-L1 adipocytes were co-cultured to mimic the microenvironment of adipose tissue. siRNA-iRhom2 transfection was performed to knockdown iRhom2 expression in RAW264.2 macrophages. The mRNA and protein expression of iRhom2 and TACE were measured by real-time quantitative PCR (RT-qPCR) and western blotting. The production of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), IL-6 and IL-10 were evaluated by ELISA. The ratio of M2/M1 was detected by flow cytometry. Results 4-HIL significantly repressed the mRNA and protein levels of iRhom2 and TACE in RAW264.7 macrophages after LPS stimulated. Meanwhile, the levels of pro-inflammatory cytokines, including TNF-α, MCP-1, and IL-6, were substantially suppressed by 4-HIL in the co-culture system. Moreover, the level of anti-inflammatory cytokine IL-10 was increased significantly by 4-HIL in the co-culture system after LPS stimulation. Additionally, the ratio of M2/M1 was also increased by 4-HIL in the co-culture system after LPS stimulation. Finally, these effects of 4-HIL were largely enhanced by siRNA-iRhom2 transfection. Conclusion Taken together, our results indicated that obesity-induced inflammation was potently relieved by 4-HIL, most likely through the iRhom2-dependent pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03166-1.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
89
|
Lownik JC, Farrar JS, Pearce JV, Celi FS, Martin RK. Adipocyte ADAM17 plays a limited role in metabolic inflammation. Adipocyte 2020; 9:509-522. [PMID: 32892692 PMCID: PMC7714430 DOI: 10.1080/21623945.2020.1814544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/23/2022] Open
Abstract
The role of ADAM17, its substrates, and its natural inhibitor has been well studied in the context of inflammation, including metabolic inflammation, with mixed results. Previous studies examining global Adam17 knockdown models and ADAM17 inhibition using overexpression of endogenous ADAM17 inhibitors have shown improved metabolic health and decreased metabolic inflammation. However, there have been no studies examining the role of adipocyte ADAM17 using in vivo models. In this study, we developed an adipocyte-specific Adam17 knockout model using Adipoq-Cre-expressing mice crossed with Adam17-floxed mice. Using this model, we show that loss of adipocyte ADAM17 plays no evident role in baseline metabolic responses. Surprisingly, in a state of metabolic stress using high-fat diet (HFD), we observed that adipocyte ADAM17 had little effect overall on the metabolic phenotype as well as inflammatory cell populations. Using whole-body metabolic phenotyping, we show that loss of ADAM17 has no effect on energy utilization both at a baseline state as well as following HFD. However, lastly, using high-parameter flow cytometry, we show that loss of adipocyte ADAM17 alters macrophage and eosinophil populations following HFD. Overall, the studies presented here give more insight into the role of ADAM17 in metabolic responses and metabolic inflammation, specifically in adipocytes.
Collapse
Affiliation(s)
- Joseph C. Lownik
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jared S. Farrar
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Janina V. Pearce
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francesco S. Celi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rebecca K. Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
90
|
Babendreyer A, Rojas-González DM, Giese AA, Fellendorf S, Düsterhöft S, Mela P, Ludwig A. Differential Induction of the ADAM17 Regulators iRhom1 and 2 in Endothelial Cells. Front Cardiovasc Med 2020; 7:610344. [PMID: 33335915 PMCID: PMC7736406 DOI: 10.3389/fcvm.2020.610344] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Endothelial function significantly depends on the proteolytic release of surface expressed signal molecules, their receptors and adhesion molecules via the metalloproteinase ADAM17. The pseudoproteases iRhom1 and 2 independently function as adapter proteins for ADAM17 and are essential for the maturation, trafficking, and activity regulation of ADAM17. Bioinformatic data confirmed that immune cells predominantly express iRhom2 while endothelial cells preferentially express iRhom1. Objective: Here, we investigate possible reasons for higher iRhom1 expression and potential inflammatory regulation of iRhom2 in endothelial cells and analyze the consequences for ADAM17 maturation and function. Methods: Primary endothelial cells were cultured in absence and presence of flow with and without inflammatory cytokines (TNFα and INFγ). Regulation of iRhoms was studied by qPCR, involved signaling pathways were studied with transcriptional inhibitors and consequences were analyzed by assessment of ADAM17 maturation, surface expression and cleavage of the ADAM17 substrate junctional adhesion molecule JAM-A. Results: Endothelial iRhom1 is profoundly upregulated by physiological shear stress. This is accompanied by a homeostatic phenotype driven by the transcription factor KLF2 which is, however, only partially responsible for regulation of iRhom1. By contrast, iRhom2 is most prominently upregulated by inflammatory cytokines. This correlates with an inflammatory phenotype driven by the transcription factors NFκB and AP-1 of which AP-1 is most relevant for iRhom2 regulation. Finally, shear stress exposure and inflammatory stimulation have independent and no synergistic effects on ADAM17 maturation, surface expression and JAM-A shedding. Conclusion: Conditions of shear stress and inflammation differentially upregulate iRhom1 and 2 in primary endothelial cells which then results in independent regulation of ADAM17.
Collapse
Affiliation(s)
- Aaron Babendreyer
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Diana M Rojas-González
- Department of Mechanical Engineering, Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Anja Adelina Giese
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sandra Fellendorf
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Petra Mela
- Department of Mechanical Engineering, Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
91
|
McDonald RC, Schott MJ, Idowu TA, Lyons PJ. Biochemical and genetic analysis of Ecm14, a conserved fungal pseudopeptidase. BMC Mol Cell Biol 2020; 21:86. [PMID: 33256608 PMCID: PMC7706225 DOI: 10.1186/s12860-020-00330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Background Like most major enzyme families, the M14 family of metallocarboxypeptidases (MCPs) contains a number of pseudoenzymes predicted to lack enzyme activity and with poorly characterized molecular function. The genome of the yeast Saccharomyces cerevisiae encodes one member of the M14 MCP family, a pseudoenzyme named Ecm14 proposed to function in the extracellular matrix. In order to better understand the function of such pseudoenzymes, we studied the structure and function of Ecm14 in S. cerevisiae. Results A phylogenetic analysis of Ecm14 in fungi found it to be conserved throughout the ascomycete phylum, with a group of related pseudoenzymes found in basidiomycetes. To investigate the structure and function of this conserved protein, His6-tagged Ecm14 was overexpressed in Sf9 cells and purified. The prodomain of Ecm14 was cleaved in vivo and in vitro by endopeptidases, suggesting an activation mechanism; however, no activity was detectable using standard carboxypeptidase substrates. In order to determine the function of Ecm14 using an unbiased screen, we undertook a synthetic lethal assay. Upon screening approximately 27,000 yeast colonies, twenty-two putative synthetic lethal clones were identified. Further analysis showed many to be synthetic lethal with auxotrophic marker genes and requiring multiple mutations, suggesting that there are few, if any, single S. cerevisiae genes that present synthetic lethal interactions with ecm14Δ. Conclusions We show in this study that Ecm14, although lacking detectable enzyme activity, is a conserved carboxypeptidase-like protein that is secreted from cells and is processed to a mature form by the action of an endopeptidase. Our study and datasets from other recent large-scale screens suggest a role for Ecm14 in processes such as vesicle-mediated transport and aggregate invasion, a fungal process that has been selected against in modern laboratory strains of S. cerevisiae. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-020-00330-w.
Collapse
Affiliation(s)
| | - Matthew J Schott
- Department of Biology, Andrews University, Berrien Springs, MI, USA
| | - Temitope A Idowu
- Department of Biology, Andrews University, Berrien Springs, MI, USA
| | - Peter J Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, USA.
| |
Collapse
|
92
|
Fang R, Haxaire C, Otero M, Lessard S, Weskamp G, McIlwain DR, Mak TW, Lichtenthaler SF, Blobel CP. Role of iRhoms 1 and 2 in Endochondral Ossification. Int J Mol Sci 2020; 21:ijms21228732. [PMID: 33227998 PMCID: PMC7699240 DOI: 10.3390/ijms21228732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Growth of the axial and appendicular skeleton depends on endochondral ossification, which is controlled by tightly regulated cell–cell interactions in the developing growth plates. Previous studies have uncovered an important role of a disintegrin and metalloprotease 17 (ADAM17) in the normal development of the mineralized zone of hypertrophic chondrocytes during endochondral ossification. ADAM17 regulates EGF-receptor signaling by cleaving EGFR-ligands such as TGFα from their membrane-anchored precursor. The activity of ADAM17 is controlled by two regulatory binding partners, the inactive Rhomboids 1 and 2 (iRhom1, 2), raising questions about their role in endochondral ossification. To address this question, we generated mice lacking iRhom2 (iR2−/−) with floxed alleles of iRhom1 that were specifically deleted in chondrocytes by Col2a1-Cre (iR1∆Ch). The resulting iR2−/−iR1∆Ch mice had retarded bone growth compared to iR2−/− mice, caused by a significantly expanded zone of hypertrophic mineralizing chondrocytes in the growth plate. Primary iR2−/−iR1∆Ch chondrocytes had strongly reduced shedding of TGFα and other ADAM17-dependent EGFR-ligands. The enlarged zone of mineralized hypertrophic chondrocytes in iR2−/−iR1∆Ch mice closely resembled the abnormal growth plate in A17∆Ch mice and was similar to growth plates in Tgfα−/− mice or mice with EGFR mutations. These data support a model in which iRhom1 and 2 regulate bone growth by controlling the ADAM17/TGFα/EGFR signaling axis during endochondral ossification.
Collapse
Affiliation(s)
- Renpeng Fang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Coline Haxaire
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Miguel Otero
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Samantha Lessard
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - David R. McIlwain
- Baxter Laboratory in Stem Cell Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada;
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany;
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
- Department of Medicine, Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: ; Tel.: +212-606-1429; Fax: +212-774-2560
| |
Collapse
|
93
|
Functional Characterization of Colon-Cancer-Associated Variants in ADAM17 Affecting the Catalytic Domain. Biomedicines 2020; 8:biomedicines8110463. [PMID: 33143292 PMCID: PMC7692748 DOI: 10.3390/biomedicines8110463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Although extensively investigated, cancer is still one of the most devastating and lethal diseases in the modern world. Among different types, colorectal cancer (CRC) is most prevalent and mortal, making it an important subject of research. The metalloprotease ADAM17 has been implicated in the development of CRC due to its involvement in signaling pathways related to inflammation and cell proliferation. ADAM17 is capable of releasing membrane-bound proteins from the cell surface in a process called shedding. A deficiency of ADAM17 activity has been previously shown to have protective effects against CRC in mice, while an upregulation of ADAM17 activity is suspected to facilitate tumor development. In this study, we characterize ADAM17 variants found in tissue samples of cancer patients in overexpression studies. We here focus on point mutations identified within the catalytic domain of ADAM17 and could show a functional dysregulation of the CRC-associated variants. Since the catalytic domain of ADAM17 is the only region structurally determined by crystallography, we study the effect of each point mutation not only to learn more about the role of ADAM17 in cancer, but also to investigate the structure–function relationships of the metalloprotease.
Collapse
|
94
|
Tüshaus J, Müller SA, Kataka ES, Zaucha J, Sebastian Monasor L, Su M, Güner G, Jocher G, Tahirovic S, Frishman D, Simons M, Lichtenthaler SF. An optimized quantitative proteomics method establishes the cell type-resolved mouse brain secretome. EMBO J 2020; 39:e105693. [PMID: 32954517 PMCID: PMC7560198 DOI: 10.15252/embj.2020105693] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the "high-performance secretome protein enrichment with click sugars" (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS-induced neuroinflammation and to establish the cell type-resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer-linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type-specific biomarkers for CNS diseases.
Collapse
Affiliation(s)
- Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Evans Sioma Kataka
- Department of BioinformaticsWissenschaftszentrum WeihenstephanTechnical University of MunichFreisingGermany
| | - Jan Zaucha
- Department of BioinformaticsWissenschaftszentrum WeihenstephanTechnical University of MunichFreisingGermany
| | | | - Minhui Su
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute of Neuronal Cell BiologyTechnical University MunichMunichGermany
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Dmitrij Frishman
- Department of BioinformaticsWissenschaftszentrum WeihenstephanTechnical University of MunichFreisingGermany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute of Neuronal Cell BiologyTechnical University MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der IsarTechnical University of MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
95
|
Zipeto D, Palmeira JDF, Argañaraz GA, Argañaraz ER. ACE2/ADAM17/TMPRSS2 Interplay May Be the Main Risk Factor for COVID-19. Front Immunol 2020; 11:576745. [PMID: 33117379 PMCID: PMC7575774 DOI: 10.3389/fimmu.2020.576745] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) has already caused hundreds of thousands of deaths worldwide in a few months. Cardiovascular disease, hypertension, diabetes and chronic lung disease have been identified as the main COVID-19 comorbidities. Moreover, despite similar infection rates between men and women, the most severe course of the disease is higher in elderly and co-morbid male patients. Therefore, the occurrence of specific comorbidities associated with renin-angiotensin system (RAS) imbalance mediated by the interaction between angiotensin-converting enzyme 2 (ACE2) and desintegrin and metalloproteinase domain 17 (ADAM17), along with specific genetic factors mainly associated with type II transmembrane serine protease (TMPRSS2) expression, could be decisive for the clinical outcome of COVID-19. Indeed, the exacerbated ADAM17-mediated ACE2, TNF-α, and IL-6R secretion emerges as a possible underlying mechanism for the acute inflammatory immune response and the activation of the coagulation cascade. Therefore, in this review, we focus on the main pathophysiological aspects of ACE2, ADAM17, and TMPRSS2 host proteins in COVID-19. Additionally, we discuss a possible mechanism to explain the deleterious effect of ADAM17 and TMPRSS2 over-activation in the COVID-19 outcome.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasilia, Brazil
| | - Gustavo A. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasilia, Brazil
| | - Enrique R. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasilia, Brazil
| |
Collapse
|
96
|
Adrain C, Cavadas M. The complex life of rhomboid pseudoproteases. FEBS J 2020; 287:4261-4283. [DOI: 10.1111/febs.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Colin Adrain
- Instituto Gulbenkian de Ciência (IGC) Oeiras Portugal
- Centre for Cancer Research and Cell Biology Queen's University Belfast UK
| | | |
Collapse
|
97
|
Zhou C, Qin Y, Chen R, Gao F, Zhang J, Lu F. Fenugreek attenuates obesity-induced inflammation and improves insulin resistance through downregulation of iRhom2/TACE. Life Sci 2020; 258:118222. [PMID: 32768577 DOI: 10.1016/j.lfs.2020.118222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
AIMS We previously reported that fenugreek-derived 4-hydroxyisoleucine ameliorates insulin resistance via regulation of TNF-α converting enzyme (TACE) expression. In the present study, we further investigate the effects and mechanisms of fenugreek on obesity-induced inflammation and insulin signaling in the high-fat diet (HFD)-challenged obese mice. MAIN METHODS After 12 weeks of HFD intervention, mice were treated with the low or high dosages of fenugreek. Serum levels of glucose, insulin, lipid profile, inflammation cytokines, and adipokines were detected. Macrophage infiltration and adipose tissue morphology were observed. Western blot was conducted to investigate the expressions of inactive rhomboid 2 (iRhom2) and TACE as well as other signaling pathways in subcutaneous adipose tissue. KEY FINDINGS We showed that fenugreek significantly suppressed body weight gain and fat accumulation in HFD-challenged obese mice. Meanwhile, fasting glucose, insulin, and HOMA-IR in fenugreek-treated mice were remarkably decreased, which were properly explained by fenugreek-induced activation of the insulin receptor signaling pathway. Moreover, the anti-inflammatory properties of fenugreek were shown by the decrease of systemic and local expressions of pro-inflammatory cytokines as well as reduced macrophage infiltration into adipose tissue. Additionally, fenugreek markedly deactivated NF-κB and JNK pathways. Finally, we demonstrated that fenugreek strikingly repressed the transcriptions and expressions of iRhom2 and TACE. SIGNIFICANCE Fenugreek shows an encouraging and promising property in ameliorating insulin resistance and suppressing inflammation in obesity, which might be realized by fenugreek-mediated inhibition of iRhom2/TACE axis-facilitated TNF-α release from adipocytes.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
98
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
99
|
Seifert A, Wozniak J, Düsterhöft S, Kasparek P, Sedlacek R, Dreschers S, Orlikowsky TW, Yildiz D, Ludwig A. The iRhom2/ADAM17 Axis Attenuates Bacterial Uptake by Phagocytes in a Cell Autonomous Manner. Int J Mol Sci 2020; 21:ijms21175978. [PMID: 32825187 PMCID: PMC7503280 DOI: 10.3390/ijms21175978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Uptake of bacteria by phagocytes is a crucial step in innate immune defence. Members of the disintegrin and metalloproteinase (ADAM) family critically control the immune response by limited proteolysis of surface expressed mediator molecules. Here, we investigated the significance of ADAM17 and its regulatory adapter molecule iRhom2 for bacterial uptake by phagocytes. Inhibition of metalloproteinase activity led to increased phagocytosis of pHrodo labelled Gram-negative and -positive bacteria (E. coli and S. aureus, respectively) by human and murine monocytic cell lines or primary phagocytes. Bone marrow-derived macrophages showed enhanced uptake of heat-inactivated and living E. coli when they lacked either ADAM17 or iRhom2 but not upon ADAM10-deficiency. In monocytic THP-1 cells, corresponding short hairpin RNA (shRNA)-mediated knockdown confirmed that ADAM17, but not ADAM10, promoted phagocytosis of E. coli. The augmented bacterial uptake occurred in a cell autonomous manner and was accompanied by increased release of the chemokine CXCL8, less TNFα release and only minimal changes in the surface expression of the receptors TNFR1, TLR6 and CD36. Inhibition experiments indicated that the enhanced bacterial phagocytosis after ADAM17 knockdown was partially dependent on TNFα-activity but not on CXCL8. This novel role of ADAM17 in bacterial uptake needs to be considered in the development of ADAM17 inhibitors as therapeutics.
Collapse
Affiliation(s)
- Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic; (P.K.); (R.S.)
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic; (P.K.); (R.S.)
| | - Stephan Dreschers
- Department of Neonatology, University Children’s Hospital, 52074 Aachen, Germany; (S.D.); (T.W.O.)
| | - Thorsten W. Orlikowsky
- Department of Neonatology, University Children’s Hospital, 52074 Aachen, Germany; (S.D.); (T.W.O.)
| | - Daniela Yildiz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, 66424 Homburg, Germany
- Correspondence: (D.Y.); (A.L.); Tel.: +49-241-8035771 (A.L.); Fax: +49-241-8082433 (A.L.)
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (A.S.); (J.W.); (S.D.)
- Correspondence: (D.Y.); (A.L.); Tel.: +49-241-8035771 (A.L.); Fax: +49-241-8082433 (A.L.)
| |
Collapse
|
100
|
Tang M, Alaniz ME, Felsky D, Vardarajan B, Reyes-Dumeyer D, Lantigua R, Medrano M, Bennett DA, de Jager PL, Mayeux R, Santa-Maria I, Reitz C. Synonymous variants associated with Alzheimer disease in multiplex families. Neurol Genet 2020; 6:e450. [PMID: 32637632 PMCID: PMC7323483 DOI: 10.1212/nxg.0000000000000450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/05/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Synonymous variants can lead to disease; nevertheless, the majority of sequencing studies conducted in Alzheimer disease (AD) only assessed coding variation. METHODS To detect synonymous variants modulating AD risk, we conducted a whole-genome sequencing study on 67 Caribbean Hispanic (CH) families multiply affected by AD. Identified disease-associated variants were further assessed in an independent cohort of CHs, expression quantitative trait locus (eQTL) data, brain autopsy data, and functional experiments. RESULTS Rare synonymous variants in 4 genes (CDH23, SLC9A3R1, RHBDD2, and ITIH2) segregated with AD status in multiplex families and had a significantly higher frequency in these families compared with reference populations of similar ancestry. In comparison to subjects without dementia, expression of CDH23 (β = 0.53, p = 0.006) and SLC9A3R1 (β = 0.50, p = 0.02) was increased, and expression of RHBDD2 (β = -0.70, p = 0.02) decreased in individuals with AD at death. In line with this finding, increased expression of CDH23 (β = 0.26 ± 0.08, p = 4.9E-4) and decreased expression of RHBDD2 (β = -0.60 ± 0.12, p = 5.5E-7) were related to brain amyloid load (p = 0.0025). SLC9A3R1 expression was associated with burden of TDP43 pathology (β = 0.58 ± 0.17, p = 5.9E-4). Using eQTL data, the CDH23 variant was in linkage disequilibrium with variants modulating CDH23 expression levels (top single nucleotide polymorphism: rs11000035, p = 4.85E-6, D' = 1.0). Using minigene splicing assays, the CDH23 and SLC9A3R1 variants affected splicing efficiency. CONCLUSIONS These findings suggest that CDH23, SLC9A3R1, RHBDD2, and possibly ITIH2, which are involved in synaptic function, the glutamatergic system, and innate immunity, contribute to AD etiology. In addition, this study supports the notion that synonymous variants contribute to AD risk and that comprehensive scrutinization of this type of genetic variation is warranted and critical.
Collapse
Affiliation(s)
- Min Tang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Maria Eugenia Alaniz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel Felsky
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Badri Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rafael Lantigua
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Martin Medrano
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - David A Bennett
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip L de Jager
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ismael Santa-Maria
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.E.A., B.V., R.L., P.L.J., R.M., I.S.-M., C.R.); The Gertrude H. Sergievsky Center (M.T., D.R.-D., R.L., R.M., C.R.); Department of Neurology (P.L.J., R.M., C.R.); Department of Epidemiology (R.M., C.R.); Department of Psychiatry (R.M.), Columbia University, New York; Department of Pathology and Cell Biology (M.E.A., I.S.-M.), Columbia University, New York; Rush Alzheimer's Disease Center (D.A.B.); Department of Neurological Sciences (D.A.B.); Department of Pathology (D.A.B.), Rush University Medical Center, Chicago, IL; Center for Innovation in Brain Science , Departments of Pharmacology and Neurology , University of Arizona College of Medicine (M.T.), Tucson; Department of Medicine (R.L.), College of Physicians and Surgeons, Columbia University, New York, NY; School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic; and The Krembil Centre for Neuroinformatics (D.F.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|