51
|
Kambe A, Yoshioka H, Kamitani H, Watanabe T, Baek SJ, Eling TE. The cyclooxygenase inhibitor sulindac sulfide inhibits EP4 expression and suppresses the growth of glioblastoma cells. Cancer Prev Res (Phila) 2009; 2:1088-99. [PMID: 19934343 DOI: 10.1158/1940-6207.capr-09-0140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
EP4 expression in human glioblastoma cells correlates with growth on soft agar. The cyclooxygenase inhibitor sulindac sulfide first altered specificity protein-1 (Sp-1) and early growth response gene-1 expression, then increased the expression of nonsteroidal anti-inflammatory drug-activated gene 1 and activating transcription factor 3, and then decreased EP4 expression. EP4 suppression was dependent on blocking the Sp-1 binding sites in the human EP4 promoter. Mutation in the Sp-1 sites in EP4 altered the promoter activity and abolished sulindac sulfide effects. The inhibitory effect of sulindac sulfide on EP4 expression was reversed by PD98059, a mitogen-activated protein/extracellular signal-regulated kinase kinase-1/extracellular signal-regulated kinase inhibitor. Sp-1 phosphorylation was dependent on sulindac sulfide-induced Erk activation. Chromatin immunoprecipitation assay confirmed that Sp-1 phosphorylation decreases Sp-1 binding to DNA and leads to the suppression of EP4. Inhibition of cell growth on soft agar assay was found to be a highly complex process and seems to require not only the inhibition of cyclooxygenase activity but also increased expression of nonsteroidal anti-inflammatory drug-activated gene 1 and activating transcription factor 3 and suppression of EP4 expression. Our data suggest that the suppression of EP4 expression by sulindac sulfide represents a new mechanism for understanding the tumor suppressor activity.
Collapse
Affiliation(s)
- Atsushi Kambe
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
52
|
Tomovic A, Stadler M, Oakeley EJ. Transcription factor site dependencies in human, mouse and rat genomes. BMC Bioinformatics 2009; 10:339. [PMID: 19835596 PMCID: PMC2770556 DOI: 10.1186/1471-2105-10-339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 10/16/2009] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND It is known that transcription factors frequently act together to regulate gene expression in eukaryotes. In this paper we describe a computational analysis of transcription factor site dependencies in human, mouse and rat genomes. RESULTS Our approach for quantifying tendencies of transcription factor binding sites to co-occur is based on a binding site scoring function which incorporates dependencies between positions, the use of information about the structural class of each transcription factor (major/minor groove binder), and also considered the possible implications of varying GC content of the sequences. Significant tendencies (dependencies) have been detected by non-parametric statistical methodology (permutation tests). Evaluation of obtained results has been performed in several ways: reports from literature (many of the significant dependencies between transcription factors have previously been confirmed experimentally); dependencies between transcription factors are not biased due to similarities in their DNA-binding sites; the number of dependent transcription factors that belong to the same functional and structural class is significantly higher than would be expected by chance; supporting evidence from GO clustering of targeting genes. Based on dependencies between two transcription factor binding sites (second-order dependencies), it is possible to construct higher-order dependencies (networks). Moreover results about transcription factor binding sites dependencies can be used for prediction of groups of dependent transcription factors on a given promoter sequence. Our results, as well as a scanning tool for predicting groups of dependent transcription factors binding sites are available on the Internet. CONCLUSION We show that the computational analysis of transcription factor site dependencies is a valuable complement to experimental approaches for discovering transcription regulatory interactions and networks. Scanning promoter sequences with dependent groups of transcription factor binding sites improve the quality of transcription factor predictions.
Collapse
Affiliation(s)
- Andrija Tomovic
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.
| | | | | |
Collapse
|
53
|
Denomme GA, Wang D, Matheson KA, Titolo D. The proximal cis-regulatory region of theRHD/RHCEpromoter is 105 bp and contains a 55-bp core devoid of known binding motifs but necessary for transcription. Transfusion 2009; 49:1361-9. [DOI: 10.1111/j.1537-2995.2009.02162.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
54
|
Zhang HJ, Li WJ, Yang SY, Li SY, Ni JH, Jia HT. 8-chloro-adenosine-induced E2F1 promotesp14ARFgene activation in H1299 cells through displacing Sp1 from multiple overlapping E2F1/Sp1 sites. J Cell Biochem 2009; 106:464-72. [DOI: 10.1002/jcb.22033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
55
|
Nambiar S, Mirmohammadsadegh A, Hassan M, Hegemann JH, Hengge UR. Transcriptional regulation ofASK/Dbf4in cutaneous melanoma is dependent on E2F1. Exp Dermatol 2008; 17:986-91. [DOI: 10.1111/j.1600-0625.2008.00730.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Racek T, Buhlmann S, Rüst F, Knoll S, Alla V, Pützer BM. Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1. J Biol Chem 2008; 283:34305-14. [PMID: 18840615 DOI: 10.1074/jbc.m803925200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum chaperone GRP78/BIP plays a central role in the prosurvival machinery, and its enhanced expression has been implicated in drug resistance, carcinogenesis, and metastasis. E2F1, as part of an antitumor safeguard mechanism, promotes apoptosis regardless of functional p53. Using cells that are defective in p53, we show that E2F1 represses GRP78/BIP at the transcriptional level, and this requires its DNA binding domain. Analysis of human GRP78/BIP promoter reporter constructs revealed that the region between -371 and -109 of the proximal promoter contains major E2F1-responsive elements. Toward understanding the underlying mechanism of this regulation, we performed chromatin immunoprecipitation and gel shift assays, demonstrating that E2F1 directly binds to GC-rich regions in the distal GC-box and endoplasmic reticulum stress response element -126 by interfering with the binding of positive regulatory proteins Sp1 and TFII-I of the ER stress response element-binding factor complex. We further show that TFII-I, which is required for optimal stress induction of GRP78/BIP, is suppressed by E2F1 on the protein level. Finally, our studies suggest a molecular link between the inhibition of GRP78/BIP and E2F1-mediated chemosensitization of tumor cells, underscoring its relevance for cancer treatment. Together, the data provide a new mechanism for the incompletely understood tumor suppressor function of E2F1.
Collapse
Affiliation(s)
- Tomás Racek
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, 18055 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Rabinovich A, Jin VX, Rabinovich R, Xu X, Farnham PJ. E2F in vivo binding specificity: comparison of consensus versus nonconsensus binding sites. Genome Res 2008; 18:1763-77. [PMID: 18836037 DOI: 10.1101/gr.080622.108] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif.
Collapse
Affiliation(s)
- Alina Rabinovich
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
58
|
Kato A, Endo T, Abiko S, Ariga H, Matsumoto KI. Induction of truncated form of tenascin-X (XB-S) through dissociation of HDAC1 from SP-1/HDAC1 complex in response to hypoxic conditions. Exp Cell Res 2008; 314:2661-73. [DOI: 10.1016/j.yexcr.2008.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/23/2008] [Accepted: 05/30/2008] [Indexed: 11/25/2022]
|
59
|
Wu CC, Lin JC, Yang SC, Lin CW, Chen JJW, Shih JY, Hong TM, Yang PC. Modulation of the expression of the invasion-suppressor CRMP-1 by cyclooxygenase-2 inhibition via reciprocal regulation of Sp1 and C/EBPalpha. Mol Cancer Ther 2008; 7:1365-75. [PMID: 18524846 DOI: 10.1158/1535-7163.mct-08-0091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Collapsin response mediator protein-1 (CRMP-1) controls neural development and axonal growth but also acts as a cancer invasion suppressor. In this study, we investigated the transcriptional regulation of CRMP-1 expression. Using a serial deletion strategy, we identified a basal promoter region between nucleotides -100 and -180 in the 5' flanking region of CRMP-1 (nucleotides -1,920 to +50) that contains multiple putative Sp1 and C/EBPalpha sites. Site-directed mutagenesis and deletion analysis revealed that the two C/EBPalpha sites, from nucleotides -122 to -133 and from nucleotides -101 to -113, are the most important regulatory elements. Gel-shift and antibody supershift assays showed that Sp1 protein was also present at this C/EBPalpha site, which overlaps with a Sp1 site. Overexpression of Sp1 decreased CRMP-1 promoter activity and protein expression, whereas overexpression of C/EBPalpha produced the opposite effect. Chromatin immunoprecipitation assays confirmed that Sp1 and C/EBPalpha compete for binding at the overlapping C/EBPalpha and Sp1 sites and reciprocally regulate CRMP-1 expression. Overexpression of cyclooxygenase-2 (COX-2) decreased CRMP-1 mRNA and protein expression. Conversely, the COX-2 inhibitor, celecoxib, induced a dose-dependent increase in CRMP-1 expression. COX-2 inhibition also decreased Sp1-DNA complex formation and inhibited cell invasion. We conclude that transcription of the invasion suppressor, CRMP-1, is reciprocally regulated at the promoter region by C/EBPalpha and Sp1. COX-2 inhibitors increase CRMP-1 expression by inhibiting Sp1-DNA complex formation and enhancing DNA binding of C/EBPalpha at the promoter.
Collapse
Affiliation(s)
- Cheng-Chung Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Britschgi A, Trinh E, Rizzi M, Jenal M, Ress A, Tobler A, Fey MF, Helin K, Tschan MP. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene 2008; 27:5706-16. [PMID: 18521079 DOI: 10.1038/onc.2008.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death-associated protein kinase 2 (DAPK2) belongs to a family of proapoptotic Ca(2+)/calmodulin-regulated serine/threonine kinases. We recently identified DAPK2 as an enhancing factor during granulocytic differentiation. To identify transcriptional DAPK2 regulators, we cloned 2.7 kb of the 5'-flanking region of the DAPK2 gene. We found that E2F1 and Krüppel-like factor 6 (KLF6) strongly activate the DAPK2 promoter. We mapped the E2F1 and KLF6 responsive elements to a GC-rich region 5' of exon 1 containing several binding sites for KLF6 and Sp1 but not for E2F. Moreover, we showed that transcriptional activation of DAPK2 by E2F1 and KLF6 is dependent on Sp1 using Sp1/KLF6-deficient insect cells, mithramycin A treatment to block Sp1-binding or Sp1 knockdown cells. Chromatin immunoprecipitation revealed recruitment of Sp1 and to lesser extent that of E2F1 and KLF6 to the DAPK2 promoter. Activation of E2F1 in osteosarcoma cells led to an increase of endogenous DAPK2 paralleled by cell death. Inhibition of DAPK2 expression resulted in significantly reduced cell death upon E2F1 activation. Similarly, KLF6 expression in H1299 cells increased DAPK2 levels accompanied by cell death that is markedly decreased upon DAPK2 knockdown. Moreover, E2F1 and KLF6 show cooperation in activating the DAPK2 promoter. In summary, our findings establish DAPK2 as a novel Sp1-dependent target gene for E2F1 and KLF6 in cell death response.
Collapse
Affiliation(s)
- A Britschgi
- 1Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kambe A, Iguchi G, Moon Y, Kamitani H, Watanabe T, Eling TE. Regulation of EP4 expression via the Sp-1 transcription factor: inhibition of expression by anti-cancer agents. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:1211-9. [PMID: 18346464 PMCID: PMC2443856 DOI: 10.1016/j.bbamcr.2008.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/24/2008] [Accepted: 01/29/2008] [Indexed: 12/22/2022]
Abstract
For glioblastomas, COX-2 expression is linked to poor survival. COX-2 effects are mediated by the receptors EP2 and EP4, whose regulation is poorly understood. The expression of EP4, and activation or inhibition of EP4 activity in human glioblastoma T98G cells, was found to correlate with growth on soft agar. Chemoprevention drugs, troglitazone (TGZ) and some COX inhibitors, significantly suppressed EP4 expression in T98G cells in a dose dependant manner. Specificity protein 1 (Sp-1) binding sites, located within region -197 to -160 of the human EP4 promoter, are important for the transcription initiation of the human EP4 gene and are responsible for the EP4 suppression by TGZ. Mutation in the Sp-1 sites altered the promoter activity of luciferase constructs and TGZ effects on the promoter. The inhibitory effect of TGZ on EP4 expression was reversed by PD98059, a MEK-1/Erk inhibitor. Immunoprecipitation-Western blot analysis detected Sp-1 phosphorylation that was dependent on TGZ-induced Erks activation. ChIP assay confirmed that Sp-1 phosphorylation decreases its binding to DNA and as a result, leads to the suppression of EP4 expression. Thus, we propose that the expression of EP4 is regulated by Sp-1, but phosphorylation of Sp-1 induced by TGZ suppresses this expression. This represents a new and unique mechanism for the regulation of the EP4 receptor expression.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Astrocytoma/drug therapy
- Astrocytoma/genetics
- Astrocytoma/metabolism
- Blotting, Western
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Chromans/pharmacology
- Chromatin Immunoprecipitation
- Colony-Forming Units Assay
- Cyclooxygenase 2 Inhibitors/pharmacology
- DNA Primers/chemistry
- DNA Primers/genetics
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Humans
- Immunoprecipitation
- Luciferases/metabolism
- Phosphorylation/drug effects
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Sp1 Transcription Factor/antagonists & inhibitors
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Thiazolidinediones/pharmacology
- Transcription, Genetic
- Transfection
- Troglitazone
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Atsushi Kambe
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27709
- Division of Neurosurgery, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Genzo Iguchi
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27709
| | - Yuseok Moon
- Department of Microbiology and Immunology, Pusan National University Medical School, Busan 602-739, Korea
| | - Hideki Kamitani
- Division of Neurosurgery, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Takashi Watanabe
- Division of Neurosurgery, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Thomas E. Eling
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
62
|
Xue G, Sakudo A, Kim CK, Onodera T. Coordinate regulation of bovine prion protein gene promoter activity by two Sp1 binding site polymorphisms. Biochem Biophys Res Commun 2008; 372:530-5. [PMID: 18505676 DOI: 10.1016/j.bbrc.2008.05.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Relationships between insertion/deletion (Ins/Del) polymorphisms of the bovine prion protein gene (PRNP) promoter and bovine spongiform encephalopathy (BSE) susceptibility have been reported. Our previous study has shown that polymorphisms of -6C-->T included in the specific protein 1 (Sp1) site in the 5'-flanking region of bovine PRNP influence the promoter activity of bovine PRNP. The present study shows that 12 and 23bp Ins/Del polymorphisms in the upstream region and an additional polymorphism (-47C-->A) in the Sp1 binding site coordinately affect the promoter activity. Reporter gene assays demonstrated that the bovine PRNP promoter containing -47A and 23bp Del/12bp Ins or 23bp Ins/12bp Ins showed lower promoter activity compared with other haplotypes (23bp Del/12bp Ins or 23bp Ins/12bp Del with -47C) or the wild-type haplotype (23bp Del/12bp Del with -47C). Furthermore, gel shift assays showed that the binding activity of Sp1 to the PRNP promoter was influenced by both polymorphisms with corresponding effects on the promoter activity. The coordinate regulation of the bovine PRNP promoter suggests the two Sp1 binding site polymorphisms control Sp1 binding to the PRNP promoter and its activity.
Collapse
Affiliation(s)
- Guangai Xue
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku Yayoi 1-1-1, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
63
|
Maenz B, Hekerman P, Vela EM, Galceran J, Becker W. Characterization of the human DYRK1A promoter and its regulation by the transcription factor E2F1. BMC Mol Biol 2008; 9:30. [PMID: 18366763 PMCID: PMC2292204 DOI: 10.1186/1471-2199-9-30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 03/26/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Overexpression of the human DYRK1A gene due to the presence of a third gene copy in trisomy 21 is thought to play a role in the pathogenesis of Down syndrome. The observation of gene dosage effects in transgenic mouse models implies that subtle changes in expression levels can affect the correct function of the DYRK1A gene product. We have therefore characterized the promoter of the human DYRK1A gene in order to study its transcriptional regulation. RESULTS Transcription start sites of the human DYRK1A gene are distributed over 800 bp within a region previously identified as an unmethylated CpG island. We have identified a new alternative noncoding 5'-exon of the DYRK1A gene which is located 772 bp upstream of the previously described transcription start site. Transcription of the two splicing variants is controlled by non-overlapping promoter regions that can independently drive reporter gene expression. We found no evidence of cell- or tissue-specific promoter usage, but the two promoter regions differed in their activity and their regulation. The sequence upstream of exon 1A (promoter region A) induced about 10-fold higher reporter gene activity than the sequence upstream of exon 1B (promoter region B). Overexpression of the transcription factor E2F1 increased DYRK1A mRNA levels in Saos2 and Phoenix cells and enhanced the activity of promoter region B three- to fourfold. CONCLUSION The identification of two alternatively spliced transcripts whose transcription is initiated from differentially regulated promoters regions indicates that the expression of the DYRK1A gene is subject to complex control mechanisms. The regulatory effect of E2F1 suggests that DYRK1A may play a role in cell cycle regulation or apoptosis.
Collapse
Affiliation(s)
- Barbara Maenz
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Paul Hekerman
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Eva M Vela
- Instituto de Neurociencias, CSIC – Universidad Miguel Hernandez, Campus de San Juan, 03550 San Juan (Alicante), Spain
| | - Juan Galceran
- Instituto de Neurociencias, CSIC – Universidad Miguel Hernandez, Campus de San Juan, 03550 San Juan (Alicante), Spain
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
64
|
Wierstra I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372:1-13. [PMID: 18364237 DOI: 10.1016/j.bbrc.2008.03.074] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 01/21/2023]
|
65
|
Hu Z, Hu B, Collins JF. Prediction of synergistic transcription factors by function conservation. Genome Biol 2008; 8:R257. [PMID: 18053230 PMCID: PMC2246259 DOI: 10.1186/gb-2007-8-12-r257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/19/2007] [Accepted: 12/05/2007] [Indexed: 11/30/2022] Open
Abstract
A new strategy is proposed for identifying synergistic transcription factors by function conservation, leading to the identification of 51 homotypic transcription-factor combinations. Background Previous methods employed for the identification of synergistic transcription factors (TFs) are based on either TF enrichment from co-regulated genes or phylogenetic footprinting. Despite the success of these methods, both have limitations. Results We propose a new strategy to identify synergistic TFs by function conservation. Rather than aligning the regulatory sequences from orthologous genes and then identifying conserved TF binding sites (TFBSs) in the alignment, we developed computational approaches to implement the novel strategy. These methods include combinatorial TFBS enrichment utilizing distance constraints followed by enrichment of overlapping orthologous genes from human and mouse, whose regulatory sequences contain the enriched TFBS combinations. Subsequently, integration of function conservation from both TFBS and overlapping orthologous genes was achieved by correlation analyses. These techniques have been used for genome-wide promoter analyses, which have led to the identification of 51 homotypic TF combinations; the validity of these approaches has been exemplified by both known TF-TF interactions and function coherence analyses. We further provide computational evidence that our novel methods were able to identify synergistic TFs to a much greater extent than phylogenetic footprinting. Conclusion Function conservation based on the concordance of combinatorial TFBS enrichment along with enrichment of overlapping orthologous genes has been proven to be a successful means for the identification of synergistic TFs. This approach avoids the limitations of phylogenetic footprinting as it does not depend upon sequence alignment. It utilizes existing gene annotation data, such as those available in GO, thus providing an alternative method for functional TF discovery and annotation.
Collapse
Affiliation(s)
- Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Biostatistics, Department of Medicine, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
66
|
Mukhopadhyay A, Khoo A, Cheong HH, Chan SY, Aalami O, Lim IJ, Phan TT. Targeting of Sp1 transcription factor: a novel therapeutic approach for keloids, an in vitro analysis. Exp Dermatol 2008; 16:1023-31. [PMID: 18031462 DOI: 10.1111/j.1600-0625.2007.00627.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Keloid scars are fibroproliferative disorders characterized by the accumulation of extracellular matrix (ECM) components resulting in a fibrotic condition. Several ECM promoters are regulated by Sp1. Thus, our aim was to investigate the role of Sp1 in keloid pathogenesis and investigate the antiproliferative and antifibrotic effects of Wp631 and mitoxantrone, potent inhibitors of Sp1-activated transcription. An elevated level of Sp1 was observed in tissue extracts obtained from keloid tissue. Serum stimulation elevated Sp1 levels in keloid fibroblasts (KF). Under coculture conditions Sp1 seemed to be downregulated. Wp631 and mitoxanthrone in serum growth factors resulted in a reduced expression of ECM components in KF. Both Wp631 and mitoxanthrone were also able to inhibit the proliferation of normal and keloid keratinocytes and fibroblasts significantly. As Wp631 seems to be potent in downregulating the ECM components in KF and also inhibiting the proliferation of these cells it could be explored as a possible therapeutic agent in the treatment of keloids.
Collapse
Affiliation(s)
- A Mukhopadhyay
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
67
|
Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 2008; 50:111-31. [PMID: 18253864 DOI: 10.1007/s12013-008-9008-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
68
|
Regulation of the E2F-associated phosphoprotein promoter by GC-box binding proteins. Int J Biochem Cell Biol 2008; 40:2845-53. [DOI: 10.1016/j.biocel.2008.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/01/2008] [Accepted: 06/02/2008] [Indexed: 11/17/2022]
|
69
|
Bellora N, Farré D, Albà MM. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters. BMC Genomics 2007; 8:459. [PMID: 18078513 PMCID: PMC2249607 DOI: 10.1186/1471-2164-8-459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023] Open
Abstract
Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.
Collapse
Affiliation(s)
- Nicolás Bellora
- Research Unit on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | |
Collapse
|
70
|
Xu Y, Ikegami M, Wang Y, Matsuzaki Y, Whitsett JA. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells. BMC Genomics 2007; 8:455. [PMID: 18070348 PMCID: PMC2234434 DOI: 10.1186/1471-2164-8-455] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 12/10/2007] [Indexed: 11/10/2022] Open
Abstract
Background The signal transducer and activator of transcription 3 (STAT3) mediates gene expression in response to numerous growth factors and cytokines, playing an important role in many cellular processes. To better understand the molecular mechanisms by which Stat3 influences gene expression in the lung, the effect of pulmonary epithelial cell specific deletion of Stat3 on genome wide mRNA expression profiling was assessed. Differentially expressed genes were identified from Affymetrix Murine GeneChips analysis and subjected to gene ontology classification, promoter analysis, pathway mapping and literature mining. Results Total of 791 mRNAs were significantly increased and 314 mRNAs were decreased in response to the deletion of Stat3Δ/Δ in the lung. STAT is the most enriched cis-elements in the promoter regions of those differentially expressed genes. Deletion of Stat3 induced genes influencing protein metabolism, transport, chemotaxis and apoptosis and decreased the expression of genes mediating lipid synthesis and metabolism. Expression of Srebf1 and 2, genes encoding key regulators of fatty acid and steroid biosynthesis, was decreased in type II cells from the Stat3Δ/Δ mice, consistent with the observation that lung surfactant phospholipids content was decreased. Stat3 influenced both pro- and anti-apoptotic pathways that determine cell death or survival. Akt, a potential transcriptional target of Stat3, was identified as an important participant in Stat3 mediated pathways including Jak-Stat signaling, apoptosis, Mapk signaling, cholesterol and fatty acid biosynthesis. Conclusion Deletion of Stat3 from type II epithelial cells altered the expression of genes regulating diverse cellular processes, including cell growth, apoptosis and lipid metabolism. Pathway analysis indicates that STAT3 regulates cellular homeostasis through a complex regulatory network that likely enhances alveolar epithelial cell survival and surfactant/lipid synthesis, necessary for the protection of the lung during injury.
Collapse
Affiliation(s)
- Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
71
|
Corsini E, Zancanella O, Lucchi L, Viviani B, Marinovich M, Galli CL. Role of SP-1 in SDS-induced adipose differentiation related protein synthesis in human keratinocytes. GENE REGULATION AND SYSTEMS BIOLOGY 2007; 1:207-15. [PMID: 19936089 PMCID: PMC2759128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Skin irritation is a complex phenomenon, and keratinocytes play an important role in it. We have recently characterized the expression and protective role of adipose differentiation related protein (ADRP) in skin irritation. In particular, ADRP expression is induced to recover functional cell membrane following the cell damage caused by skin irritants. The purpose of this study was to characterize in a human keratinocyte cells line (NCTC 2544) the biochemical events that lead to ADRP expression following SDS treatment, and in particular, to investigate the role of transcription factor SP-1. Analysis of ADRP promoter region revealed the presence of a potential binding site for the transcription factor SP-1 close to the start site. Evaluated by measuring the DNA binding activity, we found that SDS induced a dose and time related SP-1 activation, which was correlated with SDS-induced ADRP mRNA expression. Furthermore, SDS-induced SP-1 activation, ADRP mRNA expression and lipid droplets accumulation could be modulated by mithramycin A, an antibiotic that selectively binds to the GC box preventing SP-1 binding and gene expression. This demonstrated that SDS-induced ADRP expression was mediated in part through the transcription factor SP-1. In addition, SDS-induced SP-1 activation and ADRP expression could be modulated by the calcium chelator BAPTA, indicating a role of calcium in ADRP-induction. Thus, every time an irritant perturbs the membrane barrier, it renders the membrane leaky and allows extracellular calcium to enter the cells, an event that provides the upstream mechanisms initiating the signaling cascade that triggers the activation of SP-1 and culminates in the enhancement of ADRP expression, which helps to restore the normal homeostasis and ultimately repairs the to membrane.
Collapse
Affiliation(s)
- Emanuela Corsini
- Correspondence: Prof. Emanuela Corsini, Laboratory of Toxicology, Department of Pharmacological Sciences, Via Balzaretti 9, 20133 Milan, Italy. Tel: +390250318368; Fax: +390250318284;
| | | | | | | | | | | |
Collapse
|
72
|
Ray SK, Leiter AB. The basic helix-loop-helix transcription factor NeuroD1 facilitates interaction of Sp1 with the secretin gene enhancer. Mol Cell Biol 2007; 27:7839-47. [PMID: 17875929 PMCID: PMC2169158 DOI: 10.1128/mcb.00438-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic helix-loop-helix transcription factor NeuroD1 is required for late events in neuronal differentiation, for maturation of pancreatic beta cells, and for terminal differentiation of enteroendocrine cells expressing the hormone secretin. NeuroD1-null mice demonstrated that this protein is essential for expression of the secretin gene in the murine intestine, and yet it is a relatively weak transcriptional activator by itself. The present study shows that Sp1 and NeuroD1 synergistically activate transcription of the secretin gene. NeuroD1, but not its widely expressed dimerization partner E12, physically interacts with the C-terminal 167 amino acids of Sp1, which include its DNA binding zinc fingers. NeuroD1 stabilizes Sp1 DNA binding to an adjacent Sp1 binding site on the promoter to generate a higher-order DNA-protein complex containing both proteins and facilitates Sp1 occupancy of the secretin promoter in vivo. NeuroD-dependent transcription of the genes encoding the hormones insulin and proopiomelanocortin is potentiated by lineage-specific homeodomain proteins. The stabilization of binding of the widely expressed transcription factor Sp1 to the secretin promoter by NeuroD represents a distinct mechanism from other NeuroD target genes for increasing NeuroD-dependent transcription.
Collapse
Affiliation(s)
- Subir K Ray
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
73
|
Wang J, Yin DP, Liu YX, Baer R, Yin Y. Dual specificity phosphatase 1/CL100 is a direct transcriptional target of E2F-1 in the apoptotic response to oxidative stress. Cancer Res 2007; 67:6737-44. [PMID: 17638884 DOI: 10.1158/0008-5472.can-06-4402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
E2F-1 mediates apoptosis through transcriptional regulation of its targets. We report here that E2F-1 acts as a direct transcriptional regulator of dual specificity phosphatase 1 (DUSP1; CL100), a threonine and tyrosine phosphatase that inhibits mitogen-activated protein (MAP) kinases. We found that DUSP1 is transcriptionally induced by ectopic E2F-1 expression and that extracellular signal-regulated kinase 1/2 are dephosphorylated in the presence of E2F-1 and DUSP1. E2F-1 mediates apoptosis in the cellular response to oxidative stress. DUSP1 levels are significantly increased in an E2F-1-dependent manner following oxidative stress but not other stresses examined. DUSP1 mediates the cellular response to oxidative stress. We found that E2F-1 binds to chromatin encompassing the DUSP1 promoter and greatly stimulates the promoter activity of the DUSP1 gene. In particular, E2F-1 physically binds to an E2F-1 consensus sequence and a palindromic motif in the DUSP1 promoter. Interestingly, E2F-1 is acetylated following oxidative stress. Our findings show that E2F-1 is a transcriptional activator of DUSP1 and that DUSP1 is a link between E2F-1 and MAP kinases.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Radiation Oncology, Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
74
|
Wang J, Shen WH, Jin YJ, Brandt-Rauf PW, Yin Y. A Molecular Link between E2F-1 and the MAPK Cascade. J Biol Chem 2007; 282:18521-18531. [PMID: 17452331 DOI: 10.1074/jbc.m610538200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor E2F-1 mediates apoptosis and suppresses tumorigenesis. The mechanisms by which E2F-1 functions in these processes are largely unclear. We report here that E2F-1 acts as a transcriptional regulator of MKP-2 (MAPK phosphatase-2), a dual specificity protein phosphatase (DUSP4) with stringent substrate specificity for MAPKs. We show that E2F-1 is required for the cellular apoptotic response to oxidative damage. MKP-2 is greatly increased following oxidative stress, and E2F-1 is necessary for that induction. We found that E2F-1 is physically associated with the MKP-2 promoter and can transactivate the promoter of the MKP-2 gene. Specifically, E2F-1 binds to a perfect palindromic motif in the MKP-2 promoter. Finally, we show that this E2F-1/MKP-2 pathway mediates apoptosis under oxidative stress and that MKP-2 suppresses tumor formation in nude mice. Our findings demonstrate that E2F-1 is a transcriptional activator of MKP-2 and that MKP-2 is an essential cell death mediator in the E2F-1 pathway. Characterization of MKP-2 as a cell death mediator may lead to the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Wen Hong Shen
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Yan J Jin
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Paul W Brandt-Rauf
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Yuxin Yin
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, New York 10032; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032.
| |
Collapse
|
75
|
Hantusch B, Kalt R, Krieger S, Puri C, Kerjaschki D. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells. BMC Mol Biol 2007; 8:20. [PMID: 17343736 PMCID: PMC1828165 DOI: 10.1186/1471-2199-8-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 03/07/2007] [Indexed: 12/31/2022] Open
Abstract
Background Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells. Results We cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA) identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly, treatment with the DNA methyltransferase inhibitor 5-azaCdR in combination with trichostatin A (TSA) downregulated podoplanin mRNA levels in MG63 cells, and region-specific in vitro methylation of the distal promoter suggested that DNA methylation rather enhanced than hindered PDPN transcription in both cell types. Conclusion These data establish that in human osteoblast-like MG63 cells, Sp1 and Sp3 stimulate basal PDPN transcription in a concerted, yet independent manner, whereas Saos-2 cells lack sufficient nuclear Sp protein amounts for transcriptional activation. Moreover, a highly methylated chromatin conformation of the distal promoter region confers cell-type specific podoplanin upregulation versus Saos-2 cells.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Romana Kalt
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Sigurd Krieger
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Christina Puri
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Dontscho Kerjaschki
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
76
|
Goto Y, Hayashi R, Kang D, Yoshida K. Acute loss of transcription factor E2F1 induces mitochondrial biogenesis in HeLa cells. J Cell Physiol 2007; 209:923-34. [PMID: 16972274 DOI: 10.1002/jcp.20802] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here, we sought to clarify the comprehensive cellular response to transcription factor E2F1 expression using short interfering RNA (siRNA)-mediated gene silencing to examine the roles of E2F1. For this purpose, we analyzed global gene expression changes in E2F1 knockdown HeLa cells, where no changes in cell growth or apoptosis were observed. Among the identified genes, the mRNA levels of mitochondria-encoded genes were highly elevated in E2F1 siRNA-treated cells, but not in E2F6 siRNA-treated cells, relative to control siRNA-treated cells. These changes were accompanied by a significant increase in the transcription and replication of mitochondria DNA as well as the induction of nuclear-encoded mitochondrial topoisomerase I (TOP1MT) mRNA in E2F1 knockdown cells, but not in E2F6 knockdown cells, whereas the levels of nuclear-encoded mitochondrial transcription factor A (TFAM) mRNA and protein were unchanged, relative to the levels in control siRNA-treated cells. Time-course experiments demonstrated that the induction of TOP1MT coincided with the timing of E2F1 loss. In addition, E2F1 knockdown cells, but not E2F6 knockdown cells, displayed increased ATP levels along with an accumulation of cytochrome b protein. Finally, RNA interference (RNAi)-mediated reduction in E2F1 knockdown HeLa cells, but not in E2F6 knockdown HeLa cells, resulted in increased anticancer drug sensitivity. Taken together, these data demonstrate a novel physiological aspect of E2F1 in human cancer cells, where activated mitochondrial biogenesis occurs as a consequence of the acute loss of E2F1.
Collapse
Affiliation(s)
- Yuya Goto
- Department of Life Sciences, Meiji University Graduate School of Agriculture, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | | | | | | |
Collapse
|
77
|
Yan Y, Dalmasso G, Sitaraman S, Merlin D. Characterization of the human intestinal CD98 promoter and its regulation by interferon-gamma. Am J Physiol Gastrointest Liver Physiol 2007; 292:G535-45. [PMID: 17023546 DOI: 10.1152/ajpgi.00385.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growing evidence that epithelial CD98 plays an important role in intestinal inflammation focused our interest to investigate the transcriptional regulation of CD98. Our mouse-based in vivo and in vitro experiments revealed that epithelial colonic CD98 mRNA expression was transcriptionally increased in intestinal inflammation. We then isolated and characterized a 5'-flanking fragment containing the promoter region required for CD98 gene transcription. Primer extension and rapid amplification of 5'-cDNA ends were used to map a transcriptional initiation site 129 bp upstream from the translational start codon (ATG). Direct sequencing of the 5'-flanking region revealed the presence of four GC-rich stimulating protein (Sp)1 binding domains, one NF-kappaB binding domain, and no TATA box. Binding of Sp1 [Sp1(-874), SP1(-386), Sp1(-187), and Sp1(-177)] and NF-kappaB [NF-kappaB(-213)] to the promoter was confirmed by EMSA and supershift assays. Furthermore, chromatin immunoprecipitation experiments showed the in vivo DNA-Sp1 and DNA-NF-kappaB interactions under basal and IFN-gamma-stimulated conditions. Reporter genes driven by serially truncated and site-mutated CD98 promoters were used to examine basal and IFN-gamma-responsive transcription in transiently transfected Caco2-BBE cells. Our results revealed that Sp1(-187), Sp1(-177), and the NF-kappaB binding site were essential for basal and IFN-gamma-stimulated CD98 promoter activities, whereas Sp1(-874) and Sp1(-386) were not. The results from additional site-mutated CD98 promoters suggested that Sp1(-187), Sp1(-177), and the NF-kappaB site may cooperate in mediating basal and IFN-gamma-stimulated CD98 promoter activities. Finally, we demonstrated that a reduction of Sp1 or NF-kappaB expression reduced CD98 protein expression in unstimulated and IFN-gamma-stimulated Caco2-BBE cells. Collectively, these findings indicate that the Sp1 and NF-kappaB transcription factors are likely to play a significant role in IFN-gamma-mediated transcriptional regulation of CD98 in the intestinal epithelium, providing new insights into the regulation of CD98 expression in intestinal inflammation.
Collapse
Affiliation(s)
- Yutao Yan
- Div of Digestive Diseases, Dept of Medicine, Emory Univ, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
78
|
Vaclavicek A, Bermejo JL, Wappenschmidt B, Meindl A, Sutter C, Schmutzler RK, Kiechle M, Bugert P, Burwinkel B, Bartram CR, Hemminki K, Försti A. Genetic variation in the major mitotic checkpoint genes does not affect familial breast cancer risk. Breast Cancer Res Treat 2007; 106:205-13. [PMID: 17268814 DOI: 10.1007/s10549-007-9496-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 10/23/2022]
Abstract
Aneuploidy, an aberrant number of chromosomes, is a very common characteristic of many types of cancers, including tumors of the breast. There is increasing evidence that defects in the spindle assembly checkpoint, which controls correct chromosome segregation between two daughter cells, might contribute to tumorigenesis. In the present study we examined the effect of promoter and coding single nucleotide polymorphisms (SNPs) in six major spindle checkpoint genes (BUB1B, BUB3, CENPE, MAD2L1, MAD2L2, TTK) on familial breast cancer (BC) risk. A case-control study was carried out with a total of nine SNPs using 441 German, familial BC cases and 552 controls matched by age, ethnicity and geographical region. Neither the individual SNPs in the studied genes nor the haplotypes in the BUB1B, CENPE and TTK genes caused any significant effect on the risk of BC. We used the multifactor-dimensionality reduction method in order to identify gene-gene interactions among the six mitotic checkpoint genes, but no association was detected. Therefore, our results indicate that the investigated SNPs in the mitotic checkpoint genes do not affect the risk of familial BC.
Collapse
Affiliation(s)
- Annika Vaclavicek
- Division of Molecular Genetic Epidemiology C050, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Corsini E, Zancanella O, Lucchi L, Viviani B, Marinovich M, Galli CL. Role of SP-1 in SDS-Induced Adipose Differentiation Related Protein Synthesis in Human Keratinocytes. GENE REGULATION AND SYSTEMS BIOLOGY 2007. [DOI: 10.1177/117762500700100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Skin irritation is a complex phenomenon, and keratinocytes play an important role in it. We have recently characterized the expression and protective role of adipose differentiation related protein (ADRP) in skin irritation. In particular, ADRP expression is induced to recover functional cell membrane following the cell damage caused by skin irritants. The purpose of this study was to characterize in a human keratinocyte cells line (NCTC 2544) the biochemical events that lead to ADRP expression following SDS treatment, and in particular, to investigate the role of transcription factor SP-1. Analysis of ADRP promoter region revealed the presence of a potential binding site for the transcription factor SP-1 close to the start site. Evaluated by measuring the DNA binding activity, we found that SDS induced a dose and time related SP-1 activation, which was correlated with SDS-induced ADRP mRNA expression. Furthermore, SDS-induced SP-1 activation, ADRP mRNA expression and lipid droplets accumulation could be modulated by mithramycin A, an antibiotic that selectively binds to the GC box preventing SP-1 binding and gene expression. This demonstrated that SDS-induced ADRP expression was mediated in part through the transcription factor SP-1. In addition, SDS-induced SP-1 activation and ADRP expression could be modulated by the calcium chelator BAPTA, indicating a role of calcium in ADRP-induction. Thus, every time an irritant perturbs the membrane barrier, it renders the membrane leaky and allows extracellular calcium to enter the cells, an event that provides the upstream mechanisms initiating the signaling cascade that triggers the activation of SP-1 and culminates in the enhancement of ADRP expression, which helps to restore the normal homeostasis and ultimately repairs the to membrane.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Omar Zancanella
- Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Laura Lucchi
- Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Barbara Viviani
- Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Corrado L. Galli
- Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
80
|
Scimè A, Li L, Ciavarra G, Whyte P. Cyclin D1/cdk4 can interact with E2F4/DP1 and disrupts its DNA-binding capacity. J Cell Physiol 2007; 214:568-81. [PMID: 17894419 DOI: 10.1002/jcp.21243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The E2F family of transcription factors regulate the expression of many growth-related genes in a cell cycle-dependent manner. These transcription factors can activate or, in conjunction with an Rb-related protein, repress transcription. E2F transcriptional activity is regulated at several different levels that are each linked to cell cycle progression. In many cell types, E2F4 and E2F5 are the predominant E2F species during G(0) and early G(1) and function primarily as repressors of E2F-regulated genes. In this study, co-immunoprecipitation techniques were used to demonstrate that cyclins D1, D2, and D3 are capable of interacting with E2F4, E2F5, and DP1. Overexpression of cyclin D1/cdk4 reduced E2F4-mediated transcription in a simple reporter gene assay and electrophoretic mobility shift analyses using nuclear extracts from transfected cells indicated that cyclin D1/cdk4 disrupts the DNA-binding ability of E2F4. Cell cycle analysis following stimulation of serum-starved 3T3 cells indicated that E2F4 undergoes changes in its phosphorylation pattern coincident with the synthesis of cyclin D1. Examination of a series of E2F4 deletion mutants indicated that a cyclin D1-binding site located close to the carboxyl terminus of E2F4 was critical for the disruption of DNA binding by cyclin D1/cdk4. These data support a model in which E2F4 DNA binding is abolished during mid-G(1) at the same time when E2F interactions with pRb-related proteins are disrupted by cyclin D1/cdk4.
Collapse
Affiliation(s)
- Anthony Scimè
- Department of Pathology and Molecular Medicine, McMaster University, Main Street West, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
81
|
Mussi P, Yu C, O'Malley BW, Xu J. Stimulation of Steroid Receptor Coactivator-3 (SRC-3) Gene Overexpression by a Positive Regulatory Loop of E2F1 and SRC-3. Mol Endocrinol 2006; 20:3105-19. [PMID: 16916939 DOI: 10.1210/me.2005-0522] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Steroid receptor coactivator 3 (SRC-3, amplified in breast cancer 1, or ACTR) is a transcriptional coactivator for nuclear receptors and certain other transcription factors such as E2F1. SRC-3 is overexpressed in breast cancers, and its overexpression is sufficient to cause mammary carcinomas in vivo. However, the mechanisms controlling endogenous SRC-3 overexpression are unknown. In this study, we identified the first exon and analyzed the 5′ regulatory sequence of the SRC-3 gene. We found three evolutionarily conserved regions (ECRs) in the 5′ SRC-3 regulatory sequence, and ECR2 makes a major contribution to the SRC-3 promoter activity. The ECR2 region (bp −250/+350) contains several specificity protein 1 (Sp1) binding sites and two E2F1 binding sites. We show that E2F1 can significantly activate the ECR2 promoter activity in a dose-dependent manner. Furthermore, overexpression of E2F1 significantly increases the promoter activity of the endogenous SRC-3 gene and boosts SRC-3 expression in vivo. Conversely, knockdown of E2F1 reduces SRC-3 expression. We demonstrate that the mechanism of E2F1 activity on SRC-3 promoter is independent of the E2F binding sites but relies on the Sp1 element located at bp +150/+160. Sp1, E2F1, and SRC-3 are specifically recruited to this Sp1 site and the interaction between E2F1 and Sp1 is essential to modulate SRC-3 expression. Moreover, SRC-3 coactivates E2F1 activity and thereby additively stimulates a further increase in SRC-3 expression in vivo. These results suggest that in cells with hyperactive E2F1, such as the case encountered in breast cancer cells, there is a positive feedback regulatory loop consisting of E2F1 and SRC-3 to maintain high levels of SRC-3 and E2F1 activity, which may partially interpret the oncogenic role of SRC-3 overexpression.
Collapse
Affiliation(s)
- Paola Mussi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
82
|
Abstract
MOTIVATION Understanding the full meaning of the biology captured in molecular profiles, within the context of the entire biological system, cannot be achieved with a simple examination of the individual genes in the signature. To facilitate such an understanding, we have developed GATHER, a tool that integrates various forms of available data to elucidate biological context within molecular signatures produced from high-throughput post-genomic assays. RESULTS Analyzing the Rb/E2F tumor suppressor pathway, we show that GATHER identifies critical features of the pathway. We further show that GATHER identifies common biology in a series of otherwise unrelated gene expression signatures that each predict breast cancer outcome. We quantify the performance of GATHER and find that it successfully predicts 90% of the functions over a broad range of gene groups. We believe that GATHER provides an essential tool for extracting the full value from molecular signatures generated from genome-scale analyses. AVAILABILITY GATHER is available at http://gather.genome.duke.edu/
Collapse
Affiliation(s)
- Jeffrey T Chang
- Department of Molecular Genetics and Microbiology, Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
83
|
Rossi A, Mukerjee R, Ferrante P, Khalili K, Amini S, Sawaya BE. Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes. J Gen Virol 2006; 87:1613-1623. [PMID: 16690926 DOI: 10.1099/vir.0.81691-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous examination of the effect of TCF-4 on transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells found that TCF-4 affects the HIV-1 promoter through the GC-rich domain (nt -80 to nt -68). Here, the physical interaction and a functional consequence of TCF4-Sp1 contact were characterized. It was shown that expression of TCF-4 in U-87 MG (human astrocytic) cells decreased basal and Sp1-mediated transcription of the HIV-1 promoter. Results from a GST pull-down assay, as well as combined immunoprecipitation and Western blot analysis of protein extracts from U-87 MG cells, revealed an interaction of Sp1 with TCF-4. Using in vitro protein chromatography, the region of Sp1 that contacts TCF-4 was mapped to aa 266-350. It was also found that, in cell-free extracts, TCF-4 prevented dsDNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation. Surprisingly, TCF-4 failed to decrease Sp1-mediated transcription of the HIV-1 long terminal repeat (LTR) and Sp1 phosphorylation in cells expressing HIV-1 Tat. Results from immunoprecipitation/Western blotting demonstrated that TCF-4 lost its ability to interact with Sp1, but not with Tat, in Tat-transfected cells. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1, which is affected by Tat and DNA-PK. Interactions among TCF-4, Sp1 and/or Tat may determine the level of viral gene transcription in human astrocytic cells.
Collapse
Affiliation(s)
- Andrea Rossi
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Ruma Mukerjee
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Pasquale Ferrante
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
| | - Kamel Khalili
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Shohreh Amini
- Department of Biology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Bassel E Sawaya
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| |
Collapse
|
84
|
Banchio C, Lingrell S, Vance DE. Role of Histone Deacetylase in the Expression of CTP:Phosphocholine Cytidylyltransferase α. J Biol Chem 2006; 281:10010-5. [PMID: 16484221 DOI: 10.1074/jbc.m513503200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of CTP:phosphocholine cytidylyltransferase alpha (CTalpha) are not fully understood. In this study, we investigated whether or not histone deacetylation is involved in repression of CTalpha expression in quiescent C3H10T1/2 mouse embryo fibroblasts. We have examined the contributions of the Sp1 and E2F binding sites in the repression of CTalpha gene expression. Immunoprecipitation experiments showed that histone deacetylase 1 (HDAC1) and HDAC activity are associated with Sp1 in serum-starved cells or during serum stimulation. However, HDAC1 association with E2F was only detected in serum-starved cells. By chromatin immunoprecipitation assays, we detected both direct and indirect association of HDAC1 with the CTalpha promoter. Treatment with the HDAC inhibitor trichostatin A induced CTalpha expression. Our data suggest that HDAC1 plays a critical role in CTalpha repression and that Sp1 and E2F may serve as key targets for HDAC1-mediated CTalpha repression in fibroblasts.
Collapse
Affiliation(s)
- Claudia Banchio
- Department of Biochemistry and Canadian Institutes of Health Research Group in Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| | | | | |
Collapse
|
85
|
Chae YM, Park KK, Lee IK, Kim JK, Kim CH, Chang YC. Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction. Gene Ther 2006; 13:430-439. [PMID: 16341057 DOI: 10.1038/sj.gt.3302696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 10/26/2005] [Accepted: 11/01/2005] [Indexed: 11/09/2022]
Abstract
Tubulointerstitial fibrosis is the consequence of an injury characterized by the accumulation of excess collagen and other extracellular matrix components, resulting in the destruction of the normal kidney architecture and subsequent loss of function. A transcription factor Sp1, originally described as a ubiquitous transcription factor, is involved in the basal expression of extracellular matrix genes and may, therefore, be important in fibrotic processes. Here, we report on the design of a ring-Sp1 decoy oligonucleotide, containing the consensus Sp1 binding sequence in a single decoy molecule without an open end, to create a novel therapeutic strategy for fibrosis. The ring-Sp1 decoy oligonucleotide is highly resistant to degradation by nucleases or serum compared to the conventional phosphorothioated double-stranded Sp1 decoy oligonucleotide, and effectively suppressed the expression of transforming growth factor-beta1 and fibronectin, the binding of Sp1 to the promoter region of these genes, and proliferation in response to serum in normal rat kidney fibroblasts. Moreover, treatment with the ring-Sp1 decoy in vivo significantly attenuates extracellular matrix gene expression in the rat kidney in which a unilateral ureteral obstruction had been induced. These results suggest that the ring-Sp1 decoy oligonucleotide represents promising therapeutic alternative to the conventional treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Y-M Chae
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
86
|
Kim S, Kang JK, Kim YK, Seo DW, Ahn SH, Lee JC, Lee CH, You JS, Cho EJ, Lee HW, Han JW. Histone deacetylase inhibitor apicidin induces cyclin E expression through Sp1 sites. Biochem Biophys Res Commun 2006; 342:1168-73. [PMID: 16516150 DOI: 10.1016/j.bbrc.2006.02.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/15/2006] [Indexed: 11/20/2022]
Abstract
We show that a histone deacetylase (HDAC) inhibitor apicidin increases the transcriptional activity of cyclin E gene, which results in accumulation of cyclin E mRNA and protein in a time- and dose-dependent manner. Interestingly, apicidin induction of cyclin E gene is found to be mediated by Sp1- rather than E2F-binding sites in the cyclin E promoter, as evidenced by the fact that specific inhibition of Sp1 leads to a decrease in apicidin activation of cyclin E promoter activity and protein expression, but mutation of E2F-binding sites of cyclin E promoter region fails to inhibit the ability of apicidin to activate cyclin E transcription. In addition, this transcriptional activation of cyclin E by apicidin is associated with histone hyperacetylation of cyclin E promoter region containing Sp1-binding sites. Our results demonstrate that regulation of histone modification by an HDAC inhibitor apicidin contributes to induction of cyclin E expression and this effect is Sp1-dependent.
Collapse
Affiliation(s)
- Soyoung Kim
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The E2F family of transcription factors is a central modulator of important cellular events, including cell cycle progression, apoptosis and DNA damage response. The role of E2F family members in various human malignancies is yet unclear and may provide vital clues to the diagnosis, prognosis and therapy of cancer patients. In this review we provide a brief but concise overview of E2F function and its putative role in the most common human tumour types.
Collapse
Affiliation(s)
- P K Tsantoulis
- Department of Histology and Embryology, Molecular Carcinogenesis Group, School of Medicine, University of Athens, Antaiou 53 Str, Lamprini, Ano Patissia, GR-11146, Athens, Greece
| | | |
Collapse
|
88
|
Sala A. B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 2005; 41:2479-84. [PMID: 16198555 DOI: 10.1016/j.ejca.2005.08.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
B-MYB belongs to the MYB family of transcription factors that include A-MYB and c-MYB. While A-MYB and c-MYB are tissue-specific, B-MYB is broadly expressed in rapidly dividing cells of developing or adult mammals. B-MYBs liaisons with important players of the cell cycle and transcription machinery, such as E2F and retinoblastoma proteins, suggest that its essential function in stem cell formation and mammalian development could be related to its ability to directly or indirectly impinge on gene expression. Besides its role in the cell cycle, B-MYB has been shown to promote cell survival by activating antiapoptotic genes such as ApoJ/clusterin and BCL2. Here, we discuss how B-MYB could be implicated in tumourigenesis by regulating gene expression.
Collapse
Affiliation(s)
- Arturo Sala
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, WC1N 1EH London, UK.
| |
Collapse
|
89
|
Hammill D, Jain N, Armstrong S, Mueller CR. The D-domain of Sp3 modulates its protein levels and activation of the p21CIP1/WAF1 promoter. Biochem Biophys Res Commun 2005; 335:377-84. [PMID: 16081043 DOI: 10.1016/j.bbrc.2005.07.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
A variety of signals result in the transcriptional induction of the p21(CIP1/WAF1) promoter and both Sp1 and the related Sp3 proteins have been implicated in this induction. We have characterized the role of the C-terminal D-domains of both Sp1 and Sp3 proteins in the activation of this promoter in response to butyrate treatment of Hep G2 cells. We have defined a negative regulatory domain present in the C-terminus of Sp3. This domain decreases Sp3 protein levels, and this property can be transferred to Sp1. Changes in Sp3 protein levels may bring about growth arrest through the induction of inhibitors of the cell cycle such as p21(CIP1/WAF1).
Collapse
Affiliation(s)
- Deborah Hammill
- Queen's Cancer Research Institute, Department of Biochemistry and Pathology, Queen's University, Kingston, Ont., Canada
| | | | | | | |
Collapse
|
90
|
Zhao C, Meng A. Sp1-like transcription factors are regulators of embryonic development in vertebrates. Dev Growth Differ 2005; 47:201-11. [PMID: 15921495 DOI: 10.1111/j.1440-169x.2005.00797.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sp1-like family is an expanding transcription factor family. Members of this family bind to the GC-box or GT-box elements in the promoter/enhancers and regulate the expression of the target genes. Currently, this family consists of at least nine members, which may act as a transactivator or a repressor on target promoters. Sp1-like transcription factors are expressed during development of vertebrate embryos in ubiquitous or tissue-specific manners and play various roles in embryonic development. This review mainly summarises their expression patterns and functions during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Chengtian Zhao
- Laboratory of Developmental Biology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
91
|
Bartusel T, Schubert S, Klempnauer KH. Regulation of the cyclin D1 and cyclin A1 promoters by B-Myb is mediated by Sp1 binding sites. Gene 2005; 351:171-80. [PMID: 15922873 DOI: 10.1016/j.gene.2005.03.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/21/2005] [Accepted: 03/22/2005] [Indexed: 11/25/2022]
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors which plays an important role during the cell cycle. Previous work has shown that B-Myb is phosphorylated at several sites by cyclin A/Cdk2 in the early S-phase. These phosphorylations increase the transactivation potential of B-Myb by counteracting the repressive function of an inhibitory domain located at the carboxyl-terminus of B-Myb. As yet, only a few genes have been identified as B-Myb target genes. Previous work has suggested that the cyclin D1 gene might be regulated by B-Myb. Here, we have studied the effect of B-Myb on the promoter of the cyclin D1 gene. We show that B-Myb is a potent activator of the cyclin D1 promoter and that this activation is not mediated by Myb binding sites but rather by a group of Sp1 binding sites which have previously been shown to be crucial for cyclin D1 promoter activity. Our data show that the C-terminal domain of B-Myb is required for the activation of the cyclin D1 promoter and that this part of B-Myb interacts with Sp1. Finally, we have found that the promoter of the cyclin A1 gene is also activated by B-Myb by a Sp1 binding site-dependent mechanism. The effect of B-Myb on the promoters of the cyclin A1 and D1 genes is reminiscent of the mechanism that has been proposed for the autoregulation of the B-myb promoter by B-Myb, which also involves Sp1 binding sites. Taken together, our identification of two novel B-Myb responsive promoters whose activation by B-Myb does not involve Myb binding sites extends previous evidence for the existence of a distinct mechanism of transactivation by B-Myb which is dependent on Sp1 binding sites. The observation that this mechanism is not subject to the inhibitory effect of the C-terminal domain of B-Myb but rather requires this domain supports the notion that the Sp1 site-dependent mechanism is already active in the G1-phase prior to the phosphorylation of B-Myb by cyclin A/Cdk2.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Germany
| | | | | |
Collapse
|
92
|
Li X, Tanaka K, Nakatani F, Matsunobu T, Sakimura R, Hanada M, Okada T, Nakamura T, Iwamoto Y. Transactivation of cyclin E gene by EWS-Fli1 and antitumor effects of cyclin dependent kinase inhibitor on Ewing's family tumor cells. Int J Cancer 2005; 116:385-94. [PMID: 15818598 DOI: 10.1002/ijc.21010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromosomal translocation t(11; 22)(q24; q12) is detected in approximately 90% of Ewing's family tumors (EFTs) including Ewing's sarcoma and primitive neuroectodermal tumor. This results in the formation of the EWS-Fli1 fusion gene, which produces EWS-Fli1 fusion protein. This chimerical gene product acts as an aberrant transcriptional activator, which may be responsible for the tumorigenesis of EFTs. We have previously reported that cyclin E expression was upregulated in EFT cells and in EWS-Fli1 transformed fibroblastic cells. However, the mechanism of the overexpression of cyclin E by EWS-Fli1 is still unknown. In our study, we investigated the mechanism of transactivation of the cyclin E gene in EFT cells. We found that EWS-Fli1 enhanced the activity of the cyclin E gene promoter partially through E2F binding sites in the promoter. In addition, the basic transcriptional factor, Sp1, might also be involved in the transactivation of the cyclin E gene by EWS-Fli1. To study the biological significance of cyclin E overexpression in EFT cells, we used flavopiridol, a pan-cyclin-dependent kinase (CDK) inhibitor and found that flavopiridol efficiently suppressed the growth of EFT cells in vitro and in vivo by the inhibition of cyclinE/CDK2 kinase activity and the induction of apoptosis. These results suggest that targeting of the cyclin/CDK complex may provide new insight into treatment of EFTs.
Collapse
Affiliation(s)
- Xu Li
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Parakati R, DiMario JX. Dynamic Transcriptional Regulatory Complexes, Including E2F4, p107, p130, and Sp1, Control Fibroblast Growth Factor Receptor 1 Gene Expression during Myogenesis. J Biol Chem 2005; 280:21284-94. [PMID: 15811856 DOI: 10.1074/jbc.m410744200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Developmentally controlled transcriptional regulation of myogenic cell proliferation and differentiation via expression of the fibroblast growth factor receptor 1 (FGFR1) gene is positively regulated by Sp1 and negatively regulated by E2F4-based transcriptional complexes. We report that p107 and p130 formed transcriptional complexes with E2F4 on the FGFR1 promoter and repressed FGFR1 gene transcription in myogenic cells. However, in Drosophila melanogaster SL2 cells, only p107 was able to repress Sp1-mediated transactivation of the FGFR1 promoter. Gel shift assays using transfected myoblast nuclear extracts showed that ectopic p107 reduced Sp1 occupancy of the proximal Sp binding site of the FGFR1 promoter, and coimmunoprecipitation studies indicated that Sp1 interacts with p107 but not with p130. Gel shift assays also demonstrated that Sp1 interacted with p107 in E2F4-p107 transcriptional complexes in myoblasts. The nature of the repressor transcriptional complex was altered in differentiated muscle fibers by the relative loss of the E2F4-p107-Sp1 transcription complex and replacement by the repressor E2F4-p130 complex. These findings demonstrate that activation and repression of FGFR1 gene transcription is governed by interplay between Sp1, p107, p130, and E2F4 in distinct transcriptional complexes during skeletal muscle development.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blotting, Western
- Cell Nucleus/metabolism
- Chick Embryo
- Chromatin Immunoprecipitation
- DNA/metabolism
- DNA-Binding Proteins/physiology
- Drosophila melanogaster
- E2F4 Transcription Factor
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Immunohistochemistry
- Immunoprecipitation
- Models, Biological
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscles/embryology
- Nuclear Proteins/physiology
- Plasmids/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- Proteins/physiology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Retinoblastoma Protein/metabolism
- Retinoblastoma-Like Protein p107
- Retinoblastoma-Like Protein p130
- Sp1 Transcription Factor/physiology
- Subcellular Fractions
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Rajini Parakati
- Department of Cell Biology and Anatomy, Chicago Medical School, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
94
|
Abstract
The retinoblastoma protein (pRB) and the pRB-related p107 and p130 comprise the 'pocket protein' family of cell cycle regulators. These proteins are best known for their roles in restraining the G1-S transition through the regulation of E2F-responsive genes. pRB and the p107/p130 pair are required for the repression of distinct sets of genes, potentially due to their selective interactions with E2Fs that are engaged at specific promoter elements. In addition to regulating E2F-responsive genes in a reversible manner, pocket proteins contribute to silencing of such genes in cells that are undergoing senescence or differentiation. Pocket proteins also affect the G1-S transition through E2F-independent mechanisms, such as by inhibiting Cdk2 or by stabilizing p27(Kip1), and they are implicated in the control of G0 exit, the spatial organization of replication, and genomic rereplication. New insights into pocket protein regulation have also been obtained. Kinases previously thought to be crucial to pocket protein phosphorylation have been shown to be redundant, and new modes of phosphorylation and dephosphorylation have been identified. Despite these advances, much remains to be learned about the pocket proteins, particularly with regard to their developmental and tumor suppressor functions. Thus continues the story of the pocket proteins and the cell cycle.
Collapse
Affiliation(s)
- David Cobrinik
- Dyson Vision Research Institute and Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, LC303, New York, NY 10021, USA.
| |
Collapse
|
95
|
Furihata T, Hosokawa M, Satoh T, Chiba K. Synergistic role of specificity proteins and upstream stimulatory factor 1 in transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter. Biochem J 2005; 384:101-10. [PMID: 15283701 PMCID: PMC1134093 DOI: 10.1042/bj20040765] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse carboxylesterase 2 (mCES2), a microsomal acylcarnitine hydrolase, is thought to play some important roles in fatty acid (ester) metabolism, and it is therefore thought that the level of transcription of the mCES2 gene is under tight control. Examination of the tissue expression profiles revealed that mCES2 is expressed in the liver, kidney, small intestine, brain, thymus, lung, adipose tissue and testis. When the mCES2 promoter was cloned and characterized, it was revealed that Sp1 (specificity protein 1) and Sp3 could bind to a GC box, that USF (upstream stimulatory factor) 1 could bind to an E (enhancer) box, and that Sp1 could bind to an NFkappaB (nuclear factor kappaB) element in the mCES2 promoter. Co-transfection assays showed that all of these transcription factors contributed synergistically to transactivation of the mCES2 promoter. Taken together, our results indicate that Sp1, Sp3 and USF1 are indispensable factors for transactivation of the mCES2 gene promoter. To our knowledge, this is the first study in which transcription factors that interact with a CES2 family gene have been identified. The results of the present study have provided some clues for understanding the molecular mechanisms regulating mCES2 gene expression, and should be useful for studies aimed at elucidation of physiological functions of mCES2.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Animals
- COS Cells/chemistry
- COS Cells/metabolism
- Carboxylesterase
- Carboxylic Ester Hydrolases/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line
- Cell Line, Tumor
- Chlorocebus aethiops
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drosophila/cytology
- Drosophila/genetics
- E-Box Elements/genetics
- Enhancer Elements, Genetic/genetics
- GC Rich Sequence/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Enzymologic/genetics
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Microsomes/enzymology
- Molecular Sequence Data
- NF-kappa B/genetics
- Nuclear Proteins/metabolism
- Organ Specificity/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Sp1 Transcription Factor/genetics
- Sp3 Transcription Factor
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription Initiation Site
- Transcriptional Activation/genetics
- Upstream Stimulatory Factors
Collapse
Affiliation(s)
- Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Masakiyo Hosokawa
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
- To whom correspondence should be addressed (email )
| | - Tetsuo Satoh
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
96
|
Marban C, Redel L, Suzanne S, Van Lint C, Lecestre D, Chasserot-Golaz S, Leid M, Aunis D, Schaeffer E, Rohr O. COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res 2005; 33:2318-31. [PMID: 15849318 PMCID: PMC1084325 DOI: 10.1093/nar/gki529] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) gene transcription is characterized by two temporally distinct phases. While the initial phase relies solely on cellular transcription factors, the subsequent phase is activated by the viral Tat transactivator. We have previously reported that the subsequent phase of viral gene transcription can be repressed by the chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (CTIP2) in human microglial cells [O. Rohr, D. Lecestre, S. Chasserot-Golaz, C. Marban, D. Avram, D. Aunis, M. Leid and E. Schaeffer (2003), J. Virol., 77, 5415–5427]. Here, we demonstrate that CTIP proteins also repress the initial phase of HIV-1 gene transcription, mainly supported by the cellular transcription factors Sp1 and COUP-TF in microglial cells. We report that CTIP2 represses Sp1- and COUP-TF-mediated activation of HIV-1 gene transcription and viral replication as a result of physical interactions with COUP-TF and Sp1 in microglial nuclei. Using laser confocal microscopy CTIP2 was found to colocalize with Sp1, COUP-TF and the heterochromatin-associated protein Hp1α, which is mainly detected in transcriptionally repressed heterochromatic region. Moreover, we describe that CTIP2 can be recruited to the HIV-1 promoter via its association with Sp1 bound to the GC-box sequences of the long terminal repeat (LTR). Since our findings demonstrate that CTIP2 interacts with the HIV-1 proximal promoter, it is likely that CTIP2 promotes HIV-1 gene silencing by forcing transcriptionally repressed heterochromatic environment to the viral LTR region.
Collapse
Affiliation(s)
- Céline Marban
- INSERM unité 575 Pathophysiology of Nervous System, Centre de Neurochimie5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Laetitia Redel
- INSERM unité 575 Pathophysiology of Nervous System, Centre de Neurochimie5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Stella Suzanne
- INSERM unité 575 Pathophysiology of Nervous System, Centre de Neurochimie5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Carine Van Lint
- Institute for Molecular Biology and Medicine, Laboratory of Molecular Virology12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Dominique Lecestre
- INSERM unité 575 Pathophysiology of Nervous System, Centre de Neurochimie5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | - Mark Leid
- Laboratory of Molecular Pharmacology, College of Pharmacy and Environmental Health Sciences Center, Oregon State UniversityCorvallis, Oregon 97331-3507, France
| | - Dominique Aunis
- INSERM unité 575 Pathophysiology of Nervous System, Centre de Neurochimie5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Evelyne Schaeffer
- INSERM unité 575 Pathophysiology of Nervous System, Centre de Neurochimie5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Olivier Rohr
- INSERM unité 575 Pathophysiology of Nervous System, Centre de Neurochimie5 rue Blaise Pascal, 67084 Strasbourg, France
- IUT Louis Pasteur de Schiltigheim, 1 Allée d'Athènes67300 Schiltigheim, France
- To whom correspondence should be addressed. Tel: +33 388 45 66 01; Fax: +33 388 60 08 06;
| |
Collapse
|
97
|
Wong CF, Barnes LM, Dahler AL, Smith L, Popa C, Serewko-Auret MM, Saunders NA. E2F suppression and Sp1 overexpression are sufficient to induce the differentiation-specific marker, transglutaminase type 1, in a squamous cell carcinoma cell line. Oncogene 2005; 24:3525-34. [PMID: 15735752 DOI: 10.1038/sj.onc.1208372] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, E2F function has expanded to include the regulation of differentiation in human epidermal keratinocytes (HEKs). We extend these findings to report that in HEKs, Sp1 is a differentiation-specific activator and a downstream target of E2F-mediated suppression of the differentiation-specific marker, transglutaminase type 1 (TG-1). Deletion of elements between -0.084 to -0.034 kb of the TG-1 promoter disabled E2F1-induced suppression of promoter activity. Electrophoretic mobility shift assays (EMSAs) demonstrated that Sp1 and Sp3 bound this region. Protein expression analysis suggested that squamous differentiation was accompanied by increased Sp1/Sp3 ratio. Cotransfection of proliferating HEKs or the squamous cell carcinoma (SCC) cell line, KJD-1/SV40, with an E2F inhibitor (E2Fd/n) and Sp1 expression plasmid was sufficient to activate the TG-1 promoter. The suppression of Sp1 activity by E2F in differentiated cells appeared to be indirect since we found no evidence of an Sp1/E2F coassociation on the TG-1 promoter fragment. Moreover, E2F inhibition in the presence of a differentiation stimulus induced Sp1 protein. These data demonstrate that (i) Sp1 can act as a differentiation stimulus, (ii) E2F-mediated suppression of differentiation-specific markers is indirect via Sp1 inhibition and (iii) a combination of E2F inhibition and Sp1 activation could form the basis of a differentiation therapy for SCCs.
Collapse
Affiliation(s)
- Chung Fai Wong
- Epithelial Pathobiology Group, Cancer Biology Programme, Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
98
|
Novy M, Pohn R, Andorfer P, Novy-Weiland T, Galos B, Schwarzmayr L, Rotheneder H. EAPP, a novel E2F binding protein that modulates E2F-dependent transcription. Mol Biol Cell 2005; 16:2181-90. [PMID: 15716352 PMCID: PMC1087227 DOI: 10.1091/mbc.e04-11-0975] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
E2F transcription factors play an essential role in cell proliferation and apoptosis and their activity is frequently deregulated in human cancers. In a yeast two-hybrid screen we identified a novel E2F-binding protein. Due to its strong phosphorylation we named it EAPP (e2F-associated phosphoprotein). EAPP is localized in the nucleus and interacts with E2F-1, E2F-2, and E2F-3, but not with E2F-4. Examination of a number of human cell lines revealed that EAPP levels are elevated in most transformed cells. Moreover, EAPP mRNA was detected in all investigated human tissues in varying amounts. EAPP is present throughout the cell cycle but disappears during mitosis. In transfection assays with reporters controlled by either an artificial E2F-dependent promoter or the murine thymidine kinase promoter, EAPP increased the activation caused by E2F-1 but not by E2F-4. Surprisingly, the promoter of the p14(ARF) gene, which was also activated by E2F-1, became repressed by EAPP. Overexpression of EAPP in U2OS cells resulted in a significant increase of cells in S-phase, whereas RNAi-mediated knock down of EAPP reduced the fraction of cells in S-phase. Taken together, these data suggest that EAPP modulates E2F-regulated transcription, stimulates proliferation, and may be involved in the malignant transformation of cells.
Collapse
Affiliation(s)
- Michael Novy
- Max F. Perutz Laboratories, Department of Medical Biochemistry, University Departments at the Vienna Biocenter, Medical University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
99
|
Seelan RS, Parthasarathy LK, Parthasarathy RN. E2F1 regulation of the human myo-inositol 1-phosphate synthase (ISYNA1) gene promoter. Arch Biochem Biophys 2004; 431:95-106. [PMID: 15464731 DOI: 10.1016/j.abb.2004.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Indexed: 01/23/2023]
Abstract
Human myo-inositol 1-phosphate synthase (IP synthase; E.C. 5.5.1.4), encoded by ISYNA1, catalyzes the de novo synthesis of inositol 1-phosphate from glucose 6-phosphate. It is a potential target for mood-stabilizing drugs such as lithium and valproate. But, very little is known about the regulation of human IP synthase. Here, we have characterized the minimal promoter of ISYNA1 and show that it is upregulated by E2F1. Upregulation occurs in a dose-dependent fashion and can be suppressed by ectopic expression of Rb. EMSA and antibody supershift analysis identified a functional E2F binding motif at -117. Complex formation at this site was competed by an excess of unlabeled Sp1 oligo consistent with the -117 E2F site overlapping an Sp1 motif. Because the -117 E2F motif is not a high-affinity binding site, we propose that the upregulation of ISYNA1 occurs through the cooperative interaction of several low-affinity E2F binding motifs present in the minimal promoter.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Molecular Neuroscience and Bioinformatics Laboratories, Mental Health, Behavioral Science and Research Services, VA Medical Center (151), Louisville, KY 40206, USA
| | | | | |
Collapse
|
100
|
Thummel R, Li L, Tanase C, Sarras MP, Godwin AR. Differences in expression pattern and function between zebrafish hoxc13 orthologs: recruitment of Hoxc13b into an early embryonic role. Dev Biol 2004; 274:318-33. [PMID: 15385162 DOI: 10.1016/j.ydbio.2004.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 06/18/2004] [Accepted: 07/06/2004] [Indexed: 01/17/2023]
Abstract
Vertebrate Hox genes are generally believed to initiate expression at the primitive streak or early neural plate stages. The timing and spatial restrictions of the Hox expression patterns during these stages correlate well with their demonstrated role in axial patterning. Here we demonstrate that one zebrafish hoxc13 ortholog, hoxc13a, has an expression pattern in the developing tail bud that is consistent with the gene playing a role in axial patterning. However, the second hoxc13 ortholog, hoxc13b, is maternally expressed and is detectable in every cell of early cleavage embryos through gastrulae. In addition, both transcript and protein are detectable at these stages. At 19 h post fertilization (hpf), hoxc13b expression is up-regulated in the tail bud, becoming restricted to the tail bud by 24 hpf. Importantly, by 24 hpf, hoxc13b morphants show a specific developmental delay, which can be rescued by co-injecting synthetic capped hoxc13a or hoxc13b message. These data suggest some functional divergence due to altered expression patterns of the two hoxc13 orthologs after duplication. Further characterization of the hoxc13b morphant delay reveals that it is biphasic in nature, with the first phase of the delay occurring before gastrulation, suggesting a new role for vertebrate Hox genes before their conserved role in axial patterning. The extent of the delay does not change through 20 hpf; however, an additional delay emerges at this time. Notably, this second phase of the delay correlates with hoxc13b expression pattern becoming restricted to the tail bud.
Collapse
Affiliation(s)
- Ryan Thummel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|