51
|
Eakley NM, Bochsler PN, Gopal Reddy P, Fadl AA. Biological and virulence characteristics of the YqhC mutant of Salmonella. Microbiol Immunol 2011; 55:830-40. [DOI: 10.1111/j.1348-0421.2011.00387.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Santos RL, Almeida AP, Xavier MN, Paixão TA, Wilson RP, Dandekar S, Raffatellu M, Bäumler AJ. Enteric pathology and Salmonella-induced cell death in healthy and SIV-infected rhesus macaques. Vet Pathol 2011; 48:933-41. [PMID: 21041540 PMCID: PMC12039464 DOI: 10.1177/0300985810386468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The goal of this study was to morphologically characterize a ligated ileal loop model of Salmonella enterica serotype Typhimurium infection in rhesus macaques (Macaca mulatta) and to verify the occurrence of Salmonella-induced cell death in vivo. Eight adult healthy male rhesus macaques were used for ligated ileal loop surgery. Four macaques had been intravenously inoculated with simian immunodeficiency virus (SIV) mac251. Ileal ligated loops were inoculated with wild-type (WT) S. Typhimurium strain IR715 (ATCC14028 nal (r)), an isogenic noninvasive mutant strain (ATCC14028 nal (r) ΔsipAΔsopABDE2), or sterile Luria Bertani broth. Loops were surgically removed at 2, 5, and 8 hours post-inoculation (hpi). Intestinal samples were processed for histopathology, immunohistochemistry for detecting Salmonella, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and transmission electron microscopy. Combined histopathology scores were similar between SIV-infected and control macaques. As expected, the invasion-deficient mutant was less pathogenic than WT S. Typhimurium. Neutrophil infiltrate in the intestinal mucosa correlated with bacterial loads (r = 0.7148; P < .0001) and fluid accumulation (r = 0.6019; P < .0001) in the lumen of the intestinal loops. Immunolabeled WT S. Typhimurium was observed in the epithelium and lamina propria at the tip of the villi at 2 hpi, progressing toward deeper lamina propria at 5-8 hpi. Most TUNEL-positive cells localized to the lamina propria, and some had morphological features of macrophages. Ultrastructurally, bacteria were observed intracellularly in the lamina propria as well as within apoptotic bodies. This study provides morphological evidence of Salmonella-induced cell death in vivo in a relevant nonhuman primate model.
Collapse
Affiliation(s)
- R L Santos
- Departamento de Clinica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Toma C, Okura N, Takayama C, Suzuki T. Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages. Cell Microbiol 2011; 13:1783-92. [PMID: 21819516 DOI: 10.1111/j.1462-5822.2011.01660.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leptospira interrogans is a spirochaete responsible for a zoonotic disease known as leptospirosis. Leptospires are able to penetrate the abraded skin and mucous membranes and rapidly disseminate to target organs such as the liver, lungs and kidneys. How this pathogen escape from innate immune cells and spread to target organs remains poorly understood. In this paper, the intracellular trafficking undertaken by non-pathogenic Leptospira biflexa and pathogenic L. interrogans in mouse bone marrow-derived macrophages was compared. The delayed in the clearance of L. interrogans was observed. Furthermore, the acquisition of lysosomal markers by L. interrogans-containing phagosomes lagged behind that of L. biflexa-containing phagosomes, and although bone marrow-derived macrophages could degrade L. biflexa as well as L. interrogans, a population of L. interrogans was able to survive and replicate. Intact leptospires were found within vacuoles at 24 h post infection, suggesting that bacterial replication occurs within a membrane-bound compartment. In contrast, L. biflexa were completely degraded at 24 h post infection. Furthermore, L. interrogans but not L. biflexa, were released to the extracellular milieu. These results suggest that pathogenic leptospires are able to survive, replicate and exit from mouse macrophages, enabling their eventual spread to target organs.
Collapse
Affiliation(s)
- Claudia Toma
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0125, Japan.
| | | | | | | |
Collapse
|
54
|
Abstract
The pattern recognition molecules Nod1 and Nod2 play important roles in intestinal homeostasis; however, how these proteins impact on the development of inflammation during bacterial colitis has not been examined. In the streptomycin-treated mouse model of Salmonella colitis, we found that mice deficient for both Nod1 and Nod2 had attenuated inflammatory pathology, reduced levels of inflammatory cytokines, and increased colonization of the mucosal tissue. Nod1 and Nod2 from both hematopoietic and nonhematopoietic sources contributed to the pathology, and all phenotypes were recapitulated in mice deficient for the signaling adaptor protein Rip2. However, the influence of Rip2 was strictly dependent on infection conditions that favored expression of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS), as Rip2 was dispensable for inflammation when mice were infected with bacteria grown under conditions that promoted expression of the SPI-1 TTSS. Thus, Nod1 and Nod2 can modulate inflammation and mediate efficient clearance of bacteria from the mucosal tissue during Salmonella colitis, but their role is dependent on the expression of the SPI-2 TTSS.
Collapse
|
55
|
Redox sensor SsrB Cys203 enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proc Natl Acad Sci U S A 2010; 107:14396-401. [PMID: 20660761 DOI: 10.1073/pnas.1005299107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We show herein that the Salmonella pathogenicity island 2 (SPI2) response regulator SsrB undergoes S-nitrosylation upon exposure of Salmonella to acidified nitrite, a signal encountered by this enteropathogen in phagosomes of macrophages. Mutational analysis has identified Cys(203) in the C-terminal dimerization domain of SsrB as the redox-active residue responding to nitric oxide (NO) congeners generated in the acidification of nitrite. Peroxynitrite and products of the autooxidation of NO in the presence of oxygen, but not hydrogen peroxide, inhibit the DNA-binding capacity of SsrB, demonstrating the selectivity of the reaction of Cys(203) with reactive nitrogen species (RNS). These findings identify the two-component response regulator SsrB Cys(203) as a thiol-based redox sensor. A C203S substitution protects SsrB against the attack of RNS while preserving its DNA-binding capacity. When exposed to SPI2-inducing conditions, Salmonella expressing the wild-type ssrB allele or the ssrB C203S variant sustain transcription of the sifA, sspH2, and srfJ effector genes. Nonetheless, compared with the strain expressing a redox-resistant SsrB C203S variant, wild-type Salmonella bearing the NO-responsive allele exhibit increased fitness when exposed to RNS in an NRAMP(R), C3H/HeN murine model of acute oral infection. Given the widespread occurrence of the wild-type allele in Salmonella enterica, these findings indicate that SsrB Cys(203) increases Salmonella virulence by serving as a redox sensor of NO resulting from the host immune response to oral infection.
Collapse
|
56
|
Ibarra JA, Knodler LA, Sturdevant DE, Virtaneva K, Carmody AB, Fischer ER, Porcella SF, Steele-Mortimer O. Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella-host cell interactions in vitro. MICROBIOLOGY-SGM 2009; 156:1120-1133. [PMID: 20035008 DOI: 10.1099/mic.0.032896-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salmonella invade non-phagocytic cells by inducing massive actin rearrangements, resulting in membrane ruffle formation and phagocytosis of the bacteria. This process is mediated by a cohort of effector proteins translocated into the host cell by type III secretion system 1, which is encoded by genes in the Salmonella pathogenicity island (SPI) 1 regulon. This network is precisely regulated and must be induced outside of host cells. In vitro invasive Salmonella are prepared by growth in synthetic media although the details vary. Here, we show that culture conditions affect the frequency, and therefore invasion efficiency, of SPI1-induced bacteria and also can affect the ability of Salmonella to adapt to its intracellular niche following invasion. Aerobically grown late-exponential-phase bacteria were more invasive and this was associated with a greater frequency of SPI1-induced, motile bacteria, as revealed by single-cell analysis of gene expression. Culture conditions also affected the ability of Salmonella to adapt to the intracellular environment, since they caused marked differences in intracellular replication. These findings show that induction of SPI1 under different pre-invasion growth conditions can affect the ability of Salmonella to interact with eukaryotic host cells.
Collapse
Affiliation(s)
- J Antonio Ibarra
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Daniel E Sturdevant
- Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimmo Virtaneva
- Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Aaron B Carmody
- Flow Cytometry Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Stephen F Porcella
- Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
57
|
Chen ZW, Hsuan SL, Liao JW, Chen TH, Wu CM, Lee WC, Lin CC, Liao CM, Yeh KS, Winton JR, Huang C, Chien MS. Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system. Vet Res 2009; 41:5. [PMID: 19775595 PMCID: PMC2769549 DOI: 10.1051/vetres/2009053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/18/2009] [Indexed: 12/30/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis) causes a lethal systemic infection (salmonellosis) in swine. Live attenuated Salmonella Choleraesuis vaccines are effective in preventing the disease, and isolates of Salmonella Choleraesuis with mutations in the cAMP-receptor protein (CRP) gene (Salmonella Choleraesuis ∆crp) are the most widely used, although the basis of the attenuation remains unclear. The objective of this study was to determine if the attenuated phenotype of Salmonella Choleraesuis ∆crp was due to alterations in susceptibility to gastrointestinal factors such as pH and bile salts, ability to colonize or invade the intestine, or cytotoxicity for macrophages. Compared with the parental strain, the survival rate of Salmonella Choleraesuis ∆crp at low pH or in the presence of bile salts was higher, while the ability of the mutant to invade intestinal epithelia was significantly decreased. In examining the role of CRP on the secretory function of the Salmonella pathogenicity island 1 (SPI-1) encoded type III secretion system (T3SS), it was shown that Salmonella Choleraesuis ∆crp was unable to secrete the SPI-1 T3SS effector proteins, SopB and SipB, which play a role in Salmonella intestinal invasiveness and macrophage cytotoxicity, respectively. In addition, caspase-1 dependent cytotoxicity for macrophages was significantly reduced in Salmonella Choleraesuis ∆crp. Collectively, this study demonstrates that the CRP affects the secretory function of SPI-1 T3SS and the resulting ability to invade the host intestinal epithelium, which is a critical element in the pathogenesis of Salmonella Choleraesuis.
Collapse
Affiliation(s)
- Zeng-Weng Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Interaction between host cells and septicemic Salmonella enterica serovar typhimurium isolates from pigs. J Clin Microbiol 2009; 47:3413-9. [PMID: 19710281 DOI: 10.1128/jcm.00136-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an important pathogen in swine and is also a frequently reported zoonotic agent. The objective of this study was to characterize isolates of S. enterica serovar Typhimurium associated with septicemia in swine and to compare them to isolates recovered from clinically healthy pigs. We were particularly interested in comparing the two groups of isolates for their ability to adhere to and invade host cells, to be phagocytized and survive in monocyte cells, to induce apoptosis, and to adhere to intestinal mucus. Their surface properties were also evaluated by interactions with solvents. The isolates recovered from diseased animals were shown to invade intestinal epithelial cell lines at a higher rate (P = 0.003) than isolates from healthy pigs. Septicemic isolates were phagocytized by human monocytes at a higher rate than isolates from healthy pigs (P = 0.009). The mean percentages of phagocytosis were significantly lower for human monocytes than for porcine monocytes (P = 0.02 and P = 0.008, respectively) for isolates from both diseased and healthy animals. Healthy animal isolates were phagocytized more by porcine monocytes at 15 min (P = 0.02) than septicemic isolates. No difference between isolates from septicemic pigs and isolates from healthy pigs was detected for other tested parameters. These results suggest that septicemic isolates have a particular pattern of invasion.
Collapse
|
59
|
Albaghdadi H, Robinson N, Finlay B, Krishnan L, Sad S. Selectively reduced intracellular proliferation of Salmonella enterica serovar typhimurium within APCs limits antigen presentation and development of a rapid CD8 T cell response. THE JOURNAL OF IMMUNOLOGY 2009; 183:3778-87. [PMID: 19692639 DOI: 10.4049/jimmunol.0900843] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag presentation to CD8(+) T cells commences immediately after infection, which facilitates their rapid expansion and control of pathogen. This paradigm is not followed during infection with virulent Salmonella enterica serovar Typhimurium (ST), an intracellular bacterium that causes mortality in susceptible C57BL/6J mice within 7 days and a chronic infection in resistant mice (129 x 1SvJ). Infection of mice with OVA-expressing ST results in the development of a CD8(+) T cell response that is detectable only after the second week of infection despite the early detectable bacterial burden. The mechanism behind the delayed CD8(+) T cell activation was evaluated, and it was found that dendritic cells/macrophages or mice infected with ST-OVA failed to present Ag to OVA-specific CD8(+) T cells. Lack of early Ag presentation was not rescued when mice or dendritic cells/macrophages were infected with an attenuated aroA mutant of ST or with mutants having defective Salmonella pathogenicity island I/II genes. Although extracellular ST proliferated extensively, the replication of ST was highly muted once inside macrophages. This muted intracellular proliferation of ST resulted in the generation of poor levels of intracellular Ag and peptide-MHC complex on the surface of dendritic cells. Additional experiments revealed that ST did not actively inhibit Ag presentation, rather it inhibited the uptake of another intracellular pathogen, Listeria monocytogenes, thereby causing inhibition of Ag presentation against L. monocytogenes. Taken together, this study reveals a dichotomy in the proliferation of ST and indicates that selectively reduced intracellular proliferation of virulent pathogens may be an important mechanism of immune evasion.
Collapse
Affiliation(s)
- Homam Albaghdadi
- National Research Council Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
60
|
Yoon H, McDermott JE, Porwollik S, McClelland M, Heffron F. Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog 2009; 5:e1000306. [PMID: 19229334 PMCID: PMC2639726 DOI: 10.1371/journal.ppat.1000306] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/22/2009] [Indexed: 11/18/2022] Open
Abstract
To cause a systemic infection, Salmonella must respond to many environmental cues during mouse infection and express specific subsets of genes in a temporal and spatial manner, but the regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 83 regulators inferred to play a role in Salmonella enteriditis Typhimurium (STM) virulence and tested them in three virulence assays (intraperitoneal [i.p.], and intragastric [i.g.] infection in BALB/c mice, and persistence in 129X1/SvJ mice). Overall, 35 regulators were identified whose absence attenuated virulence in at least one assay, and of those, 14 regulators were required for systemic mouse infection, the most stringent virulence assay. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint, we focused on these 14 genes. Transcriptional profiles were obtained for deletions of each of these 14 regulators grown under four different environmental conditions. These results, as well as publicly available transcriptional profiles, were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 14 regulators control the same set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that the response regulator SsrB and the MarR type regulator, SlyA, are the terminal regulators in a cascade that integrates multiple signals. Furthermore, experiments to demonstrate epistatic relationships showed that SsrB can replace SlyA and, in some cases, SlyA can replace SsrB for expression of SPI-2 encoded virulence factors.
Collapse
Affiliation(s)
- Hyunjin Yoon
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jason E. McDermott
- Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Steffen Porwollik
- The Sydney Kimmel Cancer Center, San Diego, California, United States of America
| | - Michael McClelland
- The Sydney Kimmel Cancer Center, San Diego, California, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
61
|
Zhang Y, Murtha J, Roberts MA, Siegel RM, Bliska JB. Type III secretion decreases bacterial and host survival following phagocytosis of Yersinia pseudotuberculosis by macrophages. Infect Immun 2008; 76:4299-310. [PMID: 18591234 PMCID: PMC2519449 DOI: 10.1128/iai.00183-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/26/2008] [Accepted: 06/23/2008] [Indexed: 12/24/2022] Open
Abstract
Yersinia pseudotuberculosis uses a plasmid (pYV)-encoded type III secretion system (T3SS) to translocate a set of effectors called Yops into infected host cells. YopJ functions to induce apoptosis, and YopT, YopE, and YopH act to antagonize phagocytosis in macrophages. Because Yops do not completely block phagocytosis and Y. pseudotuberculosis can replicate in macrophages, it is important to determine if the T3SS modulates host responses to intracellular bacteria. Isogenic pYV-cured, pYV(+) wild-type, and yop mutant Y. pseudotuberculosis strains were allowed to infect bone marrow-derived murine macrophages at a low multiplicity of infection under conditions in which the survival of extracellular bacteria was prevented. Phagocytosis, the intracellular survival of the bacteria, and the apoptosis of the infected macrophages were analyzed. Forty percent of cell-associated wild-type bacteria were intracellular after a 20-min infection, allowing the study of the macrophage response to internalized pYV(+) Y. pseudotuberculosis. Interestingly, macrophages restricted survival of pYV(+) but not pYV-cured or DeltayopB Y. pseudotuberculosis within phagosomes: only a small fraction of the pYV(+) bacteria internalized replicated by 24 h. In addition, approximately 20% of macrophages infected with wild-type pYV(+) Y. pseudotuberculosis died of apoptosis after 20 h. Analysis of yop mutants expressing catalytically inactive effectors revealed that YopJ was important for apoptosis, while a role for YopE, YopH, and YopT in modulating macrophage responses to intracellular bacteria could not be identified. Apoptosis was reduced in Toll-like receptor 4-deficient macrophages, indicating that cell death required signaling through this receptor. Treatment of macrophages harboring intracellular pYV(+) Y. pseudotuberculosis with chloramphenicol reduced apoptosis, indicating that the de novo bacterial protein synthesis was necessary for cell death. Our finding that the presence of a functional T3SS impacts the survival of both bacterium and host following phagocytosis of Y. pseudotuberculosis suggests new roles for the T3SS in Yersinia pathogenesis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, SUNY Stony Brook, Stony Brook, New York 11794-5222, USA.
| | | | | | | | | |
Collapse
|
62
|
Induction of guanylate binding protein 5 by gamma interferon increases susceptibility to Salmonella enterica serovar Typhimurium-induced pyroptosis in RAW 264.7 cells. Infect Immun 2008; 76:2304-15. [PMID: 18362138 DOI: 10.1128/iai.01437-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The regulation of caspase-1 activation in macrophages plays a central role in host defense against bacterial pathogens. The activation of caspase-1 by the detection of bacterial products through Nod-like receptors leads to the secretion of mature interleukin-1beta (IL-1beta) and IL-18 and the induction of rapid host cell death (pyroptosis). Here, we report that pyroptosis induced by Salmonella enterica serovar Typhimurium can be positively regulated by prior gamma interferon (IFN-gamma) stimulation of RAW 264.7 cells. This increase in cell death is dependent on both caspase-1 activation and, in part, Salmonella pathogenicity island 1 (SPI-1) expression by Salmonella. Furthermore, the exogenous expression of the IFN-gamma-induced protein guanylate binding protein 5 (GBP-5) is sufficient to induce a heightened susceptibility of RAW 264.7 cells to Salmonella-induced pyroptosis, and the endogenous expression of GBP-5 is important for this phenomenon. RAW 264.7 cells with decreased expression of GBP-5 mRNA (inhibited by short hairpin RNA against GBP-5) release twofold less lactate dehydrogenase (a marker of membrane permeability) upon infection by invasive S. enterica serovar Typhimurium than do infected control cells. Importantly, 3x FLAG-tagged GBP-5 is localized to membrane ruffles, which contact invasive Salmonella, and is found on the membranes of spacious phagosomes containing Salmonella (although it is also found in the cytoplasm and on other cellular membranes), placing 3x FLAG GBP-5 at the interface of secreted SPI-1 effectors and host protein machinery. The regulation of pyroptosis by the IFN-gamma-induced protein GBP-5 may play an important role in the host defense against Salmonella enterica serovar Typhimurium and perhaps other invasive bacterial pathogens.
Collapse
|
63
|
Gobbato N, Maldonado Galdeano C, Perdigón G. Study of some of the mechanisms involved in the prevention againstSalmonella enteritidisserovar Typhimurium infection by lactic acid bacteria. FOOD AGR IMMUNOL 2008. [DOI: 10.1080/09540100701828739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
64
|
Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol 2008; 190:2470-8. [PMID: 18245288 DOI: 10.1128/jb.01385-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium delivers a variety of proteins via the Salmonella pathogenicity island 1 (SPI1)-encoded type III secretion system into host cells, where they elicit several physiological changes, including bacterial invasion, macrophage apoptosis, and enteropathogenesis. Once Salmonella has established a systemic infection, excess macrophage apoptosis would be detrimental to the pathogen, as it utilizes macrophages as vectors for systemic dissemination throughout the host. Therefore, SPI1 expression must be restricted to one or a few specific locations in the host. In the present study, we have demonstrated that the expression of this complex of genes is repressed by the ATP-dependent ClpXP protease, which therefore suppresses macrophage apoptosis. Depletion of ClpXP caused significant increases in the amounts of two SPI1-encoded transcriptional regulators, HilC and HilD, leading to the stimulation of hilA induction and therefore activation of SPI1 expression. Our evidence shows that ClpXP regulates cellular levels of HilC and HilD via the control of flagellar gene expression. Subsequent experiments demonstrated that the flagellum-related gene product FliZ controls HilD posttranscriptionally, and this in turn activates HilC. These findings suggest that the ClpXP protease coregulates SPI1-related virulence phenotypes and motility. ClpXP is a member of the stress protein family induced in bacteria exposed to hostile environments such as macrophages.
Collapse
|
65
|
Browne SH, Hasegawa P, Okamoto S, Fierer J, Guiney DG. Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice. ACTA ACUST UNITED AC 2008; 52:194-201. [PMID: 18248436 DOI: 10.1111/j.1574-695x.2007.00364.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Salmonella SpvB protein possesses ADP-ribosyl transferase activity. SpvB, acting as an intracellular toxin, covalently modifies monomeric actin, leading to loss of F-actin filaments in Salmonella-infected human macrophages. Using defined Salmonella mutants, different functional components of the SPI-2 type three secretion system (TTSS), ssaV, spiC, sseB, sseC, and sseD, were found to be required for SpvB-mediated actin depolymerization in human macrophages. Expression of SpvB protein in Salmonella was not affected by any of the SPI-2 mutants and the effects of these loci were not due to reduced numbers of intracellular bacteria. Interestingly, the major SPI-2 virulence effector, SifA, is not required for SpvB action. Further, caspase-3 activation is an additional marker of cytotoxicity in Salmonella-infected human macrophages. Caspase-3 activity depended on SpvB and SPI-2 TTSS function, but not on SifA. These human macrophage cell culture results were corroborated by virulence studies in mice. Using competitive infection of mice with mixed inocula of single and double mutants, spvBmut1 mutation did not have an effect independent of ssaJ mutation, essential for SPI-2 TTSS function. In contrast, competitive infection studies in mice confirmed that SpvB and SifA have independent virulence effects, as predicted by the macrophage studies.
Collapse
Affiliation(s)
- Sara H Browne
- Department of Medicine 0640, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0640, USA.
| | | | | | | | | |
Collapse
|
66
|
Klumpp J, Fuchs TM. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. MICROBIOLOGY-SGM 2007; 153:1207-1220. [PMID: 17379730 DOI: 10.1099/mic.0.2006/004747-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) survives and proliferates within macrophage cells. A mutant library of strain ATCC 14028 based on gene disruption by homologous recombination was screened in order to identify genes that are required for wild-type-like intracellular replication. Randomly generated chromosomal fragments from the genome of S. typhimurium were cloned into a temperature-sensitive vector, and approximately 8000 individual mutant clones were obtained by insertional-duplication mutagenesis (IDM) upon selection at non-permissive temperature. Large-scale screening for replication defects in mouse macrophages, but not during growth in rich or minimal medium, revealed a set of attenuated mutants that were further characterized by PCR amplification and sequencing of the mutagenic fragments. Following analysis of a Salmonella genome map with the annotated positions of vector insertions, an accumulation of 33 attenuating insertions within genes of ten non-collinear regions was found. Insertions in virK, gipA and five SPI-2 genes as well as seven non-polar deletions validated the screen. No invasion deficiencies of the mutants were observed. The cob-cbi-pdu cluster containing the genes for cobalamin synthesis and 1,2-propanediol degradation was shown to be required for Salmonella replication within macrophages. These data gave rise to a model of eukaryotic glycoconjugates and phospholipids as alternative carbon, nitrogen and energy sources for intracellularly replicating bacteria. The contribution of as yet unknown components of SPI-6 and the Gifsy-1 and Gifsy-2 prophage islands to intracellular replication is reported, as well as the fivefold reduced intracellular growth rate of a mutant with a deletion of STM1677, which probably encodes a LysR-like transcriptional regulator. The intracellular replication rate of three double mutants, each lacking two gene products of the cob-cbi-pdu cluster or the Gifsy-1 prophage, was shown to be lower than that of the respective single mutants, suggesting that additive effects of subtle intracellular advantages contribute to Salmonella fitness in vivo.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food Science and Nutrition, ETH Zürich, Schmelzbergstr. 7, 8092 Zürich, Switzerland
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Thilo M Fuchs
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
67
|
Volf J, Boyen F, Faldyna M, Pavlova B, Navratilova J, Rychlik I. Cytokine response of porcine cell lines to Salmonella enterica serovar typhimurium and its hilA and ssrA mutants. Zoonoses Public Health 2007; 54:286-93. [PMID: 17894638 DOI: 10.1111/j.1863-2378.2007.01064.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular bacterium which can infect and colonize pigs. After contact with enterocytes and macrophages, S. Typhimurium induces production of cytokines thus triggering the innate immune response. In this study we evaluated the cytokine response of two porcine cell lines, IPI-2I and 3D4/31, of epithelial or macrophage origins, respectively, to the wild-type S. Typhimurium and its hilA and ssrA mutants. We observed that the 3D4/31 cell line essentially did not respond to S. Typhimurium infection when a medium with foetal calf serum was used. However when the 3D4 cell line was incubated overnight in the presence of porcine serum, it efficiently responded to the wild-type strain and the ssrA mutant but not to the noninvasive hilA mutant as measured by mRNA quantification of TNF-alpha, IL-8 and GM-CSF by the real-time RT-PCR. In IPI-2I, all the cytokines were also induced by the wild-type S. Typhimurium and the ssrA mutant although the induction of TNF-alpha was lower than that induced by the wild-type strain. The hilA mutant was unable to induce any of the cytokines tested. The ssrA mutant can therefore be considered as more suitable for further vaccine development as the stimulation of innate immune response is important for animal protection against a challenge with virulent strains.
Collapse
Affiliation(s)
- J Volf
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
Salmonella enterica are facultatively intracellular pathogens causing diseases with markedly visible signs of inflammation. During infection, Salmonella interacts with various host cell types, often resulting in death of those cells. Salmonella induces intestinal epithelial cell death via apoptosis, a cell death programme with a notably non-inflammatory outcome. In contrast, macrophage infection triggers caspase-1-dependent proinflammatory programmed cell death, a recently recognized process termed pyroptosis, which is distinguished from other forms of cellular demise by its unique mechanism, features and inflammatory outcome. Rapid macrophage pyroptosis depends on the Salmonella pathogenicity island-1 type III secretion system (T3SS) and flagella. Salmonella dynamically modulates induction of macrophage pyroptosis, and regulation of T3SS systems permits bacterial replication in specialized intracellular niches within macrophages. However, these infected macrophages later undergo a delayed form of caspase-1-dependent pyroptosis. Caspase-1-deficient mice are more susceptible to a number of bacterial infections, including salmonellosis, and pyroptosis is therefore considered a generalized protective host response to infection. Thus, Salmonella-induced pyroptosis serves as a model to understand a broadly important pathway of proinflammatory programmed host cell death: examining this system affords insight into mechanisms of both beneficial and pathological cell death and strategies employed by pathogens to modulate host responses.
Collapse
Affiliation(s)
- Susan L Fink
- Molecular and Cellular Biology Program, University of Washington, Box 357110, 1959 N.E. Pacific Street, Seattle, WA 98195-7110, USA
| | | |
Collapse
|
69
|
Cook P, Tötemeyer S, Stevenson C, Fitzgerald KA, Yamamoto M, Akira S, Maskell DJ, Bryant CE. Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif. Immunology 2007; 122:222-9. [PMID: 17490432 PMCID: PMC2266008 DOI: 10.1111/j.1365-2567.2007.02631.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is an intracellular pathogen that causes macrophage cell death by at least two different mechanisms. Rapid cell death is dependent on the Salmonella pathogenicity island-1 protein SipB whereas delayed cell death is independent of SipB and occurs 18-24 hr post infection. Lipopolysaccharide (LPS) is essential for the delayed cell death. LPS is the main structural component of the outer membrane of Gram-negative bacteria and is recognized by Toll-like receptor 4, signalling via the adapter proteins Mal, MyD88, Tram and Trif. Here we show that S. typhimurium induces SipB-independent cell death through Toll-like receptor 4 signalling via the adapter proteins Tram and Trif. In contrast to wild type bone marrow derived macrophages (BMDM), Tram(-/-) and Trif(-/-) BMDM proliferate in response to Salmonella infection.
Collapse
Affiliation(s)
- Pamela Cook
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Brumme S, Arnold T, Sigmarsson H, Lehmann J, Scholz HC, Hardt WD, Hensel A, Truyen U, Roesler U. Impact of Salmonella Typhimurium DT104 virulence factors invC and sseD on the onset, clinical course, colonization patterns and immune response of porcine salmonellosis. Vet Microbiol 2007; 124:274-85. [PMID: 17524577 DOI: 10.1016/j.vetmic.2007.04.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/22/2007] [Accepted: 04/25/2007] [Indexed: 12/29/2022]
Abstract
The present study was conducted to study the impact of the virulence factors invC and sseD of the two type III secretion systems of Salmonella enterica serovar Typhimurium (S. Typhimurium) on the pathogenesis of the porcine S. Typhimurium DT104 infection. For this purpose, two S. Typhimurium mutant strains with a disrupted invC gene of the Salmonella pathogenicity island 1 or with a disrupted sseD gene of the Salmonella pathogenicity island 2 have been studied in experimental infection of pigs. Twenty-two 7-week-old male hybrid pigs were either infected with one of the mutants or the wild-type S. Typhimurium DT104 strain. Each group was examined for clinical signs, Salmonella shedding rate and the specific antibody response. Survival and replication were evaluated by qualitative and quantitative determination of the colonization rate. The humoral and cellular immune responses were examined using isotype-specific ELISA and quantitative real-time PCR of IL-2, IL-4, IL-10, IL-12 and IFN-gamma. The results proved that both mutants had a lower virulence (with marked differences between both mutants) than the wild-type and that both virulence factors have importance in porcine salmonellosis. Only pigs infected with the wild-type S. Typhimurium DT104 exhibited typical clinical symptoms of salmonellosis like anorexia, vomiting, disturbed demeanour, fever and diarrhoea. Deletion of the invC gene resulted in a significantly reduced colonization rate. Interestingly, the mRNA expression of both type-1 and type-2 cytokines were significantly decreased in pigs infected with either the invC-mutant and the sseD-mutant strain.
Collapse
Affiliation(s)
- Steffi Brumme
- Institute of Animal Hygiene and Veterinary Public Health, University Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Rytkönen A, Poh J, Garmendia J, Boyle C, Thompson A, Liu M, Freemont P, Hinton JCD, Holden DW. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci U S A 2007; 104:3502-7. [PMID: 17360673 PMCID: PMC1802004 DOI: 10.1073/pnas.0610095104] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the Salmonella enterica serovar Typhimurium pathogenicity island 2 (SPI-2) type III secretion system is controlled by the two-component regulatory system SsrA-SsrB. We used a transcriptomic approach to help define the SsrA-SsrB regulon. We identified a gene encoding an uncharacterized effector (SseL) whose translocation into host cells depends on the SPI-2 secretion system. SseL has similarities to cysteine proteases with deubiquitinating activity. A GST-SseL fusion protein specifically hydrolyzed mono- and polyubiquitin substrates in vitro with a preference for K63-linked ubiquitin chains. Ubiquitin-modified proteins accumulated in macrophages infected with Salmonella sseL mutant strains but to a lesser extent when infected with bacteria expressing active protein, demonstrating that SseL functions as a deubiquitinase in vivo. Salmonella sseL mutant strains did not show a replication defect or induce altered levels of cytokine production upon infection of macrophages but were defective for a delayed cytotoxic effect and were attenuated for virulence in mice.
Collapse
Affiliation(s)
- Anne Rytkönen
- *Department of Infectious Diseases, Centre for Molecular Microbiology and Infection and
| | - John Poh
- *Department of Infectious Diseases, Centre for Molecular Microbiology and Infection and
| | - Junkal Garmendia
- *Department of Infectious Diseases, Centre for Molecular Microbiology and Infection and
| | - Cliona Boyle
- *Department of Infectious Diseases, Centre for Molecular Microbiology and Infection and
| | - Arthur Thompson
- Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Mei Liu
- *Department of Infectious Diseases, Centre for Molecular Microbiology and Infection and
| | - Paul Freemont
- Division of Molecular Biosciences, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, United Kingdom; and
| | - Jay C. D. Hinton
- Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - David W. Holden
- *Department of Infectious Diseases, Centre for Molecular Microbiology and Infection and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
72
|
Worley MJ, Nieman GS, Geddes K, Heffron F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc Natl Acad Sci U S A 2006; 103:17915-20. [PMID: 17095609 PMCID: PMC1635543 DOI: 10.1073/pnas.0604054103] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mammalian host has a number of innate immune mechanisms designed to limit the spread of infection, yet many bacteria, including Salmonella, can cause systemic disease. Salmonella typhimurium-infected phagocytes traverse the gastrointestinal (GI) epithelium and enter the bloodstream within minutes after ingestion, thereby spreading throughout its host. Here, we provide a cellular and molecular basis for this phenomenon. We demonstrate that S. typhimurium manipulates the migratory properties of infected GI phagocytes with a type III secretion system. We show that one secreted effector, SrfH, interacts with the host protein TRIP6, a member of the zyxin family of adaptor proteins that regulate motility. SrfH promotes phagocyte motility in vitro and accelerates the systemic spread of infection away from the lumen of the intestine in the mouse. This is a previously uncharacterized mechanism by which an intracellular pathogen overcomes host defenses designed to immobilize infected cells.
Collapse
Affiliation(s)
- Micah J. Worley
- *Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - George S. Nieman
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239
| | - Kaoru Geddes
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
73
|
Tempel R, Lai XH, Crosa L, Kozlowicz B, Heffron F. Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun 2006; 74:5095-105. [PMID: 16926401 PMCID: PMC1594869 DOI: 10.1128/iai.00598-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the bacterial pathogen that causes tularemia in humans and a number of animals. To date, there is no approved vaccine for this widespread and life-threatening disease. The goal of this study was to identify F. tularensis mutants that can be used in the development of a live attenuated vaccine. We screened F. novicida transposon mutants to identify mutants that exhibited reduced growth in mouse macrophages, as these cells are the preferred host cells of Francisella and an essential component of the innate immune system. This approach yielded 16 F. novicida mutants that were 100-fold more attenuated for virulence in a mouse model than the wild-type parental strain. These mutants were then tested to determine their abilities to protect mice against challenge with high doses of wild-type bacteria. Five of the 16 attenuated mutants (with mutations corresponding to dsbB, FTT0742, pdpB, fumA, and carB in the F. tularensis SCHU S4 strain) provided mice with protection against challenge with high doses (>8 x 10(5) CFU) of wild-type F. novicida. We believe that these findings will be of use in the design of a vaccine against tularemia.
Collapse
Affiliation(s)
- Rebecca Tempel
- 6543 Basic Sciences Addition/CROET Building, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
74
|
Luu RA, Gurnani K, Dudani R, Kammara R, van Faassen H, Sirard JC, Krishnan L, Sad S. Delayed expansion and contraction of CD8+ T cell response during infection with virulent Salmonella typhimurium. THE JOURNAL OF IMMUNOLOGY 2006; 177:1516-25. [PMID: 16849458 PMCID: PMC4015949 DOI: 10.4049/jimmunol.177.3.1516] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag presentation to CD8(+) T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (approximately 7 days), resistant mice (129 x 1SvJ) harbor a chronic infection lasting approximately 60-90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8(+) T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62L(high)IL-7Ralpha(high)CD44(high)) CD8(+) T cells. However, by day 14-21, majority of the primed CD8(+) T cells display an effector phenotype (CD62L(low)IL-7Ralpha(low)CD44(high)). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62L(low)IL-7Ralpha(high)CD44(high)) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8(+) T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8(+) T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8(+) T cell recognition, conferring a survival advantage to the pathogen.
Collapse
Affiliation(s)
- Rachel A. Luu
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Komal Gurnani
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Renu Dudani
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Rajagopal Kammara
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Henk van Faassen
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Jean-Claude Sirard
- Institut National de la Santé et de la Recherche Médicale, Institut de Biologie, Campus Pasteur Lille, Lille, France
| | - Lakshmi Krishnan
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Subash Sad
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada
- Address correspondence and reprint requests to Dr. Subash Sad, Institute for Biological Sciences, National Research Council, Building M-54, 1200 Montreal Road, Room 127, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
75
|
Abstract
Salmonella enterica serovar Typhi causes typhoid fever, a serious life-threatening systemic infection. In mice, a similar disease is caused by Salmonella enterica serovar Typhimurium. During typhoid fever, soon after attachment to the mucosal surface of the gut, bacteria come into contact with the dendritic cells (DCs). The ability to sample antigens, process and present them to naïve and mature T cells, in the context of major histocompatibility complex molecules, makes DCs indispensable for mounting a specific and efficient immune response to invading pathogens. These bacteria, however, have evolved a number of mechanisms to interfere with or subvert DC functions. This review aims to describe how Salmonella clashes with dendritic cells at different stages of infection as well as the war strategies of these two opposing sides.
Collapse
Affiliation(s)
- Marta Biedzka-Sarek
- Department of Bacteriology and Immunology, Haartman Institute, 00014 University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
76
|
Link C, Ebensen T, Ständner L, Déjosez M, Reinhard E, Rharbaoui F, Guzmán CA. An SopB-mediated immune escape mechanism of Salmonella enterica can be subverted to optimize the performance of live attenuated vaccine carrier strains. Microbes Infect 2006; 8:2262-9. [PMID: 16793312 DOI: 10.1016/j.micinf.2006.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 01/08/2023]
Abstract
Salmonellae have evolved several mechanisms to evade host clearance. Here, we describe the influence on bacterial immune escape of the effector protein SopB, which is translocated into the cytosol through a type III secretion system. Wild-type bacteria, as well as the sseC and aroA attenuated mutants exerted a stronger cytotoxic effect on dendritic cells (DC) than their SopB-deficient derivatives. Cells infected with the double sseC sopB, phoP sopB and aroA sopB mutants also exhibited higher expression of MHC, CD80, CD86 and CD54 molecules, and showed a stronger capacity to process and present an I-E(d)-restricted epitope from the influenza hemagglutinin (HA) to CD4+ cells from TCR-HA transgenic mice in vitro. The incorporation of an additional mutation into the sopB locus of the attenuated sseC, phoP and aroA mutants resulted in the stimulation of improved humoral and cellular immune responses following oral vaccination. The obtained results define a new potential immune escape strategy of this important pathogen, and also demonstrate that this mechanism can be subverted to optimize the immune responses elicited using Salmonella as a live vaccine carrier.
Collapse
Affiliation(s)
- Claudia Link
- Department of Vaccinology, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
77
|
Pei J, Turse JE, Wu Q, Ficht TA. Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage. Infect Immun 2006; 74:2667-75. [PMID: 16622203 PMCID: PMC1459739 DOI: 10.1128/iai.74.5.2667-2675.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggest that smooth Brucella organisms inhibit macrophage apoptosis. In contrast, necrotic cell death of macrophages infected with rough Brucella organisms in vitro has been reported, which may in part explain the failure of some rough organisms to thrive. To characterize these potential macrophage killing mechanisms, J774.A1 murine macrophages were infected with Brucella abortus S2308-derived rough mutant CA180. Electron microscopic analysis and polyethylene glycol protection assays revealed that the cells were killed as a result of necrosis and oncosis. This killing was shown to be unaffected by treatment with carbenicillin, an inhibitor of bacterial cell wall biosynthesis and, indirectly, replication. In contrast, chloramphenicol treatment of macrophages infected at multiplicities of infection exceeding 10,000 prevented cell death, despite internalization of large numbers of bacteria. Similarly, heat-killed and gentamicin-killed CA180 did not induce cytopathic effects in the macrophage. These results suggested that killing of infected host cells requires active bacterial protein synthesis. Cytochalasin D treatment revealed that internalization of the bacteria was necessary to initiate killing. Transwell experiments demonstrated that cell death is not mediated by a diffusible product, including tumor necrosis factor alpha and nitric oxide, but does require direct contact between host and pathogen. Furthermore, macrophages preinfected with B. abortus S2308 or pretreated with B. abortus O polysaccharide did not prevent rough CA180-induced cell death. In conclusion, Brucella rough mutant infection induces necrotic and oncotic macrophage cell death that requires bacterial protein synthesis and direct interaction of bacteria with the target cells.
Collapse
Affiliation(s)
- Jianwu Pei
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | |
Collapse
|
78
|
Boyen F, Pasmans F, Donné E, Van Immerseel F, Adriaensen C, Hernalsteens JP, Ducatelle R, Haesebrouck F. Role of SPI-1 in the interactions of Salmonella Typhimurium with porcine macrophages. Vet Microbiol 2005; 113:35-44. [PMID: 16310983 DOI: 10.1016/j.vetmic.2005.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/04/2005] [Accepted: 10/06/2005] [Indexed: 12/11/2022]
Abstract
Salmonella Pathogenicity Island 1 (SPI-1) genes are indispensable for virulence of Salmonella Typhimurium in mice after oral challenge. These genes mediate invasion in intestinal epithelial cells and induce cell death in murine macrophages. The role of SPI-1 in the pathogenesis of Salmonella Typhimurium infections in food producing animals is not known. It was the aim of the present study to characterize the interactions of a porcine Salmonella Typhimurium field strain and its isogenic mutants in the SPI-1 genes hilA, sipA and sipB with porcine macrophages. SPI-1 was found to be important in the invasion of porcine pulmonary alveolar macrophages (PAM) and the induction of the formation of spacious phagosomes. Both early and delayed cytotoxicity were seen in PAM, but only the early cytotoxicity was SPI-1 dependent. Exposure of PAM to Salmonella Typhimurium induced the production of reactive oxygen species (ROS) and interleukin-8, but no differences were noticed between the induction mediated by the wild type strain and its SPI-1 mutant strains. In conclusion, invasion of porcine macrophages and the induction of early, but not delayed, cytotoxicity by Salmonella Typhimurium is SPI-1 dependent. SPI-1 dependent invasion, however, is not a prerequisite to induce a pro-inflammatory response.
Collapse
Affiliation(s)
- F Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Geddes K, Worley M, Niemann G, Heffron F. Identification of new secreted effectors in Salmonella enterica serovar Typhimurium. Infect Immun 2005; 73:6260-71. [PMID: 16177297 PMCID: PMC1230965 DOI: 10.1128/iai.73.10.6260-6271.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A common theme in bacterial pathogenesis is the secretion of bacterial products that modify cellular functions to overcome host defenses. Gram-negative bacterial pathogens use type III secretion systems (TTSSs) to inject effector proteins into host cells. The genes encoding the structural components of the type III secretion apparatus are conserved among bacterial species and can be identified by sequence homology. In contrast, the sequences of secreted effector proteins are less conserved and are therefore difficult to identify. A strategy was developed to identify virulence factors secreted by Salmonella enterica serovar Typhimurium into the host cell cytoplasm. We constructed a transposon, which we refer to as mini-Tn5-cycler, to generate translational fusions between Salmonella chromosomal genes and a fragment of the calmodulin-dependent adenylate cyclase gene derived from Bordetella pertussis (cyaA'). In-frame fusions to bacterial proteins that are secreted into the eukaryotic cell cytoplasm were identified by high levels of cyclic AMP in infected cells. The assay was sufficiently sensitive that a single secreted fusion could be identified among several hundred that were not secreted. This approach identified three new effectors as well as seven that have been previously characterized. A deletion of one of the new effectors, steA (Salmonella translocated effector A), attenuated virulence. In addition, SteA localizes to the trans-Golgi network in both transfected and infected cells. This approach has identified new secreted effector proteins in Salmonella and will likely be useful for other organisms, even those in which genetic manipulation is more difficult.
Collapse
Affiliation(s)
- Kaoru Geddes
- Department of Microbiology and Immunology, Oregon Health and Sciences University, Portland, 97201, USA.
| | | | | | | |
Collapse
|
80
|
Intracellular Voyeurism: Examining the Modulation of Host Cell Activities bySalmonella enterica Serovar Typhimurium. EcoSal Plus 2005; 1. [PMID: 26443522 DOI: 10.1128/ecosalplus.2.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella spp. can infect host cells by gaining entry through phagocytosis or by inducing host cell membrane ruffling that facilitates bacterial uptake. With its wide host range, Salmonella enterica serovar Typhimurium has proven to be an important model organism for studying intracellular bacterial pathogenesis. Upon entry into host cells, serovar Typhimurium typically resides within a membrane-bound compartment termed the Salmonella-containing vacuole (SCV). From the SCV, serovar Typhimurium can inject several effector proteins that subvert many normal host cell systems, including endocytic trafficking, cytoskeletal rearrangements, lipid signaling and distribution, and innate and adaptive host defenses. The study of these intracellular events has been made possible through the use of various imaging techniques, ranging from classic methods of transmission electron microscopy to advanced livecell fluorescence confocal microscopy. In addition, DNA microarrays have now been used to provide a "snapshot" of global gene expression in serovar Typhimurium residing within the infected host cell. This review describes key aspects of Salmonella-induced subversion of host cell activities, providing examples of imaging that have been used to elucidate these events. Serovar Typhimurium engages specific host cell machinery from initial contact with the host cell to replication within the SCV. This continuous interaction with the host cell has likely contributed to the extensive arsenal that serovar Typhimurium now possesses, including two type III secretion systems, a range of ammunition in the form of TTSS effectors, and a complex genetic regulatory network that coordinates the expression of hundreds of virulence factors.
Collapse
|
81
|
Haimovich B, Venkatesan MM. Shigella and Salmonella: death as a means of survival. Microbes Infect 2005; 8:568-77. [PMID: 16297650 DOI: 10.1016/j.micinf.2005.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/05/2005] [Indexed: 11/25/2022]
Abstract
Shigella and Salmonella kill host cells and trigger inflammatory responses by mechanisms that are not fully understood. The goal of this review is to reevaluate key observations reported over the past 15 years and, whenever possible, to provide a chronological perspective as to how our understanding of the pathways by which Shigella and Salmonella kill host cells has evolved.
Collapse
Affiliation(s)
- Beatrice Haimovich
- Department of Surgery and the Cancer Institute of New Jersey, RWJMS-UMDNJ, New Brunswick, NJ 08903, USA.
| | | |
Collapse
|
82
|
Abstract
Salmonella enterica is an important enteric pathogen of humans and a variety of domestic and wild animals. Infection is initiated in the intestinal tract, and severe disease produces widespread destruction of the intestinal mucosa. Salmonella strains can also disseminate from the intestine and produce serious, sometimes fatal infections with considerable cytopathology in a number of systemic organs. A combination of bacterial genetic and cell biology studies have shown that Salmonella uses specific virulence mechanisms to induce host cell death during infection. Salmonella produces one set of virulence proteins to promote invasion of the intestine and a different set to mediate systemic disease. Significantly, each set of virulence factors mediates a distinct mechanism of host cell death. The Salmonella pathogenicity island-1 (SPI-1) locus encodes a type III protein secretion system (TTSS) that delivers effector proteins required for intestinal invasion and the production of enteritis. The SPI-1 effector SipB activates caspase-1 in macrophages, releasing IL-1beta and IL-18 and inducing rapid cell death by a mechanism that has features of both apoptosis and necrosis. Caspase-1 is required for Salmonella to infect Peyer's patches and disseminate to systemic tissues in mice. Progressive Salmonella infection in mice requires the SPI-2 TTSS and associated effector proteins as well as the SpvB cytotoxin. Apoptosis of macrophages in the liver is found during systemic infection. In cell culture, Salmonella strains induce delayed apoptosis dependent on SPI-2 function in macrophages from a variety of sources. This delayed apoptosis also requires activation of TLR4 on macrophages by the bacterial LPS. Downstream activation of kinase pathways leads to balanced pro- and antiapoptotic regulatory factors in the cell. NF-kappaB and p38 mitogen-activated protein kinase (MAPK) are particularly important for the induction of antiapoptotic factors, whereas the kinase PKR is required for bacterial-induced apoptosis. The Salmonella SPI-2 TTSS is essential for altering the balance in favor of apoptosis during intracellular infection, but the effectors involved remain poorly characterized. The SpvB cytotoxin has been shown to play a role in apoptosis in human macrophages by depolymerizing the actin cytoskeleton. A model for the role of bacteria-induced host cell death in Salmonella pathogenesis is proposed. In the intestine, the Salmonella SPI-1 TTSS and SipB mediate macrophage death by caspase-1 activation, which also releases IL-1beta and IL-18, promoting inflammation and subsequent phagocytosis by incoming macrophages and leading to dissemination to systemic tissues. Intracellular secretion of virulence effector proteins by the SPI-2 TTSS facilitates growth of Salmonella in these macrophages and the delayed onset of apoptosis in extraintestinal tissues. These infected, apoptotic cells are targeted for engulfment by incoming macrophages, thus perpetuating the cycle of cell-to-cell spread that is the hallmark of systemic Salmonella infection.
Collapse
Affiliation(s)
- D G Guiney
- Department of Medicine, UCSD School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0640, USA.
| |
Collapse
|
83
|
Bijlsma JJE, Groisman EA. The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol Microbiol 2005; 57:85-96. [PMID: 15948951 DOI: 10.1111/j.1365-2958.2005.04668.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spi/Ssa is a unique type three secretion system that functions exclusively when Salmonella enterica is inside eukaryotic cells. Expression of the Spi/Ssa system and its secreted effectors is dependent on SsrB/SpiR, a two-component regulatory system encoded in the SPI-2 pathogenicity island that also harbours the spi/ssa genes. Here we determine that the PhoP/PhoQ two-component system controls the intramacrophage expression of spi/ssa genes by regulating the SsrB/SpiR system. We establish that PhoP regulates transcription of the response regulator SsrB and demonstrate binding of the PhoP protein to the ssrB promoter both in vivo using chromatin immunoprecipitation in Salmonella-infected macrophages, and in vitro using purified PhoP protein. We show that PhoP controls the SpiR sensor post-transcriptionally and identify a region in the 5' untranslated region of the spiR message that is required for this effect. The demonstration that the PhoP/PhoQ system is directly involved in the regulation of the SPI-2 pathogenicity island highlights PhoP/PhoQ's central role in Salmonella virulence. We suggest that different regulatory systems convey distinct signals over time to produce the SsrB/SpiR system, which then modulates expression of the Spi/Ssa apparatus and secreted effectors.
Collapse
Affiliation(s)
- Jetta J E Bijlsma
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
84
|
Parsons DA, Heffron F. sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 2005; 73:4338-45. [PMID: 15972528 PMCID: PMC1168621 DOI: 10.1128/iai.73.7.4338-4345.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium utilizes macrophages to disseminate from the intestine to deeper tissues within the body. While S. enterica serovar Typhimurium has been shown to kill its host macrophage, it can persist intracellularly beyond 18 h postinfection. To identify factors involved in late stages of infection, we screened a transposon library made in S. enterica serovar Typhimurium for the ability to persist in J774 macrophages at 24 h postinfection. Through this screen, we identified a gene, sciS, found to be homologous to icmF in Legionella pneumophila. icmF, which is required for intracellular multiplication, is conserved in several gram-negative pathogens, and its homolog appears to have been acquired horizontally in S. enterica serovar Typhimurium. We found that an sciS mutant displayed increased intracellular numbers in J774 macrophages when compared to the wild-type strain at 24 h postinfection. sciS was maximally transcribed at 27 h postinfection and is repressed by SsrB, an activator of genes required for promoting intracellular survival. Finally, we demonstrate that an sciS mutant is hypervirulent in mice when administered intragastrically. Taken together, these data indicate a role for SciS in controlling intracellular bacterial levels at later stages of infection and attenuating virulence in a murine host.
Collapse
Affiliation(s)
- Duncan A Parsons
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., L220, Portland, Oregon 97201, USA.
| | | |
Collapse
|
85
|
Valle E, Guiney DG. Characterization of Salmonella-induced cell death in human macrophage-like THP-1 cells. Infect Immun 2005; 73:2835-40. [PMID: 15845488 PMCID: PMC1087321 DOI: 10.1128/iai.73.5.2835-2840.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Salmonella strains are facultative intracellular pathogens that produce marked cytopathology during infection of host cells. Different forms of cytopathic effects have been associated with the virulence systems encoded by the two Salmonella pathogenicity islands (SPI-1 and SPI-2) and the spv locus. We used Salmonella enterica serovar Dublin to investigate the induction of cytopathology during infection of the human macrophage-like cell line THP-1. Analysis of host cells by flow cytometry using a fluorescent terminal deoxynucleotidyltransferase dUTP-biotin nick end labeling (TUNEL) assay revealed that 70% of THP-1 cells showed DNA fragmentation after 4 h of infection, increasing to greater than 90% by 5.5 h. Moreover, the results showed that gentamicin-killed or chloramphenicol-treated bacteria did not induce DNA fragmentation. Serovar Dublin strains with mutations in SPI-1, SPI-2, or spvB induced these cytopathic effects similar to wild-type bacteria. In contrast, a mutation in the phoP regulatory gene abolished DNA fragmentation in the TUNEL assay. Caspase-3 activation was detected during Salmonella infection of THP-1 cells, but caspase-8 and caspase-9 activities were not found. However, inhibition of caspase-3 did not block Salmonella-induced DNA fragmentation. These results identify a previously undetected apoptotic effect in Salmonella-infected cells that is dependent on phoP gene function.
Collapse
Affiliation(s)
- Eulalia Valle
- Division of Infectious Diseases, Department of Medicine, UCSD School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0640, USA
| | | |
Collapse
|
86
|
Ho TD, Starnbach MN. The Salmonella enterica serovar typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells. Infect Immun 2005; 73:905-11. [PMID: 15664932 PMCID: PMC547017 DOI: 10.1128/iai.73.2.905-911.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is an obligate, intracellular pathogen that is a major cause of preventable blindness and infertility worldwide. Although the published genome sequence suggests that C. trachomatis encodes a type III secretion system, the lack of genetic tools for studying Chlamydia has hindered the examination of this potentially important class of virulence genes. We have developed a technique to identify Chlamydia proteins that can be translocated into the host cell cytoplasm by a type III secretion system. We have selected several Chlamydia proteins and tagged them with a multiple peptide motif element called F8M4. Epitopes contained in the F8M4 tag allow us to use tools corresponding to different arms of the adaptive immune system to detect the expression and translocation of these proteins by Salmonella enterica serovar Typhimurium. In particular, CD8(+)-T-cell reactivity can be used to detect the translocation of F8M4-tagged proteins into the cytoplasm of host cells. We have found that CD8(+)-T-cell activity assays are sensitive enough to detect translocation of even a small amount of F8M4-tagged protein. We have used CD8(+)-T-cell activity to show that CopN, a Chlamydia protein previously shown to be translocated by Yersinia type III secretion, can be translocated by the Salmonella pathogenicity island 1 (SPI-1) type III secretion system. Additionally, we demonstrate that CopD and Pkn5, two Chlamydia proteins hypothesized to be substrates of a type III secretion system, are translocated via the SPI-2 type III secretion system of serovar Typhimurium. The epitope tag system described here can be used more generally to examine the expression and subcellular compartmentalization of bacterial proteins deployed during the interaction of pathogens with mammalian cells.
Collapse
Affiliation(s)
- Theresa D Ho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
87
|
Donné E, Pasmans F, Boyen F, Van Immerseel F, Adriaensen C, Hernalsteens JP, Ducatelle R, Haesebrouck F. Survival of Salmonella serovar Typhimurium inside porcine monocytes is associated with complement binding and suppression of the production of reactive oxygen species. Vet Microbiol 2005; 107:205-14. [PMID: 15863279 DOI: 10.1016/j.vetmic.2005.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/03/2005] [Accepted: 01/25/2005] [Indexed: 11/19/2022]
Abstract
The development of the carrier state in swine after infection with Salmonella serovar Typhimurium (S. Typhimurium) has not been elucidated yet. Possibly, phagocytes like macrophages play a crucial role. It was the aim of the present study to characterize the interaction of a S. Typhimurium strain and its hilA and ssrA mutants with porcine peripheral blood monocytes (PBM). Exposure of porcine PBM to S. Typhimurium induced the production of reactive oxygen species (ROS), requiring bacterial protein synthesis. The numbers of intracellular bacteria sharply decreased over a period of 3h. Monocytes obtained from different pigs differed markedly in their ROS production and in their ability to kill the bacteria. Interestingly, high ROS production did not coincide with increased intracellular killing. Using diphenylene iodonium inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, it was shown that bacterial killing was ROS-dependent only within 1h post inoculation, but was ROS-independent from 1h post inoculation onwards. This might be explained by the finding that metabolically active Salmonella bacteria were capable of suppressing the respiratory burst activity in a SPI-1- and SPI-2-independent manner without causing measurable cell damage. Opsonization with complement did not alter the ROS production. Nevertheless, it increased intracellular survival of the bacteria. In conclusion, survival of S. Typhimurium inside porcine PBM is promoted by suppression of respiratory burst activity and complement binding.
Collapse
Affiliation(s)
- E Donné
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Knodler LA, Finlay BB, Steele-Mortimer O. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 2005; 280:9058-64. [PMID: 15642738 DOI: 10.1074/jbc.m412588200] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Invasion of epithelial cells by Salmonella enterica is mediated by bacterial "effector" proteins that are delivered into the host cell by a type III secretion system. Although primarily known for their roles in actin rearrangements and membrane ruffling, translocated effectors also affect host cell processes that are not directly associated with invasion. Here, we show that SopB/SigD, an effector with phosphoinositide phosphatase activity, has anti-apoptotic activity in Salmonella-infected epithelial cells. Salmonella induced the sustained activation of Akt/protein kinase B, a pro-survival kinase, in a SopB-dependent manner. Failure to activate Akt resulted in increased levels of apoptosis after infection with a sopB deletion mutant (DeltasopB). Furthermore, cells infected with wild type bacteria, but not the DeltasopB strain, were protected from camptothecin-induced cleavage of caspase-3 and subsequent apoptosis. The anti-apoptotic activity of SopB was dependent on its phosphatase activity, because a catalytically inactive mutant was unable to protect cells from the effects of camptothecin. Finally, small interfering RNA was used to demonstrate the essential role of Akt in SopB-mediated protection against apoptosis. These results provide new insights into the mechanisms of apoptosis and highlight how bacterial effectors can intercept signaling pathways to manipulate host responses.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, NIAID, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
89
|
Orihuela CJ, Fogg G, DiRita VJ, Tuomanen E. Bacterial Interactions with Mucosal Epithelial Cells. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50044-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
90
|
Abstract
The facultative intracellular pathogen Salmonella enterica triggers programmed cell death in macrophages. The close examination of this phenomenon has revealed an unusually complex picture involving diverse mechanisms that lead to different types of programmed cell death. It appears that the outcome of the interaction of salmonella with macrophages depends on the relative contribution of two type III protein secretion systems, in conjunction with the stimulation of innate immunity outputs through conserved determinants collectively known as 'pathogen-associated molecular patterns' (PAMPs). These interactions result in a breakdown of the balance between survival and pro-apoptotic cellular pathways, which eventually leads to macrophage cell death. The relative significance for the infection process of the different types of macrophage cell death triggered by salmonella remains to be established.
Collapse
Affiliation(s)
- Karsten Hueffer
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
91
|
Abstract
Salmonella serotypes are able to actively cross the intestinal epithelium, mainly but not exclusively through M cells in the follicle-associated epithelium of Peyer's patches. Once reaching the basal side of the epithelium, Salmonella serotypes are internalized by macrophages, dendritic cells, and neutrophils but are not found in fibroblasts or other mesenchymal cells. The outcome of the interaction between Salmonella serotypes and dendritic cells or neutrophils is detrimental to the pathogen. In some host species Salmonella serotypes find a safe haven from humoral defenses and neutrophils within macrophages, and replication within this niche appears to be a prerequisite for the development of a systemic infection. In other host species, macrophages can control bacterial growth and the infection remains localized to the intestine and mesenteric lymph nodes. This review summarizes our knowledge on the cellular tropism of Salmonella serotypes and the bacterial and host factors relevant for these interactions.
Collapse
Affiliation(s)
- Renato L Santos
- Department Clínica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
92
|
Monack DM, Bouley DM, Falkow S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. ACTA ACUST UNITED AC 2004; 199:231-41. [PMID: 14734525 PMCID: PMC2211772 DOI: 10.1084/jem.20031319] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Host-adapted strains of Salmonella are capable of establishing a persistent infection in their host often in the absence of clinical disease. The mouse model of Salmonella infection has primarily been used as a model for the acute systemic disease. Therefore, the sites of long-term S. typhimurium persistence in the mouse are not known nor are the mechanisms of persistent infection clearly understood. Here, we show that S. typhimurium can persist for as long as 1 yr in the mesenteric lymph nodes (MLNs) of 129sv Nramp1+/+ (Slc11a1+/+) mice despite the presence of high levels of anti–S. typhimurium antibody. Tissues from 129sv mice colonized for 60 d contain numerous inflammatory foci and lesions with features resembling S. typhi granulomas. Tissues from mice infected for 365 d have very few organized inflammatory lesions, but the bacteria continue to persist within macrophages in the MLN and the animals generally remain disease-free. Finally, chronically infected mice treated with an interferon-γ neutralizing antibody exhibited symptoms of acute systemic infection, with evidence of high levels of bacterial replication in most tissues and high levels of fecal shedding. Thus, interferon-γ, which may affect the level of macrophage activation, plays an essential role in the control of the persistent S. typhimurium infection in mice.
Collapse
Affiliation(s)
- Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
93
|
Monack DM, Mueller A, Falkow S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2004; 2:747-65. [PMID: 15372085 DOI: 10.1038/nrmicro955] [Citation(s) in RCA: 381] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent bacterial infections involving Mycobacterium tuberculosis, Salmonella enterica serovar Typhi (S. typhi) and Helicobacter pylori pose significant public-health problems. Multidrug-resistant strains of M. tuberculosis and S. typhi are on the increase, and M. tuberculosis and S. typhi infections are often associated with HIV infection. This review discusses the strategies used by these bacteria during persistent infections that allow them to colonize specific sites in the host and evade immune surveillance. The nature of the host immune response to this type of infection and the balance between clearance of the pathogen and avoidance of damage to host tissues are also discussed.
Collapse
Affiliation(s)
- Denise M Monack
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
94
|
Sha J, Fadl AA, Klimpel GR, Niesel DW, Popov VL, Chopra AK. The two murein lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun 2004; 72:3987-4003. [PMID: 15213144 PMCID: PMC427434 DOI: 10.1128/iai.72.7.3987-4003.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Septic shock due to Salmonella and other gram-negative enteric pathogens is a leading cause of death worldwide. The role of lipopolysaccharide in sepsis is well studied; however, the contribution of other bacterial outer membrane components, such as Braun (murein) lipoprotein (Lpp), is not well defined. The genome of Salmonella enterica serovar Typhimurium harbors two copies of the lipoprotein (lpp) gene. We constructed a serovar Typhimurium strain with deletions in both copies of the lpp gene (lpp1 and lpp2) by marker exchange mutagenesis. The integrity of the cell membrane and the secretion of the effector proteins through the type III secretion system were not affected in the lpp double-knockout mutant. Subsequently, the virulence potential of this mutant was examined in a cell culture system using T84 intestinal epithelial and RAW264.7 macrophage cell lines and a mouse model of salmonellosis. The lpp double-knockout mutant was defective in invading and inducing cytotoxic effects in T84 and RAW264.7 cells, although binding of the mutant to the host cell was not affected when compared to the wild-type (WT) serovar Typhimurium. The motility of the mutant was impaired, despite the finding that the number of flagella was similar in the lpp double knockout mutant and the WT serovar Typhimurium. Deletion in the lpp genes did not affect the intracellular survival and replication of Salmonella in macrophages and T84 cells. Induction of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-8 (IL-8) was significantly reduced in macrophages and T84 cells infected with the lpp double-knockout mutant. The levels of IL-8 remained unaffected in T84 cells when infected with either live or heat-killed WT and lpp mutant, indicating that invasion was not required for IL-8 production and that Toll-like receptor 2 signaling might be affected in the Lpp double-knockout mutant. These effects of the Lpp protein could be restored by complementation of the isogenic mutant. The lpp double-knockout mutant was avirulent in mice, and animals infected with this mutant were protected from a lethal challenge dose of WT serovar Typhimurium. The severe combined immunodeficient mice, on the other hand, were susceptible to infection by the lpp double-knockout mutant. The serovar Typhimurium mutants from which only one of the lpp (lpp1 or lpp2) genes was deleted were also avirulent in mice. Taken together, our data indicated that Lpp specifically contributed to the virulence of the organism.
Collapse
Affiliation(s)
- J Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
95
|
Takaya A, Suzuki A, Kikuchi Y, Eguchi M, Isogai E, Tomoyasu T, Yamamoto T. Derepression of Salmonella pathogenicity island 1 genes within macrophages leads to rapid apoptosis via caspase-1- and caspase-3-dependent pathways. Cell Microbiol 2004; 7:79-90. [PMID: 15617525 DOI: 10.1111/j.1462-5822.2004.00435.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salmonella enterica serovar Typhimurium has been reported to induce apoptosis in infected macrophages within 14 h from the time of infection by a caspase-1-dependent mechanism. Here, we demonstrate that depletion of Lon protease in serovar Typhimurium induces rapid and massive apoptosis in macrophages by a mechanism involving both caspases-1 and -3. This excessive induction of apoptosis was abrogated by disruption of invF, which is required for the expression of the Salmonella pathogenicity island 1 (SPI1) genes. Expression of hilA, a central regulator of SPI1 transcription, was repressed in the macrophages after phagocytosis, but this gene was continuously expressed when the DeltaLon mutant grew within the macrophages, so the SPI1 proteins accumulated. Thus, the increase in macrophage apoptosis induced by the DeltaLon mutant could result from continued expression of SPI1 genes under conditions where they are normally repressed. Once Salmonella has established a systemic infection, excess apoptosis of macrophages cells upon which the organism is reliant would be detrimental to the pathogen. Therefore, the Lon protease may be required to suppress apoptosis sufficiently to allow time for the bacterium to replicate, escape and invade new macrophages.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
van der Velden AWM, Velasquez M, Starnbach MN. Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2004; 171:6742-9. [PMID: 14662878 DOI: 10.4049/jimmunol.171.12.6742] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells provide a critical link between innate and acquired immunity. In this study, we demonstrate that the bacterial pathogen Salmonella enterica serovar Typhimurium can efficiently kill these professional phagocytes via a mechanism that is dependent on sipB and the Salmonella pathogenicity island 1-encoded type III protein secretion system. Rapid phosphatidylserine redistribution, caspase activation, and loss of plasma membrane integrity were characteristic of dendritic cells infected with wild-type Salmonella, but not sipB mutant bacteria. Caspase-1 was particularly important in this process because Salmonella-induced dendritic cell death was dramatically reduced in the presence of a caspase-1-specific inhibitor. Furthermore, dendritic cells obtained from caspase-1-deficient mice, but not heterozygous littermate control mice, were resistant to Salmonella-induced cytotoxicity. We hypothesize that Salmonella have evolved the ability to selectively kill professional APCs to combat, exploit, or evade immune defense mechanisms.
Collapse
|
97
|
Pasmans F, Van Immerseel F, Heyndrickx M, Martel A, Godard C, Wildemauwe C, Ducatelle R, Haesebrouck F. Host adaptation of pigeon isolates of Salmonella enterica subsp. enterica serovar Typhimurium variant Copenhagen phage type 99 is associated with enhanced macrophage cytotoxicity. Infect Immun 2003; 71:6068-74. [PMID: 14500532 PMCID: PMC201047 DOI: 10.1128/iai.71.10.6068-6074.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage type 99 of Salmonella enterica subsp. enterica serovar Typhimurium variant Copenhagen strains isolated from pigeons were examined for the presence of genotypic and phenotypic characteristics. The pulsed-field gel electrophoresis patterns obtained with XbaI and BlnI from 38 pigeon strains were compared with those obtained from 89 porcine, poultry, and human strains of variant Copenhagen. Identical patterns with XbaI and four closely related patterns with BlnI were obtained with the pigeon strains, whereas 16 XbaI patterns were found with the other strains. The XbaI patterns of the pigeon strains showed a low genetic similarity to the patterns of the porcine, poultry, and human strains and invariably showed a low-molecular-weight band that was absent in the majority of the other strains. The virulence genes shdA, spvR, pefA, sopE, and spvB were uniformly present in six pigeon isolates representing the genetic diversity found with BlnI. These six pigeon-derived strains were highly cytotoxic for pigeon macrophages compared to three porcine strains. After experimental infection of pigeons with a pigeon strain, clinical symptoms, fecal shedding, and colonization of internal organs were more pronounced than those after infection with a porcine strain. These data suggest that the phage type 99 strains used in this study are highly adapted to pigeons and should be classified as a host-restricted lineage of the serovar Typhimurium.
Collapse
Affiliation(s)
- Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Forsberg M, Blomgran R, Lerm M, Särndahl E, Sebti SM, Hamilton A, Stendahl O, Zheng L. Differential effects of invasion by and phagocytosis of Salmonella typhimurium on apoptosis in human macrophages: potential role of Rho-GTPases and Akt. J Leukoc Biol 2003; 74:620-9. [PMID: 12960245 DOI: 10.1189/jlb.1202586] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In addition to direct activation of caspase-1 and induction of apoptosis by SipB, invasive Salmonella stimulates multiple signaling pathways that are key regulators of host cell survival. Nevertheless, little is known about the relative contributions of these pathways to Salmonella-mediated death of macrophages. We studied human monocytic U937 cells and found that apoptosis was induced by invading wild-type Salmonella typhimurium but not by phagocytosed, serum-opsonized, noninvasive Salmonella mutants. Pretreating U937 cells with inhibitors of tyrosine kinases or phosphatidylinositol-3 kinase (PI-3K) completely blocked phagocytosis of opsonized Salmonella mutants but did not affect invasion by wild-type Salmonella or the apoptosis caused by invasion. However, pretreatment with GGTI-298, a geranylgeranyltransferase-1 inhibitor that prevents prenylation of Cdc42 and Rac1, suppressed Salmonella-induced apoptosis by approximately 70%. Transduction of Tat fusion constructs containing dominant-negative Cdc42 or Rac1 significantly inhibited Salmonella-induced cell death, indicating that the cytotoxicity of Salmonella requires activation of Cdc42 and Rac. In contrast to phagocytosis of opsonized bacteria, invasion by S. typhimurium stimulated Cdc42 and Rac1, regardless of the activities of tyrosine- or PI-3K. Moreover, Salmonella infection activated Akt protein in a tyrosine-kinase or PI-3K-dependent manner, and a reduced expression of Akt by antisense transfection rendered the cells more sensitive to apoptosis induced by opsonized Salmonella. These results indicate that direct activation of Cdc42 and Rac1 by invasive Salmonella is a prerequisite of Salmonella-mediated death of U937 cells, whereas the simultaneous activation of Akt by tyrosine kinase and PI-3K during receptor-mediated phagocytosis protects cells from apoptosis.
Collapse
Affiliation(s)
- Maria Forsberg
- Division of Medical Microbiology, IMK, Linköping University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Comparative genomics and microarrays reveal that the genomes of different Salmonella enterica serovars are distinguished from each other by the presence or absence of hundreds of genes. The distribution of these variable genome regions is often not clonal. Therefore, lateral gene transfer (LGT) plays an important role in diversity among Salmonella. Overall, almost one quarter of the entire S. enterica sv Typhimurium genome may have been introduced by LGT.
Collapse
Affiliation(s)
- Steffen Porwollik
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA.
| | | |
Collapse
|
100
|
Lai XH, Sjöstedt A. Delineation of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect Immun 2003; 71:4642-6. [PMID: 12874344 PMCID: PMC165996 DOI: 10.1128/iai.71.8.4642-4646.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium capable of inducing apoptosis in murine macrophages. Here we analyzed the pathway leading to apoptosis in the murine macrophage-like cell line J774A.1 after infection with F. tularensis strain LVS (named LVS for live vaccine strain). We obtained evidence that the infection affected the mitochondria of the macrophages, since it induced release of the mitochondrial molecule cytochrome c into the cytosol and changed the potential over the mitochondrial membrane. Moreover, activation of caspase 9 and the executioner caspase 3 was also observed in the LVS-infected J774A.1 macrophages. The activated caspase 3 degraded poly(ADP-ribose) polymerase (PARP). All of these events were observed within 9 to 12 h after the initiation of infection, and maximum degradation of a synthetic caspase 3 substrate occurred at 18 h. The internucleosomal fragmentation and PARP degradation resulting from activation of this apoptotic pathway was prevented by the caspase 3 inhibitor Z-DEVD-fmk. No involvement of caspase 1, caspase 8, Bcl-2, or Bid was observed. Thus, the F. tularensis infection induces macrophage apoptosis through a pathway partly resembling the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Xin-He Lai
- Department of Clinical Microbiology and Clinical Bacteriology, Umeå University, SE-901 85 Umeå, Sweden.
| | | |
Collapse
|