51
|
Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE. Exploring the energy landscape of antibody-antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 2008; 47:7237-47. [PMID: 18549243 DOI: 10.1021/bi800374q] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The production of antibodies that selectively bind virtually any foreign compound is the hallmark of the immune system. While much is understood about how sequence diversity contributes to this remarkable feat of molecular recognition, little is known about how sequence diversity impacts antibody dynamics, which is also expected to contribute to molecular recognition. Toward this goal, we examined a panel of antibodies elicited to the chromophoric antigen fluorescein. On the basis of isothermal titration calorimetry, we selected six antibodies that bind fluorescein with diverse binding entropies, suggestive of varying contributions of dynamics to molecular recognition. Sequencing revealed that two pairs of antibodies employ homologous heavy chains that were derived from common germline genes, while the other two heavy chains and all six of the light chains were derived from different germline genes and are not homologous. Interestingly, more than half of all the somatic mutations acquired during affinity maturation among the six antibodies are located in positions unlikely to contact fluorescein directly. To quantify and compare the dynamics of the antibody-fluorescein complexes, three-pulse photon echo peak shift and transient grating spectroscopy were employed. All of the antibodies exhibited motions on three distinct time scales, ultrafast motions on the <100 fs time scale, diffusive motions on the picosecond time scale, and motions that occur on time scales longer than nanoseconds and thus appear static. However, the exact frequency of the picosecond time scale motion and the relative contribution of the different motions vary significantly among the antibody-chromophore complexes, revealing a high level of dynamic diversity. Using a hierarchical model, we relate the data to features of the antibodies' energy landscapes as well as their flexibility in terms of elasticity and plasticity. In all, the data provide a consistent picture of antibody flexibility, which interestingly appears to be correlated with binding entropy as well as with germline gene use and the mutations introduced during affinity maturation. The data also provide a gauge of the dynamic diversity of the antibody repertoire and suggest that this diversity might contribute to molecular recognition by facilitating the recognition of the broadest range of foreign molecules.
Collapse
Affiliation(s)
- Megan C Thielges
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
52
|
Tarlinton D. Sheepish B cells: evidence for antigen-independent antibody diversification in humans and mice. ACTA ACUST UNITED AC 2008; 205:1251-4. [PMID: 18519651 PMCID: PMC2413022 DOI: 10.1084/jem.20081057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibody diversity is first generated by rearrangement of immunoglobulin (Ig) genes during B cell development in the bone marrow, and later by antigen-driven diversification in germinal centers (GCs). New data in humans and mice now identify specific B cell populations that may have undergone antigen-independent hypermutation outside GCs.
Collapse
Affiliation(s)
- David Tarlinton
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria 3050, Australia.
| |
Collapse
|
53
|
Affiliation(s)
- Christian Jäckel
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland; ,
| | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland; ,
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland; ,
| |
Collapse
|
54
|
Chen L, Li M, Li Q, Yang X, An X, Chen Y. Characterization of the bovine immunoglobulin lambda light chain constant IGLC genes. Vet Immunol Immunopathol 2008; 124:284-94. [PMID: 18538861 DOI: 10.1016/j.vetimm.2008.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 03/27/2008] [Accepted: 04/09/2008] [Indexed: 11/24/2022]
Abstract
To characterize the bovine immunoglobulin lambda light chain constant region (IGLC) genes, we have isolated a bacterial artificial chromosome (BAC) clone by a PCR based approach from a bovine genomic DNA library, constructed using a genital ridge cell line derived from a male Holstein fetus. The positive BAC clone, containing the bovine IGLC genes, was fully sequenced and had a 138 kb insert. Sequence analysis revealed that the bovine immunoglobulin lambda light chain locus consisted of four joining-constant gene recombination units spanning approximately 20 kb DNA in length. A detailed examination of the recombination signal sequences, RNA splicing sites and coding sequences of the four joining-constant gene recombination units suggested that only two IGLC genes (IGLC2 and IGLC3) were functional while the IGLC1 and IGLC4 appeared to be pseudogenes. This conclusion was further confirmed by a series of RT-PCR amplifications, which also showed that among these four genes the IGLC3 was preferentially expressed in cattle. Phylogenetic analysis indicated that the bovine IGLC genes were more closely related to their equivalents in sheep and goats than that to other mammals.
Collapse
Affiliation(s)
- Limei Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
55
|
Vitolo U, Ferreri AJM, Montoto S. Follicular lymphomas. Crit Rev Oncol Hematol 2008; 66:248-61. [PMID: 18359244 DOI: 10.1016/j.critrevonc.2008.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 01/01/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022] Open
Abstract
Follicular lymphomas constitute approximately 30% of all non-Hodgkin lymphomas. These lymphomas are characterized by at least partially follicular growth pattern, but diffuse areas may be present. The proportions of follicular or diffuse areas vary also from case to case, which seems to be associated with prognosis. Follicular lymphomas should not be divided into distinct subtypes, but rather shows a continuous gradation in the number of large cells. On the bases of this grading, three groups have been defined: grades 1-3. There is a consensus that grade 3 follicular lymphomas, namely grade 3b, should be discriminated from lower-grade cases. The cells of follicular lymphomas express surface immunoglobulin, more frequently IgM+/-IgD>IgG>IgA, B-cell-associated antigens, CD10+/-; they are CD5-, CD23-/+, CD43-, and CD11c-. Follicular lymphomas express bcl-2 proteins, which is useful in distinguishing reactive from neoplastic follicles. t(14;18) is present in 70-95% of follicular lymphomas, involving rearrangement of bcl-2 gene. Clinical behavior of follicular lymphomas is heterogeneous and differs according to the histologic grade and extension of disease. Moreover, the evaluation of these malignancies is conditioned by therapeutic decision, which is also determined by main prognostic factors. The International Prognostic Index for aggressive lymphomas is not optimal for follicular lymphomas. Conversely, the Italian Lymphoma Intergroup Index and, more recently, the Follicular Lymphoma International Prognostic Index (FLIPI), designed in pre-rituximab era, seem to correlate well with outcome. Several active therapeutic approaches from the "wait and watch" strategy to the allogeneic transplantation are available for management of patients with follicular lymphoma. Therapeutic decision is mostly conditioned by patient's characteristics, stage, histologic grade, tumor burden, and risk-predicting factors.
Collapse
Affiliation(s)
- Umberto Vitolo
- Hematology Unit, Azienda Ospedaliera S. Giovanni Battista Molinette, Turin, Italy
| | | | | |
Collapse
|
56
|
Butler JE, Wertz N, Weber P, Lager KM. Porcine Reproductive and Respiratory Syndrome Virus Subverts Repertoire Development by Proliferation of Germline-Encoded B Cells of All Isotypes Bearing Hydrophobic Heavy Chain CDR3. THE JOURNAL OF IMMUNOLOGY 2008; 180:2347-56. [DOI: 10.4049/jimmunol.180.4.2347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
57
|
Switching antibody specificity through minimal mutation. J Mol Biol 2008; 377:993-1001. [PMID: 18295792 DOI: 10.1016/j.jmb.2008.01.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/17/2008] [Accepted: 01/23/2008] [Indexed: 11/22/2022]
Abstract
Antibody 1E9, which was elicited with a hexachloronorbornene derivative and catalyzes the Diels-Alder reaction between tetrachlorothiophene dioxide and N-ethylmaleimide with high efficiency, was successfully reengineered to bind a range of structurally diverse steroids with nanomolar affinities. Remarkably, two mutations (Leu(H47)Trp/Arg(H100)Trp) out of 36 total sequence differences suffice to switch the selectivity of 1E9 to that of the progesterone-binding antibody DB3. In contrast to the double mutant, which tightly binds multiple steroids with differently configured A-B ring junctions, the individual Leu(H47)Trp and Arg(H100)Trp single mutants both exhibit significantly greater specificity than DB3, preferentially binding 5alpha-pregnan-3beta-ol-20-one (K(d) approximately 5 nM) over other steroids. These findings illustrate how easily differently shaped binding pockets can be created through subtle changes to the same primordial germ line template.
Collapse
|
58
|
Buck LB. Receptor diversity and spatial patterning in the mammalian olfactory system. CIBA FOUNDATION SYMPOSIUM 2007; 179:51-64; discussion 64-7, 88-96. [PMID: 8168382 DOI: 10.1002/9780470514511.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to gain insight into the mechanisms underlying olfactory perception in mammals, we have performed experiments to identify and characterize the basic receptive elements of the olfactory system, the odorant receptors. We have identified a novel multigene family that encodes odorant receptors on olfactory sensory neurons in the nasal cavity. The tremendous size and diversity of this family indicate that perceptual acuity in the olfactory system relies heavily on the differential binding properties of hundreds of different receptor types. In order to determine how the information supplied by such a large collection of diverse receptors might be organized, we have examined the patterns of expression of different odorant receptor genes in the olfactory epithelium. We have observed distinct topographical patterns of odorant receptor RNAs that indicate that the olfactory epithelium is divided into a series of expression zones. These zones are likely to provide for a broad organization of sensory information in the nasal cavity which is maintained in the axonal projection to the olfactory bulb.
Collapse
Affiliation(s)
- L B Buck
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
59
|
Bai L, Chen Y, He Y, Dai X, Lin X, Wen R, Wang D. Phospholipase Cgamma2 contributes to light-chain gene activation and receptor editing. Mol Cell Biol 2007; 27:5957-67. [PMID: 17591700 PMCID: PMC1952164 DOI: 10.1128/mcb.02273-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phospholipase Cgamma2 (PLCgamma2) is critical for pre-B-cell receptor (pre-BCR) and BCR signaling. Current studies discovered that PLCgamma2-deficient mice had reduced immunoglobulin lambda (Iglambda) light-chain usage throughout B-cell maturation stages, including transitional type 1 (T1), transitional type 2 (T2), and mature follicular B cells. The reduction of Iglambda rearrangement by PLCgamma2 deficiency was not due to specifically increased apoptosis or decreased proliferation of mutant Iglambda+ B cells, as lack of PLCgamma2 exerted a similar effect on apoptosis and proliferation of both Iglambda+ and Igkappa+ B cells. Moreover, PLCgamma2-deficient IgHEL transgenic B cells exhibited an impairment of antigen-induced receptor editing among both the endogenous lambda and kappa loci in vitro and in vivo. Importantly, PLCgamma2 deficiency impaired BCR-induced expression of IRF-4 and IRF-8, the two transcription factors critical for lambda and kappa light-chain rearrangements. Taken together, these data demonstrate that the PLCgamma2 signaling pathway plays a role in activation of light-chain loci and contributes to receptor editing.
Collapse
Affiliation(s)
- Li Bai
- Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Abstract
In adult mammals, bone marrow pluripotent hematopoietic stem cells generate B lymphoid-specified progeny that progress through a series of well-characterized stages before generating B-cell receptor expressing B lymphocytes. These functionally immature B lymphocytes then migrate to the spleen wherein they differentiate through transitional stages into follicular or marginal zone B lymphocytes capable of responding to T-dependent and -independent antigens, respectively. During the terminal stages of B lymphocyte development in the bone marrow, as well as immediately following egress into the peripheral compartments, B lymphocytes are counterselected to eliminate B lymphocytes with potentially dangerous self-reactivity. These developmental and selection events in the bone marrow and periphery are dependent on the integration of intrinsic genetic programs with extrinsic microenvironmental signals that drive progenitors toward increasing B lineage commitment and maturation. This chapter provides a comprehensive overview of the various stages of primary and secondary B lymphocyte development with an emphasis on the selection processes that affect decisions at critical checkpoints. Our intent is to stress the concept that at many steps in the developmental process leading to a mature immunocompetent B lymphocyte, B lineage cells are integrating multiple and different signaling inputs that are translated into specific and appropriate cell fate decisions.
Collapse
MESH Headings
- Aging
- Animals
- Antigens, Differentiation, B-Lymphocyte/analysis
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/physiology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/physiology
- Cell Lineage
- Humans
- Lymphopoiesis/genetics
- Models, Immunological
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Recombination, Genetic
- Signal Transduction
Collapse
Affiliation(s)
- John G Monroe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
62
|
Kawano Y, Yoshikawa S, Minegishi Y, Karasuyama H. Pre-B cell receptor assesses the quality of IgH chains and tunes the pre-B cell repertoire by delivering differential signals. THE JOURNAL OF IMMUNOLOGY 2006; 177:2242-9. [PMID: 16887984 DOI: 10.4049/jimmunol.177.4.2242] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well understood how a variety of Ig H and L chains, components of BCR, are generated in the DNA level during B cell development. However, it has remained largely unknown whether and how each component is monitored for its quality and selected before the assembly into the BCR. Here we show that muH chains produced by pre-B cells display a wide spectrum of ability to form the pre-BCR, which is composed of muH and surrogate light (SL) chains and is crucial for B cell development. The level of surface pre-BCR expression varies among pre-B cells, depending on the ability of their muH chains to pair with SL chains. The higher the level of pre-BCR expression by pre-B cells, the stronger their pre-BCR signaling, and the better they proliferate and differentiate. Thus, the extent of survival, proliferation, and differentiation of individual pre-B cells is primarily determined by the SL-pairing ability of their muH chains. Furthermore, IgH chains with higher potential to assemble with IgL chains appear to be positively selected and amplified through the assessment of their ability to pair with SL chains at the pre-BCR checkpoint before the assembly into the BCR. These results indicate that the pre-BCR assesses the quality of muH chains and tunes the pre-B cell repertoire by driving the preferential expansion and differentiation of cells with the higher quality of muH chains.
Collapse
Affiliation(s)
- Yohei Kawano
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
63
|
Allam A, Kabelitz D. TCR trans-rearrangements: biological significance in antigen recognition vs the role as lymphoma biomarker. THE JOURNAL OF IMMUNOLOGY 2006; 176:5707-12. [PMID: 16670273 DOI: 10.4049/jimmunol.176.10.5707] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
V(D)J rearrangements occur within loci of TCR and BCR genes, thus generating the diversity of the AgR repertoire. In addition, interlocus V(D)J rearrangements occur, giving rise to so-called "trans-rearrangements." Such trans-rearrangements increase the diversity of the immune receptor repertoire and can be expressed as functional chimeric TCR proteins on the surface of T cells. Although chimeric receptors are not pathogenic per se, the frequency of AgR trans-rearrangements correlates with the level of genetic instability and thus could be used as a predictive biomarker for lymphoma risk.
Collapse
Affiliation(s)
- Atef Allam
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
64
|
Inlay MA, Lin T, Gao HH, Xu Y. Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci. ACTA ACUST UNITED AC 2006; 203:1721-32. [PMID: 16785310 PMCID: PMC2118354 DOI: 10.1084/jem.20052310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
V(D)J recombination of immunoglobulin (Ig) heavy (IgH) and light chain genes occurs sequentially in the pro– and pre–B cells. To identify cis-elements that dictate this order of rearrangement, we replaced the endogenous matrix attachment region/Igk intronic enhancer (MiEκ) with its heavy chain counterpart (Eμ) in mice. This replacement, denoted EμR, substantially increases the accessibility of both Vκ and Jκ loci to V(D)J recombinase in pro–B cells and induces Igk rearrangement in these cells. However, EμR does not support Igk rearrangement in pre–B cells. Similar to that in MiEκ−/− pre–B cells, the accessibility of Vκ segments to V(D)J recombinase is considerably reduced in EμR pre–B cells when compared with wild-type pre–B cells. Therefore, Eμ and MiEκ play developmental stage-specific roles in maintaining the sequential rearrangement of IgH and Igk loci by promoting the accessibility of V, D, and J loci to the V(D)J recombinase.
Collapse
Affiliation(s)
- Matthew A Inlay
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
65
|
D'Avirro N, Truong D, Xu B, Selsing E. Sequence transfers between variable regions in a mouse antibody transgene can occur by gene conversion. THE JOURNAL OF IMMUNOLOGY 2006; 175:8133-7. [PMID: 16339551 DOI: 10.4049/jimmunol.175.12.8133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Different vertebrate species show widely differing usage of somatic hyperconversion (SHC) as a mechanism for diversifying expressed Ab V genes. The basis for the differing levels of SHC in different species is not known. Although no clear evidence for SHC has been found in normal mouse B cells, transgenic mice carrying high-copy numbers of a gene construct designed to optimize detection of SHC have previously been shown to exhibit sequence transfers that resemble gene conversion events. However, these transgene sequence transfers could reflect multistep or reciprocal DNA recombination events rather than gene conversions. We now find in low-copy number transgenic mice that transgene sequence transfers can exhibit the unidirectional sequence information movement that is a hallmark of gene conversion. This indicates that gene conversion between V region sequences can occur in mouse B cells; we propose that the lack of efficient SHC contributions to Ab diversification in normal mice may be due, at least in part, to the particular pattern of V gene recombinational accessibility that occurs in differentiating mouse B cells.
Collapse
Affiliation(s)
- Nicole D'Avirro
- Program in Genetics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
66
|
Snoeck V, Peters IR, Cox E. The IgA system: a comparison of structure and function in different species. Vet Res 2006; 37:455-67. [PMID: 16611558 DOI: 10.1051/vetres:2006010] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 09/16/2005] [Indexed: 12/12/2022] Open
Abstract
The predominant immunoglobulin isotype on most mucosal surfaces is secretory immunoglobulin A (SIgA), a polypeptide complex comprising two IgA monomers, the connecting J chain, and the secretory component. The molecular stability and strong anti-inflammatory properties make SIgA particularly well suited to provide protective immunity to the vulnerable mucosal surfaces by preventing invasion of inhaled and ingested pathogens. In contrast to SIgA, IgA in serum functions as an inflammatory antibody through interaction with FcalphaR on immune effector cells. Although IgA appears to share common features and protective functions in different species, significant variations exist within the IgA systems of different species. This review will give an overview of the basic concepts underlying mucosal IgA defence which will focus on the variations present among species in structure, antibody repertoire development, pIgR-mediated transport, colostral IgA content, hepatobiliary transport, and function with particular emphasis on the IgA system of the pig and dog. These interspecies variations emphasise the importance of elucidating and analysing the IgA system within the immune system of the species of interest rather than inferring roles from conclusions made in human and mouse studies.
Collapse
Affiliation(s)
- Veerle Snoeck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
67
|
Rezanka LJ, Kenny JJ, Longo DL. 2 BCR or NOT 2 BCR - receptor dilution: a unique mechanism for preventing the development of holes in the protective B cell repertoire. Immunobiology 2005; 210:769-74. [PMID: 16325496 DOI: 10.1016/j.imbio.2005.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 08/30/2005] [Indexed: 11/17/2022]
Abstract
The clonal selection theory and the associated corollaries have had a major influence in shaping our thinking about lymphoid cell development as well as how these cells respond to antigenic challenges. Among these concepts are that a single B cell expresses a single receptor with a single antigen specificity. While these hypotheses have proven invaluable in expanding our understanding of immune response, over time numerous observations have been made that suggest that the single cell, single receptor, single specificity model is not absolute. In this manuscript, we review this literature as it pertains to B cells and provide a summary that supports the notion that in certain situations, the over-arching rules by which we consider development and response of immune cells may be compromised. The result of compromising allelic and isotype exclusion is a small but real population of dual receptor expressing B cells. A number of mechanisms that have been proposed for generating these dual expressing B cells are presented and discussed. We also consider the negative implications of dual receptor expression on regulating and controlling autoreactive B cell populations as well as its beneficial contributions to preserving essential receptor specificities and thereby preventing the development of holes in the immune repertoire. Previously, the dual receptor expressing population has received relatively little attention. Improvements in the tools available to examine individual B cell populations have resulted in our identification of and discrimination between novel populations of B cells, including novel dual receptor expressing populations. This combined with continuing increases in our understanding of how the immune repertoire relates to a protective immune response will strengthen and further define this novel aspect of immune cell development.
Collapse
Affiliation(s)
- Louis J Rezanka
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
68
|
Hippen KL, Schram BR, Tze LE, Pape KA, Jenkins MK, Behrens TW. In vivo assessment of the relative contributions of deletion, anergy, and editing to B cell self-tolerance. THE JOURNAL OF IMMUNOLOGY 2005; 175:909-16. [PMID: 16002689 DOI: 10.4049/jimmunol.175.2.909] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In normal B cell development, a large percentage of newly formed cells bear receptors with high levels of self-reactivity that must be tolerized before entry into the mature B cell pool. We followed the fate of self-reactive B cells expressing high affinity anti-hen egg lysozyme (HEL) Ag receptors exposed in vivo to membrane HEL in a setting in which the anti-HEL L chain was "knocked-in" at the endogenous L chain locus. These mice demonstrated extensive and efficient L chain receptor editing responses and had B cell numbers comparable to those found in animals lacking membrane Ag. BrdU labeling indicated that the time required for editing in response to membrane HEL was approximately 6 h. In mice transgenic for soluble HEL, anti-HEL B cells capable of editing showed evidence for both editing and anergy. These data identify receptor editing as a major physiologic mechanism by which highly self-reactive B cells are tolerized to membrane and soluble self-Ags.
Collapse
Affiliation(s)
- Keli L Hippen
- Departments of Medicine and Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Melchers F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol 2005; 5:578-84. [PMID: 15999097 DOI: 10.1038/nri1649] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this Opinion article, I address the role of the pre-B-cell receptor (pre-BCR) in the development of antigen-specific B cells in terms of immunoglobulin heavy chain (IgH) variable-region repertoire selection, precursor B-cell differentiation and proliferation, and IgH allelic exclusion. Comparisons with the role of the pre-T-cell receptor (pre-TCR) in T-cell development raise provocative questions. Why do B- and T-cell lineages both use a surrogate chain - the surrogate light chain and the pre-TCR alpha-chain, respectively - as a step to develop their repertoires of antigen-recognizing cells? What are the functions of the pre-BCR and pre-TCR in lymphocyte differentiation and antigen-receptor allelic exclusion? This article, together with the accompanying article by Harald von Boehmer, hopes to answer some of these questions.
Collapse
Affiliation(s)
- Fritz Melchers
- Max Planck Institute for Infection Biology, Campus Charité Mitte, Schumannstrasse 21-22, D-10117 Berlin, Germany.
| |
Collapse
|
70
|
Mayorov VI, Rogozin IB, Adkison LR, Frahm C, Kunkel TA, Pavlov YI. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunol 2005; 6:10. [PMID: 15949042 PMCID: PMC1180437 DOI: 10.1186/1471-2172-6-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Accepted: 06/10/2005] [Indexed: 12/02/2022] Open
Abstract
Background Antibody genes are diversified by somatic hypermutation (SHM), gene conversion and class-switch recombination. All three processes are initiated by the activation-induced deaminase (AID). According to a DNA deamination model of SHM, AID converts cytosine to uracil in DNA sequences. The initial deamination of cytosine leads to mutation and recombination in pathways involving replication, DNA mismatch repair and possibly base excision repair. The DNA sequence context of mutation hotspots at G-C pairs during SHM is DGYW/WRCH (G-C is a hotspot position, R = A/G, Y = T/C, W = A/T, D = A/G/T). Results To investigate the mechanisms of AID-induced mutagenesis in a model system, we studied the genetic consequences of AID expression in yeast. We constructed a yeast vector with an artificially synthesized human AID gene insert using codons common to highly expressed yeast genes. We found that expression of the artificial hAIDSc gene was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain. A majority of mutations were at G-C pairs. In the ung1 strain, C-G to T-A transitions were found almost exclusively, while a mixture of transitions with 12% transversions was characteristic in the wild-type strain. In the ung1 strain mutations that could have originated from deamination of the transcribed stand were found more frequently. In the wild-type strain, the strand bias was reversed. DGYW/WRCH motifs were preferential sites of mutations. Conclusion The results are consistent with the hypothesis that AID-mediated deamination of DNA is a major cause of mutations at G-C base pairs in immunoglobulin genes during SHM. The sequence contexts of mutations in yeast induced by AID and those of somatic mutations at G-C pairs in immunoglobulin genes are significantly similar. This indicates that the intrinsic substrate specificity of AID itself is a primary determinant of mutational hotspots at G-C base pairs during SHM.
Collapse
Affiliation(s)
| | - Igor B Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda MD 20894, USA
- Institute of Cytology and Genetics SD RAS, Novosibirsk 630090, Russia
| | | | - Christin Frahm
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas A Kunkel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
71
|
Mauerer K, Zahrieh D, Gorgun G, Li A, Zhou J, Ansén S, Rassenti LZ, Gribben JG. Immunoglobulin gene segment usage, location and immunogenicity in mutated and unmutated chronic lymphocytic leukaemia. Br J Haematol 2005; 129:499-510. [PMID: 15877732 DOI: 10.1111/j.1365-2141.2005.05480.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mutational status of the variable region of the immunoglobulin heavy chain gene (IgV(H)) is an important prognostic marker in B-cell chronic lymphocytic leukaemia (B-CLL), with mutated patients having improved outcome. To examine the impact of mutational status on V(H), D(H), and J(H) gene segment location and immunogenicity, we analysed 375 IgH sequences from 356 patients with B-CLL. Although V(H) and D(H) gene usage was different in mutated compared to unmutated patients, there was no impact of gene location on frequency of use or clinical outcome. Surprisingly, somatic mutations did not increase the immunogenicity of the Ig, as assessed by predicted binding affinity of Ig-derived peptides to major histocompatibility Class I and Class II molecules. Even excluding patients using V(H)1-69, cases using the V(H)1 gene family had a poor outcome. Both mutated and unmutated CLL patients demonstrated evidence of antigen selection. The worst outcome was seen in the subset of 14 unmutated patients with similar HCDR3 amino acid sequence using V(H)1-69, D(H)3-3 and J(H)6, suggesting an antigen-driven process modulating the clinical course.
Collapse
Affiliation(s)
- Katja Mauerer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Tze LE, Schram BR, Lam KP, Hogquist KA, Hippen KL, Liu J, Shinton SA, Otipoby KL, Rodine PR, Vegoe AL, Kraus M, Hardy RR, Schlissel MS, Rajewsky K, Behrens TW. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol 2005; 3:e82. [PMID: 15752064 PMCID: PMC1059451 DOI: 10.1371/journal.pbio.0030082] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 12/30/2004] [Indexed: 02/07/2023] Open
Abstract
In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms. Gene rearrangement is a hallmark of B cell maturation. By interrupting basal cell signaling through the rearranged IgM receptor, immature B cells "back-differentiate" to an earlier stage in their development
Collapse
Affiliation(s)
- Lina E Tze
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Brian R Schram
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | | | - Kristin A Hogquist
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Keli L Hippen
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Jiabin Liu
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Susan A Shinton
- 3Fox Chase Cancer Center, PhiladelphiaPennsylvaniaUnited States of America
| | - Kevin L Otipoby
- 4Center for Blood Research, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Peter R Rodine
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Amanda L Vegoe
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Manfred Kraus
- 4Center for Blood Research, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Richard R Hardy
- 3Fox Chase Cancer Center, PhiladelphiaPennsylvaniaUnited States of America
| | - Mark S Schlissel
- 5Department of Molecular and Cell Biology, University of CaliforniaBerkeley, CaliforniaUnited States of America
| | - Klaus Rajewsky
- 4Center for Blood Research, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Timothy W Behrens
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| |
Collapse
|
73
|
Nonaka S, Naito T, Chen H, Yamamoto M, Moro K, Kiyono H, Hamada H, Ishikawa H. Intestinal γδ T Cells Develop in Mice Lacking Thymus, All Lymph Nodes, Peyer’s Patches, and Isolated Lymphoid Follicles. THE JOURNAL OF IMMUNOLOGY 2005; 174:1906-12. [PMID: 15699117 DOI: 10.4049/jimmunol.174.4.1906] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Through analysis of athymic (nu/nu) mice carrying a transgenic gene encoding GFP instead of RAG-2 product, it has recently been reported that, in the absence of thymopoiesis, mesenteric lymph nodes and Peyer's patches (PP) but not gut cryptopatches are pivotal birthplace of mature T cells such as the thymus-independent intestinal intraepithelial T cells (IEL). To explore and evaluate this important issue, we generated nu/nu mice lacking all lymph nodes (LN) and PP by administration of lymphotoxin-beta receptor-Ig and TNF receptor 55-Ig fusion proteins into the timed pregnant nu/+ mice that had been mated with male nu/nu mice (nu/nu LNP- mice). We also generated nu/nu aly/aly (aly, alymphoplasia) double-mutant mice that inherently lacked all LN, PP, and isolated lymphoid follicles. Although gammadelta-IEL were slightly smaller in number than those in nu/nu mice, substantial colonization of gammadelta-IEL was found to take place in the intestinal epithelia of nu/nu LNP- and nu/nu aly/aly mice. Notably, the population size of a major CD8alphaalpha+ gammadelta-IEL subset was maintained, the use of TCR-gamma-chain variable gene segments by these gammadelta-IEL was unaltered, and the development of cryptopatches remained intact in these nu/nu LNP- and nu/nu aly/aly mice. These findings indicate that all LN, including mesenteric LN, PP, and isolated lymphoid follicles, are not an absolute requirement for the development of gammadelta-IEL in athymic nu/nu mice.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Female
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Immunophenotyping
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Lymph Nodes/abnormalities
- Lymphoid Tissue/abnormalities
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mice, SCID
- Mice, Transgenic
- Peyer's Patches/abnormalities
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Proto-Oncogene Proteins c-kit/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/abnormalities
- Transgenes/immunology
Collapse
Affiliation(s)
- Satoshi Nonaka
- Department of Microbiology and Immunology, Keio University School of Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Raynard SJ, Baker MD. Cis-acting regulatory sequences promote high-frequency gene conversion between repeated sequences in mammalian cells. Nucleic Acids Res 2004; 32:5916-27. [PMID: 15528639 PMCID: PMC528808 DOI: 10.1093/nar/gkh926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 10/19/2004] [Accepted: 10/19/2004] [Indexed: 01/23/2023] Open
Abstract
In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.
Collapse
Affiliation(s)
- Steven J Raynard
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
75
|
Guay HM, Panarey L, Reed AJ, Caton AJ. Specificity-Based Negative Selection of Autoreactive B Cells during Memory Formation. THE JOURNAL OF IMMUNOLOGY 2004; 173:5485-94. [PMID: 15494496 DOI: 10.4049/jimmunol.173.9.5485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoreactive B cells are not completely purged from the primary B cell repertoire, and whether they can be prevented from maturation into memory B cells has been uncertain. We show here that a population of B cells that dominates primary immune responses of BALB/c mice to influenza virus A/PR/8/34 hemagglutinin (HA) are negatively selected in transgenic mice expressing PR8 HA as an abundant membrane-bound Ag (HACII mice). However, a separate population of B cells that contains precursors of memory B cells is activated by PR8 virus immunization and is subsequently negatively selected during the formation of the memory response. Negative selection of PR8 HA-specific B cells altered the specificity of the memory B cell response to a mutant virus containing a single amino acid substitution in a B cell epitope. Strikingly, this skewed reactivity resulted from an increase in the formation of memory B cells directed to non-self-epitopes on the mutant virus, which increased 8-fold in HACII mice relative to nontransgenic mice and precisely compensated for the absence of autoreactive PR8 HA-specific memory B cells. Negative selection of PR8 HA-specific B cells was a dominant process, since B cells from HACII mice could induce negative selection of PR8 HA-specific B cells from BALB/c mice. Lastly, HA-specific memory responses were unaffected by self-tolerance in another lineage of HA-transgenic mice (HA104 mice), indicating that the amount and/or cell type in which self-Ags are expressed can determine their ability to prevent autoreactive memory B cell formation.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibody-Producing Cells/cytology
- Antibody-Producing Cells/metabolism
- Antibody-Producing Cells/virology
- Autoantibodies/biosynthesis
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/virology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/virology
- Clone Cells
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Gene Rearrangement, B-Lymphocyte
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immune Tolerance/genetics
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Immunologic Memory/genetics
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Mice, Transgenic
Collapse
Affiliation(s)
- Heath M Guay
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
76
|
Ryu CJ, Haines BB, Lee HR, Kang YH, Draganov DD, Lee M, Whitehurst CE, Hong HJ, Chen J. The T-cell receptor beta variable gene promoter is required for efficient V beta rearrangement but not allelic exclusion. Mol Cell Biol 2004; 24:7015-23. [PMID: 15282302 PMCID: PMC479718 DOI: 10.1128/mcb.24.16.7015-7023.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To investigate the role of promoters in regulating variable gene rearrangement and allelic exclusion, we constructed mutant mice in which a 1.2-kb region of the V beta 13 promoter was either deleted (P13(-/-)) or replaced with the simian virus 40 minimal promoter plus five copies of Gal4 DNA sequences (P13(R/R)). In P13(-/-) mice, cleavage, rearrangement, and transcription of V beta 13, but not the flanking V beta gene segments, were significantly inhibited. In P13(R/R) mice, inhibition of V beta 13 rearrangement was less severe and was not associated with any apparent reduction in V beta 13 cleavage. Expression of a T-cell receptor (TCR) transgene blocked cleavages at the normal V beta 13-recombination signal sequence junction and V beta 13 coding joint formation of both wild-type and mutant V beta 13 alleles. However, a low level of aberrant V beta 13 cleavage was consistently detected, especially in TCR transgenic P13(R/R) mice. These findings suggest that the variable gene promoter is required for promoting local recombination accessibility of the associated V beta gene segment. Although the promoter is dispensable for allelic exclusion, it appears to suppress aberrant V beta cleavages during allelic exclusion.
Collapse
MESH Headings
- Alleles
- Animals
- Gene Expression Regulation
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor beta
- Mice
- Mice, Knockout
- Mutation
- Promoter Regions, Genetic
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombination, Genetic
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- Chun Jeih Ryu
- Center for Cancer Research and Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Fenk R, Haas R, Kronenwett R. Molecular monitoring of minimal residual disease in patients with multiple myeloma. ACTA ACUST UNITED AC 2004; 9:17-33. [PMID: 14965865 DOI: 10.1080/10245330310001638965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Improvement of transplantation strategies and a multitude of emerging novel therapies result in a better treatment outcome in patients with multiple myeloma (MM). This gives rise to the need for sensitive methods to detect minimal residual disease (MRD) in MM. Qualitative molecular monitoring using allele-specific oligonucleotide PCR for the immunoglobulin heavy chain (IgH) is well established to detect clonotypic cells after therapy or in stem cell harvests. Recently, real-time IgH PCR or limiting dilution based PCR assays offer the possibility to quantify the amount of residual tumour cells. In this review, different qualitative and quantitative IgH PCR techniques will be discussed as well as the current clinical role of molecular monitoring of MRD in patients with MM.
Collapse
Affiliation(s)
- Roland Fenk
- Department of Haematology, Oncology and Clinical Immunology, University of Duesseldorf, Germany.
| | | | | |
Collapse
|
78
|
Piatesi A, Hilvert D. Immunological optimization of a generic hydrophobic pocket for high affinity hapten binding and Diels-Alder activity. Chembiochem 2004; 5:460-6. [PMID: 15185369 DOI: 10.1002/cbic.200300806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibody 1E9, which binds a tetrachloronorbornene derivative with subnanomolar affinity and catalyzes the Diels-Alder reaction between tetrachlorothiophene dioxide and N-ethylmaleimide with high efficiency, arose from a family of highly restricted germ-line immunoglobulins that bind diverse hydrophobic ligands. Two somatic mutations, one at position L89 in the light chain (SerL89Phe) and another at position H47 in the heavy chain (TrpH47Leu), have been postulated to be responsible for the unusually high degree of shape and chemical complementarity observed in the crystal structure of 1E9 complexed with its hapten. To test this hypothesis, the germ-line sequence at these two positions was restored by site-directed mutagenesis. The ensuing 160 to 3900-fold decrease in hapten affinity and the complete loss of catalytic activity support the hypothesis that these somatic mutations substantially remodel the antibody binding pocket. Mutation of the highly conserved hydrogen-bond donor AsnH35, which sits at the bottom of the active site and is a hallmark of this family of antibodies, is also catastrophic with respect to hapten binding and catalysis. In contrast, residues in the CDR H3 loop, which contributes a significant fraction of the hapten-contacting protein surface, have a more subtle influence on the properties of 1E9. Interestingly, while most changes in this loop have neutral or modestly deleterious effects, replacement of MetH100b at the floor of the pocket with phenylalanine leads to a significant sevenfold increase in catalytic activity. The latter result is surprising given the unusually close fit of the parent antibody to the transition-state analogue. Further fine-tuning of the interactions between 1E9 and its ligands by introducing mutations outside the active site could conceivably yield substantially more active catalysts.
Collapse
Affiliation(s)
- Andrea Piatesi
- Laboratorium für Organische Chemie, Swiss Federal Institute of Technology ETH, ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | |
Collapse
|
79
|
Dogusan Z, Montecino-Rodriguez E, Dorshkind K. Macrophages and stromal cells phagocytose apoptotic bone marrow-derived B lineage cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:4717-23. [PMID: 15067047 DOI: 10.4049/jimmunol.172.8.4717] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been hypothesized that B cell precursors that undergo programmed cell death due to nonproductive Ig gene rearrangements are cleared from the bone marrow by macrophages. However, a role for macrophages in this process is supported only by micrographs showing their association with apoptotic-appearing, B lineage cells. Functional data demonstrating phagocytosis of apoptotic, bone marrow lymphocytes by macrophages have not been presented, nor have receptors potentially involved in that process been identified. The data in this report demonstrate that macrophages isolated from murine bone marrow efficiently phagocytose apoptotic murine B lineage cells using multiple receptors that include CD14, integrins, class A scavenger receptor, and CD31 (PECAM-1). In addition, the results further reveal a new role for the hemopoietic microenvironment in B cell development in view of data demonstrating that murine bone marrow stromal cells are also capable of clearing apoptotic cells via an integrin-dependent mechanism.
Collapse
Affiliation(s)
- Zeynep Dogusan
- Department of Pathology and Laboratory Medicine and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
80
|
Peralta-Zaragoza O, Recillas-Targa F, Madrid-Marina V. Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells. Immunology 2004; 111:195-203. [PMID: 15027905 PMCID: PMC1782414 DOI: 10.1111/j.0019-2805.2003.01791.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3'-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA-protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1-TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors.
Collapse
Affiliation(s)
- Oscar Peralta-Zaragoza
- National Institute of Public Health, Division of Molecular Biology of Pathogens, Morelos, México
| | | | | |
Collapse
|
81
|
Poltoratsky VP, Wilson SH, Kunkel TA, Pavlov YI. Recombinogenic Phenotype of Human Activation-Induced Cytosine Deaminase. THE JOURNAL OF IMMUNOLOGY 2004; 172:4308-13. [PMID: 15034045 DOI: 10.4049/jimmunol.172.7.4308] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class switch recombination, gene conversion, and somatic hypermutation that diversify rearranged Ig genes to produce various classes of high affinity Abs are dependent on the enzyme activation-induced cytosine deaminase (AID). Evidence suggests that somatic hypermutation is due to error-prone DNA repair that is initiated by AID-mediated deamination of cytosine in DNA, whereas the mechanism by which AID controls recombination remains to be elucidated. In this study, using a yeast model system, we have observed AID-dependent recombination. Expression of human AID in wild-type yeast is mutagenic for G-C to A-T transitions, and as expected, this mutagenesis is increased upon inactivation of uracil-DNA glycosylase. AID expression also strongly induces intragenic mitotic recombination, but only in a strain possessing uracil-DNA glycosylase. Thus, the initial step of base excision repair is required for AID-dependent recombination and is a branch point for either hypermutagenesis or recombination.
Collapse
Affiliation(s)
- Vladimir P Poltoratsky
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
82
|
Su TT, Guo B, Wei B, Braun J, Rawlings DJ. Signaling in transitional type 2 B cells is critical for peripheral B-cell development. Immunol Rev 2004; 197:161-78. [PMID: 14962194 DOI: 10.1111/j.0105-2896.2004.0102.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Splenic peripheral B-cell development and the events regulating this functionally significant but relatively poorly defined developmental process have become a major focus in recent studies in B-cell immunology. Following the exit from the bone marrow, peripheral B cells develop through transitional type 1 (T1) and transitional type 2 (T2) B-cell stages. Emerging data suggest that the T2 subset is the immediate precursor of the mature B-cell populations present in the spleen. In this review, we first elaborate on the evidence describing the unique properties of CD21hiCD24hiCD23hiIgMhiIgDhi T2 B cells. T2 cells uniquely activate a proliferative, pro-survival, and differentiation program in response to B-cell antigen receptor (BCR) engagement. The potential mechanisms leading to the differential BCR responsiveness of T1 versus T2 B cells are discussed. We also review evidence that distinguishes key BCR-dependent signaling pathways operative in T2 and mature B cells. These signaling cascades include a protein kinase Cbeta (PKCbeta)-dependent cell-survival pathway and a second PKCbeta-independent pathway essential for BCR-driven differentiation. Finally, we discuss recent intriguing results suggesting that the type of signal(s) encountered by T2 cells leads to their differential maturation toward the follicular mature versus marginal zone mature B-cell populations. These combined observations suggest important implications with regard to B-cell selection and tolerance, potential novel therapeutic targets for B-cell lymphomas, and how the intricate balance of commensal organisms and other microenvironmental signals interact to promote the generation of 'innate-like' versus adaptive effector B-cell populations.
Collapse
Affiliation(s)
- Thomas T Su
- The Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
83
|
Abstract
In the mammalian immune system, V(D)J rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes is regulated in a lineage- and stage-specific fashion. Because each of the seven loci capable of rearrangement utilizes the same recombination machinery, it is thought that V(D)J recombination of each antigen receptor locus is regulated through the differential accessibility of each locus to the V(D)J recombination machinery. Accumulating evidence indicates that chromatin remodeling mediated by DNA methylation and demethylation plays important roles in regulating V(D)J recombination and germline transcription through the Ig and TCR loci. DNA demethylation within the antigen receptor loci appears to be regulated by cis-elements also required for coordinated V(D)J recombination and germline transcription. In this paper, we critically examine the relationship between demethylation and V(D)J recombination as well as the mechanism to regulate DNA demethylation within the antigen receptor loci.
Collapse
Affiliation(s)
- Matthew Inlay
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
84
|
Ryu CJ, Haines BB, Draganov DD, Kang YH, Whitehurst CE, Schmidt T, Hong HJ, Chen J. The T cell receptor beta enhancer promotes access and pairing of Dbeta and Jbeta gene segments during V(D)J recombination. Proc Natl Acad Sci U S A 2003; 100:13465-70. [PMID: 14593206 PMCID: PMC263837 DOI: 10.1073/pnas.2235807100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The precise function of cis elements in regulating V(D)J recombination is still controversial. Here, we determined the effect of inactivation of the TCRbeta enhancer (Ebeta) on cleavage and rearrangement of Dbeta1, Dbeta2, Jbeta1, and Jbeta2 gene segments in CD4-CD8- [double-negative (DN)] and CD4+CD8+ [double-positive (DP)] thymocytes. In Ebeta-deficient mice, (i) Dbeta1 rearrangements were more severely impaired than Dbeta2 rearrangements; (ii) most of the Dbeta and Jbeta cleavages and rearrangements occurred in DP, rather than in DN, thymocytes; and (iii) most of the 3' Dbeta1 cleavages were coupled to 5' Dbeta2 cleavages instead of to Jbeta cleavages, resulting in nonstandard Dbeta1-Dbeta2-Jbeta2 joints. These findings suggest that the Ebeta regulates TCRbeta rearrangement by promoting accessibility of Dbeta and Jbeta gene segments in DN thymocytes and proper pairing between Dbeta1 and Jbeta gene segments for cleavage and joining in DP thymocytes.
Collapse
Affiliation(s)
- Chun Jeih Ryu
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Neuman de Vegvar HE, Amara RR, Steinman L, Utz PJ, Robinson HL, Robinson WH. Microarray profiling of antibody responses against simian-human immunodeficiency virus: postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. J Virol 2003; 77:11125-38. [PMID: 14512560 PMCID: PMC224970 DOI: 10.1128/jvi.77.20.11125-11138.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed antigen microarrays to profile the breadth, strength, and kinetics of epitope-specific antiviral antibody responses in vaccine trials with a simian-human immunodeficiency virus (SHIV) model for human immunodeficiency virus (HIV) infection. These arrays contained 430 distinct proteins and overlapping peptides spanning the SHIV proteome. In macaques vaccinated with three different DNA and/or recombinant modified vaccinia virus Ankara (rMVA) vaccines encoding Gag-Pol or Gag-Pol-Env, these arrays distinguished vaccinated from challenged macaques, identified three novel viral epitopes, and predicted survival. Following viral challenge, anti-SHIV antibody responses ultimately converged to target eight immunodominant B-cell regions in Env regardless of vaccine regimen, host histocompatibility type, and divergent T-cell specificities. After challenge, responses to nonimmunodominant epitopes were transient, while responses to dominant epitopes were gained. These data suggest that the functional diversity of anti-SHIV B-cell responses is highly limited in the presence of persisting antigen.
Collapse
Affiliation(s)
- Henry E Neuman de Vegvar
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
86
|
Tze LE, Hippen KL, Behrens TW. Late immature B cells (IgMhighIgDneg) undergo a light chain receptor editing response to soluble self-antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:678-82. [PMID: 12847233 DOI: 10.4049/jimmunol.171.2.678] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor editing is an important mechanism to modify the Ag specificity of newly developing B cells that are reactive with self-Ags. Previous studies have suggested that late immature B cells, bearing high levels of IgM on their cell surface, are unable to initiate receptor editing and instead are deleted by apoptosis. Using the hen egg lysozyme transgenic system, we show that IgM(high) late-immature B cells are fully capable of receptor editing to soluble self-Ag. This was demonstrated by the induction of new endogenous light chain locus rearrangements and by a single-cell flow cytometric assay using a recombination-activating gene 2-green fluorescence protein reporter transgene. These studies suggest that the developmental window available for immature B cells to edit their Ig receptors, at least in response to certain soluble Ags, extends through the IgM(high) late immature B cell stage.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Immunoglobulin D/biosynthesis
- Immunoglobulin Light Chains/biosynthesis
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/metabolism
- Immunoglobulin M/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Muramidase/genetics
- Muramidase/immunology
- Muramidase/metabolism
- RNA Editing/genetics
- RNA Editing/immunology
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/biosynthesis
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Solubility
Collapse
Affiliation(s)
- Lina E Tze
- Center for Immunology and Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
87
|
Elkabetz Y, Kerem A, Tencer L, Winitz D, Kopito RR, Bar-Nun S. Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway. J Biol Chem 2003; 278:18922-9. [PMID: 12754269 DOI: 10.1074/jbc.m208730200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degradation of IgM mu heavy chains in light chain-negative pre-B cells is independent of vesicular transport, as is evident by its insensitivity to brefeldin A or cell permeabilization. Conversely, by the same criteria, degradation of the secretory mu heavy chain in light chain-expressing B cells depends on vesicular transport. To investigate whether the presence of conventional light chains or the developmental stage of the B-lymphocytes dictates the degradative route taken by mu, we express in 70Z/3 pre-B cells either lambda ectopically or kappa by lipopolysaccharides-stimulated differentiation into B cells and show their assembly with mu heavy chains. The resulting sensitivity of mu degradation to brefeldin A and cell permeabilization demonstrates that conventional light chains, a hallmark of B cell differentiation, are necessary and sufficient to divert mu from a vesicular transport-independent to a vesicular transport-dependent degradative route. Although both routes converge at the ubiquitin-proteasome degradation pathway, only in light chain-expressing cells is vesicular transport a prerequisite for mu ubiquitination.
Collapse
Affiliation(s)
- Yechiel Elkabetz
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
88
|
Zijlstra A, Testa JE, Quigley JP. Targeting the proteome/epitome, implementation of subtractive immunization. Biochem Biophys Res Commun 2003; 303:733-44. [PMID: 12670472 DOI: 10.1016/s0006-291x(03)00357-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Monoclonal antibody technology has generated invaluable tools for both the analytical and clinical sciences. However, standard immunization approaches frequently fail to provide monoclonal antibodies with the desired specificity. Subtractive immunization provides a powerful alternative to standard immunization and allows for the production of truly unique antibodies. With the intent of targeting specific epitopes within the proteome, subtractive immunization has been broadly and successfully implemented for the production of monoclonal antibodies otherwise unobtainable by standard immunization. Subtractive immunization utilizes a distinct immune tolerization approach that can substantially enhance the generation of monoclonal antibodies to desired antigens. The approach is based on tolerizing the host animal to immunodominant or otherwise undesired antigen(s) (tolerogen) that may be structurally or functionally related to the antigen of interest. Tolerization of the host animal can be achieved through one of three methods: High Zone, Neonatal, or Drug-induced tolerization. The tolerized animal is then inoculated with the desired antigen (immunogen) and antibodies generated by the subsequent immune response are screened for the desired antigenic reactivity. Over the past 15 years a large number of investigators have used the subtractive approach with cleverly chosen tolerogen-immunogen combinations and successfully generated uniquely reactive antibodies which are often neutralizing or function-blocking. This review will focus on the implementation of subtractive immunization for the production of antibodies otherwise unobtainable by standard immunization.
Collapse
Affiliation(s)
- Andries Zijlstra
- Division of Vascular Biology, Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pine Road, La Jolla, CA, USA
| | | | | |
Collapse
|
89
|
Jenne CN, Kennedy LJ, McCullagh P, Reynolds JD. A new model of sheep Ig diversification: shifting the emphasis toward combinatorial mechanisms and away from hypermutation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3739-50. [PMID: 12646640 DOI: 10.4049/jimmunol.170.7.3739] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current model of Ig repertoire development in sheep focuses on the rearrangement of a small number (approximately 20) of Vlambda gene segments. It is believed that this limited combinatorial repertoire is then further diversified through postrearrangement somatic hypermutation. This process has been reported to introduce as many as 110 mutations/1000 nucleotides. In contrast, our data have that indicated somatic hypermutation may diversify the preimmune repertoire to a much lesser extent. We have identified 64 new Vlambda gene segments within the rearranged Ig repertoire. As a result, many of the unique nucleotide patterns thought to be the product of somatic hypermutation are actually hard-coded within the germline. We suggest that combinatorial rearrangement makes a much larger contribution, and somatic hypermutation makes a much smaller contribution to the generation of diversity within the sheep Ig repertoire than is currently acknowledged.
Collapse
Affiliation(s)
- Craig N Jenne
- Immunology Research Group, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
90
|
Wu C, Bassing CH, Jung D, Woodman BB, Foy D, Alt FW. Dramatically increased rearrangement and peripheral representation of Vbeta14 driven by the 3'Dbeta1 recombination signal sequence. Immunity 2003; 18:75-85. [PMID: 12530977 DOI: 10.1016/s1074-7613(02)00515-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
V(D)J recombination is targeted by short recombination signal (RS) sequences that are relatively conserved but exhibit natural sequence variations. To evaluate the potential of RS sequence variations to determine the primary and peripheral TCRbeta repertoire, we generated mice containing specific replacement of the endogenous Vbeta14 RS with the 3'Dbeta1 RS (Vbeta14/3'DbetaRS). These mice exhibited a dramatic increase in Vbeta14(+) thymocyte numbers at the expense of thymocytes expressing other Vbetas. In addition, the percentage of peripheral Vbeta14(+) alphabeta T lymphocytes was similarly increased. Strikingly, this altered Vbeta repertoire resulted predominantly from a higher relative level of primary Vbeta14/3'DbetaRS rearrangement to DbetaJbeta complexes, despite the ability of the 3'Dbeta1 RS to break B12/23 restriction and allow direct rearrangement of Vbeta14/3'DbetaRS to Jbeta segments.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Targeting
- Genes, T-Cell Receptor beta
- Genetic Vectors
- Hybridomas/immunology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Cherry Wu
- Howard Hughes Medical Institute, The Children's Hospital, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
Lymphocytes develop from hematopoietic stem cells through a series of highly regulated differentiation events in the bone marrow and thymus. A number of transcription factors are known to collaborate in controlling the timing and specificity of gene expression required for these developmental processes to occur. The basic helix-loop-helix (bHLH) proteins encoded by the E2A gene have been shown to play particularly important roles in the initiation and progression of lymphocyte differentiation. Gene targeting experiments in mice have demonstrated a requirement for E2A proteins at the onset of B lymphocyte development. More recent studies have broadened our view on the function of E2A proteins at multiple stages of lymphopoiesis and in the regulation of lymphoid-specific gene expression. Here we review the mammalian E2A proteins and the accumulated evidence demonstrating central roles for E2A throughout early B and T lymphocyte development. We also speculate on the direction of future research on the mechanisms underlying the lineage and stage-specific functions of E2A in lymphopoiesis.
Collapse
Affiliation(s)
- Stephen Greenbaum
- Department of Immunology, Box 3010, Duke University Medical Center, 328 Jones Building, Research Drive, Durham, NC 27710, USA.
| | | |
Collapse
|
92
|
Hasan M, Polic B, Bralic M, Jonjic S, Rajewsky K. Incomplete block of B cell development and immunoglobulin production in mice carrying the muMT mutation on the BALB/c background. Eur J Immunol 2002; 32:3463-71. [PMID: 12442328 DOI: 10.1002/1521-4141(200212)32:12<3463::aid-immu3463>3.0.co;2-b] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of the preB cell receptor (preBCR), composed of the mu chain, surrogate light chains and the Igalpha /Igbeta signal transduction unit, permits further differentiation of Bcell precursors. C57BL/6 mice homozygous for an inactivating mutation of the membrane exon of the mu chain gene (C57BL/6muMT/muMT)) cannot form a preBCR and are, consequently, devoid of mature B lymphocytes. Here we present evidence that the block of B cell development by the muMT mutation is incomplete in BALB/c mice. Unlike C57BL/6muMT/muMT), BALB/cmuMT/muMT) mice generate small numbers of mature B cells, accumulate plasma cells and produce high levels of all immunoglobulin isotypes, except IgM. The observed phenomenon seems to be controlled by a single genetic locus that is not linked to IgH.
Collapse
Affiliation(s)
- Milena Hasan
- Department of Histology and Embryology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | | | | | | | | |
Collapse
|
93
|
Krykbaev RA, Tsantili P, Jeffrey PD, Margolies MN. Modifying specificity of antidigoxin antibodies using insertional mutagenesis. Protein Sci 2002; 11:2899-908. [PMID: 12441388 PMCID: PMC2373741 DOI: 10.1110/ps.0223402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Certain antibodies (Abs) elicited using the cardiac glycoside digoxin (digoxigenin tridigitoxoside) bind preferentially to analogs that differ from digoxin by substitutions on the cardenolide rings, the lactone, or by the presence or absence of attached sugars. Antibody 26-10 binds equally well to digoxin and digitoxin, which differ only by the presence in the former and the absence in the latter of an hydroxyl group at C12. Other antidigoxin Abs, however, can distinguish between these ligands by three orders of magnitude in binding. Inspection of the structure of Fab 26-10 complexed with digoxin shows a gap in complementarity in the region between the digoxin O12 and LCDR3. We proposed that insertions in LCDR3 might result in Abs that bind digitoxin preferentially. We produced libraries of mutants displayed on bacteriophage which were randomized at LCDR3 and contained LCDR3 insertions. Mutants were selected by panning against digoxin and analogs. The mutants bound digitoxin preferentially up to 47-fold greater than digoxin. The mutants that bound well to digitoxin demonstrated a consensus sequence including the substitution of Trp at position L:94. Using site-directed mutagenesis, the binding to digitoxin was shown to be maximized by the combination of an insertion and L:Trp94 mutation, moving the L 94 side chain closer to digoxin. We also selected mutants that bound preferentially to gitoxin, which, like digitoxin, lacks the 12-hydroxyl, increasing relative binding to gitoxin up to 600-fold compared to the unmutated Ab 26-10.
Collapse
Affiliation(s)
- Rustem A Krykbaev
- Antibody Engineering Laboratory, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | | | |
Collapse
|
94
|
Endo S, Zhang SJ, Saito T, Kouno M, Kuroiwa T, Washiyama K, Kumanishi T. Primary malignant lymphoma of the brain: mutation pattern of rearranged immunoglobulin heavy chain gene. Jpn J Cancer Res 2002; 93:1308-16. [PMID: 12495470 PMCID: PMC5926927 DOI: 10.1111/j.1349-7006.2002.tb01239.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Using reverse transcription-polymerase chain reaction (RT-PCR), six primary brain lymphomas, pathologically diagnosed as diffuse large B-cell lymphoma, were examined for rearranged VH-D-JH sequences of the immunoglobulin heavy chain gene, focusing on somatic mutations and intraclonal heterogeneity. The reliability of the isolated PCR clones was confirmed by in situ hybridization (ISH) with complementarity-determining region (CDR) 3 oligonucleotide probes. Sequence analysis of the PCR clones revealed a high frequency of somatic mutation, ranging from 8.8 to 27.3% (mean 18.2%) in the VH gene segments in all the lymphomas. A significantly lower frequency of replacement (R) mutations than expected was also seen in their frameworks (FRs) in all cases. These findings suggested that the precursor cells were germinal center (GC)-related cells in these lymphomas. However, despite extensive cloning experiments, intraclonal heterogeneity was not detected in any case except for one in which it could not be ruled out. Thus, it seemed likely that all of our brain lymphomas were derived from GC-related cells and that at least most of them were from post-GC cells.
Collapse
Affiliation(s)
- Sumio Endo
- Molecular Neuropathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
95
|
Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, Walsh PJ, Vijayan MM, Devlin RH, Hardy RW, Overturf KE, Young WP, Robison BD, Rexroad C, Palti Y. Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:609-46. [PMID: 12470823 DOI: 10.1016/s1096-4959(02)00167-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss) is one of the most widely studied of model fish species. Extensive basic biological information has been collected for this species, which because of their large size relative to other model fish species are particularly suitable for studies requiring ample quantities of specific cells and tissue types. Rainbow trout have been widely utilized for research in carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. They are distinctive in having evolved from a relatively recent tetraploid event, resulting in a high incidence of duplicated genes. Natural populations are available and have been well characterized for chromosomal, protein, molecular and quantitative genetic variation. Their ease of culture, and experimental and aquacultural significance has led to the development of clonal lines and the widespread application of transgenic technology to this species. Numerous microsatellites have been isolated and two relatively detailed genetic maps have been developed. Extensive sequencing of expressed sequence tags has begun and four BAC libraries have been developed. The development and analysis of additional genomic sequence data will provide distinctive opportunities to address problems in areas such as evolution of the immune system and duplicate genes.
Collapse
Affiliation(s)
- Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
In healthy humans, antibody repertoires change during ontogeny and senescence. The dynamics of antibody repertoires among adults over a longer period of time in one and the same individual has, however, not been extensively studied. In this study we analysed peripheral blood samples from five healthy adults, taken over a period of 10 weeks and once 9 years later. A competitive, quantitative polymerase chain reaction (PCR) was developed to investigate short and long-term variations in VH gene family repertoires. Serum antibody levels to common self and non-self antigens were determined in samples taken at the same time-points as the cell samples to analyse possible correlations between molecular and serological expression profiles. We found a high degree of stability in the VH gene family repertoire over time as well as between individuals with a Caucasian background. A specific change in the usage of primarily the VH3 and VH5 gene families was observed in one individual at one time-point. The deviating pattern resembled the VH gene family utilization pattern observed in naturally activated B lymphocytes. The fluctuations in VH3 and VH5 gene family expression correlated with the presence of rheumatoid factor in serum. We discuss the possible influence of polyclonal, transient stimulation of B cells on VH gene repertoires, as measured in circulating B cells.
Collapse
Affiliation(s)
- Iris Van Dijk-Härd
- Department of Clinical Immunology, Karolinska Institute at Huddinge University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
97
|
Ratcliffe MJH, Pike KA. Influence of antibody diversification on the mechanism of haplotype exclusion of immunoglobulin gene expression. Semin Immunol 2002; 14:199-205; discussion 224-5. [PMID: 12160647 DOI: 10.1016/s1044-5323(02)00043-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Allelic, or haplotype, exclusion of immunoglobulin gene expression ensures that the products of a single allele or light chain isotype are expressed on the B cell surface. Evidence has accumulated in rodent and primate models to indicate that the products of successful rearrangement regulate this process. In contrast, haplotype exclusion of chicken immunoglobulin gene expression is regulated at the level of variable region gene rearrangement. We discuss here alternative models for ensuring haplotype exclusion that may operate in the chicken and extend the discussion to address the issue as to how two apparently distinct mechanisms may have evolved to yield the same outcome.
Collapse
Affiliation(s)
- Michael J H Ratcliffe
- Department of Immunology, University of Toronto, 1 King's College Circle, Ont., M5S 1A8, Toronto, Canada.
| | | |
Collapse
|
98
|
Inlay M, Alt FW, Baltimore D, Xu Y. Essential roles of the kappa light chain intronic enhancer and 3' enhancer in kappa rearrangement and demethylation. Nat Immunol 2002; 3:463-8. [PMID: 11967540 DOI: 10.1038/ni790] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kappa intronic (MiE(kappa)) and 3' (3'E(kappa)) enhancers are both quantitatively important to, but not essential for, immunoglobulin kappa rearrangement. To determine the functional redundancy between these two enhancers, B cells derived from mutant embryonic stem cells--in which both MiE(kappa) and 3'E(kappa) were deleted on both kappa alleles--were analyzed for kappa rearrangement. Our findings indicate that these double-mutant B cells have essentially no kappa rearrangement but do rearrange and express lambda. Therefore, these two kappa enhancers share essential roles in activating V(kappa)J(kappa) rearrangement. Our findings also indicate that the two kappa enhancers play overlapping and distinct roles in the demethylation of kappa in B cells.
Collapse
Affiliation(s)
- Matthew Inlay
- Section of Molecular Biology, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
99
|
Stevenson FK, Sahota SS, Ottensmeier CH, Zhu D, Forconi F, Hamblin TJ. The occurrence and significance of V gene mutations in B cell-derived human malignancy. Adv Cancer Res 2002; 83:81-116. [PMID: 11665722 DOI: 10.1016/s0065-230x(01)83004-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The classification of B cell tumors has relevance for refining and improving clinical strategies. However, consensus has been difficult to establish, and although a scheme is now available, objective criteria are desirable. Genetic technology will underpin and extend current knowledge, and it is certain to reveal further subdivisions of current tumor categories. The Ig variable region genes of B cell tumors present a considerable asset for this area of investigation. The unique sequences carried in neoplastic B cells are easily isolated and sequenced. In addition to acting as clone-specific markers of each tumor, they indicate where the cell has come from and track its history following transformation. There is emerging clinical value in knowing whether the cell of origin has encountered antigen and has moved from the naive compartment to the germinal center, where somatic mutation is activated. This is amply illustrated by the subdivision of chronic lymphocytic leukemia into two subsets, unmutated or mutated, each with very different prognosis. Other tumors may be subdivided in a similar way. Microarray technology is developing rapidly to probe gene expression and to further divide tumor categories. All these genetic analyses will provide objective data to enhance both our understanding of B cell tumors and our ability to treat them.
Collapse
Affiliation(s)
- F K Stevenson
- Tenovus Laboratory, Southampton University Hospitals Trust, United Kingdom
| | | | | | | | | | | |
Collapse
|
100
|
Foroni L, Hoffbrand AV. Molecular analysis of minimal residual disease in adult acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15:71-90. [PMID: 11987917 DOI: 10.1053/beha.2002.0186] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite intensive chemotherapy and stem cell transplantation (SCT) programmes, overall survival in adult acute lymphoblastic leukaemia (ALL) remains poor compared to that in childhood ALL. Despite clinical and morphological remission being achieved by over 80% of patients, 5-year survival is limited to 40% of patients, clearly indicating that morphology is insufficient in predicting future outcome. Molecular assessment of residual disease in bone marrow using immunoglobulin genes as markers of clonality has recently been evaluated in a large adult ALL study in our institution. Analysis of disease-free survival (DFS) rates for minimal residual disease-(MRD-) positive and -negative patients established that MRD positivity was associated with increased relapse rates at all times, being most significant at 3-5 months post-induction and beyond. Pre-autologous SCT tests are predictive of outcome, but for allogeneic SCT outcome is related to results of the tests after the procedure rather than before. The association of MRD test results and DFS was independent of, and greater than, other standard predictors of outcome and is therefore important in determining treatment for individual patients.
Collapse
Affiliation(s)
- Letizia Foroni
- Haematology Department, Royal Free & University College School of Medicine, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | | |
Collapse
|