51
|
Griffiss JM, Lammel CJ, Wang J, Dekker NP, Brooks GF. Neisseria gonorrhoeae coordinately uses Pili and Opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect Immun 1999; 67:3469-80. [PMID: 10377128 PMCID: PMC116533 DOI: 10.1128/iai.67.7.3469-3480.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was undertaken to examine concomitant roles of pili and colony opacity-associated proteins (Opa) in promoting Neisseria gonorrhoeae adherence to and invasion of human endometrial HEC-1-B cells. Adherence of N. gonorrhoeae to cultured HEC-1-B cells was saturable, even though organisms adhered to <50% of the cells. During 4 to 6 h of incubation, adherent mono- and diplococci formed microcolonies on the surfaces of the cells. Microvilli of the HEC-1-B cells adhered by their distal ends to individual cocci within the microcolonies. When the microcolonies grew from isogenic pilus-negative (P-) Opa-, P- Opa+, or P+ Opa- gonococci, microvilli did not elongate, and the colonies were not engulfed. In contrast, the microvilli markedly elongated during exposure to P+ Opa+ gonococci. The microvilli adhered to the organisms along their full lengths and appeared to actively participate in the engulfment of the microcolonies. Internalized microcolonies, with P+ Opa+ gonococci, contained dividing cocci and appeared to be surrounded by cell membrane but were not clearly within vacuoles. In contrast, degenerate individual organisms were within vacuoles. Low doses of chloramphenicol, which inhibits protein synthesis by both prokaryotes and eukaryotes, prevented the microvillar response to and internalization of the P+ Opa+ gonococci; higher doses caused internalization without microvillus activation. Cycloheximide and anisomycin, which inhibit only eukaryotic protein synthesis, caused dose-dependent enhancement of uptake. Cytochalasins reduced engulfment; colchicine had no effect. These results show that gonococci must express both pili and Opa to be engulfed efficiently by HEC-1-B cells.
Collapse
Affiliation(s)
- J M Griffiss
- Centre for Immunochemistry, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
52
|
Alteration of Actin Organization by Jaspamide Inhibits Ruffling, but not Phagocytosis or Oxidative Burst, in HL-60 Cells and Human Monocytes. Blood 1999. [DOI: 10.1182/blood.v93.11.3994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractJaspamide, a naturally occurring cyclic peptide isolated from the marine sponge Hemiastrella minor, has fungicidal and growth-inhibiting activities. Exposure of promyelocytic HL-60 cells and human monocytes to jaspamide induces a dramatic reorganization of actin from a typical fibrous network to focal aggregates. HL-60 cells exposed to 5 × 10−8 mol/L or 10−7 mol/L jaspamide exhibited a reduced proliferation rate. In addition, 10−7mol/L jaspamide induced maturation of HL-60 cells as indicated by the appearance of a lobulated nucleus in 55% ± 5% of the cells and immunophenotypic maturation of the leukemia cells (upregulation of CD16 and CD14 B antigens). Further characterization has shown that F-actin is aggregated both in HL-60 cells and in human monocytes exposed to 10−7 mol/L jaspamide. Well-spread cultured human monocytes contracted and adopted round shapes after treatment with jaspamide. Moreover, a dose-dependent increase in both total actin and de novo synthesized portions of the soluble actin was observed in jaspamide-treated HL-60 cells. Jaspamide treatment inhibits ruffling and intracellular movement in HL-60 cells and monocytes, but does not affect phagocytic activity or respiratory burst activity. The consequential effects of jaspamide-induced actin reorganization on ruffling, versus its negligible effect on phagocytosis and oxidative burst, may shed light on molecular mechanisms of actin involvement in these processes. Jaspamide disrupts the actin cytoskeleton of normal and malignant mammalian cells with no significant effect on phagocytic activity and may, therefore, be considered as a novel therapeutic agent.
Collapse
|
53
|
Alteration of Actin Organization by Jaspamide Inhibits Ruffling, but not Phagocytosis or Oxidative Burst, in HL-60 Cells and Human Monocytes. Blood 1999. [DOI: 10.1182/blood.v93.11.3994.411k39_3994_4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaspamide, a naturally occurring cyclic peptide isolated from the marine sponge Hemiastrella minor, has fungicidal and growth-inhibiting activities. Exposure of promyelocytic HL-60 cells and human monocytes to jaspamide induces a dramatic reorganization of actin from a typical fibrous network to focal aggregates. HL-60 cells exposed to 5 × 10−8 mol/L or 10−7 mol/L jaspamide exhibited a reduced proliferation rate. In addition, 10−7mol/L jaspamide induced maturation of HL-60 cells as indicated by the appearance of a lobulated nucleus in 55% ± 5% of the cells and immunophenotypic maturation of the leukemia cells (upregulation of CD16 and CD14 B antigens). Further characterization has shown that F-actin is aggregated both in HL-60 cells and in human monocytes exposed to 10−7 mol/L jaspamide. Well-spread cultured human monocytes contracted and adopted round shapes after treatment with jaspamide. Moreover, a dose-dependent increase in both total actin and de novo synthesized portions of the soluble actin was observed in jaspamide-treated HL-60 cells. Jaspamide treatment inhibits ruffling and intracellular movement in HL-60 cells and monocytes, but does not affect phagocytic activity or respiratory burst activity. The consequential effects of jaspamide-induced actin reorganization on ruffling, versus its negligible effect on phagocytosis and oxidative burst, may shed light on molecular mechanisms of actin involvement in these processes. Jaspamide disrupts the actin cytoskeleton of normal and malignant mammalian cells with no significant effect on phagocytic activity and may, therefore, be considered as a novel therapeutic agent.
Collapse
|
54
|
Merz AJ, Enns CA, So M. Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 1999; 32:1316-32. [PMID: 10383771 DOI: 10.1046/j.1365-2958.1999.01459.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic Neisseriae Neisseria meningitidis and Neisseria gonorrhoeae, initiate colonization by attaching to host cells using type IV pili. Subsequent adhesive interactions are mediated through the binding of other bacterial adhesins, in particular the Opa family of outer membrane proteins. Here, we have shown that pilus-mediated adhesion to host cells by either meningococci or gonococci triggers the rapid, localized formation of dramatic cortical plaques in host epithelial cells. Cortical plaques are enriched in both components of the cortical cytoskeleton and a subset of integral membrane proteins. These include: CD44v3, a heparan sulphate proteoglycan that may serve as an Opa receptor; EGFR, a receptor tyrosine kinase; CD44 and ICAM-1, adhesion molecules known to mediate inflammatory responses; f-actin; and ezrin, a component that tethers membrane components to the actin cytoskeleton. Genetic analyses reveal that cortical plaque formation is highly adhesin specific. Both pilE and pilC null mutants fail to induce cortical plaques, indicating that neisserial type IV pili are required for cortical plaque induction. Mutations in pilT, a gene required for pilus-mediated twitching motility, confer a partial defect in cortical plaque formation. In contrast to type IV pili, many other neisserial surface structures are not involved in cortical plaque induction, including Opa, Opc, glycolipid GgO4-binding adhesins, polysialic acid capsule or a particular lipooligosaccharide variant. Furthermore, it is shown that type IV pili allow gonococci to overcome the inhibitory effect of heparin, a soluble receptor analogue, on gonococcal invasion of Chang and A431 epithelial cells. These and other observations strongly suggest that type IV pili play an active role in initiating neisserial infection of the mucosal surface in vivo. The functions of type IV pili and other neisserial adhesins are discussed in the specific context of the mucosal microenvironment, and a multistep model for neisserial colonization of mucosal epithelia is proposed.
Collapse
Affiliation(s)
- A J Merz
- Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, 97201-3098, USA.
| | | | | |
Collapse
|
55
|
Jevon M, Guo C, Ma B, Mordan N, Nair SP, Harris M, Henderson B, Bentley G, Meghji S. Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts. Infect Immun 1999; 67:2677-81. [PMID: 10225942 PMCID: PMC116025 DOI: 10.1128/iai.67.5.2677-2681.1999] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1998] [Accepted: 02/05/1999] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an important bone pathogen, and evidence shows that this organism is internalized by chick osteoblasts. Here we report that S. aureus is internalized by human osteoblasts. Internalization was inhibited by monodansylcadaverine and cytochalasin D and to a lesser extent by ouabain, monensin, colchicine, and nocodazole. We propose that internalization occurs via a receptor-mediated pathway, requiring the participation of cytoskeletal elements, principally actin.
Collapse
Affiliation(s)
- M Jevon
- Maxillofacial Surgery Research Unit, Eastman Dental Institute, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Grant CC, Bos MP, Belland RJ. Proteoglycan receptor binding by Neisseria gonorrhoeae MS11 is determined by the HV-1 region of OpaA. Mol Microbiol 1999; 32:233-42. [PMID: 10231481 DOI: 10.1046/j.1365-2958.1999.01293.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction of the OpaA protein of Neisseria gonorrhoeae MS11mk with heparan sulphate-containing proteoglycan receptors on Chang conjunctiva epithelial cells was examined using isolated receptor binding and cell adherence/internalization assays. OpaA deletion proteins, in which the four surface-exposed regions of the protein were deleted individually, and chimeric OpaA/B proteins, in which the surface-exposed regions of the OpaA and OpaB proteins were exchanged, were expressed in N. gonorrhoeae. The recombinant deletion proteins and the chimeric OpaA/B proteins were surface exposed in the outer membrane of N. gonorrhoeae. Isolated receptor-binding assays and Chang cell infection assays with OpaA deletion variants indicated that hypervariable region 1 was essential for the interaction of N. gonorrhoeae with the proteoglycan receptor. Expression of chimeric OpaA/B proteins confirmed the central role of hypervariable region 1 in receptor binding and demonstrated that this domain alone confers the invasive biological phenotype in a non-heparan sulphate proteoglycan-binding Opa protein. The other variable regions of OpaA enhanced receptor binding in the presence of region 1, but did not constitute binding domains on their own. The results indicate that proteoglycan receptor binding results from a hierarchical interaction between the variable domains of the OpaA protein of MS11mk.
Collapse
Affiliation(s)
- C C Grant
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South 4th Street, Hamilton, MT 59840-2999, USA
| | | | | |
Collapse
|
57
|
Jarvis GA, Li J, Swanson KV. Invasion of human mucosal epithelial cells by Neisseria gonorrhoeae upregulates expression of intercellular adhesion molecule 1 (ICAM-1). Infect Immun 1999; 67:1149-56. [PMID: 10024555 PMCID: PMC96441 DOI: 10.1128/iai.67.3.1149-1156.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/1998] [Accepted: 12/15/1998] [Indexed: 11/20/2022] Open
Abstract
Infection of the mucosa by Neisseria gonorrhoeae involves adherence to and invasion of epithelial cells. Little is known, however, about the expression by mucosal epithelial cells of molecules that mediate cellular interactions between epithelial cells and neutrophils at the site of gonococcal infection. The aim of this study was to determine the expression of intercellular adhesion molecule 1 (ICAM-1) by epithelial cells during the process of gonococcal invasion. The highly invasive strain FA1090 and the poorly invasive strain MS11 were incubated with human endometrial adenocarcinoma (HEC-1-B) or human cervical carcinoma (ME-180) epithelial cells, after which ICAM-1 expression was measured by flow cytometry. After 15 h of infection with FA1090, expression of ICAM-1 increased 4.7- and 2.1-fold for HEC-1-B and ME-180 cells, respectively, whereas 15 h of infection of HEC-1-B cells with MS11 increased ICAM-1 expression only 1.6-fold. ICAM-1 expression was restricted to the cell surface, since no soluble ICAM-1 was detected. The distribution of staining was heterogeneous and mimicked that seen after treatment of HEC-1-B cells with the ICAM-1 agonist tumor necrosis factor alpha (TNF-alpha) in the absence of bacteria. PCR and dot blot analyses of ICAM-1 mRNA showed no change in levels over time in response to infection. Although TNF-alpha was produced by HEC-1-B cells after infection, the extent of ICAM-1 upregulation was not affected by neutralizing anti-TNF-alpha antiserum. Dual-fluorescence flow cytometry showed that the cells with the highest levels of ICAM-1 expression were cells with associated gonococci. We conclude that epithelial cells upregulate the expression of ICAM-1 in response to infection with invasive gonococci. On the mucosa, upregulation of ICAM-1 by infected epithelial cells may function to maintain neutrophils at the site of infection, thereby reducing further invasion of the mucosa by gonococci.
Collapse
Affiliation(s)
- G A Jarvis
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California.
| | | | | |
Collapse
|
58
|
Bauer FJ, Rudel T, Stein M, Meyer TF. Mutagenesis of the Neisseria gonorrhoeae porin reduces invasion in epithelial cells and enhances phagocyte responsiveness. Mol Microbiol 1999; 31:903-13. [PMID: 10048033 DOI: 10.1046/j.1365-2958.1999.01230.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Porin (PorB), the major outer membrane protein of Neisseria gonorrhoeae, has been implicated in pathogenesis previously. However, the fact that porin deletion mutants are not viable has complicated investigations. Here, we describe a method of manipulating the porin gene site-specifically. N. gonorrhoeae MS11, which harbours the porB1B (P.1B) porin allele, was used to generate mutants carrying deletions in the surface loops 1 and 5. An 11-amino-acid deletion in loop 1 impaired Opa50-dependent invasion into human Chang epithelial cells, whereas loop 5 deletion exhibited no apparent phenotype. In a second approach, the complete gonococcal porB1B was replaced by the porBNia gene of Neisseria lactamica. Such mutants were unable to induce efficient uptake by epithelial cells but induced an enhanced respiratory response in HL60 phagocytic cells. The increased respiratory burst was accompanied by an enhanced phagocytic uptake of the mutant compared with the wild-type strain. Our data extend previous evidence for multiple central functions of PorB in the infection process.
Collapse
Affiliation(s)
- F J Bauer
- Max-Planck-Institut für Biologie, Abt Infektionsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
59
|
Arvidson CG, Kirkpatrick R, Witkamp MT, Larson JA, Schipper CA, Waldbeser LS, O'Gaora P, Cooper M, So M. Neisseria gonorrhoeae mutants altered in toxicity to human fallopian tubes and molecular characterization of the genetic locus involved. Infect Immun 1999; 67:643-52. [PMID: 9916071 PMCID: PMC96367 DOI: 10.1128/iai.67.2.643-652.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify potential cytotoxins expressed by Neisseria gonorrhoeae, we have identified a locus that, when mutated in the gonococcus, results in a significant increase in toxicity of the strain to human fallopian tube organ cultures (HFTOC). This locus, gly1, contains two open reading frames (ORFs) which are likely cotranscribed. ORF1 encodes a polypeptide of 17.8 kDa with a signal sequence that is recognized and processed in Escherichia coli and N. gonorrhoeae. The 15.6-kDa processed polypeptide has been observed in membrane fractions and filtered spent media from cultures of E. coli expressing gly1 and in outer membrane preparations of wild-type N. gonorrhoeae. The gly1 locus is not essential for bacterial survival, and it does not play a detectable role in epithelial cell adhesion, invasion, or intracellular survival. However, a gly1 null mutant causes much more damage to fallopian tube tissues than its isogenic wild-type parent. A strain complemented in trans for the gly1 mutation showed a level of toxicity to HFTOC similar to the level elicited by the wild-type parent. Taken together, these results indicate an involvement of the gly1 locus in the toxicity of N. gonorrhoeae to human fallopian tubes.
Collapse
Affiliation(s)
- C G Arvidson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Forney JR, DeWald DB, Yang S, Speer CA, Healey MC. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection. Infect Immun 1999; 67:844-52. [PMID: 9916099 PMCID: PMC96395 DOI: 10.1128/iai.67.2.844-852.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium parvum preferentially infects epithelial cells lining the intestinal mucosa of mammalian hosts. Parasite development and propagation occurs within a unique intracellular but extracytoplasmic parasitophorous vacuole at the apical surface of infected cells. Parasite-induced host cell signaling events and subsequent cytoskeletal remodeling were investigated by using cultured bovine fallopian tube epithelial (BFTE) cells inoculated with C. parvum sporozoites. Indirect-immunofluorescence microscopy detected host tyrosine phosphorylation within 30 s of inoculation. At >30 min postinoculation, actin aggregates were detected at the site of parasite attachment by fluorescein isothiocyanate-conjugated phalloidin staining as well as by indirect immunolabeling with monoclonal anti-actin. The actin-binding protein villin was also detected in focal aggregates at the site of attachment. Host cytoskeletal rearrangement persisted for the duration of the parasitophorous vacuole and contributed to the formation of long, branched microvilli clustered around the cryptosporidial vacuole. The phosphoinositide 3-kinase inhibitor wortmannin significantly inhibited (P < 0.05) C. parvum infection when BFTE cells were pretreated for 60 min at 37 degreesC prior to inoculation. Similarly, treatment of BFTE cells with the protein kinase inhibitors genistein and staurosporine and the cytoskeletally acting compounds 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazapine, cytochalasin D, and 2,3-butanedione monoxime significantly inhibited (P < 0.05) in vitro infection at 24 h postinoculation. These findings demonstrate a prominent role for phosphoinositide 3-kinase activity during the early C. parvum infection process and suggest that manipulation of host signaling pathways results in actin rearrangement at the site of sporozoite attachment.
Collapse
Affiliation(s)
- J R Forney
- Department of Biology, College of Science, Utah State University, Logan, Utah 84322, USA
| | | | | | | | | |
Collapse
|
61
|
Abstract
Neisseria gonorrhoeae is a highly adapted human pathogen that utilises multiple adhesins to interact with a variety of host cell receptors. Recently, substantial progress has been made in unravelling the signalling events induced by N. gonorrhoae that can lead to cytoskeletal reorganisation, invasion or phagocytic uptake, intraphagosomal accommodation, nuclear signalling, cytokine/chemokine release and apoptosis.
Collapse
Affiliation(s)
- M Naumann
- Max-Planck-Institut für Infektionsbiologie Abteilung Molekulare Biologie Monbijou Str 2 10117 Berlin Germany
| | | | | |
Collapse
|
62
|
Abstract
Many pathogens actively exploit the actin cytoskeleton during infection. This exploitation may take place during entry into mammalian cells after engagement of a receptor and/or as series of signaling events culminating in the engulfment of the microorganism. Although actin rearrangements are a common feature of most internalization events (e.g. entry of Listeria, Salmonella, Shigella, Yersinia, Neisseria, and Bartonella), bacterial and other cellular factors involved in entry are specific to each bacterium. Another step during which pathogens harness the actin cytoskeleton takes place in the cytosol, within which some bacteria (Listeria, Shigella, Rickettsia) or viruses (vaccinia virus) are able to move. Movement is coupled to a polarized actin polymerization process, with the formation of characteristic actin tails. Increasing attention has focused on this phenomenon due to its striking similarity to cellular events occurring at the leading edge of locomoting cells. Thus pathogens are convenient systems in which to study actin cytoskeleton rearrangements in response to stimuli at the plasma membrane or inside cells.
Collapse
Affiliation(s)
- S Dramsi
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| | | |
Collapse
|
63
|
Giri DK, Mehta RT, Kansal RG, Aggarwal BB. Mycobacterium avium-intracellulare complex Activates Nuclear Transcription Factor-κB in Different Cell Types Through Reactive Oxygen Intermediates. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Mycobacterium avium-intracellulare complex (MAC) is one of the most common opportunistic pathogens in HIV-infected patients. Their synergistic interaction leads to a rapid deterioration of the host defense. In vivo, MAC manifests as a disseminated granulomatous disease that produces a massive inflammatory tissue response perhaps through its activation of inflammatory cytokines. The intracellular signaling following interaction of the mycobacterium with host cells is incompletely understood. Because the response is dependent, in part, on the activation of NF-κB, we investigated the effect of MAC on this nuclear transcription factor in cells of macrophage and nonmacrophage lineage. We demonstrate that both high and low virulence strains of MAC potently and rapidly activated NF-κB. In supershift assays, using specific Abs against the NF-κB subunits, we identified a p50/p65 heterodimer that was formed within 5 min after incubation with the bacterium too rapidly for cytokines to be involved in the activation. This activation was instead mediated through the generation of reactive oxygen intermediates, inasmuch as preincubation of cells with a variety of antioxidants inhibited NF-κB activation. Likewise, the transfection of cells with Mn-superoxide dismutase blocked the NF-κB activation induced by the bacterium. These data suggest that NF-κB activation is a consequence of interaction of host cells with the bacterium and that the interaction may play a pivotal role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Dipak K. Giri
- *Molecular Oncology and
- Cytokine Research Section Departments of
| | - Reeta T. Mehta
- †Bioimmunotherapy. University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Cytokine Research Section Departments of
| | - Rita G. Kansal
- †Bioimmunotherapy. University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Cytokine Research Section Departments of
| | | |
Collapse
|
64
|
Naumann M, Rudel T, Wieland B, Bartsch C, Meyer TF. Coordinate activation of activator protein 1 and inflammatory cytokines in response to Neisseria gonorrhoeae epithelial cell contact involves stress response kinases. J Exp Med 1998; 188:1277-86. [PMID: 9763607 PMCID: PMC2212490 DOI: 10.1084/jem.188.7.1277] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae (Ngo), the etiologic agent of gonorrhea, induce a number of proinflammatory cytokines by contact to epithelial cells. Cytokine genes and a variety of other immune response genes are activated as a result of the regulatory function of immediate early response transcription factors including activator protein 1 (AP-1). Since it is established that phosphorylation of c-Jun, the central component of AP-1, by the stress-activated c-Jun NH2-terminal kinase (JNK) increases the transcriptional activity of AP-1, we studied whether Ngo could induce stress response pathways involving JNK. We found that virulent Ngo strains induce phosphorylation and activation of JNK but not of p38 kinase. Analysis of a nonpathogenic Ngo strain revealed only weak JNK activation. In respect to the molecular components upstream of the JNK signaling cascade, we show that a dominant negative mutant of MAP kinase kinase 4 (MKK4) represses transcription of an AP-1-dependent reporter gene. Regarding upstream stress response factors involved in Ngo-induced MKK4/JNK/AP-1 activation, we identified p21-activated kinase (PAK) but not MAPK/ERK kinase kinase (MEKK1). Inhibition of small GTPases including Rac1 and Cdc42 by Toxin B prevented JNK and AP-1 activation. Our results indicate that Ngo induce the activation of proinflammatory cytokines via a cascade of cellular stress response kinases involving PAK, which directs the signal from the Rho family of small GTPases to JNK/AP-1 activation.
Collapse
Affiliation(s)
- M Naumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
65
|
Calvinho LF, Oliver SP. Characterization of mechanisms involved in uptake of Streptococcus dysgalactiae by bovine mammary epithelial cells. Vet Microbiol 1998; 63:261-74. [PMID: 9851004 DOI: 10.1016/s0378-1135(98)00239-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bovine mammary epithelial cells were pretreated with inhibitors of protein kinase activity, actin polymerization and receptor-mediated endocytosis. In addition, mammary epithelial cells and Streptococcus dysgalactiae were pretreated with inhibitors of protein synthesis. Results showed that activity of tyrosine protein kinases, intact microfilaments and de novo eukaryotic protein synthesis was required for uptake of S. dysgalactiae by bovine mammary epithelial cells; a process that appeared to occur via receptor-mediated endocytosis. In contrast, de novo bacterial protein synthesis was not required for uptake of S. dysgalactiae by MAC-T cells. This study provides insight into bacterial and cellular mechanisms involved in early host-pathogen interactions, putting into perspective the role of mammary epithelial cells in the development and establishment of intramammary infections by S. dysgalactiae.
Collapse
Affiliation(s)
- L F Calvinho
- Department of Animal Science, University of Tennessee, Knoxville 37901-1071, USA
| | | |
Collapse
|
66
|
Poussin C, Foti M, Carpentier JL, Pugin J. CD14-dependent endotoxin internalization via a macropinocytic pathway. J Biol Chem 1998; 273:20285-91. [PMID: 9685378 DOI: 10.1074/jbc.273.32.20285] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacterial endotoxin (a lipopolysaccharide (LPS)) specifically binds to CD14, a glycosylphosphatidyl inositol (GPI)-anchored surface myeloid glycoprotein. This interaction leads to cell activation, but it also promotes LPS internalization and detoxification. In this work, we investigated the route of LPS and CD14 internalization and the relevance of CD14 GPI anchor in the endocytic pathway. In promonocytic THP-1 cells transfected with a GPI or a chimeric integral form of CD14, we showed by differential buoyancy in sucrose density gradients that these two forms of CD14 were sorted to different plasma membrane subdomains. However, both forms of CD14 associated preferentially with the same surface microfilament-enriched microvilli or ruffles. Electron microscopic studies indicated that CD14 internalized via macropinocytosis, a process resembling that of phagocytosis, different from "classical" receptor-mediated endocytic pathways, such as clathrin-coated pits or caveolae. With cell warming, the CD14-enriched ruffles fused and formed large vesicles. Later, these vacuoles made stacks and condensed into phago-lysosomes. CD14 was specifically associated with all of these structures. Radiolabeled LPS internalization paralleled CD14 internalization. Confocal microscopic studies confirmed the co-localization of LPS and CD14 both at the cell surface and in endosomal compartments. The microfilament-disrupting, macropinocytosis blocking agent cytochalasin D inhibited LPS and CD14 internalization but did not prevent LPS-dependent activation, indicating that these two processes are dissociated.
Collapse
Affiliation(s)
- C Poussin
- Division of Medical Intensive Care, Department of Medicine, University Hospital of Geneva, 24 r. Micheli-du-Crest, 1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
67
|
Dehio C, Freissler E, Lanz C, Gómez-Duarte OG, David G, Meyer TF. Ligation of cell surface heparan sulfate proteoglycans by antibody-coated beads stimulates phagocytic uptake into epithelial cells: a model for cellular invasion by Neisseria gonorrhoeae. Exp Cell Res 1998; 242:528-39. [PMID: 9683539 DOI: 10.1006/excr.1998.4116] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding of a particular opacity outer membrane protein (Opa) of Neisseria gonorrhoeae to cell surface heparan sulfate proteoglycans (HSPGs) of epithelial cells results in tight bacterial adherence; however, the role of this ligand-receptor interaction in triggering the subsequent bacterial internalization step is uncertain. Here we have used latex beads coated with HSPG-ligating antibodies as an in vitro model to study the role of HSPGs in gonococcal uptake into epithelial cells. Beads and gonococci showed the same cell line-specified adherence patterns and increase in phagocytic uptake mediated by serum or purified vitronectin (Vn). Heparitinase digestion as well as antibody competition experiments indicate that a critical level of HSPG ligation is necessary and sufficient to trigger phagocytic uptake into epithelial cells. Vn was found to specifically enhance HSPG-dependent phagocytic uptake while phagocytosis resulting from the ligation of other cell surface receptors was unaffected in the presence of Vn. Pharmacological studies with PKC inhibitors suggest a role for PKC in phagocytic uptake of HSPG-ligating beads. The use of drugs impairing cytoskeletal functions indicates that HSPG-dependent phagocytosis requires actin polymerization by a process distinct from receptor-mediated endocytosis.
Collapse
MESH Headings
- Actins/metabolism
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Adhesion/physiology
- Biopolymers/metabolism
- Cross-Linking Reagents
- Endocytosis/drug effects
- Endocytosis/immunology
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epithelial Cells/microbiology
- HeLa Cells
- Heparan Sulfate Proteoglycans/immunology
- Heparan Sulfate Proteoglycans/metabolism
- Heparan Sulfate Proteoglycans/pharmacokinetics
- Humans
- Ligands
- Microspheres
- Neisseria gonorrhoeae/immunology
- Neisseria gonorrhoeae/metabolism
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Sensitivity and Specificity
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/microbiology
- Vitronectin/pharmacology
Collapse
Affiliation(s)
- C Dehio
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Spemannstrasse 34, Tübingen, D-72076, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Giardina PC, Williams R, Lubaroff D, Apicella MA. Neisseria gonorrhoeae induces focal polymerization of actin in primary human urethral epithelium. Infect Immun 1998; 66:3416-9. [PMID: 9632614 PMCID: PMC108361 DOI: 10.1128/iai.66.7.3416-3419.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pathogenic Neisseria species induce cytoskeletal reorganization in immortalized cell lines. In Chang conjunctival epithelium and T84 intestinal epithelium, focal cytoskeletal rearrangements in which bacteria contacted the epithelial surface were observed. We show that actin footprints are induced in gonococcus-challenged primary urethral epithelium. Moreover, the microbes induced microvillus extension from the epithelial cell surface. Our results indicate that formation of actin footprints is not an artifact of commonly used immortalized cell lines.
Collapse
Affiliation(s)
- P C Giardina
- Department of Microbiology, University of Iowa School of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
69
|
Goldoni P, Cattani L, Carrara S, Pastoris MC, Sinibaldi L, Orsi N. Multiplication of Legionella pneumophila in HeLa cells in the presence of cytoskeleton and metabolic inhibitors. Microbiol Immunol 1998; 42:271-9. [PMID: 9623914 DOI: 10.1111/j.1348-0421.1998.tb02283.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A study has been carried out on the action of cytoskeleton and metabolic inhibitors on intracellular multiplication in HeLa cells of a virulent strain of Legionella pneumophila serogroup 6. The effects of the substances were separately tested on both penetration and intracellular multiplication of L. pneumophila. Only cytochalasin A and 2-deoxy-D-glucose (2dG) affected bacterial internalisation, whereas intracellular multiplication was inhibited by cytochalasins A, B, C, D and J (D being the most active) and by 2dG with a dose-response effect. The action of 2dG was counteracted by 50 mM glucose. Experiments carried out with cytochalasin D and a rhodamine-phalloidin conjugate showed the involvement of cytoskeletal elements in intracellular multiplication of Legionella; compounds acting on microtubules had no effect.
Collapse
Affiliation(s)
- P Goldoni
- Istituto di Microbiologia, Università La Sapienza, Rome, Italy. goldoni@axrma, uniromal.it
| | | | | | | | | | | |
Collapse
|
70
|
de Vries FP, Cole R, Dankert J, Frosch M, van Putten JP. Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol Microbiol 1998; 27:1203-12. [PMID: 9570405 DOI: 10.1046/j.1365-2958.1998.00763.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neisseria meningitidis possesses a repertoire of surface adhesins that promote bacterial adherence to and entry into mammalian cells. Here, we have identified heparan sulphate proteoglycans as epithelial cell receptors for the meningococcal Opc invasin. Binding studies with radiolabelled heparin and heparin affinity chromatography demonstrated that Opc is a heparin binding protein. Subsequent binding experiments with purified 35SO4-labelled epithelial cell proteoglycan receptors and infection assays with epithelial cells that had been treated with heparitinase to remove glycosaminoglycans confirmed that Opc-expressing meningococci exploit host cell-surface proteoglycans to gain access to the epithelial cell interior. Unexpectedly, Opa28-producing meningococci lacking Opc also bound proteoglycans. These bacteria also bound CEA receptors in contrast to the Opc-expressing phenotype, suggesting that Opa28 may possess domains with specificity for different receptors. Opa/Opc-negative meningococci did not bind either proteoglycan or CEA receptors. Using a set of genetically defined mutants with different lipopolysaccharide (LPS) and capsular phenotype, we were able to demonstrate that surface sialic acids interfere with the Opc-proteoglycan receptor interaction. This effect may provide the molecular basis for the reported modulatory effect of capsule and LPS on meningococcal adherence to and entry into various cell types.
Collapse
Affiliation(s)
- F P de Vries
- Department of Medical Microbiology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
71
|
Maruta K, Ogawa M, Miyamoto H, Izu K, Yoshida SI. Entry and intracellular localization of Legionella dumoffii in Vero cells. Microb Pathog 1998; 24:65-73. [PMID: 9480789 DOI: 10.1006/mpat.1997.0171] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organisms of some Legionella species are known to internalize and multiply within epithelial cell lines. During the study on interaction between Legionella spp. and Vero cells, we found that L. dumoffii Tex-KL (ATCC 33343) can enter into Vero cells approximately four to 20 times more often than five other strains of four species of legionella. The mode of entry between L. dumoffii Tex-KL and L. pneumophila Philadelphia-1 was compared and studied by treating Vero cells with reagents which inhibit phagocytosis and endocytosis. Monodansylcadaverine, cytochalasin D and nocodazol were used as inhibitors of receptor-mediated endocytosis, microfilament-dependent phagocytosis and polymerization of microtubules, respectively. The uptake of L. dumoffii Tex-KL required receptor-mediated endocytosis by Vero cells, while the uptake of L. pneumophila Philadelphia-1 used mainly microfilament-dependent phagocytosis. Polymerization of microtubules was necessary for Vero cells for the uptake of both strains of legionella. An electron microscopic examination revealed that some organisms of the L. dumoffii strain Tex-KL escaped from endosomal vacuoles into cytoplasm in the early stage of infection, and proliferated in the cytoplasm. At that period, most of the bacteria were surrounded by rough endoplasmic reticula. In contrast, L. pneumophila Philadelphia-1 proliferated only within ribosome-lined endosome. We suggest that L. dumoffii Tex-KL internalize and proliferate in Vero cells in a different way to L. pneumophila Philadelphia-1, and that there is a variety of the mode of interaction between Legionella spp. and epithelial cells.
Collapse
Affiliation(s)
- K Maruta
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807, Japan
| | | | | | | | | |
Collapse
|
72
|
Williams JM, Chen GC, Zhu L, Rest RF. Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol Microbiol 1998; 27:171-86. [PMID: 9466265 DOI: 10.1046/j.1365-2958.1998.00670.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae opacity-associated (Opa) proteins are a family of outer membrane proteins involved in gonococcal adherence to and invasion of human cells. We wanted to identify additional roles for Opa in the infectious process and used the yeast two-hybrid system to identify human epithelial cell proteins that interact with Opa proteins. Although this system has been used successfully to identify many types of interacting proteins, it has not been used to screen a human cell cDNA library for binding partners of a prokaryotic outer membrane protein. Therefore, we were also interested in exploring the versatility of the yeast two-hybrid system in identifying bacteria-host interactions. Using OpaP from strain F62SF as bait, we screened a HeLa cell cDNA library for Opa-interacting proteins (OIPs). We identified five different OIPs, designated OIP1-OIP5, two of which are homologous to human proteins--thyroid hormone receptor interacting protein (TRIP6) and pyruvate kinase isoenzyme M2 (PK). In the studies presented here, we investigated the interaction between Opa proteins and PK in more depth. Opa-PK interactions were confirmed by in vitro and in vivo assays independent of the yeast two-hybrid system. Escherichia coli expressing six different Opa proteins from gonococcal strain FA1090 all bound more PK than Opa-negative E. coli in in vitro binding assays. Using anti-PK antibody and fluorescence microscopy, we showed that human epithelial cell PK co-localizes with intracellular Opa+ gonococci and E. coli expressing Opa proteins. Using a mutant of N. gonorrhoeae unable to grow on pyruvate or lactate, it appears that intracellular pyruvate is essential for gonococcal growth and survival. These results suggest a novel mechanism in bacterial pathogenesis, i.e. the requirement for direct molecular interaction with a host metabolic enzyme (PK) for the acquisition of an essential intracellular carbon source and growth substrate (pyruvate). These results demonstrate that the yeast two-hybrid system is a valuable tool for identifying biologically relevant interactions between bacteria and host proteins, providing valuable leads for further investigations into novel mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- J M Williams
- Department of Microbiology and Immunology, MCP-Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
73
|
van Putten JP, Hayes SF, Duensing TD. Natural proteoglycan receptor analogs determine the dynamics of Opa adhesin-mediated gonococcal infection of Chang epithelial cells. Infect Immun 1997; 65:5028-34. [PMID: 9393792 PMCID: PMC175725 DOI: 10.1128/iai.65.12.5028-5034.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many bacterial pathogens possess a complex machinery for the induction and/or secretion of factors that promote their uptake by mammalian cells. We searched for the molecular basis of the 60- to 90-min lag time in the interaction of Neisseria gonorrhoeae carrying the heparin-binding Opa adhesin with Chang epithelial cells. Infection assays in the presence of chloramphenicol demonstrated that the Opa-mediated gonococcal infection of Chang cells required bacterial protein synthesis when the microorganisms were derived from GC agar but not when grown in liquid media. Further analysis indicated that contact with agar ingredients rather than the growth state of the microorganisms determined the infection dynamics. DEAE chromatography of GC agar extracts and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and testing of collected fractions in infection assays identified negatively charged high-molecular-weight polysaccharides in the agar as inhibitors of the cellular infection. Electron microscopy showed that agar-grown gonococci were surrounded by a coat of alcian blue-positive material, probably representing accreted polysaccharides. Similar antiphagocytic material was isolated from bovine serum, indicating that in biological fluids gonococci producing the heparin-binding Opa adhesin may become covered with externally derived polysaccharides as well. Binding assays with gonococci and epithelial proteoglycan receptors revealed that polysaccharides derived from agar or serum compete with the proteoglycans for binding of the heparin-binding Opa adhesin and thus act as receptor analogs. Growth of gonococci in a polysaccharide-free environment resulted in optimal proteoglycan receptor binding and rapid bacterial entry into Chang cells. The recognition that gonococci with certain phenotypes can recruit surface polysaccharides that determine in vitro infection dynamics adds a different dimension to the well-recognized biological significance of genetic variation for this pathogen.
Collapse
Affiliation(s)
- J P van Putten
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840-2999, USA.
| | | | | |
Collapse
|
74
|
Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 1997; 91:605-15. [PMID: 9393854 DOI: 10.1016/s0092-8674(00)80448-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Invasion of human mucosal cells by N. gonorrhoeae via the binding to heparansulfate proteoglycan receptors is considered a crucial event of the infection. Using different human epithelial cells and primary fibroblasts, we show here an activation of the phosphatidylcholine-specific phospholipase C (PC-PLC) and acidic sphingomyelinase (ASM) by N. gonorrhoeae, resulting in the release of diacylglycerol and ceramide. Genetic and/or pharmacological blockade of ASM and PC-PLC cause inhibition of cellular invasion by N. gonorrhoeae. Complementation of ASM-deficient fibroblasts from Niemann-Pick disease patients restored N. gonorrhoeae-induced signaling and entry processes. The activation of PC-PLC and ASM, therefore, is an essential requirement for the entry of N. gonorrhoeae into distinct nonphagocytic human cell types including several epithelial cells and primary fibroblasts.
Collapse
Affiliation(s)
- H Grassmé
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Affiliation(s)
- B C Herold
- Department of Pediatrics, University of Chicago, IL, USA
| |
Collapse
|
76
|
Merz AJ, So M. Attachment of piliated, Opa- and Opc- gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 1997; 65:4341-9. [PMID: 9317047 PMCID: PMC175623 DOI: 10.1128/iai.65.10.4341-4349.1997] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attachment of piliated Neisseria gonorrhoeae or Neisseria meningitidis cells to A431, Chang, HEC-1-B, or polarized T(84) cells triggers rearrangements of cortical microfilaments and the accumulation of phosphotyrosine-containing proteins at sites of bacterial contact. Actin stress fibers and the microtubule network remain unaltered in infected cells. The rearrangements reported here are triggered by piliated, Opa- and Opc- strains and also by nonpiliated gonococci (GC) that produce the invasion-associated OpaA protein. Thus, neisserial adhesion via either of at least two different adhesins can trigger cortical rearrangements. In contrast, these rearrangements are not triggered by nonadherent GC or meningococcal strains, by heat-killed or chloramphenicol-treated GC strains, or by Escherichia coli recombinants that adhere to cells via GC OpaA or Opal fusion proteins, suggesting that additional neisserial components are involved. Immunoblotting experiments did not detect consistent increases in the phosphorylation of specific proteins. Possible biological implications of these Neisseria-induced cortical rearrangements are discussed.
Collapse
Affiliation(s)
- A J Merz
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-3098, USA.
| | | |
Collapse
|
77
|
Spence JM, Chen JC, Clark VL. A proposed role for the lutropin receptor in contact-inducible gonococcal invasion of Hec1B cells. Infect Immun 1997; 65:3736-42. [PMID: 9284146 PMCID: PMC175533 DOI: 10.1128/iai.65.9.3736-3742.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously reported the existence of a contact-inducible, enhanced invasion phenotype in the obligate human pathogen Neisseria gonorrhoeae. Our present studies showed that the ability of glutaraldehyde-fixed eucaryotic cells to convert gonococci (GC) to this invasive phenotype (Inv+) is limited to cells derived from reproductive tissues. We present evidence that GC recognize the lutropin receptor (LHr), which recognizes both luteinizing hormone and human chorionic gonadotropin (hCG), as the tissue-specific environmental signal that induces the conversion of GC to the Inv+ phenotype. By competitive binding studies, we showed that Inv+ GC bind to Hec1B cells, a human endometrial cell line, by a unique adhesin not present on noninduced GC and that this Inv+ GC-specific binding is completely blocked by the addition of hCG. We demonstrated that limiting the access of GC to LHr decreases the ability of the host cell to both convert GC to the Inv+ phenotype and serve as a target for Inv+ GC invasion. We propose a model of GC invasion of Hec1B cells in which the LHr plays a dual role both as an induction signal and as part of the internalization mechanism. This utilization of LHr could account for both the preponderance of complicated GC disease in women and the observed correlation of the disease with the onset of menses.
Collapse
Affiliation(s)
- J M Spence
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|
78
|
Mosleh IM, Boxberger HJ, Sessler MJ, Meyer TF. Experimental infection of native human ureteral tissue with Neisseria gonorrhoeae: adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium. Infect Immun 1997; 65:3391-8. [PMID: 9234803 PMCID: PMC175480 DOI: 10.1128/iai.65.8.3391-3398.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The exact mechanisms by which Neisseria gonorrhoeae invades the mucosal lining to cause local and disseminated infections are still not fully understood. The ability of gonococci to infect the human ureter and the mechanism of gonococcal infection in a stratified epithelium were investigated by using distal ureters excised from healthy adult kidney donors. In morphological terms, this tissue closely resembles parts of the urethral proximal epithelium, a site of natural gonococcal infection. Using piliated and nonpiliated variants of N. gonorrhoeae MS11, we demonstrated the importance of pili in the attachment of gonococci to native epithelial cells as well as their association with epithelial damage. By electron microscopy we elucidated the different mechanisms of colonization and invasion of a stratified epithelium, including adherence to surface cells, invasion and eventual release from infected cells, disintegration of intercellular connections followed by paracellular tissue infiltration, invasion of deeper cells, and initiation of cellular destruction and exfoliation resulting in thinning of the mucosa.
Collapse
Affiliation(s)
- I M Mosleh
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | | | |
Collapse
|
79
|
Naumann M, Wessler S, Bartsch C, Wieland B, Meyer TF. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kappaB and activator protein 1 and the induction of inflammatory cytokines. J Exp Med 1997; 186:247-58. [PMID: 9221754 PMCID: PMC2198971 DOI: 10.1084/jem.186.2.247] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have studied the effect of human bacterial pathogen Neisseria gonorrhoeae (Ngo) on the activation of nuclear factor (NF)-kappaB and the transcriptional activation of inflammatory cytokine genes upon infection of epithelial cells. During the course of infection, Ngo, the etiologic agent of gonorrhea, adheres to and penetrates mucosal epithelial cells. In vivo, localized gonococcal infections are often associated with a massive inflammatory response. We observed upregulation of several inflammatory cytokine messenger RNAs (mRNAs) and the release of the proteins in Ngo-infected epithelial cells. Moreover, infection with Ngo induced the formation of a NF-kappaB DNA-protein complex and, with a delay in time, the activation of activator protein 1, whereas basic leucine zipper transcription factors binding to the cAMP-responsive element or CAAT/enhancer-binding protein DNA-binding sites were not activated. In supershift assays using NF-kappaB-specific antibodies, we identified a NF-kappaB p50/p65 heterodimer. The NF-kappaB complex was formed within 10 min after infection and decreased 90 min after infection. Synthesis of tumor necrosis factor alpha and interluekin (IL)-1beta occurred at later times and therefore did not account for NF-kappaB activation. An analysis of transiently transfected IL-6 promoter deletion constructs suggests that NF-kappaB plays a crucial role for the transcriptional activation of the IL-6 promoter upon Ngo infection. Inactivation of NF-kappaB conferred by the protease inhibitor N-tosyl--phenylalanine chloromethyl ketone inhibited mRNA upregulation of most, but not all, studied cyctokine genes. Activation of NF-kappaB and cytokine mRNA upregulation also occur in Ngo-infected epithelial cells that were treated with cytochalasin D, indicating an extracellular signaling induced before invasion.
Collapse
Affiliation(s)
- M Naumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, 10117 Berlin.
| | | | | | | | | |
Collapse
|
80
|
Gray-Owen SD, Dehio C, Haude A, Grunert F, Meyer TF. CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes. EMBO J 1997; 16:3435-45. [PMID: 9218786 PMCID: PMC1169969 DOI: 10.1093/emboj/16.12.3435] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colonization of urogenital tissues by the human pathogen Neisseria gonorrhoeae is characteristically associated with purulent exudates of polymorphonuclear phagocytes (PMNs) containing apparently viable bacteria. Distinct variant forms of the phase-variable opacity-associated (Opa) outer membrane proteins mediate the non-opsonized binding and internalization of N. gonorrhoeae by human PMNs. Using overlay assays and an affinity isolation technique, we demonstrate the direct interaction between Opa52-expressing gonococci and members of the human carcinoembryonic antigen (CEA) family which express the CD66 epitope. Gonococci and recombinant Escherichia coli strains synthesizing Opa52 showed specific binding and internalization by transfected HeLa cell lines expressing the CD66 family members BGP (CD66a), NCA (CD66c), CGM1 (CD66d) and CEA (CD66e), but not that expressing CGM6 (CD66b). Bacterial strains expressing either no opacity protein or the epithelial cell invasion-associated Opa50 do not bind these CEA family members. Consistent with their different receptor specificities, Opa52-mediated interactions could be inhibited by polyclonal anti-CEA sera, while Opa50 binding was instead inhibited by heparin. Using confocal laser scanning microscopy, we observed a marked recruitment of CD66 antigen by Opa52-expressing gonococci on both the transfected cell lines and infected PMNs. These data indicate that members of the CEA family constitute the cellular receptors for the interaction with, and internalization of, N. gonorrhoeae.
Collapse
Affiliation(s)
- S D Gray-Owen
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | | | |
Collapse
|
81
|
Abstract
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics.
Collapse
Affiliation(s)
- B B Finlay
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
82
|
Harvey HA, Ketterer MR, Preston A, Lubaroff D, Williams R, Apicella MA. Ultrastructural analysis of primary human urethral epithelial cell cultures infected with Neisseria gonorrhoeae. Infect Immun 1997; 65:2420-7. [PMID: 9169783 PMCID: PMC175335 DOI: 10.1128/iai.65.6.2420-2427.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In men with gonococcal urethritis, the urethral epithelial cell is a site of infection. To study the pathogenesis of gonorrhea in this cell type, we have developed a method to culture primary human urethral epithelial cells obtained at the time of urologic surgery. Fluorescent analysis demonstrated that 100% of the cells stained for keratin. Microscopic analyses indicated that these epithelial cells arrayed in a pattern similar to that seen in urethral epithelium. Using immunoelectron and confocal microscopy, we compared the infection process seen in primary cells with events occurring during natural infection of the same cell type in men with gonococcal urethritis. Immunoelectron microscopy studies of cells infected with Neisseria gonorrhoeae 1291 Opa+ P+ showed adherence of organisms to the epithelial cell membrane, pedestal formation with evidence of intimate association between the gonococcal and the epithelial cell membranes, and intracellular gonococci present in vacuoles. Confocal studies of primary urethral epithelial cells showed actin polymerization upon infection. Polyclonal antibodies to the asialoglycoprotein receptor (ASGP-R) demonstrated the presence of this receptor on infected cells in the primary urethral cell culture. In situ hybridization using a fluorescent-labeled probe specific to the ASGP-R mRNA demonstrated this message in uninfected and infected cells. These features were identical to those seen in urethral epithelial cells in exudates from males with gonorrhea. Infection of primary urethral cells in culture mimics events seen in natural infection and will allow detailed molecular analysis of gonococcal pathogenesis in a human epithelial cell which is commonly infected.
Collapse
Affiliation(s)
- H A Harvey
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | |
Collapse
|
83
|
Hauck CR, Lorenzen D, Saas J, Meyer TF. An in vitro-differentiated human cell line as a model system to study the interaction of Neisseria gonorrhoeae with phagocytic cells. Infect Immun 1997; 65:1863-9. [PMID: 9125573 PMCID: PMC175232 DOI: 10.1128/iai.65.5.1863-1869.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extreme host specificity of pathogenic neisseriae limits investigations aimed at the analysis of bacterial-host interactions almost completely to the use of in vitro models. Although permanent epithelial and endothelial cell lines are already indispensable tools with respect to initial infection processes, studies concerning the interaction of neisseriae with phagocytic cells have been confined to primary human blood cells. We investigated the use of human leukemia-derived monocytic and myelomonocytic cell lines that can be differentiated in vitro towards phagocytic cells by a panel of chemical and biological reagents including cytokines, vitamin analogs, and antileukemia drugs. Whereas tumor necrosis factor alpha, gamma interferon, bufalin, or granulocyte-macrophage colony-stimulating factor only marginally increased the ability of monocytic MonoMac-6 and myelomonocytic JOSK-M cells to interact with the bacteria, retinoic acid and vitamin D3 treatment for 2 to 4 days led to highly phagocytic cells that internalized gonococci in an Opa protein-specific manner. This is comparable to the phagocytosis by primary monocytes from human blood, where more than 80% of cells are infected with intracellular bacteria. The increased phagocytic activity of JOSK-M cells following in vitro differentiation was paralleled by enhanced oxidative burst capacity. Whereas undifferentiated cells responded to neither phorbol 12-myristate 13-acetate nor other known soluble and particulate stimuli, cells incubated with retinoic acid and bufalin showed the same pattern and the same intensity of oxidative burst activity in response to Neisseria gonorrhoeae as primary cells: Opa-expressing gonococci elicited an oxidative burst, whereas Opa- gonococci did not. The surface expression of major histocompatibility complex (MHC) class II molecules was only slightly changed after retinoic acid treatment. Also, phagocytosis of gonococci had no influence on MHC class II surface expression. Taken together, our results demonstrate that in vitro-differentiated human myelomonocytic JOSK-M cells provide a suitable model for the study of a variety of aspects of the gonococcal interaction with phagocytes.
Collapse
Affiliation(s)
- C R Hauck
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | | | |
Collapse
|
84
|
Duensing TD, van Putten JP. Vitronectin mediates internalization of Neisseria gonorrhoeae by Chinese hamster ovary cells. Infect Immun 1997; 65:964-70. [PMID: 9038304 PMCID: PMC175076 DOI: 10.1128/iai.65.3.964-970.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gonococci producing a distinct opacity protein (OpaA in strain MS11) adhere to and are efficiently internalized by cultured epithelial cells such as the Chang conjunctiva cell line. Both adherence and uptake require interactions between OpaA and heparan sulfate proteoglycans on the mammalian cell surface. Chinese hamster ovary (CHO) cells also support adherence of gonococci through interactions of OpaA with cell surface heparan sulfate proteoglycans. However, despite this similarity in the requirements for adherence, CHO cells are not capable of internalizing gonococci. In this report, we characterized this apparent deficiency and identified a factor in fetal calf serum (FCS) which is capable of mediating uptake of gonococci by CHO cells. In the absence of FCS, OpaA+ gonococci adhered to but were not internalized by CHO cells, whereas in the presence of up to 15% FCS, the bacteria were efficiently internalized by the cells. Preincubation of bacteria, but not cells, with FCS also stimulated internalization, suggesting that a factor present in FCS was binding to the surface of gonococci and subsequently stimulating entry. Using a combination of chromatographic purification procedures, we identified the adhesive glycoprotein vitronectin as the serum factor which mediates the internalization of gonococci by CHO cells. Vitronectin-depleted serum did not support gonococcal entry, and this deficiency was restored by the addition of purified vitronectin. Further experiments using a set of gonococcal recombinants, each expressing a single member of the family of Opa outer membrane proteins, demonstrated that vitronectin bound to the surface of OpaA-producing gonococci only and that the vitronectin-mediated uptake by the CHO cells was limited to this bacterial phenotype. To our knowledge, our data are the first example that vitronectin can serve as a molecule that drives bacterial entry into epithelial cells.
Collapse
Affiliation(s)
- T D Duensing
- Laboratory of Microbial Structure and Function, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840-2999, USA.
| | | |
Collapse
|