51
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
52
|
Dhakal S, Loube J, Misplon JA, Lo CY, Creisher PS, Mulka KR, Deshpande S, Mitzner W, Klein SL, Epstein SL. Effect of an Adenovirus-Vectored Universal Influenza Virus Vaccine on Pulmonary Pathophysiology in a Mouse Model. J Virol 2021; 95:e02359-20. [PMID: 33627390 PMCID: PMC8104105 DOI: 10.1128/jvi.02359-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Current influenza vaccines, live attenuated or inactivated, do not protect against antigenically novel influenza A viruses (IAVs) of pandemic potential, which has driven interest in the development of universal influenza vaccines. Universal influenza vaccine candidates targeting highly conserved antigens of IAV nucleoprotein (NP) are promising as vaccines that induce T cell immunity, but concerns have been raised about the safety of inducing robust CD8 T cell responses in the lungs. Using a mouse model, we systematically evaluated effects of recombinant adenovirus vectors (rAd) expressing IAV NP (A/NP-rAd) or influenza B virus (IBV) NP (B/NP-rAd) on pulmonary inflammation and function after vaccination and following live IAV challenge. After A/NP-rAd or B/NP-rAd vaccination, female mice exhibited robust systemic and pulmonary vaccine-specific B cell and T cell responses and experienced no morbidity (e.g., body mass loss). Both in vivo pulmonary function testing and lung histopathology scoring revealed minimal adverse effects of intranasal rAd vaccination compared with unvaccinated mice. After IAV challenge, A/NP-rAd-vaccinated mice experienced significantly less morbidity, had lower pulmonary virus titers, and developed less pulmonary inflammation than unvaccinated or B/NP-rAd-vaccinated mice. Based on analysis of pulmonary physiology using detailed testing not previously applied to the question of T cell damage, mice protected by vaccination also had better lung function than controls. Results provide evidence that, in this model, adenoviral universal influenza vaccine does not damage pulmonary tissue. In addition, adaptive immunity, in particular, T cell immunity in the lungs, does not cause damage when restimulated but instead mitigates pulmonary damage following IAV infection.IMPORTANCE Respiratory viruses can emerge and spread rapidly before vaccines are available. It would be a tremendous advance to use vaccines that protect against whole categories of viruses, such as universal influenza vaccines, without the need to predict which virus will emerge. The nucleoprotein (NP) of influenza virus provides a target conserved among strains and is a dominant T cell target. In animals, vaccination to NP generates powerful T cell immunity and long-lasting protection against diverse influenza strains. Concerns have been raised, but not evaluated experimentally, that potent local T cell responses might damage the lungs. We analyzed lung function in detail in the setting of such a vaccination. Despite CD8 T cell responses in the lungs, lungs were not damaged and functioned normally after vaccination alone and were protected upon subsequent infection. This precedent provides important support for vaccines based on T cell-mediated protection, currently being considered for both influenza and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeffrey Loube
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Julia A Misplon
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chia-Yun Lo
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kathleen R Mulka
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sharvari Deshpande
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Suzanne L Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
53
|
Sangewar N, Waghela SD, Yao J, Sang H, Bray J, Mwangi W. Novel Potent IFN-γ-Inducing CD8 + T Cell Epitopes Conserved among Diverse Bovine Viral Diarrhea Virus Strains. THE JOURNAL OF IMMUNOLOGY 2021; 206:1709-1718. [PMID: 33762324 DOI: 10.4049/jimmunol.2001424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022]
Abstract
Studies of immune responses elicited by bovine viral diarrhea virus (BVDV) vaccines have primarily focused on the characterization of neutralizing B cell and CD4+ T cell epitopes. Despite the availability of commercial vaccines for decades, BVDV prevalence in cattle has remained largely unaffected. There is limited knowledge regarding the role of BVDV-specific CD8+ T cells in immune protection, and indirect evidence suggests that they play a crucial role during BVDV infection. In this study, the presence of BVDV-specific CD8+ T cells that are highly cross-reactive in cattle was demonstrated. Most importantly, novel potent IFN-γ-inducing CD8+ T cell epitopes were identified from different regions of BVDV polyprotein. Eight CD8+ T cell epitopes were identified from the following structural BVDV Ags: Erns, E1, and E2 glycoproteins. In addition, from nonstructural BVDV Ags Npro, NS2-3, NS4A-B, and NS5A-B, 20 CD8+ T cell epitopes were identified. The majority of these IFN-γ-inducing CD8+ T cell epitopes were found to be highly conserved among more than 200 strains from BVDV-1 and -2 genotypes. These conserved epitopes were also validated as cross-reactive because they induced high recall IFN-γ+CD8+ T cell responses ex vivo in purified bovine CD8+ T cells isolated from BVDV-1- and -2-immunized cattle. Altogether, 28 bovine MHC class I-binding epitopes were identified from key BVDV Ags that can elicit broadly reactive CD8+ T cells against diverse BVDV strains. The data presented in this study will lay the groundwork for the development of a contemporary CD8+ T cell-based BVDV vaccine capable of addressing BVDV heterogeneity more effectively than current vaccines.
Collapse
Affiliation(s)
- Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW The WHO has set ambitious targets for hepatitis C virus (HCV) elimination by 2030. In this review, we explore the possibility of HCV micro-elimination in HIV-positive (+) MSM, discussing strategies for reducing acute HCV incidence and the likely interventions required to meet these targets. RECENT FINDINGS With wider availability of directly acting antivirals (DAAs) in recent years, reductions in acute HCV incidence have been reported in some cohorts of HIV+ MSM. Recent evidence demonstrates that treatment in early infection is well tolerated, cost effective and may reduce the risk of onward transmission. Modelling studies suggest that to reduce incidence, a combination approach including behavioural interventions and access to early treatment, targeting both HIV+ and negative high-risk groups, will be required. HCV vaccine trials have not yet demonstrated efficacy in human studies, however phase one and two studies are ongoing. SUMMARY Some progress towards the WHO HCV elimination targets has been reported. Achieving sustained HCV elimination is likely to require a combination approach including early access to DAAs in acute infection and reinfection, validated and reproducible behavioural interventions and an efficacious HCV vaccine.
Collapse
|
55
|
Flynn O, Dillane K, Lanza JS, Marshall JM, Jin J, Silk SE, Draper SJ, Moore AC. Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines (Basel) 2021; 9:vaccines9030299. [PMID: 33810085 PMCID: PMC8005075 DOI: 10.3390/vaccines9030299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/02/2023] Open
Abstract
Adenovirus-based vaccines are demonstrating promising clinical potential for multiple infectious diseases, including COVID-19. However, the immunogenicity of the vector itself decreases its effectiveness as a boosting vaccine due to the induction of strong anti-vector neutralizing immunity. Here we determined how dissolvable microneedle patches (DMN) for skin immunization can overcome this issue, using a clinically-relevant adenovirus-based Plasmodium falciparum malaria vaccine, AdHu5–PfRH5, in mice. Incorporation of vaccine into patches significantly enhanced its thermostability compared to the liquid form. Conventional high dose repeated immunization by the intramuscular (IM) route induced low antigen-specific IgG titres and high anti-vector immunity. A low priming dose of vaccine, by the IM route, but more so using DMN patches, induced the most efficacious immune responses, assessed by parasite growth inhibitory activity (GIA) assays. Administration of low dose AdHu5–PfRH5 using patches to the skin, boosted by high dose IM, induced the highest antigen-specific serum IgG response after boosting, the greatest skewing of the antibody response towards the antigen and away from the vector, and the highest efficacy. This study therefore demonstrates that repeated use of the same adenovirus vaccine can be highly immunogenic towards the transgene if a low dose is used to prime the response. It also provides a method of stabilizing adenovirus vaccine, in easy-to-administer dissolvable microneedle patches, permitting storage and distribution out of cold chain.
Collapse
Affiliation(s)
- Olivia Flynn
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Kate Dillane
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Juliane Sousa Lanza
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Jennifer M. Marshall
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Anne C. Moore
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
- Correspondence:
| |
Collapse
|
56
|
Hartlage AS, Dravid P, Walker CM, Kapoor A. Adenovirus-vectored T cell vaccine for hepacivirus shows reduced effectiveness against a CD8 T cell escape variant in rats. PLoS Pathog 2021; 17:e1009391. [PMID: 33735321 PMCID: PMC8009437 DOI: 10.1371/journal.ppat.1009391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines. The hepatitis C virus is one of the leading causes of chronic liver disease and cancer worldwide. A vaccine is not yet available and the first phase II clinical trial in humans using a T cell-based immunization strategy recently failed to prevent chronic infection in high risk individuals for unclear reasons. In this study we evaluated how immune escape mutations at major histocompatibility complex (MHC) class I-restricted viral epitopes influence the effectiveness of an adenoviral-vectored T cell vaccine in a rat model of chronic HCV-related rodent hepacivirus infection, currently the only animal model available for evaluation of HCV vaccine strategies. We show that vaccine efficacy is markedly diminished when challenge virus contains naturally-acquired escape mutations at dominant MHC class I-restricted viral epitopes that render a subset of vaccine-generated CD8 T cell responses ineffective. We also identify CD4 T cell help as a critical correlate of vaccine success against heterologous virus challenge. Our results have important implications for human vaccination programs that aim to induce broad protective immunity against heterogeneous HCV strains.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
57
|
Bonilla WV, Kirchhammer N, Marx AF, Kallert SM, Krzyzaniak MA, Lu M, Darbre S, Schmidt S, Raguz J, Berka U, Vincenti I, Pauzuolis M, Kerber R, Hoepner S, Günther S, Magnus C, Merkler D, Orlinger KK, Zippelius A, Pinschewer DD. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. CELL REPORTS MEDICINE 2021; 2:100209. [PMID: 33763654 PMCID: PMC7974551 DOI: 10.1016/j.xcrm.2021.100209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic vaccination regimens inducing clinically effective tumor-specific CD8+ T lymphocyte (CTL) responses are an unmet medical need. We engineer two distantly related arenaviruses, Pichinde virus and lymphocytic choriomeningitis virus, for therapeutic cancer vaccination. In mice, life-replicating vector formats of these two viruses delivering a self-antigen in a heterologous prime-boost regimen induce tumor-specific CTL responses up to 50% of the circulating CD8 T cell pool. This CTL attack eliminates established solid tumors in a significant proportion of animals, accompanied by protection against tumor rechallenge. The magnitude of CTL responses is alarmin driven and requires combining two genealogically distantly related arenaviruses. Vector-neutralizing antibodies do not inhibit booster immunizations by the same vector or by closely related vectors. Rather, CTL immunodominance hierarchies favor vector backbone-targeted responses at the expense of self-reactive CTLs. These findings establish an arenavirus-based immunotherapy regimen that allows reshuffling of immunodominance hierarchies and breaking self-directed tolerance for efficient tumor control. Engineered arenaviruses induce potent tumor self-specific CD8 T cell (CTL) response Combinations of distantly but not closely related arenavirus vectors eliminate tumors Vector backbone-targeted CTL responses compete against tumor self-reactive CTLs Optimized vector combinations reshuffle immunodominance to break self-tolerance
Collapse
Affiliation(s)
- Weldy V Bonilla
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | | | | | - Sandra M Kallert
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | | | - Min Lu
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | - Stéphanie Darbre
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mindaugas Pauzuolis
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Romy Kerber
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Hoepner
- Tumor Immunology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Magnus
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Alfred Zippelius
- University of Basel, Department of Biomedicine, Basel, Switzerland.,Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
58
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
59
|
Youn JW, Hur SY, Woo JW, Kim YM, Lim MC, Park SY, Seo SS, No JH, Kim BG, Lee JK, Shin SJ, Kim K, Chaney MF, Choi YJ, Suh YS, Park JS, Sung YC. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol 2021; 21:1653-1660. [PMID: 33271094 DOI: 10.1016/s1470-2045(20)30486-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Survival outcomes for patients with recurrent or advanced cervical cancer are poor. Pembrolizumab has been approved for the treatment of recurrent or metastatic cervical cancer, with an overall response rate of 14·3%. GX-188E vaccination has been shown to induce human papillomavirus (HPV) E6-specific and E7-specific T-cell responses and cervical lesion regression in patients with cervical precancer. We aimed to investigate whether a combination of GX-188E therapeutic DNA vaccine plus pembrolizumab showed antitumour activity against recurrent or advanced cervical cancer. METHODS In this open-label, single-arm, phase 2 trial, patients with recurrent or advanced, inoperable cervical cancer, who were aged 18 years or older with Eastern Cooperative Oncology Group performance status of 0 or 1 and histologically confirmed recurrent or advanced HPV-positive (HPV-16 or HPV-18) cervical cancer, and who had progressed after available standard-of-care therapy were recruited from seven hospitals in South Korea. Patients received intramuscular 2 mg GX-188E at weeks 1, 2, 4, 7, 13, and 19, with one optional dose at week 46 that was at the investigator's discretion, and intravenous pembrolizumab 200 mg every 3 weeks for up to 2 years or until disease progression. The primary endpoint was the overall response rate within 24 weeks assessed by the investigator using Response Evaluation Criteria in Solid Tumors version 1.1 in patients who received at least 45 days of treatment 45 days of treatment with at least one post-baseline tumour assessment, and this is the report of a planned interim analysis. This trial is registered with ClinicalTrials.gov, NCT03444376. FINDINGS Between June 19, 2018, and March 20, 2020, 36 patients were enrolled and received at least one dose of the study treatment. 26 patients were evaluable for interim activity assessment, with at least one post-baseline tumour assessment at week 10. At the data cutoff date on March 30, 2020, median follow-up duration was 6·2 months (IQR 3·5-8·1). At 24 weeks, 11 (42%; 95% CI 23-63) of 26 patients achieved an overall response; four (15%) had a complete response and seven (27%) had a partial response. 16 (44%) of 36 patients had treatment-related adverse events of any grade and four (11%) had grade 3-4 treatment-related adverse events. Grade 3 increased aspartate aminotransferase, syncope, pericardial effusion, and hyperkalaemia, and grade 4 increased alanine aminotransferase were reported in one patient each. No treatment-related deaths were reported. INTERPRETATION Treatment with GX-188E therapeutic vaccine plus pembrolizumab for patients with recurrent or advanced cervical cancer was safe and treatment-related adverse events were manageable. This combination therapy showed preliminary antitumour activity in this interim analysis, which could represent a new potential treatment option for this patient population. This trial is ongoing. FUNDING National OncoVenture.
Collapse
Affiliation(s)
- Jin Won Youn
- Genexine, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Soo-Young Hur
- The Catholic University of Korea, Seoul St Mary's Hospital, Seocho-gu, Seoul, South Korea
| | - Jung Won Woo
- Genexine, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Yong-Man Kim
- Asan Medical Center, Songpa-gu, Seoul, South Korea
| | - Myong Cheol Lim
- National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | - Sang Yoon Park
- National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | - Sang Soo Seo
- National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | - Jae Hong No
- Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | | | - Jae-Kwan Lee
- Korea University Guro Hospital, Guro-gu, Seoul, South Korea
| | - So Jin Shin
- Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, South Korea
| | - Kyungun Kim
- National Onco Venture, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | | | | | - You Suk Suh
- Genexine, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Jong Sup Park
- Genexine, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Young Chul Sung
- Genexine, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea; Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
60
|
Thimme R. T cell immunity to hepatitis C virus: Lessons for a prophylactic vaccine. J Hepatol 2021; 74:220-229. [PMID: 33002569 DOI: 10.1016/j.jhep.2020.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
There is consensus that HCV-specific T cells play a central role in the outcome (clearance vs. persistence) of acute infection and that they contribute to protection against the establishment of persistence after reinfection. However, these T cells often fail and the virus can persist, largely as a result of T cell exhaustion and the emergence of viral escape mutations. Importantly, HCV cure by direct-acting antivirals does not lead to a complete reversion of T cell exhaustion and thus HCV reinfections can occur. The current lack of detailed knowledge about the immunological determinants of viral clearance, persistence and protective immunity is a major roadblock to the development of a prophylactic T cell vaccine. This minireview highlights the basic concepts of successful T cell immunity, major mechanisms of T cell failure and how our understanding of these concepts can be translated into a prophylactic vaccine.
Collapse
Affiliation(s)
- Robert Thimme
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, Germany.
| |
Collapse
|
61
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
62
|
Tzelepis F, Birdi HK, Jirovec A, Boscardin S, Tanese de Souza C, Hooshyar M, Chen A, Sutherland K, Parks RJ, Werier J, Diallo JS. Oncolytic Rhabdovirus Vaccine Boosts Chimeric Anti-DEC205 Priming for Effective Cancer Immunotherapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:240-252. [PMID: 33209979 PMCID: PMC7658579 DOI: 10.1016/j.omto.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
Prime-boost vaccination employing heterologous viral vectors encoding an antigen is an effective strategy to maximize the antigen-specific immune response. Replication-deficient adenovirus serotype 5 (Ad5) is currently being evaluated clinically in North America as a prime in conjunction with oncolytic rhabdovirus Maraba virus (MG1) as a boost. The use of an oncolytic rhabdovirus encoding a tumor antigen elicits a robust anti-cancer immune response and extends survival in murine models of cancer. Given the prevalence of pre-existing immunity to Ad5 globally, we explored the potential use of DEC205-targeted antibodies as an alternative agent to prime antigen-specific responses ahead of boosting with an oncolytic rhabdovirus expressing the same antigen. We found that a prime-boost vaccination strategy, consisting of an anti-DEC205 antibody fused to the model antigen ovalbumin (OVA) as a prime and oncolytic rhabdovirus-OVA as a boost, led to the formation of a robust antigen-specific immune response and improved survival in a B16-OVA tumor model. Overall, our study shows that anti-DEC205 antibodies fused to cancer antigens are effective to prime oncolytic rhabdovirus-boosted cancer antigen responses and may provide an alternative for patients with pre-existing immunity to Ad5 in humans.
Collapse
Affiliation(s)
- Fanny Tzelepis
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Harsimrat Kaur Birdi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Silvia Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| | | | - Mohsen Hooshyar
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Keara Sutherland
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin J Parks
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Joel Werier
- Department of Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
63
|
Alsaleh G, Panse I, Swadling L, Zhang H, Richter FC, Meyer A, Lord J, Barnes E, Klenerman P, Green C, Simon AK. Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. eLife 2020; 9:e57950. [PMID: 33317695 PMCID: PMC7744099 DOI: 10.7554/elife.57950] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Isabel Panse
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Leo Swadling
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Hanlin Zhang
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Felix Clemens Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Alain Meyer
- Fédération de médecine translationnelle Université de StrasbourgStrasbourgFrance
| | - Janet Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of BirminghamBirminghamUnited Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research,Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Translational Gastroenterology Unit, John Radcliffe HospitalOxfordUnited Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe HospitalOxfordUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research,Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Translational Gastroenterology Unit, John Radcliffe HospitalOxfordUnited Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe HospitalOxfordUnited Kingdom
| | - Christopher Green
- Oxford Vaccine Group, Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
64
|
van der Gracht ET, Schoonderwoerd MJ, van Duikeren S, Yilmaz AN, Behr FM, Colston JM, Lee LN, Yagita H, van Gisbergen KP, Hawinkels LJ, Koning F, Klenerman P, Arens R. Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. J Immunother Cancer 2020; 8:e001133. [PMID: 33293355 PMCID: PMC7725098 DOI: 10.1136/jitc-2020-001133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral vectors. METHODS Adenoviral vaccine vectors encoding the full-length E7 protein from human papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice were immunized intravenously with different quantities (107, 108 or 109 infectious units). The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell responses were evaluated. RESULTS The adenoviral vaccines elicited inflationary E7-specific memory CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-induced carcinomas in the skin and liver, and this protection required the induction and accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after immunization. CONCLUSIONS Together, these data show that adenoviral vector-induced CD8+ T cell inflation promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.
Collapse
Affiliation(s)
| | - Mark Ja Schoonderwoerd
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayse N Yilmaz
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Julia M Colston
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lian N Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Klaas Pjm van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Lukas Jac Hawinkels
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
65
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
66
|
Sangewar N, Hassan W, Lokhandwala S, Bray J, Reith R, Markland M, Sang H, Yao J, Fritz B, Waghela SD, Abdelsalam KW, Chase CCL, Mwangi W. Mosaic Bovine Viral Diarrhea Virus Antigens Elicit Cross-Protective Immunity in Calves. Front Immunol 2020; 11:589537. [PMID: 33281819 PMCID: PMC7690067 DOI: 10.3389/fimmu.2020.589537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.
Collapse
Affiliation(s)
- Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Wisam Hassan
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rachel Reith
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Mary Markland
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Bailey Fritz
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Karim W Abdelsalam
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
67
|
Hartnell F, Esposito I, Swadling L, Brown A, Phetsouphanh C, de Lara C, Gentile C, Turner B, Dorrell L, Capone S, Folgori A, Barnes E, Klenerman P. Characterizing Hepatitis C Virus-Specific CD4 + T Cells Following Viral-Vectored Vaccination, Directly Acting Antivirals, and Spontaneous Viral Cure. Hepatology 2020; 72:1541-1555. [PMID: 32012325 PMCID: PMC7610807 DOI: 10.1002/hep.31160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Induction of functional helper CD4+ T cells is the hallmark of a protective immune response against hepatitis C virus (HCV), associated with spontaneous viral clearance. Heterologous prime/boost viral vectored vaccination has demonstrated induction of broad and polyfunctional HCV-specific CD8+ T cells in healthy volunteers; however, much less is known about CD4+ T-cell subsets following vaccination. APPROACH AND RESULTS We analyzed HCV-specific CD4+ T-cell populations using major histocompatibility complex class II tetramers in volunteers undergoing HCV vaccination with recombinant HCV adenoviral/modified vaccinia Ankara viral vectors. Peptide-specific T-cell responses were tracked over time, and functional (proliferation and cytokine secretion) and phenotypic (cell surface and intranuclear) markers were assessed using flow cytometry. These were compared to CD4+ responses in 10 human leukocyte antigen-matched persons with HCV spontaneous resolution and 21 chronically infected patients treated with directly acting antiviral (DAA) therapy. Vaccination induced tetramer-positive CD4+ T cells that were highest 1-4 weeks after boosting (mean, 0.06%). Similar frequencies were obtained for those tracked following spontaneous resolution of disease (mean, 0.04%). In addition, the cell-surface phenotype (CD28, CD127) memory subset markers and intranuclear transcription factors, as well as functional capacity of peptide-specific CD4+ T-cell responses characterized after vaccination, are comparable to those following spontaneous viral resolution. In contrast, helper responses in chronic infection were infrequently detected and poorly functional and did not consistently recover following HCV cure. CONCLUSIONS Helper CD4+ T-cell phenotype and function following HCV viral vectored vaccination resembles "protective memory" that is observed following spontaneous clearance of HCV. DAA cure does not promote resurrection of exhausted CD4+ T-cell memory in chronic infection.
Collapse
Affiliation(s)
- Felicity Hartnell
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - Ilaria Esposito
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - Leo Swadling
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | | | - Catherine de Lara
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | | | - Bethany Turner
- Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Lucy Dorrell
- Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom,Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom,NIHR Biomedical Research Centre OxfordJohn Radcliffe HospitalOxfordUnited Kingdom,Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom,Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom,NIHR Biomedical Research Centre OxfordJohn Radcliffe HospitalOxfordUnited Kingdom,Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUnited Kingdom
| |
Collapse
|
68
|
Capone S, Brown A, Hartnell F, Sorbo MD, Traboni C, Vassilev V, Colloca S, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E, Swadling L. Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans. NPJ Vaccines 2020; 5:94. [PMID: 33083029 PMCID: PMC7550607 DOI: 10.1038/s41541-020-00240-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.
Collapse
Affiliation(s)
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Cinzia Traboni
- ReiThera Srl, Via di Castel Romano, 100, 00128 Rome, Italy
- Present Address: Nouscom Srl, Via di Castel Romano, 100, 00128 Rome, Italy
| | | | | | - Alfredo Nicosia
- Keires AG, Baumleingasse 18, CH 4051 Basel, Switzerland
- CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present Address: Rayne Institute, University College London, London, UK
| |
Collapse
|
69
|
El-Tahan RR, Ghoneim AM, Zaghloul H. Dissection of two drug-targeted regions of Hepatitis C virus subtype 4a infecting Egyptian patients. Virus Genes 2020; 56:564-581. [PMID: 32572756 PMCID: PMC7307947 DOI: 10.1007/s11262-020-01776-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Recently, treatment of HCV infection has been improved after the development of direct acting antivirals (DAAs) which target different viral proteins (NS3-4A, NS5A and NS5B). The activity and effectiveness of these DAAs are affected by the presence of resistance associated substitutions (RASs). This study aimed to characterize HCV genotypes circulating among Egyptian HCV patients, to dissect the full sequences of HCV NS3-4A and NS5B regions, and to characterize RASs associated with NS3-4A and NS5B inhibitors in HCV treatment-naïve patients. Genotyping of 80 HCV samples from treatment-naïve patients was done using restriction fragment length polymorphism and phylogenetic analysis based on some full NS5B sequences. Results showed the prevalence of HCV subtype 4a. Twenty four new full sequences of NS3-4A and NS5B regions of subtype 4a were deposited in the GenBank database. In general, the substitutions associated with NS3-4A-targeting drugs were absent predicting possible responsiveness of Egyptian HCV patients to these drugs. In addition, the absence of amino acid substitutions associated with resistance to Sofosbuvir may predict good response to treatment with Sofosbuvir. Some amino acid substitutions associated with resistance to different classes of non-nucleoside inhibitors were detected. Further investigations on treated Egyptian HCV patients may evaluate the effectiveness of the massively used drugs. Many predicted T-cell-binding epitopes in NS3-4A and NS5B regions were found to be highly conserved in the currently studied isolates; a finding that might be important for HCV vaccine development. We demonstrated potential NS3 epitopes that could be used in engineering T cells against HCV epitopes.
Collapse
Affiliation(s)
- Radwa R. El-Tahan
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Ahmed M. Ghoneim
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Hosam Zaghloul
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
70
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
71
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
72
|
Leoni G, D'Alise AM, Cotugno G, Langone F, Garzia I, De Lucia M, Fichera I, Vitale R, Bignone V, Tucci FG, Mori F, Leuzzi A, Di Matteo E, Troise F, Abbate A, Merone R, Ruzza V, Diodoro MG, Yadav M, Gordon-Alonso M, Vanhaver C, Panigada M, Soprana E, Siccardi A, Folgori A, Colloca S, van der Bruggen P, Nicosia A, Lahm A, Catanese MT, Scarselli E. A Genetic Vaccine Encoding Shared Cancer Neoantigens to Treat Tumors with Microsatellite Instability. Cancer Res 2020; 80:3972-3982. [PMID: 32690723 DOI: 10.1158/0008-5472.can-20-1072] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cristophe Vanhaver
- de Duve Institute and the Université catholique de Louvain, Brussels, Belgium
| | - Maddalena Panigada
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Elisa Soprana
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Antonio Siccardi
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | | | | | | | - Alfredo Nicosia
- Nouscom AG, Bäumleingasse, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Via Comunale Margherita, Naples, Italy
| | | | | | | |
Collapse
|
73
|
Donnison T, von Delft A, Brown A, Swadling L, Hutchings C, Hanke T, Chinnakannan S, Barnes E. Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes. Vaccine 2020; 38:5036-5048. [PMID: 32532545 DOI: 10.1016/j.vaccine.2020.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/11/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Viral genetic variability presents a major challenge to the development of a prophylactic hepatitis C virus (HCV) vaccine. A promising HCV vaccine using chimpanzee adenoviral vectors (ChAd) encoding a genotype (gt) 1b non-structural protein (ChAd-Gt1b-NS) generated high magnitude T cell responses. However, these T cells showed reduced cross-recognition of dominant epitope variants and the vaccine has recently been shown to be ineffective at preventing chronic HCV. To address the challenge of viral diversity, we developed ChAd vaccines encoding HCV genomic sequences that are conserved between all major HCV genotypes and adjuvanted by truncated shark invariant chain (sIitr). METHODS Age-matched female mice were immunised intramuscularly with ChAd (108 infectious units) encoding gt-1 and -3 (ChAd-Gt1/3) or gt-1 to -6 (ChAd-Gt1-6) conserved segments spanning the HCV proteome, or gt-1b (ChAd-Gt1b-NS control), with immunogenicity assessed 14-days post-vaccination. RESULTS Conserved segment vaccines, ChAd-Gt1/3 and ChAd-Gt1-6, generated high-magnitude, broad, and functional CD4+ and CD8+ T cell responses. Compared to the ChAd-Gt1b-NS vaccine, these vaccines generated significantly greater responses against conserved non-gt-1 antigens, including conserved subdominant epitopes that were not targeted by ChAd-Gt1b-NS. Epitopes targeted by the conserved segment HCV vaccine induced T cells, displayed 96.6% mean sequence homology between all HCV subtypes (100% sequence homology for the majority of genotype-1, -2, -4 sequences and 94% sequence homology for gt-3, -6, -7, and -8) in contrast to 85.1% mean sequence homology for epitopes targeted by ChAd-Gt1b-NS induced T cells. The addition of truncated shark invariant chain (sIitr) increased the magnitude, breadth, and cross-reactivity of the T cell response. CONCLUSIONS We have demonstrated that genetically adjuvanted ChAd vectored HCV T cell vaccines encoding genetic sequences conserved between genotypes are immunogenic, activating T cells that target subdominant conserved HCV epitopes. These pre-clinical studies support the use of conserved segment HCV T cell vaccines in human clinical trials.
Collapse
Affiliation(s)
- Timothy Donnison
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Annette von Delft
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Tomáš Hanke
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Senthil Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom; Jenner Institute, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom.
| |
Collapse
|
74
|
Han JW, Sung PS, Hong SH, Lee H, Koh JY, Lee H, White S, Maslow JN, Weiner DB, Park SH, Jeong M, Heo J, Ahn SH, Shin EC. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. J Hepatol 2020; 73:72-83. [PMID: 32088322 DOI: 10.1016/j.jhep.2020.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although direct-acting antiviral (DAA) treatment results in a sustained virologic response (SVR) in most patients with chronic HCV infection, they are at risk of re-infection. Moreover, the immune system is not completely normalized even after SVR (e.g. increased regulatory T [Treg] cell frequency). We developed a DNA vaccine, GLS-6150, to prevent re-infection of patients with DAA-induced SVR and evaluated its safety and immunogenicity in individuals with chronic HCV infection. METHODS GLS-6150 consists of plasmids encoding HCV non-structural proteins (NS3-NS5A) and adjuvant IFNL3. The vaccine was administered 4 times at 4-weekly intervals to 3 groups (1, 3, or 6 mg/vaccination; n = 6 per group), followed by a 6 mg boost at 24 weeks (n = 14). Peripheral blood T cell responses were evaluated by interferon (IFN)-γ enzyme-linked immunospot assays, intracellular cytokine staining, and major histocompatibility complex class-I (MHC-I) dextramer staining. Treg cell frequency was assessed by flow cytometry. RESULTS Severe adverse events or vaccine discontinuation were not reported. The IFN-γ spot-forming cells specific to NS3-NS5A were increased by GLS-6150. Both CD4+ and CD8+ T cells produced multiple cytokines. However, the frequency and phenotype of HCV-specific MHC-I dextramer+CD8+ T cells were not changed. Interestingly, the frequency of Treg cells, particularly activated Treg cells, was decreased by GLS-6150, as expected from previous reports that IFNL3 adjuvants decrease Treg cell frequency. Ex vivo IFN-λ3 treatment reduced Treg frequency in pre-vaccination peripheral blood mononuclear cells. Finally, Treg cell frequency inversely correlated with HCV-specific, IFN-γ-producing T cell responses in the study participants. CONCLUSIONS We demonstrate that GLS-6150 decreases Treg cell frequency and enhances HCV-specific T cell responses without significant side effects. A phase I clinical trial of GLS-6150 is currently underway in patients with DAA-induced SVR. CLINICAL TRIAL NUMBER NCT02027116. LAY SUMMARY Although direct-acting antivirals (DAAs) are successfully used for the treatment of chronic hepatitis C virus (HCV) infection, a prophylactic HCV vaccine needs to be developed, especially for patients who achieve a sustained virologic response. In the current study, we show that a DNA vaccine (GLS-6150) was safe and increased HCV-specific T cell responses. A clinical trial is underway to test this vaccine in patients with a sustained virologic response following DAA therapy.
Collapse
Affiliation(s)
- Ji Won Han
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Pil Soo Sung
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seon-Hui Hong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - June Young Koh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | - Scott White
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Joel N Maslow
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | | | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Moonsup Jeong
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University, Busan 49241, Republic of Korea.
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
75
|
Heterologous Combination of ChAdOx1 and MVA Vectors Expressing Protein NS1 as Vaccination Strategy to Induce Durable and Cross-Protective CD8+ T Cell Immunity to Bluetongue Virus. Vaccines (Basel) 2020; 8:vaccines8030346. [PMID: 32610561 PMCID: PMC7564706 DOI: 10.3390/vaccines8030346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The sequence of non-structural protein NS1 of bluetongue virus (BTV), which contains immunodominant CD8+ T cell epitopes, is highly conserved among BTV serotypes, and has therefore become a major tool in the development of a universal BTV vaccine. In this work, we have engineered multiserotype BTV vaccine candidates based on recombinant chimpanzee adenovirus (ChAdOx1) and modified vaccinia virus Ankara (MVA) vectors expressing the NS1 protein of BTV-4 or its truncated form NS1-Nt. A single dose of ChAdOx1-NS1 or ChAdOx1-NS1-Nt induced a moderate CD8+ T cell response and protected IFNAR(-/-) mice against a lethal dose of BTV-4/MOR09, a reassortant strain between BTV-1 and BTV-4, although the animals showed low viremia after infection. Furthermore, IFNAR(-/-) mice immunized with a single dose of ChAdOx1-NS1 were protected after challenge with a lethal dose of BTV-8 in absence of viremia nor clinical signs. Additionally, the heterologous prime-boost ChAdOx1/MVA expressing NS1 or NS1-Nt elicited a robust NS1 specific CD8+ T cell response and protected the animals against BTV-4/MOR09 even 16 weeks after immunization, with undetectable levels of viremia at any time after challenge. Subsequently, the best immunization strategy based on ChAdOx1/MVA-NS1 was assayed in sheep. Non-immunized animals presented fever and viremia levels up to 104 PFU/mL after infection. In contrast, although viremia was detected in immunized sheep, the level of virus in blood was 100 times lower than in non-immunized animals in absence of clinical signs.
Collapse
|
76
|
Esposito I, Cicconi P, D'Alise AM, Brown A, Esposito M, Swadling L, Holst PJ, Bassi MR, Stornaiuolo M, Mori F, Vassilev V, Li W, Donnison T, Gentile C, Turner B, von Delft A, Del Sorbo M, Barra F, Contino AM, Abbate A, Novellino E, Thomsen AR, Christensen JP, Lahm A, Grazioli F, Ammendola V, Siani L, Colloca S, Klenerman P, Nicosia A, Dorrell L, Folgori A, Capone S, Barnes E. MHC class II invariant chain-adjuvanted viral vectored vaccines enhances T cell responses in humans. Sci Transl Med 2020; 12:12/548/eaaz7715. [PMID: 32554708 PMCID: PMC7610808 DOI: 10.1126/scitranslmed.aaz7715] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Strategies to enhance the induction of high magnitude T cell responses through vaccination are urgently needed. Major histocompatibility complex (MHC) class II-associated invariant chain (Ii) plays a critical role in antigen presentation, forming MHC class II peptide complexes for the generation of CD4+ T cell responses. Preclinical studies evaluating the fusion of Ii to antigens encoded in vector delivery systems have shown that this strategy may enhance T cell immune responses to the encoded antigen. We now assess this strategy in humans, using chimpanzee adenovirus 3 and modified vaccinia Ankara vectors encoding human Ii fused to the nonstructural (NS) antigens of hepatitis C virus (HCV) in a heterologous prime/boost regimen. Vaccination was well tolerated and enhanced the peak magnitude, breadth, and proliferative capacity of anti-HCV T cell responses compared to non-Ii vaccines in humans. Very high frequencies of HCV-specific T cells were elicited in humans. Polyfunctional HCV-specific CD8+ and CD4+ responses were induced with up to 30% of CD3+CD8+ cells targeting single HCV epitopes; these were mostly effector memory cells with a high proportion expressing T cell activation and cytolytic markers. No volunteers developed anti-Ii T cell or antibody responses. Using a mouse model and in vitro experiments, we show that Ii fused to NS increases HCV immune responses through enhanced ubiquitination and proteasomal degradation. This strategy could be used to develop more potent HCV vaccines that may contribute to the HCV elimination targets and paves the way for developing class II Ii vaccines against cancer and other infections.
Collapse
Affiliation(s)
- Ilaria Esposito
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Paola Cicconi
- The Jenner Institute Laboratories, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Johannes Holst
- Center for Medical Parasitology, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.,InProTher ApS, BioInnovation Institute, 2200 Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Center for Medical Parasitology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | | | | | - Wenqin Li
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Timothy Donnison
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Chiara Gentile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Bethany Turner
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Annette von Delft
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.,The Jenner Institute Laboratories, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.,CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.,Keires AG, 4051 Basel, Switzerland
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.,Oxford NIHR Biomedical Research Centre, Headington OX3 9DU, UK
| | | | | | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK. .,The Jenner Institute Laboratories, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
77
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
78
|
Coughlan L. Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines. Front Immunol 2020; 11:909. [PMID: 32508823 PMCID: PMC7248264 DOI: 10.3389/fimmu.2020.00909] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 01/12/2023] Open
Abstract
Adenoviral vectors are a safe and potently immunogenic vaccine delivery platform. Non-replicating Ad vectors possess several attributes which make them attractive vaccines for infectious disease, including their capacity for high titer growth, ease of manipulation, safety, and immunogenicity in clinical studies, as well as their compatibility with clinical manufacturing and thermo-stabilization procedures. In general, Ad vectors are immunogenic vaccines, which elicit robust transgene antigen-specific cellular (namely CD8+ T cells) and/or humoral immune responses. A large number of adenoviruses isolated from humans and non-human primates, which have low seroprevalence in humans, have been vectorized and tested as vaccines in animal models and humans. However, a distinct hierarchy of immunological potency has been identified between diverse Ad vectors, which unfortunately limits the potential use of many vectors which have otherwise desirable manufacturing characteristics. The precise mechanistic factors which underlie the profound disparities in immunogenicity are not clearly defined and are the subject of ongoing, detailed investigation. It has been suggested that a combination of factors contribute to the potent immunogenicity of particular Ad vectors, including the magnitude and duration of vaccine antigen expression following immunization. Furthermore, the excessive induction of Type I interferons by some Ad vectors has been suggested to impair transgene expression levels, dampening subsequent immune responses. Therefore, the induction of balanced, but not excessive stimulation of innate signaling is optimal. Entry factor binding or receptor usage of distinct Ad vectors can also affect their in vivo tropism following administration by different routes. The abundance and accessibility of innate immune cells and/or antigen-presenting cells at the site of injection contributes to early innate immune responses to Ad vaccination, affecting the outcome of the adaptive immune response. Although a significant amount of information exists regarding the tropism determinants of the common human adenovirus type-5 vector, very little is known about the receptor usage and tropism of rare species or non-human Ad vectors. Increased understanding of how different facets of the host response to Ad vectors contribute to their immunological potency will be essential for the development of optimized and customized Ad vaccine platforms for specific diseases.
Collapse
|
79
|
Abstract
INTRODUCTION The recent availability of highly effective hepatitis C medications, with a cure rate approaching 100%, has created a wide range of questions and uncertainties. AREAS COVERED The most recent data around hepatitis C virus (HCV) elimination will be reviewed. In addition, the impact of HCV cure or sustained virologic response (SVR) on the risk for hepatocellular carcinoma (HCC) development will be discussed. Although the terms 'SVR' and 'cure' are used interchangeably, there are little data to support that they are actually the same. In this review, we will shed some light on the status of HCV vaccine development, obstacles, and published experience. Finally, in the face of decreasing HCV patients needing transplantation, and increasing available organs from donors infected with HCV, the question is that, is it possible to transplant an organ infected with HCV to a patient who is not infected? The pros and cons of transplanting HCV-positive organs to HCV-negative recipients will be discussed. EXPERT OPINION Although the new advances in HCV treatment have solved many problems, it created several new issues which the medical community has to deal with and which will likely remain in the near future.
Collapse
Affiliation(s)
- Omar Massoud
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
80
|
Dash S, Aydin Y, Widmer KE, Nayak L. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7:45-76. [PMID: 32346535 PMCID: PMC7167284 DOI: 10.2147/jhc.s221187] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis appear to be highly complex due to the decade-long interactions between the virus, immune system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily accessible animal model system for HCV is a significant obstacle to understand the mechanisms of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment is determined by the SVR when the HCV is no longer detectable in serum. Interferon-alpha (IFN-α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the primary antiviral treatment of HCV for many years with a low cure rate. The cloning and sequencing of HCV have allowed the development of cell culture models, which accelerated antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral (DAA)-based combination therapy that now offers incredible success in curing HCV infection in more than 95% of all patients, including those with cirrhosis. However, several emerging recent publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that drive the risk of HCC in the absence of the virus are unknown. This review describes the multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection. In addition to the potential oncogenic programming that drives HCC after viral clearance by DAAs, the current status of a biomarker development for early prediction of cirrhosis regression and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full protection against reinfection or viral transmission to other individuals, the recent studies for a vaccine development are also reviewed.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
- Department of Medicine, Division of Gastroenterology, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Kyle E Widmer
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| | - Leela Nayak
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| |
Collapse
|
81
|
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, Webber JP, Clayton A, Hill AV, Coughlan L. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev 2020; 16:108-125. [PMID: 31934599 PMCID: PMC6953706 DOI: 10.1016/j.omtm.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022]
Abstract
Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5.
Collapse
Affiliation(s)
- Carly M. Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea J. Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jennifer R. Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Jason P. Webber
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Adrian V.S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
82
|
Atcheson E, Li W, Bliss CM, Chinnakannan S, Heim K, Sharpe H, Hutchings C, Dietrich I, Nguyen D, Kapoor A, Jarvis MA, Klenerman P, Barnes E, Simmonds P. Use of an Outbred Rat Hepacivirus Challenge Model for Design and Evaluation of Efficacy of Different Immunization Strategies for Hepatitis C Virus. Hepatology 2020; 71:794-807. [PMID: 31400152 PMCID: PMC7154631 DOI: 10.1002/hep.30894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.
Collapse
Affiliation(s)
- Erwan Atcheson
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Wenqin Li
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Carly M. Bliss
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | | | - Kathrin Heim
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Hannah Sharpe
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Isabelle Dietrich
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Dung Nguyen
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Amit Kapoor
- Centre for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOH
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
83
|
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines (Basel) 2020; 8:vaccines8010090. [PMID: 32079254 PMCID: PMC7157504 DOI: 10.3390/vaccines8010090] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) causes both acute and chronic infection and continues to be a global problem despite advances in antiviral therapeutics. Current treatments fail to prevent reinfection and remain expensive, limiting their use to developed countries, and the asymptomatic nature of acute infection can result in individuals not receiving treatment and unknowingly spreading HCV. A prophylactic vaccine is therefore needed to control this virus. Thirty years since the discovery of HCV, there have been major gains in understanding the molecular biology and elucidating the immunological mechanisms that underpin spontaneous viral clearance, aiding rational vaccine design. This review discusses the challenges facing HCV vaccine design and the most recent and promising candidates being investigated.
Collapse
Affiliation(s)
- Joshua D. Duncan
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
84
|
Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca DR, Patarroyo MA, Patarroyo ME. Plasmodium falciparum pre-erythrocytic stage vaccine development. Malar J 2020; 19:56. [PMID: 32013956 PMCID: PMC6998842 DOI: 10.1186/s12936-020-3141-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide strategies between 2010 and 2017 aimed at controlling malarial parasites (mainly Plasmodium falciparum) led to a reduction of just 18% regarding disease incidence rates. Many biologically-derived anti-malarial vaccine candidates have been developed to date; this has involved using many experimental animals, an immense amount of work and the investment of millions of dollars. This review provides an overview of the current state and the main results of clinical trials for sporozoite-targeting vaccines (i.e. the parasite stage infecting the liver) carried out by research groups in areas having variable malaria transmission rates. However, none has led to promising results regarding the effective control of the disease, thereby making it necessary to complement such efforts at finding/introducing new vaccine candidates by adopting a multi-epitope, multi-stage approach, based on minimal subunits of the main sporozoite proteins involved in the invasion of the liver.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Cuy-Chaparro
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Anny Camargo
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Reyes
- PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia.,3D Structures Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marcela Gómez
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - David Ricardo Salamanca
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Medical School, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
85
|
Cox AL. Challenges and Promise of a Hepatitis C Virus Vaccine. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036947. [PMID: 31548228 DOI: 10.1101/cshperspect.a036947] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An estimated 1.5-2 million new hepatitis C virus (HCV) infections occur globally each year. Critical to the World Health Organization's (WHO) HCV elimination strategy is an 80% reduction in incidence of HCV infections by 2030. However, even among high-income countries, few are on target to achieve the WHO's incident infection-reduction goal. A preventative vaccine could have a major impact in achieving incidence-reduction targets globally. However, barriers to HCV vaccine development are significant and include at-risk populations that are often marginalized: viral diversity, limited options for testing HCV vaccines, and an incomplete understanding of protective immune responses. In part because of those factors, testing of only one vaccine strategy has been completed in at-risk individuals as of 2019. Despite challenges, immunity against HCV protects against chronic infection in some repeated HCV exposures and an effective HCV vaccine could prevent transmission regardless of risk factors. Ultimately, prophylactic vaccines will likely be necessary to achieve global HCV elimination.
Collapse
Affiliation(s)
- Andrea L Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
86
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
87
|
Venkatraman N, Ndiaye BP, Bowyer G, Wade D, Sridhar S, Wright D, Powlson J, Ndiaye I, Dièye S, Thompson C, Bakhoum M, Morter R, Capone S, Del Sorbo M, Jamieson S, Rampling T, Datoo M, Roberts R, Poulton I, Griffiths O, Ballou WR, Roman F, Lewis DJM, Lawrie A, Imoukhuede E, Gilbert SC, Dieye TN, Ewer KJ, Mboup S, Hill AVS. Safety and Immunogenicity of a Heterologous Prime-Boost Ebola Virus Vaccine Regimen in Healthy Adults in the United Kingdom and Senegal. J Infect Dis 2020; 219:1187-1197. [PMID: 30407513 PMCID: PMC6452431 DOI: 10.1093/infdis/jiy639] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The 2014 West African outbreak of Ebola virus disease highlighted the urgent need to develop an effective Ebola vaccine. METHODS We undertook 2 phase 1 studies assessing safety and immunogenicity of the viral vector modified vaccinia Ankara virus vectored Ebola Zaire vaccine (MVA-EBO-Z), manufactured rapidly on a new duck cell line either alone or in a heterologous prime-boost regimen with recombinant chimpanzee adenovirus type 3 vectored Ebola Zaire vaccine (ChAd3-EBO-Z) followed by MVA-EBO-Z. Adult volunteers in the United Kingdom (n = 38) and Senegal (n = 40) were vaccinated and an accelerated 1-week prime-boost regimen was assessed in Senegal. Safety was assessed by active and passive collection of local and systemic adverse events. RESULTS The standard and accelerated heterologous prime-boost regimens were well-tolerated and elicited potent cellular and humoral immunogenicity in the United Kingdom and Senegal, but vaccine-induced antibody responses were significantly lower in Senegal. Cellular immune responses measured by flow cytometry were significantly greater in African vaccinees receiving ChAd3 and MVA vaccines in the same rather than the contralateral limb. CONCLUSIONS MVA biomanufactured on an immortalized duck cell line shows potential for very large-scale manufacturing with lower cost of goods. This first trial of MVA-EBO-Z in humans encourages further testing in phase 2 studies, with the 1-week prime-boost interval regimen appearing to be particularly suitable for outbreak control. CLINICAL TRIALS REGISTRATION NCT02451891; NCT02485912.
Collapse
Affiliation(s)
| | | | | | - Djibril Wade
- Centre Hospitalier Universitaire le Dantec, Dakar, Senegal
| | | | - Daniel Wright
- Jenner Institute, University of Oxford, United Kingdom
| | | | | | - Siry Dièye
- Centre Hospitalier Universitaire le Dantec, Dakar, Senegal
| | | | - Momar Bakhoum
- Centre Hospitalier Universitaire le Dantec, Dakar, Senegal
| | | | | | | | | | | | - Mehreen Datoo
- Jenner Institute, University of Oxford, United Kingdom
| | | | - Ian Poulton
- Jenner Institute, University of Oxford, United Kingdom
| | | | | | | | - David J M Lewis
- National Institute for Health Research/Imperial Clinical Research Facility, Hammersmith Hospital, London, United Kingdom
| | - Alison Lawrie
- Jenner Institute, University of Oxford, United Kingdom
| | | | | | | | - Katie J Ewer
- Jenner Institute, University of Oxford, United Kingdom
| | | | | |
Collapse
|
88
|
Comparative Evaluation of the Vaccine Efficacies of Three Adenovirus-Based Vector Types in the Friend Retrovirus Infection Model. J Virol 2019; 93:JVI.01155-19. [PMID: 31375593 DOI: 10.1128/jvi.01155-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Adenovirus (AdV)-based vectors are popular experimental vaccine vectors, but despite their ability to induce strong immune responses, their application is impeded by widespread preexisting immunity against many AdV types that can impair or even abrogate the induction of transgene-specific immune responses. Therefore, the development of vectors based on AdV types with a low seroprevalence is important for effective AdV-based immunization in humans. We investigated the immunization efficacy of vectors based on AdV type 48 (Ad48) and Ad50 in the ovalbumin (ova) model as well as the Friend retrovirus (FV) model, which allows testing of the protective effect of vaccine-induced immunity. Using ova-encoding vectors, we found a significantly lower induction of ova-specific CD8+ T cells and antibody responses by Ad48- and Ad50-based vectors than by Ad5-based vectors. Similarly, we found a reduced induction of FV-specific CD8+ T cell responses in Ad48- and Ad50.Leader-Gag-immunized mice compared with that in Ad5-immunized mice; however, some of those mice were able to control the FV infection, and protection correlated with the level of neutralizing antibodies 10 days after FV challenge. Analyses of the AdV-specific antibodies and CD8+ T cells induced by the individual AdV types revealed a high level of cross-reactivity, and the efficacy of Ad48-based immunization was impaired in Ad5-preimmune mice. Our results show that the immunity induced by Ad48- and Ad50-based vectors is reduced compared to that induced by Ad5 and is sufficient to control FV infection in only some of the immunized mice. A high level of cross-reactivity suggests that AdV preimmunity must be considered even when applying rare AdV-based vectors.IMPORTANCE AdV-based vectors are important tools for the development of vaccines against a wide range of pathogens. While AdV vectors are generally considered safe and highly effective, their application can be severely impaired by preexisting immunity due to the widespread seroprevalence of some AdV types. The characterization of different AdV types with regard to immunogenicity and efficacy in challenge models is of great importance for the development of improved AdV-based vectors that allow for efficient immunization despite anti-AdV immunity. We show that the immunity induced by an Ad48-based vector is inferior to that induced by an Ad5-based vector but can still mediate the control of an FV infection in highly FV-susceptible mice. However, the efficacy of Ad48-based immunization was impaired in Ad5-preimmune mice. Importantly, we found cross-reactivity of both the humoral and cellular immune responses raised by the individual AdV types, suggesting that switching to a different AdV type may not be sufficient to circumvent preexisting anti-AdV immunity.
Collapse
|
89
|
HCV p7 as a novel vaccine-target inducing multifunctional CD4 + and CD8 + T-cells targeting liver cells expressing the viral antigen. Sci Rep 2019; 9:14085. [PMID: 31575882 PMCID: PMC6773770 DOI: 10.1038/s41598-019-50365-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent treatment advances for chronic hepatitis C virus (HCV) infection, a vaccine is urgently needed for global control of this important liver pathogen. The lack of robust immunocompetent HCV infection models makes it challenging to identify correlates of protection and test vaccine efficacy. However, vigorous CD4+ and CD8+ T-cell responses are detected in patients that spontaneously resolve acute infection, whereas dysfunctional T-cell responses are a hallmark of chronic infection. The HCV p7 protein, forming ion-channels essential for viral assembly and release, has not previously been pursued as a vaccine antigen. Herein, we demonstrated that HCV p7 derived from genotype 1a and 1b sequences are highly immunogenic in mice when employed as overlapping peptides formulated as nanoparticles with the cross-priming adjuvant, CAF09. This approach induced multifunctional cytokine producing CD4+ and CD8+ T-cells targeting regions of p7 that are subject to immune pressure during HCV infection in chimpanzees and humans. Employing a surrogate in vivo challenge model of liver cells co-expressing HCV-p7 and GFP, we found that vaccinated mice cleared transgene expressing cells. This study affirms the potential of a T-cell inducing nanoparticle vaccine platform to target the liver and introduces HCV p7 as a potential target for HCV vaccine explorations.
Collapse
|
90
|
Wang Q, Sun Y, Xu Y, Wang Y, Wang H, Fu Y, Allain JP, Li C, Li T. Seroprevalence of Human Adenovirus Type 5 Neutralizing Antibody in Common Marmosets Determined by a New Set of Two Assays. Viral Immunol 2019; 32:348-354. [PMID: 31433272 DOI: 10.1089/vim.2019.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Preexisting neutralizing antibody (NAb) against human adenovirus serotype 5 (AdHu5) can reduce the immunogenicity of AdHu5 vector-based vaccine, thus inhibiting the host's immune response and utility of other homologous vectors. Common marmoset (Callithrix jacchus), a small new world primate, has attracted considerable attention for its potential as a preclinical research model of vaccine development. However, the prevalence of anti-AdHu5 NAb activity in common marmosets bred in China remains unknown. A recombinant adenovirus expressing luciferase and Zs Green reporter genes were constructed to detect NAb against rAdHu5 by flow cytometry (FCM) and chemiluminescence (CL) assay. Five of 25 marmosets (20%) presented AdHu5 NAb detectable by FCM. Four animals had low titer (1/16), while the fifth one reached 1/64. While by CL assay, 7 of 25 (28%) marmosets were anti-AdHu5 NAb positive. Four animals, two of whom were negative by FCM, also had low titer NAb (1/16), suggesting assay discrepancy at low levels. Two marmosets, 1/32 titer by CL, were at 1/16 by FCM. A single animal showed a high titer with both assays (1/128 and 1/64 by CL and FCM, respectively). The CL method was simpler, more sensitive, accurate, and stable. The low prevalence of preexisting anti-AdHu5 NAb in marmosets provides important background information on the feasibility and applicability of using marmosets as a preclinical research model for vaccine development.
Collapse
Affiliation(s)
- Qi Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yachun Sun
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuxia Xu
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yilin Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Huafeng Wang
- Shunde Hospital, Southern Medical University, Foshan, China
| | | | - Jean-Pierre Allain
- Department of Haematology, Emeritus, University of Cambridge, Cambridge, United Kingdom
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
91
|
Nucleic acid vaccines for hepatitis B and C virus. INFECTION GENETICS AND EVOLUTION 2019; 75:103968. [PMID: 31325609 DOI: 10.1016/j.meegid.2019.103968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections accounts for an important global health problem affecting over 250 million people all around the world. They can cause acute, transient and chronic infections in the human liver. Chronic infection of liver can lead to its failure or cancer. To deal with this problem, alternative approaches or strategies to inhibit these infections have already been started. DNA and mRNA-based vaccination will increase the efficacy and reduce toxicity in patients with Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections. Gene vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development, low-cost manufacture and safe administration. MRNA-based vaccination is a method to elicit potent antigen-specific humoral and cell-mediated immune responses with a superior safety profile compared with DNA vaccines. Exploring the intricacies of these pathways can potentially help the researchers to explore newer vaccines. In this study, DNA and mRNA-based vaccination are introduced as an approach to treat Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections. DNA and mRNA-based vaccines as one of the most successful therapeutics are introduced and the clinical outcomes of their exploitation are explained.
Collapse
|
92
|
Luo S, Zhang P, Ma X, Wang Q, Lu J, Liu B, Zhao W, Allain JP, Li C, Li T. A rapid strategy for constructing novel simian adenovirus vectors with high viral titer and expressing highly antigenic proteins applicable for vaccine development. Virus Res 2019; 268:1-10. [DOI: 10.1016/j.virusres.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
|
93
|
Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep 2019; 9:9251. [PMID: 31239471 PMCID: PMC6592879 DOI: 10.1038/s41598-019-45461-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
The introduction of directly acting antiviral agents (DAAs) has produced significant improvements in the ability to cure chronic hepatitis C infection. However, with over 2% of the world’s population infected with HCV, complications arising from the development of cirrhosis of the liver, chronic hepatitis C infection remains the leading indication for liver transplantation. Several modelling studies have indicated that DAAs alone will not be sufficient to eliminate HCV, but if combined with an effective vaccine this regimen would provide a significant advance towards achieving this critical World Health Organisation goal. We have previously generated a genotype 1a, 1b, 2a, 3a HCV virus like particle (VLP) quadrivalent vaccine. The HCV VLPs contain the core and envelope proteins (E1 and E2) of HCV and the vaccine has been shown to produce broad humoral and T cell immune responses following vaccination of mice. In this report we further advanced this work by investigating vaccine responses in a large animal model. We demonstrate that intradermal microneedle vaccination of pigs with our quadrivalent HCV VLP based vaccine produces long-lived multi-genotype specific and neutralizing antibody (NAb) responses together with strong T cell and granzyme B responses and normal Th1 and Th2 cytokine responses. These responses were achieved without the addition of adjuvant. Our study demonstrates that our vaccine is able to produce broad immune responses in a large animal that, next to primates, is the closest animal model to humans. Our results are important as they show that the vaccine can produce robust immune responses in a large animal model before progressing the vaccine to human trials.
Collapse
|
94
|
Martin MD, Jensen IJ, Ishizuka AS, Lefebvre M, Shan Q, Xue HH, Harty JT, Seder RA, Badovinac VP. Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells. J Clin Invest 2019; 129:3894-3908. [PMID: 31219804 DOI: 10.1172/jci124443] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Induction of memory CD8 T cells is important for controlling infections such as malaria HIV/AIDS, and for cancer immunotherapy. Accurate assessment of antigen (Ag)-specific CD8 T-cells is critical for vaccine optimization and defining correlates of protection. However, conditions for determining Ag-specific CD8 T-cell responses ex-vivo using ICS may be variable, especially in humans with complex antigens. Here, we used an attenuated whole parasite malaria vaccine model in humans and various experimental infections in mice to show that the duration of antigenic stimulation and timing of brefeldin A (BFA) addition influences the magnitude of Ag-specific and bystander T cell responses. Indeed, following immunization with an attenuated whole sporozoite malaria vaccine in humans, significantly higher numbers of IFN-γ producing memory CD8 T-cells comprised of antigen specific and bystander responses were detected by increasing the duration of Ag-stimulation prior to addition of BFA. Mechanistic analyses of virus-specific CD8 T-cells in mice revealed that the increase in IFNg producing CD8 T-cells was due to bystander activation of Ag-experienced memory CD8 T-cells, and correlated with the proportion of Ag-experienced CD8 T-cells in the stimulated populations. Incubation with anti-cytokine antibodies (ex. IL-12) improved accuracy in detecting bona-fide memory CD8 T-cell responses suggesting this as the mechanism for the bystander activation. These data have important implications for accurate assessment of immune responses generated by vaccines intended to elicit protective memory CD8 T-cells.
Collapse
Affiliation(s)
| | - Isaac J Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Andrew S Ishizuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Mitchell Lefebvre
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Qiang Shan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Hai-Hui Xue
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - John T Harty
- Department of Pathology and.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Vladimir P Badovinac
- Department of Pathology and.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
95
|
D'Alise AM, Leoni G, Cotugno G, Troise F, Langone F, Fichera I, De Lucia M, Avalle L, Vitale R, Leuzzi A, Bignone V, Di Matteo E, Tucci FG, Poli V, Lahm A, Catanese MT, Folgori A, Colloca S, Nicosia A, Scarselli E. Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade. Nat Commun 2019; 10:2688. [PMID: 31217437 PMCID: PMC6584502 DOI: 10.1038/s41467-019-10594-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.
Collapse
Affiliation(s)
| | - Guido Leoni
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | - Fulvia Troise
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | - Imma Fichera
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Rosa Vitale
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | | | | | | | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Armin Lahm
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | | | | | - Alfredo Nicosia
- Nouscom AG, Bäumleingasse, 18 CH-4051, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.,CEINGE, Via Comunale Margherita, 484-538, 80131, Naples, Italy
| | | |
Collapse
|
96
|
Davis C, Mgomella GS, da Silva Filipe A, Frost EH, Giroux G, Hughes J, Hogan C, Kaleebu P, Asiki G, McLauchlan J, Niebel M, Ocama P, Pomila C, Pybus OG, Pépin J, Simmonds P, Singer JB, Sreenu VB, Wekesa C, Young EH, Murphy DG, Sandhu M, Thomson EC. Highly Diverse Hepatitis C Strains Detected in Sub-Saharan Africa Have Unknown Susceptibility to Direct-Acting Antiviral Treatments. Hepatology 2019; 69:1426-1441. [PMID: 30387174 PMCID: PMC6492010 DOI: 10.1002/hep.30342] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
The global plan to eradicate hepatitis C virus (HCV) led by the World Health Organization outlines the use of highly effective direct-acting antiviral drugs (DAAs) to achieve elimination by 2030. Identifying individuals with active disease and investigation of the breadth of diversity of the virus in sub-Saharan Africa (SSA) is essential as genotypes in this region (where very few clinical trials have been carried out) are distinct from those found in other parts of the world. We undertook a population-based, nested case-control study in Uganda and obtained additional samples from the Democratic Republic of Congo (DRC) to estimate the prevalence of HCV, assess strategies for disease detection using serological and molecular techniques, and characterize genetic diversity of the virus. Using next-generation and Sanger sequencing, we aimed to identify strains circulating in East and Central Africa. A total of 7,751 Ugandan patients were initially screened for HCV, and 20 PCR-positive samples were obtained for sequencing. Serological assays were found to vary significantly in specificity for HCV. HCV strains detected in Uganda included genotype (g) 4k, g4p, g4q, and g4s and a newly identified unassigned g7 HCV strain. Two additional unassigned g7 strains were identified in patients originating from DRC (one partial and one full open reading frame sequence). These g4 and g7 strains contain nonstructural (ns) protein 3 and 5A polymorphisms associated with resistance to DAAs in other genotypes. Clinical studies are therefore indicated to investigate treatment response in infected patients. Conclusion: Although HCV prevalence and genotypes have been well characterized in patients in well-resourced countries, clinical trials are urgently required in SSA, where highly diverse g4 and g7 strains circulate.
Collapse
Affiliation(s)
- Chris Davis
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - George S. Mgomella
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
- Wellcome Sanger InstituteHinxtonCambridgeshireUnited Kingdom
| | - Ana da Silva Filipe
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | | | | | - Joseph Hughes
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine Uganda Research UnitEntebbeUganda
- Uganda Virus Research InstituteEntebbeUganda
| | | | - John McLauchlan
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Marc Niebel
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Ponsiano Ocama
- Department of MedicineMakerere University College of Health SciencesKampalaUganda
| | - Cristina Pomila
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
| | - Oliver G. Pybus
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Peter Simmonds
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordUnited Kingdom
| | - Joshua B. Singer
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Vattipally B. Sreenu
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | | | - Elizabeth H. Young
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
- Wellcome Sanger InstituteHinxtonCambridgeshireUnited Kingdom
| | - Donald G. Murphy
- National Institute of Public Health of Quebec, Laboratory of Public Health of QuebecSainte‐Anne‐de‐BellevueQuebecCanada
| | - Manj Sandhu
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
- Wellcome Sanger InstituteHinxtonCambridgeshireUnited Kingdom
| | - Emma C. Thomson
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
97
|
Potent Anti-hepatitis C Virus (HCV) T Cell Immune Responses Induced in Mice Vaccinated with DNA-Launched RNA Replicons and Modified Vaccinia Virus Ankara-HCV. J Virol 2019; 93:JVI.00055-19. [PMID: 30674625 DOI: 10.1128/jvi.00055-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is a liver disease caused by the hepatitis C virus (HCV) affecting 71 million people worldwide with no licensed vaccines that prevent infection. Here, we have generated four novel alphavirus-based DNA-launched self-amplifying RNA replicon (DREP) vaccines expressing either structural core-E1-E2 or nonstructural p7-NS2-NS3 HCV proteins of genotype 1a placed under the control of an alphavirus promoter, with or without an alphaviral translational enhancer (grouped as DREP-HCV or DREP-e-HCV, respectively). DREP vectors are known to induce cross-priming and further stimulation of immune responses through apoptosis, and here we demonstrate that they efficiently trigger apoptosis-related proteins in transfected cells. Immunization of mice with the DREP vaccines as the priming immunization followed by a heterologous boost with a recombinant modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV (MVA-HCV) induced potent and long-lasting HCV-specific CD4+ and CD8+ T cell immune responses that were significantly stronger than those of a homologous MVA-HCV prime/boost immunization, with the DREP-e-HCV/MVA-HCV combination the most immunogenic regimen. HCV-specific CD4+ and CD8+ T cell responses were highly polyfunctional, had an effector memory phenotype, and were mainly directed against E1-E2 and NS2-NS3, respectively. Additionally, DREP/MVA-HCV immunization regimens induced higher antibody levels against HCV E2 protein than homologous MVA-HCV immunization. Collectively, these results provided an immunization protocol against HCV by inducing high levels of HCV-specific T cell responses as well as humoral responses. These findings reinforce the combined use of DREP-based vectors and MVA-HCV as promising prophylactic and therapeutic vaccines against HCV.IMPORTANCE HCV represents a global health problem as more than 71 million people are chronically infected worldwide. Direct-acting antiviral agents can cure HCV infection in most patients, but due to the high cost of these agents and the emergence of resistant mutants, they do not represent a feasible and affordable strategy to eradicate the virus. Therefore, a vaccine is an urgent goal that requires efforts to understand the correlates of protection for HCV clearance. Here, we describe for the first time the generation of novel vaccines against HCV based on alphavirus DNA replicons expressing HCV antigens. We demonstrate that potent T cell immune responses, as well as humoral immune responses, against HCV can be achieved in mice by using a combined heterologous prime/boost immunization protocol consisting of the administration of alphavirus replicon DNA vectors as the priming immunization followed by a boost with a recombinant modified vaccinia virus Ankara vector expressing HCV antigens.
Collapse
|
98
|
Venkatesan A, Prabhu Dass J F. Review on chemogenomic approaches towards hepatitis C viral targets. J Cell Biochem 2019; 120:12167-12181. [PMID: 30887580 DOI: 10.1002/jcb.28581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is the most prevalent viral pathogen that infects more than 185 million people worldwide. HCV infection leads to chronic liver diseases such as liver cirrhosis and hepatocellular carcinoma. Direct-acting antivirals (DAAs) are the recent combination therapy for HCV infection with reduced side effects than prior therapies. Sustained virological response (SVR) acts as a gold standard marker to monitor the success of antiviral treatment. Older treatment therapies attain 50-55% of SVR compared with DAAs which attain around 90-95%. The current review emphasizes the recent chemogenomic updates that have been unfolded through structure-based drug design of HCV drug target proteins (NS3/4A, NS5A, and NS5B) and ligand-based drug design of DAAs in achieving a stable HCV viral treatment strategies.
Collapse
Affiliation(s)
- Arthi Venkatesan
- Department of Integrative Biology, School of BioSciences and Technology (SBST), VIT, Vellore, Tamil Nadu, India
| | - Febin Prabhu Dass J
- Department of Integrative Biology, School of BioSciences and Technology (SBST), VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
99
|
Hartlage AS, Murthy S, Kumar A, Trivedi S, Dravid P, Sharma H, Walker CM, Kapoor A. Vaccination to prevent T cell subversion can protect against persistent hepacivirus infection. Nat Commun 2019; 10:1113. [PMID: 30846697 PMCID: PMC6405742 DOI: 10.1038/s41467-019-09105-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Efforts to develop an effective vaccine against the hepatitis C virus (HCV; human hepacivirus) have been stymied by a lack of small animal models. Here, we describe an experimental rat model of chronic HCV-related hepacivirus infection and its response to T cell immunization. Immune-competent rats challenged with a rodent hepacivirus (RHV) develop chronic viremia characterized by expansion of non-functional CD8+ T cells. Single-dose vaccination with a recombinant adenovirus vector expressing hepacivirus non-structural proteins induces effective immunity in majority of rats. Resolution of infection coincides with a vigorous recall of intrahepatic cellular responses. Host selection of viral CD8 escape variants can subvert vaccine-conferred immunity. Transient depletion of CD8+ cells from vaccinated rats prolongs infection, while CD4+ cell depletion results in chronic viremia. These results provide direct evidence that co-operation between CD4+ and CD8+ T cells is important for hepacivirus immunity, and that subversion of responses can be prevented by prophylactic vaccination. Development of a HCV vaccine is hampered by a lack of appropriate small animal models. Here, Hartlage et al. describe a rat model of hepacivirus persistence and show that persistence can be prevented by vaccination with viral non-structural proteins.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA. .,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
100
|
Lombardi A, Mondelli MU. Hepatitis C: Is eradication possible? Liver Int 2019; 39:416-426. [PMID: 30472772 DOI: 10.1111/liv.14011] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 02/13/2023]
Abstract
Hepatitis C has a relevant global impact in terms of morbidity, mortality and economic costs, with more than 70 million people infected worldwide. In the resolution, "Transforming our world: the 2030 Agenda for Sustainable Development" was included as a focus area in the health-related goal with world leaders pledging to "combat" it by 2030. In response, WHO drafted the Global Viral Hepatitis Strategy carrying the ambitious targets to reduce the number of deaths by two-thirds and to increase treatment rates up to 80%. Despite the availability of highly effective therapeutic regimens based on direct-acting antivirals many barriers to HCV eradication still remain. They are related to awareness of the infection, linkage to care, availability of the therapeutic drug regimens and reinfection. Overall, if an effective prophylactic vaccine will not be available, HCV eradication appears difficult to achieve in the future.
Collapse
Affiliation(s)
- Andrea Lombardi
- Division of Infectious Diseases II and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario U Mondelli
- Division of Infectious Diseases II and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | |
Collapse
|