51
|
Xiong Q, Chai J, Deng C, Jiang S, Li X, Suo X, Zhang N, Yang Q, Liu Y, Zheng R, Chen M. Molecular characterization, expression pattern, and association analysis with carcass traits of the porcine SHIP2 gene. Mol Cell Biochem 2011; 360:225-33. [DOI: 10.1007/s11010-011-1060-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
52
|
Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M, Tafuri A, Bonati A, Bäsecke J, Cocco L, Evangelisti C, Martelli AM, Montalto G, Cervello M, McCubrey JA. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 2011; 3:192-222. [PMID: 21422497 PMCID: PMC3091517 DOI: 10.18632/aging.100296] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health.
Collapse
Affiliation(s)
- Linda S Steelman
- Department of Microbiology and Immunology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Saggioro D. Anti-apoptotic effect of Tax: an NF-κB path or a CREB way? Viruses 2011; 3:1001-14. [PMID: 21994767 PMCID: PMC3185786 DOI: 10.3390/v3071001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 12/19/2022] Open
Abstract
The NF-κB pathway is intimately linked to the survival of mammalian cells, and its activation by Tax has consequently been considered important for human T-cell leukemia/lymphoma virus type 1 (HTLV-1)-infected cell resistance to death. Very little emphasis has been given to other mechanisms, although Tax regulates the expression and activity of several cellular genes. The finding that CREB protein is activated in HTLV-1 infected cells underlines the possibility that other mechanisms of survival may be implicated in HTLV-1 infection. Indeed, CREB activation or overexpression plays a role in normal hematopoiesis, as well as in leukemia development, and CREB is considered as a survival factor in various cell systems. A better understanding of the different molecular mechanisms used by Tax to counteract cell death will also help in the development of new therapeutic strategies for HTLV-1 associated diseases.
Collapse
Affiliation(s)
- Daniela Saggioro
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy.
| |
Collapse
|
54
|
The host phosphoinositide 5-phosphatase SHIP2 regulates dissemination of vaccinia virus. J Virol 2011; 85:7402-10. [PMID: 21543482 DOI: 10.1128/jvi.02391-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
After fusing with the plasma membrane, enveloped poxvirus virions form actin-filled membranous protrusions, called tails, beneath themselves and move toward adjacent uninfected cells. While much is known about the host and viral proteins that mediate formation of actin tails, much less is known about the factors controlling release. We found that the phosphoinositide 5-phosphatase SHIP2 localizes to actin tails. Localization requires phosphotyrosine, Abl and Src family tyrosine kinases, and neural Wiskott-Aldrich syndrome protein (N-WASP) but not the Arp2/Arp3 complex or actin. Cells lacking SHIP2 have normal actin tails but release more virus. Moreover, cells infected with viral strains with mutations in the release inhibitor A34 release more virus but recruit less SHIP2 to tails. Thus, the inhibitory effects of A34 on virus release are mediated by SHIP2. Together, these data suggest that SHIP2 and A34 may act as gatekeepers to regulate dissemination of poxviruses when environmental conditions are conducive.
Collapse
|
55
|
Abstract
IMPORTANCE OF THE FIELD Inositol polyphosphate 5-phosphatase (SHIP2) is an important negative regulator of intracellular phosphatidylinositol phosphate, a key second messenger of various intracellular signaling pathways. The functional upregulation of SHIP2 results in signaling blockade, leading to related disorders. AREAS COVERED IN THIS REVIEW We first summarize the role of SHIP2 in the regulation of insulin signaling and type 2 diabetes, including remarkable advances in pharmacological approaches. In addition, this review highlights new findings regarding the involvement of SHIP2 in a number of diseases, including cancer, neurodegenerative diseases, and atherosclerosis. WHAT THE READER WILL GAIN Recently identified small-molecule inhibitors of SHIP2 phosphatase activity emphasize the potential therapeutic value of SHIP2. In addition, currently available evidence demonstrates the importance of the scaffolding-type protein function of SHIP2. Understanding this interesting function will help clarify the complicated involvement of SHIP2 in various disorders. TAKE HOME MESSAGE Recent studies have demonstrated that SHIP2 is a promising therapeutic target for not only type 2 diabetes, but also cancer, neurodegenerative diseases, and atherosclerosis. Targeting SHIP2 through specific small-molecule inhibitors will have beneficial effects on these diseases.
Collapse
Affiliation(s)
- Akira Suwa
- Astellas Pharma, Inc., Pharmacology Research Labs, Drug Discovery Research, 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | |
Collapse
|
56
|
Soeda Y, Tsuneki H, Muranaka H, Mori N, Hosoh S, Ichihara Y, Kagawa S, Wang X, Toyooka N, Takamura Y, Uwano T, Nishijo H, Wada T, Sasaoka T. The inositol phosphatase SHIP2 negatively regulates insulin/IGF-I actions implicated in neuroprotection and memory function in mouse brain. Mol Endocrinol 2010; 24:1965-77. [PMID: 20829391 DOI: 10.1210/me.2010-0163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Impairment of insulin and IGF-I signaling in the brain is one of the causes of dementia associated with diabetes mellitus and Alzheimer's disease. However, the precise pathological processes are largely unknown. In the present study, we found that SH2-containing inositol 5'-phosphatase 2 (SHIP2), a negative regulator of phosphatidylinositol 3,4,5-trisphosphate-mediated signals, is widely expressed in adult mouse brain. When a dominant-negative mutant of SHIP2 was expressed in cultured neurons, insulin signaling was augmented, indicating physiological significance of endogenous SHIP2 in neurons. Interestingly, SHIP2 mRNA and protein expression levels were significantly increased in the brain of type 2 diabetic db/db mice. To investigate the impact of increased expression of SHIP2 in the brain, we further employed transgenic mice overexpressing SHIP2 and found that increased amounts of SHIP2 induced the disruption of insulin/IGF-I signaling through Akt. Neuroprotective effects of insulin and IGF-I were significantly attenuated in cultured cerebellar granule neurons from SHIP2 transgenic mice. Consistently, terminal deoxynucleotide transferase-mediated dUTP nick end labeling assay demonstrated that the number of apoptosis-positive cells was increased in cerebral cortex of the transgenic mice at an elderly age. Furthermore, SHIP2 transgenic mice exhibited impaired memory performance in the Morris water maze, step-through passive avoidance, and novel-object-recognition tests. Importantly, inhibition of SHIP2 ameliorated the impairment of hippocampal synaptic plasticity and memory formation in db/db mice. These results suggest that SHIP2 is a potent negative regulator of insulin/IGF-I actions in the brain, and excess amounts of SHIP2 may be related, at least in part, to brain dysfunction in insulin resistance with type 2 diabetes.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Nakatsu F, Perera RM, Lucast L, Zoncu R, Domin J, Gertler FB, Toomre D, De Camilli P. The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. J Cell Biol 2010; 190:307-15. [PMID: 20679431 PMCID: PMC2922640 DOI: 10.1083/jcb.201005018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/07/2010] [Indexed: 02/04/2023] Open
Abstract
Phosphatidylinositol (PI) 4,5-bisphosphate (PI(4,5)P(2)) and its phosphorylated product PI 3,4,5-triphosphate (PI(3,4,5)P(3)) are two major phosphoinositides concentrated at the plasma membrane. Their levels, which are tightly controlled by kinases, phospholipases, and phosphatases, regulate a variety of cellular functions, including clathrin-mediated endocytosis and receptor signaling. In this study, we show that the inositol 5-phosphatase SHIP2, a negative regulator of PI(3,4,5)P(3)-dependent signaling, also negatively regulates PI(4,5)P(2) levels and is concentrated at endocytic clathrin-coated pits (CCPs) via interactions with the scaffold protein intersectin. SHIP2 is recruited early at the pits and dissociates before fission. Both knockdown of SHIP2 expression and acute production of PI(3,4,5)P(3) shorten CCP lifetime by enhancing the rate of pit maturation, which is consistent with a positive role of both SHIP2 substrates, PI(4,5)P(2) and PI(3,4,5)P(3), on coat assembly. Because SHIP2 is a negative regulator of insulin signaling, our findings suggest the importance of the phosphoinositide metabolism at CCPs in the regulation of insulin signal output.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Rushika M. Perera
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Louise Lucast
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Roberto Zoncu
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Jan Domin
- Renal Section, Division of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Frank B. Gertler
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Derek Toomre
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
58
|
De Schutter J, Guillabert A, Imbault V, Degraef C, Erneux C, Communi D, Pirson I. SHIP2 (SH2 domain-containing inositol phosphatase 2) SH2 domain negatively controls SHIP2 monoubiquitination in response to epidermal growth factor. J Biol Chem 2009; 284:36062-36076. [PMID: 19880507 DOI: 10.1074/jbc.m109.064923] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SH2 domain containing inositol 5-phosphatase SHIP2 contains several interacting domains that are important for scaffolding properties. We and others have previously reported that SHIP2 interacts with the E3 ubiquitin ligase c-Cbl. Here, we identified human SHIP2 monoubiquitination on lysine 315. SHIP2 could also be polyubiquitinated but was not degraded by the 26 S proteasome. Furthermore, we identified a ubiquitin-interacting motif at the C-terminal end of SHIP2 that confers ubiquitin binding capacity. However, this ubiquitin-interacting motif is dispensable for its monoubiquitination. We showed that neither c-Cbl nor Nedd4-1 play the role of ubiquitin ligase for SHIP2. Strikingly, monoubiquitination of the DeltaSH2-SHIP2 mutant (lacking the N-terminal SH2 domain) is strongly increased, suggesting an intrinsic inhibitory effect of the SHIP2 SH2 domain on its monoubiquitination. Moreover, SHIP2 monoubiquitination was increased upon 30 min of epidermal growth factor stimulation. This correlates with the loss of interaction between the SHIP2 SH2 domain and c-Cbl. In this model, c-Cbl could mask the monoubiquitination site and thereby prevent SHIP2 monoubiquitination. The present study thus reveals an unexpected and novel role of SHIP2 SH2 domain in the regulation of its newly identified monoubiquitination.
Collapse
Affiliation(s)
- Julie De Schutter
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Aude Guillabert
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Virginie Imbault
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Chantal Degraef
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Christophe Erneux
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - David Communi
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Isabelle Pirson
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium.
| |
Collapse
|
59
|
Cooper JB, Cohen EEW. Mechanisms of resistance to EGFR inhibitors in head and neck cancer. Head Neck 2009; 31:1086-94. [PMID: 19378324 DOI: 10.1002/hed.21109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase that activates multiple signaling pathways, including phosphatidylinositol-3-kinase/v-AKT murine thymoma viral oncogene homolog protein (Akt), has long been a target of novel therapies. Despite universal EGFR expression in head and neck squamous cell carcinoma (HNSCC), the majority of patients do not respond to EGFR inhibitors. This review focuses on mechanisms of resistance to these agents in HNSCC, and how these may be unique when compared with other malignancies such as non-small cell lung and colorectal cancers. Published studies and abstracts reveal that there are likely several mechanisms underlying resistance, suggesting that different strategies will be required to improve efficacy of EGFR inhibitors in HNSCC.
Collapse
Affiliation(s)
- Jonathan B Cooper
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
60
|
Denley A, Gymnopoulos M, Kang S, Mitchell C, Vogt PK. Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Mol Cancer Res 2009; 7:1132-8. [PMID: 19584261 PMCID: PMC2767251 DOI: 10.1158/1541-7786.mcr-09-0068] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3K) are divided into three classes, which differ in their substrates and products. Class I generates the inositol phospholipids PI(3)P, PI(3,4)P2, and PI(3,4,5)P3 referred as PIP, PIP2, and PIP3, respectively. Class II produces PIP and PIP2, and class III generates only PIP. Substrate and product differences of the three classes are determined by the activation loops of their catalytic domains. Substitution of the class I activation loop with either class II or III activation loop results in a corresponding change of substrate preference and product restriction. We have evaluated such activation loop substitutions to show that oncogenic activity of class I PI3K is linked to the ability to produce PIP3. We further show that reduction of cellular PIP3 levels by the 5'-phosphatase PIPP interferes with PI3K-induced oncogenic transformation. PIPP also attenuates signaling through Akt and target of rapamycin. Class III PI3K fails to induce oncogenic transformation. Likewise, a constitutively membrane-bound class I PI3K mutant retaining only the protein kinase is unable to induce transformation. We conclude that PIP3 is an essential component of PI3K-mediated oncogenesis and that inability to generate PIP3 abolishes oncogenic potential.
Collapse
Affiliation(s)
- Adam Denley
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marco Gymnopoulos
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sohye Kang
- Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Christina Mitchell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | - Peter K. Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
61
|
Prasad NK, Werner ME, Decker SJ. Specific Tyrosine Phosphorylations Mediate Signal-Dependent Stimulation of SHIP2 Inositol Phosphatase Activity, while the SH2 Domain Confers an Inhibitory Effect To Maintain the Basal Activity. Biochemistry 2009; 48:6285-7. [DOI: 10.1021/bi900492d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nagendra K. Prasad
- Purdue Cancer Center and Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Michael E. Werner
- Purdue Cancer Center and Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Stuart J. Decker
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48502
| |
Collapse
|
62
|
Brehme M, Hantschel O, Colinge J, Kaupe I, Planyavsky M, Köcher T, Mechtler K, Bennett KL, Superti-Furga G. Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci U S A 2009; 106:7414-9. [PMID: 19380743 PMCID: PMC2670881 DOI: 10.1073/pnas.0900653106] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Indexed: 11/18/2022] Open
Abstract
The tyrosine kinase Bcr-Abl causes chronic myeloid leukemia and is the cognate target of tyrosine kinase inhibitors like imatinib. We have charted the protein-protein interaction network of Bcr-Abl by a 2-pronged approach. Using a monoclonal antibody we have first purified endogenous Bcr-Abl protein complexes from the CML K562 cell line and characterized the set of most tightly-associated interactors by MS. Nine interactors were subsequently subjected to tandem affinity purifications/MS analysis to obtain a molecular interaction network of some hundred cellular proteins. The resulting network revealed a high degree of interconnection of 7 "core" components around Bcr-Abl (Grb2, Shc1, Crk-I, c-Cbl, p85, Sts-1, and SHIP-2), and their links to different signaling pathways. Quantitative proteomics analysis showed that tyrosine kinase inhibitors lead to a disruption of this network. Certain components still appear to interact with Bcr-Abl in a phosphotyrosine-independent manner. We propose that Bcr-Abl and other drug targets, rather than being considered as single polypeptides, can be considered as complex protein assemblies that remodel upon drug action.
Collapse
Affiliation(s)
- Marc Brehme
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Oliver Hantschel
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Jacques Colinge
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Ines Kaupe
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Melanie Planyavsky
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Thomas Köcher
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | - Keiryn L. Bennett
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria; and
| | - Giulio Superti-Furga
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 19, 1090 Vienna, Austria; and
| |
Collapse
|
63
|
The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 2009; 419:29-49. [PMID: 19272022 DOI: 10.1042/bj20081673] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.
Collapse
|
64
|
Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12:1139-65. [PMID: 18694380 DOI: 10.1517/14728222.12.9.1139] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. OBJECTIVE This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. METHODS We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. RESULTS/CONCLUSIONS The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
Collapse
Affiliation(s)
- Linda S Steelman
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Torbett NE, Luna A, Knight ZA, Houk A, Moasser M, Weiss W, Shokat KM, Stokoe D. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem J 2008; 415:97-110. [PMID: 18498248 PMCID: PMC3079392 DOI: 10.1042/bj20080639] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The PI3K (phosphoinositide 3-kinase) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small-molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we have demonstrated that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110alpha inhibitors were generally effective in inhibiting the phosphorylation of PKB (protein kinase B)/Akt and S6, two downstream components of PI3K signalling, in most cell lines examined. In contrast, p110beta-selective inhibitors only reduced PKB/Akt phosphorylation in PTEN (phosphatase and tensin homologue deleted on chromosome 10) mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing cell-cycle arrest in the G(1) phase, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell-cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signalling pathways. Taken together, our data indicate that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts.
Collapse
Affiliation(s)
- Neil E Torbett
- Cancer Research Institute, University of California, San Francisco, California 94143
| | - Antonio Luna
- Cancer Research Institute, University of California, San Francisco, California 94143
| | - Zachary A. Knight
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California 94143
| | - Andrew Houk
- Cancer Research Institute, University of California, San Francisco, California 94143
| | - Mark Moasser
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - William Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - David Stokoe
- Cancer Research Institute, University of California, San Francisco, California 94143
| |
Collapse
|
66
|
Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP. Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 2008; 27:5464-76. [PMID: 18794881 DOI: 10.1038/onc.2008.243] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PTEN tumour suppressor is a lipid and protein phosphatase that inhibits phosphoinositide 3-kinase (PI3K)-dependent signalling by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). Here, we discuss the concept of PTEN as an 'interfacial enzyme', which exists in a high activity state when bound transiently at membrane surfaces containing its substrate and other acidic lipids, such as PtdIns(4,5)P(2) and phosphatidylserine (PtdSer). This mechanism ensures that PTEN functions in a spatially restricted manner, and may explain its involvement in forming the gradients of PtdInsP(3), which are necessary for generating and/or sustaining cell polarity during motility, in developing neurons and in epithelial tissues. Coordinating PTEN activity with alternative mechanisms of PtdInsP(3) metabolism, by the tightly regulated SHIP 5-phoshatases, synthesizing the independent second messenger PtdIns(3,4)P(2), may also be important for cellular polarization in some cell types. Superimposed on this interfacial mechanism are additional post-translational regulatory processes, which generally act to reduce PTEN activity. Oxidation of the active site cysteine residue by reactive oxygen species and phosphorylation of serine/threonine residues at sites in the C-terminus of the protein inhibit PTEN. These phosphorylation sites also appear to play a role in regulating both stability and localization of PTEN, as does ubiquitination of PTEN. Because genetic studies in mice show that the level of expression of PTEN in an organism profoundly influences tumour susceptibility, factors that regulate PTEN, localization, activity and turnover should be important in understanding its biological functions as a tumour suppressor.
Collapse
Affiliation(s)
- N R Leslie
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, James Black Centre, Dundee, Scotland, UK.
| | | | | | | | | |
Collapse
|
67
|
Siekmann AF, Covassin L, Lawson ND. Modulation of VEGF signalling output by the Notch pathway. Bioessays 2008; 30:303-13. [PMID: 18348190 DOI: 10.1002/bies.20736] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The formation of blood vessels within the vascular system entails a variety of cellular processes, including proliferation, migration and differentiation. In many cases, these diverse processes need to be finely coordinated among neighbouring endothelial cells in order to establish a functional vascular network. For instance, during angiogenic sprouting specialized endothelial tip cells follow guidance cues and migrate extensively into avascular tissues while trailing stalk cells must stay connected to the patent blood vessel. The vascular endothelial growth factor (VEGF) and Notch signalling pathways have emerged as the major players in governing these different cellular behaviours. In particular, recent work indicates an important role for Notch signalling in determining how an endothelial cell responds to VEGF. In this review, we provide an overview of these biochemically distinct pathways and discuss how they may interact during endothelial cell differentiation and angiogenesis.
Collapse
Affiliation(s)
- Arndt F Siekmann
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
68
|
Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22:686-707. [DOI: 10.1038/leu.2008.26] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
69
|
McCubrey JA, Sokolosky ML, Lehmann BD, Taylor JR, Navolanic PM, Chappell WH, Abrams SL, Stadelman KM, Wong EWT, Misaghian N, Horn S, Bäsecke J, Libra M, Stivala F, Ligresti G, Tafuri A, Milella M, Zarzycki M, Dzugaj A, Chiarini F, Evangelisti C, Martelli AM, Terrian DM, Franklin RA, Steelman LS. Alteration of Akt activity increases chemotherapeutic drug and hormonal resistance in breast cancer yet confers an achilles heel by sensitization to targeted therapy. ADVANCES IN ENZYME REGULATION 2008; 48:113-35. [PMID: 18423407 PMCID: PMC2583357 DOI: 10.1016/j.advenzreg.2008.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PI3K/PTEN/Akt/mTOR pathway plays critical roles in the regulation of cell growth. The effects of this pathway on drug resistance and cellular senescence of breast cancer cells has been a focus of our laboratory. Introduction of activated Akt or mutant PTEN constructs which lack lipid phosphatase [PTEN(G129E)] or lipid and protein phosphatase [PTEN(C124S)] activity increased the resistance of the cells to the chemotherapeutic drug doxorubicin, and the hormonal drug tamoxifen. Activated Akt and PTEN genes also inhibited the induction of senescence after doxorubicin treatment; a phenomenon associated with unrestrained proliferation and tumorigenesis. Interference with the lipid phosphatase domain of PTEN was sufficient to activate Akt/mTOR/p70S6K as MCF-7 cells transfected with the mutant PTEN gene lacking the lipid phosphatase activity [PTEN(G129E)] displayed elevated levels of activated Akt and p70S6K compared to empty vector transfected cells. Cells transfected with mutant PTEN or Akt constructs were hypersensitive to mTOR inhibitors when compared with the parental or empty vector transfected cells. Akt-transfected cells were cultured for over two months in tamoxifen from which tamoxifen and doxorubicin resistant cells were isolated that were >10-fold more resistant to tamoxifen and doxorubicin than the original Akt-transfected cells. These cells had a decreased induction of both activated p53 and total p21Cip1 upon doxorubicin treatment. Furthermore, these cells had an increased inactivation of GSK-3β and decreased expression of the estrogen receptor-α. In these drug resistant cells, there was an increased activation of ERK which is associated with proliferation. These drug resistant cells were hypersensitive to mTOR inhibitors and also sensitive to MEK inhibitors, indicating that the enhanced p70S6K and ERK expression was relevant to their drug and hormonal resistance. Given that Akt is overexpressed in greater than 50% of breast cancers, our results point to potential therapeutic targets, mTOR and MEK. These studies indicate that activation of the Akt kinase or disruption of the normal activity of the PTEN phosphatase can have dramatic effects on activity of p70S6K and other downstream substrates and thereby altering the therapeutic sensitivity of breast cancer cells. The effects of doxorubicin and tamoxifen on induction of the Raf/MEK/ERK and PI3K/Akt survival pathways were examined in unmodified MCF-7 breast cells. Doxorubicin was a potent inducer of activated ERK and to a lesser extent Akt. Tamoxifen also induced ERK. Thus a consequence of doxorubicin and tamoxifen therapy of breast cancer is the induction of a pro-survival pathway which may contribute to the development of drug resistance. Unmodified MCF-7 cells were also sensitive to MEK and mTOR inhibitors which synergized with both tamoxifen and doxorubicin to induce death. In summary, our results point to the key interactions between the PI3K/PTEN/Akt/mTOR and Raf/MEK/ERK pathways in regulating chemotherapeutic drug resistance/sensitivity in breast cancer and indicate that targeting these pathways may prevent drug and hormonal resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Batty IH, van der Kaay J, Gray A, Telfer JF, Dixon MJ, Downes CP. The control of phosphatidylinositol 3,4-bisphosphate concentrations by activation of the Src homology 2 domain containing inositol polyphosphate 5-phosphatase 2, SHIP2. Biochem J 2007; 407:255-66. [PMID: 17672824 PMCID: PMC2049017 DOI: 10.1042/bj20070558] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/17/2022]
Abstract
Activation of class Ia PI3K (phosphoinositide 3-kinase) produces PtdInsP3, a vital intracellular mediator whose degradation generates additional lipid signals. In the present study vanadate analogues that inhibit PTPs (protein tyrosine phosphatases) were used to probe the mechanisms which regulate the concentrations of these molecules allowing their independent or integrated function. In 1321N1 cells, which lack PtdInsP3 3-phosphatase activity, sodium vanadate or a cell permeable derivative, bpV(phen) [potassium bisperoxo(1,10-phenanthroline)oxovanadate (V)], increased the recruitment into anti-phosphotyrosine immunoprecipitates of PI3K activity and of the p85 and p110a subunits of class Ia PI3K and enhanced the recruitment of PI3K activity stimulated by PDGF (platelet-derived growth factor). However, neither inhibitor much increased cellular PtdInsP3 concentrations, but both diminished dramatically the accumulation of PtdInsP3 stimulated by PDGF or insulin and markedly increased the control and stimulated concentrations of PtdIns(3,4)P2. These actions were accounted for by the ability of PTP inhibitors to stimulate the activity of endogenous PtdInsP3 5-phosphatase(s), particularly SHIP2 (Src homology 2 domain containing inositol polyphosphate 5-phosphatase 2) and to inhibit types I and II PtdIns(3,4)P2 4-phosphatases. Thus bpV(phen) promoted the translocation of SHIP2 from the cytosol to a Triton X-100-insoluble fraction and induced a marked (5-10-fold) increase in SHIP2 specific activity mediated by enhanced tyrosine phosphorylation. The net effect of these inhibitors was, therefore, to switch the signal output of class I PI3K from PtdInsP3 to PtdIns(3,4)P2. A key component controlling this shift in the balance of lipid signals is the activation of SHIP2 by increased tyrosine phosphorylation, an effect observed in HeLa cells in response to both PTP inhibitors and epidermal growth factor.
Collapse
Key Words
- lipid phosphatase
- phosphoinositide 3-kinase (pi3k)
- protein phosphatase
- reactive oxygen species
- egf, epidermal growth factor
- igf-1, insulin-like growth factor-1
- pdgf, platelet-derived growth factor
- pi, phosphoinositide
- pi3k, phosphoinositide 3-kinase
- ros, reactive oxygen species
- bpv(phen), potassium bisperoxo(1,10-phenanthroline)oxovanadate (v)
- ptp, protein tyrosine phosphatase
- pten, phosphatase and tensin homologue deleted on chromosome ten
- sh2, src homology 2
- ship, sh2 domain containing inositol polyphosphate 5-phosphatase
- sirna, small interfering rna
- gfp, green fluorescent protein
- shp1, src homology 2 domain tyrosine phosphatase 1
- gst, glutathione transferase: pei, polyethyleneimine
Collapse
Affiliation(s)
- Ian H Batty
- The Division of Molecular Physiology, School of Life Sciences, The James Black Centre, University of Dundee, Dow St, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
71
|
Zhang J, Liu Z, Rasschaert J, Blero D, Deneubourg L, Schurmans S, Erneux C, Pesesse X. SHIP2 controls PtdIns(3,4,5)P3 levels and PKB activity in response to oxidative stress. Cell Signal 2007; 19:2194-200. [PMID: 17643961 DOI: 10.1016/j.cellsig.2007.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 06/21/2007] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are known to be involved in redox signalling pathways that may contribute to normal cell function as well as disease progression. The tumour suppressor PTEN and the inositol 5-phosphatase SHIP2 are critical enzymes in the control of PtdIns(3,4,5)P(3) level. It has been reported that oxidants, including those produced in cells such as macrophages, can activate downstream signalling via the inactivation of PTEN. The present study evaluates the potential impact of SHIP2 on phosphoinositides in cells exposed to sodium peroxide. We used a model of SHIP2 deficient mouse embryonic fibroblasts (MEFs) stimulated by H(2)O(2): at 15 min, PtdIns(3,4,5)P(3) was markedly increased in SHIP2 -/- cells as compared to +/+ cells. In contrast, no significant increase in PtdIns(3,4)P(2) could be detected at 15 or 120 min incubation of the cells with H(2)O(2) (0.6 mM). PKB activity was also upregulated in SHIP2 -/- cells as compared to +/+ cells in response to H(2)O(2). SHIP2 add back experiments in SHIP2 -/- cells confirm its critical role as a lipid phosphatase in the control of PtdIns(3,4,5)P(3) level in response to H(2)O(2). We conclude that SHIP2 lipid phosphatase activity plays an important role in the metabolism PtdIns(3,4,5)P(3) which is demonstrated in oxygen stressed cells.
Collapse
Affiliation(s)
- Jing Zhang
- Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Prasad NK, Tandon M, Badve S, Snyder PW, Nakshatri H. Phosphoinositol phosphatase SHIP2 promotes cancer development and metastasis coupled with alterations in EGF receptor turnover. Carcinogenesis 2007; 29:25-34. [PMID: 17893231 DOI: 10.1093/carcin/bgm213] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphoinositol phosphatases are important regulators of signaling pathways relevant to both diabetes and cancer. A 3'-phosphoinositol phosphatase, phosphatase homologous to tensin (PTEN), is both a tumor suppressor and a negative regulator of insulin action. A 5'-phosphoinositol phosphatase, SH2-containing 5'-inositol phosphatase (SHIP2), regulates insulin signaling and its genetic knockout prevents high-fat diet-induced obesity in mice. SHIP2 also regulates cytoskeleton remodeling and receptor endocytosis. This and the fact that both PTEN and SHIP2 act on the same substrate suggest a potential role for SHIP2 in cancer. Here we report that, in direct contrast to PTEN, SHIP2 protein expression is elevated in a number of breast cancer cell lines. RNA interference-mediated silencing of SHIP2 in MDA-231 cells suppresses epidermal growth factor receptor (EGFR) levels by means of enhanced receptor degradation. Furthermore, endogenous SHIP2 in MDA-231 breast cancer cells supports in vitro cell proliferation, increases cellular sensitivity to drugs targeting the EGFR and supports cancer development and metastasis in nude mice. In addition, significantly high proportions (44%; P = 0.0001) of clinical specimens of breast cancer tissues in comparison with non-cancerous breast tissues contain elevated expression of SHIP2 protein. Taken together, our results demonstrate that SHIP2 is a clinically relevant novel anticancer target that links perturbed metabolism to cancer development.
Collapse
Affiliation(s)
- Nagendra K Prasad
- Department of Basic Medical Sciences and Purdue Cancer Center, Purdue University, LYNN Hall, 625 Harrison Street, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
73
|
Leung WH, Bolland S. The inositol 5'-phosphatase SHIP-2 negatively regulates IgE-induced mast cell degranulation and cytokine production. THE JOURNAL OF IMMUNOLOGY 2007; 179:95-102. [PMID: 17579026 DOI: 10.4049/jimmunol.179.1.95] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aggregation of the high-affinity IgE receptor (FcepsilonRI) on mast cells initiates signaling pathways leading to degranulation and cytokine release. It has been reported that SHIP-1 negatively regulates FcepsilonRI-triggered pathways but it is unknown whether its homologous protein SHIP-2 has the same function. We have used a lentiviral-based RNA interference technique to obtain SHIP-2 knockdown bone marrow-derived mast cells (BMMCs) and have found that elimination of SHIP-2 results in both increased mast cell degranulation and cytokine (IL-4 and IL-13) gene expression upon FcepsilonRI stimulation. Elimination of SHIP-2 from BMMCs has no effect on FcepsilonRI-triggered calcium flux, tyrosine phosphorylation of MAPKs or in actin depolymerization following activation. Rather, we observe that absence of SHIP-2 results in increased activation of the small GTPase Rac-1 and in enhanced microtubule polymerization upon FcepsilonRI engagement. Coimmunoprecipitation experiments in rat basophilic leukemia (RBL 2H3) cells show that SHIP-2 interacts with the FcepsilonRI beta-chain, Gab2 and Lyn and that unlike SHIP-1, it does not associate with SHC in mast cells. Our results report a negative regulatory role of SHIP-2 on mast cell activation that is calcium independent and distinct from the regulation by SHIP-1.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | | |
Collapse
|
74
|
Blero D, Payrastre B, Schurmans S, Erneux C. Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch 2007; 455:31-44. [PMID: 17605038 DOI: 10.1007/s00424-007-0304-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 12/18/2022]
Abstract
Phosphoinositide phosphatases dephosphorylate the three positions (D-3, 4 and 5) of the inositol ring of the poly-phosphoinositides. They belong to different families of enzymes. The PtdIns(3,4)P(2) 4-phosphatase family, the tumour suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN), SAC1 domain phosphatases and myotubularins belong to the tyrosine protein phosphatases superfamily. They share the presence of a conserved cysteine residue in the consensus CX(5)RT/S. Another family consists of the inositol polyphosphate 5-phosphatase isoenzymes. The importance of these phosphoinositide phosphatases in cell regulation is illustrated by multiple examples of their implications in human diseases such as Lowe syndrome, X-linked myotubular myopathy, cancer, diabetes or bacterial infection.
Collapse
Affiliation(s)
- Daniel Blero
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070, Brussels, Belgium
| | | | | | | |
Collapse
|
75
|
McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EWT, Lehmann BD, Terrian DM, Basecke J, Stivala F, Libra M, Evangelisti C, Martelli AM. Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. ADVANCES IN ENZYME REGULATION 2007; 47:64-103. [PMID: 17382374 PMCID: PMC2696319 DOI: 10.1016/j.advenzreg.2006.12.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Séverin S, Gratacap MP, Lenain N, Alvarez L, Hollande E, Penninger JM, Gachet C, Plantavid M, Payrastre B. Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. J Clin Invest 2007; 117:944-52. [PMID: 17347685 PMCID: PMC1810573 DOI: 10.1172/jci29967] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 01/09/2007] [Indexed: 12/16/2022] Open
Abstract
Platelets are critical for normal hemostasis. Their deregulation can lead to bleeding or to arterial thrombosis, a primary cause of heart attack and ischemic stroke. Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a 5-phosphatase capable of dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate second messenger into phosphatidylinositol 3,4-bisphosphate. SHIP1 plays a critical role in regulating the level of these 2 lipids in platelets. Using SHIP1-deficient mice, we found that its loss affects platelet aggregation in response to several agonists with minor effects on fibrinogen binding and beta(3) integrin tyrosine phosphorylation. Accordingly, SHIP1-null mice showed defects in arterial thrombus formation in response to a localized laser-induced injury. Moreover, these mice had a prolonged tail bleeding time. Upon stimulation, SHIP1-deficient platelets showed large membrane extensions, abnormalities in the open canalicular system, and a dramatic decrease in close cell-cell contacts. Interestingly, SHIP1 appeared to be required for platelet contractility, thrombus organization, and fibrin clot retraction. These data indicate that SHIP1 is an important element of the platelet signaling machinery to support normal hemostasis. To our knowledge, this is the first report unraveling an important function of SHIP1 in the activation of hematopoietic cells, in contrast to its well-documented role in the negative regulation of lymphocytes.
Collapse
Affiliation(s)
- Sonia Séverin
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Marie-Pierre Gratacap
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Nadège Lenain
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Laetitia Alvarez
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Etienne Hollande
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef M. Penninger
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Gachet
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Monique Plantavid
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard Payrastre
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
77
|
Yoshizaki H, Mochizuki N, Gotoh Y, Matsuda M. Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol Biol Cell 2007; 18:119-28. [PMID: 17079732 PMCID: PMC1751317 DOI: 10.1091/mbc.e06-05-0467] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/16/2006] [Accepted: 10/19/2006] [Indexed: 11/11/2022] Open
Abstract
We studied the spatiotemporal regulation of Akt (also called protein kinase B), phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] by using probes based on the principle of fluorescence resonance energy transfer. On epidermal growth factor (EGF) stimulation, the amount of PtdIns(3,4,5)P3 was increased diffusely in the plasma membrane, whereas that of PtdIns(3,4)P2 was increased more in the nascent lamellipodia than in the plasma membrane of the central region. The distribution and time course of Akt activation were similar to that of increased PtdIns(3,4)P2 levels, which were most prominent in the nascent lamellipodia. Moreover, we found that upon EGF stimulation 3-phosphoinositide-dependent protein kinase-1 (PDK1) was also recruited to nascent lamellipodia in an Akt-dependent manner. Because PDK1 is known to activate Ral GTPase and because Ral is required for EGF-induced lamellipodial protrusion, we speculated that the PDK1-Akt complex may be indispensable for the induction of lamellipodia. In agreement with this idea, EGF-induced lamellipodia formation was promoted by the overexpression of Akt and inhibited by an Akt inhibitor or a Ral-binding domain of Sec5. These results identified the Akt-PDK1 complex as an upstream positive regulator of Ral GTPase in the induction of lamellipodial protrusion.
Collapse
Affiliation(s)
- Hisayoshi Yoshizaki
- *Department of Structural Analysis, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| | - Naoki Mochizuki
- *Department of Structural Analysis, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Yukiko Gotoh
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| |
Collapse
|
78
|
Artemenko Y, Gagnon A, Ibrahim S, Sorisky A. Regulation of PDGF-stimulated SHIP2 tyrosine phosphorylation and association with Shc in 3T3-L1 preadipocytes. J Cell Physiol 2007; 211:598-607. [PMID: 17219406 DOI: 10.1002/jcp.20965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In 3T3-L1 and human preadipocytes, insulin results in the isolated rise in phosphatidylinositol (PI)-3,4,5-P3, whereas PDGF produces PI(3,4)P2 in addition to PI(3,4,5)P3. SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) converts PI(3,4,5)P3 into PI(3,4)P2. PDGF, but not insulin, stimulates SHIP2 tyrosine phosphorylation and its association with Shc in human and 3T3-L1 preadipocytes. We now demonstrate that SHIP2 tyrosine phosphorylation and association with Shc in PDGF-treated 3T3-L1 preadipocytes was reduced by bisindolylmaleimide I (BisI), an inhibitor of conventional/novel protein kinase C (PKC). However, the production of PI(3,4)P2 and PI(3,4,5)P3 by PDGF was unaffected by BisI. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) was not sufficient to induce SHIP2 tyrosine phosphorylation. Furthermore, we identified threonine 958 (T958) as a novel PDGF-responsive SHIP2 phosphorylation site. Mutation of T958 to alanine reduced PDGF-stimulated SHIP2 tyrosine phosphorylation and association with Shc, but did not alter its anti-proliferative effect on preadipocytes. This study demonstrates that SHIP2 tyrosine phosphorylation and Shc association can be regulated by serine/threonine signaling pathways, either indirectly (via PKC), or directly (via T958). Interestingly, the anti-proliferative effect of SHIP2 T958A, as well as another SHIP2 mutant (Y986F, Y987F) that also displays defective tyrosine phosphorylation and Shc association, does not depend on these molecular events.
Collapse
Affiliation(s)
- Y Artemenko
- Ottawa Health Research Institute, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
79
|
Zhuang G, Hunter S, Hwang Y, Chen J. Regulation of EphA2 Receptor Endocytosis by SHIP2 Lipid Phosphatase via Phosphatidylinositol 3-Kinase-dependent Rac1 Activation. J Biol Chem 2007; 282:2683-94. [PMID: 17135240 DOI: 10.1074/jbc.m608509200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocytosis of Eph receptors is critical for a number of biological processes, including modulating axon growth cone collapse response and regulating cell surface levels of receptor in epithelial cells. In particular, ephrin-A ligand stimulation of tumor cells induces EphA2 receptor internalization and degradation, a process that has been explored as a means to reduce tumor malignancy. However, the mechanism and regulation of ligand-induced Eph receptor internalization are not well understood. Here we show that SHIP2 (Src homology 2 domain-containing phosphoinositide 5-phosphatase 2) is recruited to activated EphA2 via a heterotypic sterile alpha motif (SAM)-SAM domain interaction, leading to regulation of EphA2 internalization. Overexpression of SHIP2 inhibits EphA2 receptor endocytosis, whereas suppression of SHIP2 expression by small interfering RNA-mediated gene silencing promotes ligand-induced EphA2 internalization and degradation. SHIP2 regulates EphA2 endocytosis via phosphatidylinositol 3-kinase-dependent Rac1 activation. Phosphatidylinositol 3,4,5-trisphosphate levels are significantly elevated in SHIP2 knockdown cells, phosphatidylinositol 3-kinase inhibitor decreases phosphatidylinositol 3,4,5-trisphosphate levels and suppresses increased EphA2 endocytosis. Ephrin-A1 stimulation activates Rac1 GTPase, and the Rac1-GTP levels are further increased in SHIP2 knockdown cells. A dominant negative Rac1 GTPase effectively inhibited ephrin-A1-induced EphA2 endocytosis. Together, our findings provide evidence that recruitment of SHIP2 to EphA2 attenuates a positive signal to receptor endocytosis mediated by phosphatidylinositol 3-kinase and Rac1 GTPase.
Collapse
Affiliation(s)
- Guanglei Zhuang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
80
|
Pesesse X, Backers K, Moreau C, Zhang J, Blero D, Paternotte N, Erneux C. SHIP1/2 interaction with tyrosine phosphorylated peptides mimicking an immunoreceptor signalling motif. ACTA ACUST UNITED AC 2006; 46:142-53. [PMID: 16876851 DOI: 10.1016/j.advenzreg.2006.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Xavier Pesesse
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
81
|
Vandeput F, Backers K, Villeret V, Pesesse X, Erneux C. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity. Cell Signal 2006; 18:2193-9. [PMID: 16824732 DOI: 10.1016/j.cellsig.2006.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/11/2006] [Indexed: 11/30/2022]
Abstract
The SH2 domain containing inositol 5-phosphatase 2 (SHIP2) catalyzes the dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)) and participates in the insulin signalling pathway in vivo. In a comparative study of SHIP2 and the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), we found that their lipid phosphatase activity was influenced by the presence of vesicles of phosphatidylserine (PtdSer). SHIP2 PtdIns(3,4,5)P(3) 5-phosphatase activity was greatly stimulated in the presence of vesicles of PtdSer. This effect appears to be specific for di-C8 and di-C16 fatty acids of PtdIns(3,4,5)P(3) as substrate. It was not observed with inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)) another in vitro substrate of SHIP2, nor with Type I Ins(1,4,5)P(3)/Ins(1,3,4,5)P(4) 5-phosphatase activity, an enzyme which acts on soluble inositol phosphates. Vesicles of phosphatidylcholine (PtdCho) stimulated only twofold PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2. Both a minimal catalytic construct and the full length SHIP2 were sensitive to the stimulation by PtdSer. In contrast, PtdIns(3,4,5)P(3) 5-phosphatase activity of the Skeletal muscle and Kidney enriched Inositol Phosphatase (SKIP), another member of the mammaliam Type II phosphoinositide 5-phosphatases, was not sensitive to PtdSer. Our enzymatic data establish a specificity in the control of SHIP2 lipid phosphatase activity with PtdIns(3,4,5)P(3) as substrate which is depending on the fatty acid composition of the substrate.
Collapse
Affiliation(s)
- Fabrice Vandeput
- Interdisciplinary Research Institute (IRIBHM), Université libre de Bruxelles, Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
82
|
Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov 2006; 5:333-42. [PMID: 16582877 DOI: 10.1038/nrd2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The soaring incidence of type 2 diabetes has created pressure for new pharmaceutical strategies to treat this devastating disease. With much of the focus on overcoming insulin resistance, investigation has focused on finding ways to restore activation of the phosphatidylinositol 3'-kinase pathway, which is diminished in many patients with type 2 diabetes. Here we review the evidence that lipid phosphatases, specifically PTEN and SHIP2, attenuate this important insulin signalling pathway. Both in vivo and in vitro studies indicate their role in regulating whole-body energy metabolism, and possibly weight gain as well. The promise and challenges presented by this new class of drug discovery targets will also be discussed.
Collapse
Affiliation(s)
- Dan F Lazar
- Eli Lilly and Co., Endocrine Division, Lilly Research Laboratories, Indianapolis, Indianapolis 46285, USA.
| | | |
Collapse
|
83
|
Wu Y, Zu K, Warren MA, Wallace PK, Ip C. Delineating the mechanism by which selenium deactivates Akt in prostate cancer cells. Mol Cancer Ther 2006; 5:246-52. [PMID: 16505097 DOI: 10.1158/1535-7163.mct-05-0376] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The up-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is prevalent in many cancers. This phenomenon makes PI3K and Akt fruitful targets for cancer therapy and/or prevention because they are mediators of cell survival signaling. Although the suppression of phospho-Akt by selenium has been reported previously, little information is available on whether selenium modulates primarily the PI3K-phosphoinositide-dependent kinase 1 (PDK1) side of Akt phosphorylation or the phosphatase side of Akt dephosphorylation. The present study was aimed at addressing these questions in PC-3 prostate cancer cells which are phosphatase and tensin homologue-null. Our results showed that selenium decreased Akt phosphorylation at Thr308 (by PDK1) and Ser473 (by an unidentified kinase); the Thr308 site was more sensitive to selenium inhibition than the Ser473 site. The protein levels of PI3K and phospho-PDK1 were not affected by selenium. However, the activity of PI3K was reduced by 30% in selenium-treated cells, thus discouraging the recruitment of PDK1 and Akt to the membrane due to low phosphatidylinositol-3,4,5-trisphosphate formation by PI3K. Consistent with the above interpretation, the membrane localization of PDK1 and Akt was significantly diminished as shown by Western blotting. In the presence of a calcium chelator or a specific inhibitor of calcineurin (a calcium-dependent phosphatase), the suppressive effect of selenium on phospho-Akt(Ser473) was greatly reduced. The finding suggests that selenium-mediated dephosphorylation of Akt via calcineurin is likely to be an additional mechanism in regulating the status of phospho-Akt.
Collapse
Affiliation(s)
- Yue Wu
- Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
84
|
Hodgson JG, Malek T, Bornstein S, Hariono S, Ginzinger DG, Muller WJ, Gray JW. Copy number aberrations in mouse breast tumors reveal loci and genes important in tumorigenic receptor tyrosine kinase signaling. Cancer Res 2005; 65:9695-704. [PMID: 16266989 DOI: 10.1158/0008-5472.can-05-0755] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptor tyrosine kinase (RTK) signaling plays a key role in the development of breast cancer. Defining the genes and pathways in the RTK signaling network that are important regulators of tumorigenesis in vivo will unveil potential candidates for targeted therapeutics. To this end, we used microarray comparative genomic hybridization to identify and compare copy number aberrations in five mouse models of breast cancer induced by wild-type and mutated forms of oncogenic ErbB2 or the polyomavirus middle T antigen (PyMT). We observed distinct genomic alterations among the various models, including recurrent chromosome 11 amplifications and chromosome 4 deletions, syntenic with human 17q21-25 and 1p35-36, respectively. Expression of oncogenic Erbb2 (NeuNT) under control of the endogenous Erbb2 promoter results in frequent (85%) amplification at the Erbb2 locus with striking structural similarity to the human amplicon, resulting in overexpression of at least two of the genes, Erbb2 and Grb7. Chromosome 11 amplicons distal to Erbb2 arise in a model (DB) overexpressing a mutant variant of PyMT (Y315/322F) unable to activate phosphatidylinositol 3-kinase. These amplicons are not observed in DB hyperplasias or in tumors overexpressing wild-type PyMT and result in overexpression of Grb2 and Itgb4. Distal chromosome 4 deletions occur in a significantly higher proportion of Erbb2 than PyMT tumors and encompass 14-3-3sigma (Stratifin), which is expressed at low or undetectable levels in the majority of NeuNT tumors. Our studies highlight loci and genes important in the regulation of tumorigenic RTK signaling in mammary epithelial cells in vivo.
Collapse
Affiliation(s)
- J Graeme Hodgson
- Department of Laboratory Medicine and Comprehensive Cancer Center, University of California-San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
85
|
Paternotte N, Zhang J, Vandenbroere I, Backers K, Blero D, Kioka N, Vanderwinden JM, Pirson I, Erneux C. SHIP2 interaction with the cytoskeletal protein Vinexin. FEBS J 2005; 272:6052-66. [PMID: 16302969 DOI: 10.1111/j.1742-4658.2005.04996.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The src homology 2 (SH2) domain-containing inositol 5-phosphatase 2 (SHIP2) catalyses the dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] to phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. We report the identification of the cytoskeletal protein Vinexin as a protein interacting with SHIP2. This was achieved by yeast two-hybrid screening using the C-terminal region of SHIP2 as bait. Vinexin has previously been identified as a vinculin-binding protein that plays a key role in cell spreading and cytoskeletal organization. The interaction between SHIP2 and Vinexin was confirmed in lysates of both COS-7 cells and mouse embryonic fibroblasts (MEF). The C-terminus was involved in the interaction, as shown by the transfection of a truncated C-terminus mutant of SHIP2. In addition, we showed the colocalization between Vinexin alpha and SHIP2 at the periphery of transfected COS-7 cells. When added in vitro to SHIP2, Vinexin did not affect the PtdIns(3,4,5)P3 5-phosphatase activity of SHIP2. Enhanced cell adhesion to collagen-I-coated dishes was shown upon transfection of either SHIP2 or Vinexin to COS-7 cells. This effect was no longer observed with either a catalytic mutant or the C-terminus mutant of SHIP2. It also appears SHIP2 specific; this was not seen with SHIP1. Adhesion to the same matrix was decreased in SHIP2-/- MEF cells compared with MEF+/+ cells. Our data suggest that SHIP2 interaction with Vinexin promotes the localization of SHIP2 at the periphery of the cells leaving its catalytic site intact. The complex formation between Vinexin and SHIP2 may increase cellular adhesion. The data reinforce the concept that SHIP2 is active both as a PtdIns(3,4,5)P3 5-phosphatase and as a modulator of focal contact formation.
Collapse
Affiliation(s)
- Nathalie Paternotte
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ai J, Maturu A, Johnson W, Wang Y, Marsh CB, Tridandapani S. The inositol phosphatase SHIP-2 down-regulates FcgammaR-mediated phagocytosis in murine macrophages independently of SHIP-1. Blood 2005; 107:813-20. [PMID: 16179375 PMCID: PMC1895625 DOI: 10.1182/blood-2005-05-1841] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
FcgammaR-mediated phagocytosis of IgG-coated particles is a complex process involving the activation of multiple signaling enzymes and is regulated by the inositol phosphatases PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP-1 (Src homology [SH2] domain-containing inositol phosphatase). In a recent study we have demonstrated that SHIP-2, an inositol phosphatase with high-level homology to SHIP-1, is involved in FcgammaR signaling. However, it is not known whether SHIP-2 plays a role in modulating phagocytosis. In this study we have analyzed the role of SHIP-2 in FcgammaR-mediated phagocytosis using independent cell models that allow for manipulation of SHIP-2 function without influencing the highly homologous SHIP-1. We present evidence that SHIP-2 translocates to the site of phagocytosis and down-regulates FcgammaR-mediated phagocytosis. Our data indicate that SHIP-2 must contain both the N-terminal SH2 domain and the C-terminal proline-rich domain to mediate its inhibitory effect. The effect of SHIP-2 is independent of SHIP-1, as overexpression of dominant-negative SHIP-2 in SHIP-1-deficient primary macrophages resulted in enhanced phagocytic efficiency. Likewise, specific knockdown of SHIP-2 expression using siRNA resulted in enhanced phagocytosis. Finally, analysis of the molecular mechanism of SHIP-2 down-regulation of phagocytosis revealed that SHIP-2 down-regulates upstream activation of Rac. Thus, we conclude that SHIP-2 is a novel negative regulator of FcgammaR-mediated phagocytosis independent of SHIP-1.
Collapse
Affiliation(s)
- Jing Ai
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, USA
| | | | | | | | | | | |
Collapse
|
87
|
Ishida S, Funakoshi A, Miyasaka K, Iguchi H, Takiguchi S. Sp-family of transcription factors regulates human SHIP2 gene expression. Gene 2005; 348:135-41. [PMID: 15777721 DOI: 10.1016/j.gene.2004.12.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 12/24/2004] [Accepted: 12/27/2004] [Indexed: 10/25/2022]
Abstract
We have characterized the regulation of human SH-2 containing inositol 5'-phosphatase 2 (SHIP2) gene expression. First, the transcription initiation sites and the sequence of the 5' upstream region of human SHIP2 gene were elucidated. Next, the minimal promoter of the human SHIP2 gene was identified by reporter gene assays in HL60 cells and differentiated human subcutaneous white adipocytes. An Sp1 element proximal to the transcription initiation site was indispensable for full promoter activity and bound specifically by Sp1 and Sp3 proteins. These findings suggest that human SHIP2 gene expression, like other housekeeping genes, is controlled by the Sp-family of transcription factors.
Collapse
Affiliation(s)
- Satoru Ishida
- Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | | | | | | | | |
Collapse
|
88
|
Blero D, Zhang J, Pesesse X, Payrastre B, Dumont JE, Schurmans S, Erneux C. Phosphatidylinositol 3,4,5-trisphosphate modulation in SHIP2-deficient mouse embryonic fibroblasts. FEBS J 2005; 272:2512-22. [PMID: 15885100 DOI: 10.1111/j.1742-4658.2005.04672.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SHIP2, the ubiquitous SH2 domain containing inositol 5-phosphatase, includes a series of protein interacting domains and has the ability to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]in vitro. The present study, which was undertaken to evaluate the impact of SHIP2 on PtdIns(3,4,5)P(3) levels, was performed in a mouse embryonic fibroblast (MEF) model using SHIP2 deficient (-/-) MEF cells derived from knockout mice. PtdIns(3,4,5)P(3) was upregulated in serum stimulated -/- MEF cells as compared to +/+ MEF cells. Although the absence of SHIP2 had no effect on basal PtdIns(3,4,5)P(3) levels, we show here that this lipid was significantly upregulated in SHIP2 -/- cells but only after short-term (i.e. 5-10 min) incubation with serum. The difference in PtdIns(3,4,5)P(3) levels in heterozygous fibroblast cells was intermediate between the +/+ and the -/- cells. In our model, insulin-like growth factor-1 stimulation did not show this upregulation. Serum stimulated phosphoinositide 3-kinase (PI 3-kinase) activity appeared to be comparable between +/+ and -/- cells. Moreover, protein kinase B, but not mitogen activated protein kinase activity, was also potentiated in SHIP2 deficient cells stimulated by serum. The upregulation of protein kinase B activity in serum stimulated cells was totally reversed in the presence of the PI 3-kinase inhibitor LY-294002, in both +/+ and -/- cells. Altogether, these data establish a link between SHIP2 and the acute control of PtdIns(3,4,5)P(3) levels in intact cells.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Culture Media/chemistry
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Fibroblasts/cytology
- Fibroblasts/physiology
- Growth Substances/metabolism
- Inositol Polyphosphate 5-Phosphatases
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol Phosphates/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Daniel Blero
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
89
|
Hang Y, Zheng YC, Cao Y, Li QS, Sui YJ. Suppression of gastric cancer growth by adenovirus-mediated transfer of the PTEN gene. World J Gastroenterol 2005; 11:2224-9. [PMID: 15818730 PMCID: PMC4305803 DOI: 10.3748/wjg.v11.i15.2224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the tumor-suppressive effect of the phosphatase and tensin homologue deleted from chromosome (PTEN) in human gastric cancer cells that were wild type for PTEN.
METHODS: Adenoviruses expressing PTEN or luciferase as a control were introduced into gastric cancer cells. The effect of exogenous PTEN gene on the growth and apoptosis of gastric cancer cells that are wtPTEN were examined in vitro and in vivo.
RESULTS: Adenovirus-mediated transfer of PTEN (Ad-PTEN) suppressed cell growth and induced apoptosis significantly in gastric cancer cells (MGC-803, SGC-7901) carrying wtPTEN in comparison with that in normal gastric epithelial cells (GES-1) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase and mitogen-activated protein kinase and cell-cycle arrest at the G2/M phase but not at the G1 phase. Furthermore, treatment of human gastric tumor xenografts (MGC-803, SGC-7901) with Ad-PTEN resulted in a significant (P<0.01) suppression of tumor growth.
CONCLUSION: These results indicate a significant tumor-suppressive effect of Ad-PTEN against human gastric cancer cells. Thus, Ad-PTEN may be used as a potential therapeutic strategy for treatment of gastric cancers.
Collapse
Affiliation(s)
- Ying Hang
- Central Laboratory, The Second Hospital of Jilin University, 18 Zi Qiang Street, Chuangchun 130041, Jilin Province, China.
| | | | | | | | | |
Collapse
|
90
|
O'Shea C, Klupsch K, Choi S, Bagus B, Soria C, Shen J, McCormick F, Stokoe D. Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. EMBO J 2005; 24:1211-21. [PMID: 15775987 PMCID: PMC556401 DOI: 10.1038/sj.emboj.7600597] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 02/03/2005] [Indexed: 01/25/2023] Open
Abstract
Like tumor cells, DNA viruses have had to evolve mechanisms that uncouple cellular replication from the many intra- and extracellular factors that normally control it. Here we show that adenovirus encodes two proteins that activate the mammalian target of rapamycin (mTOR) for viral replication, even under nutrient/growth factor-limiting conditions. E4-ORF1 mimics growth factor signaling by activating PI3-kinase, resulting in increased Rheb.GTP loading and mTOR activation. E4-ORF4 is redundant with glucose in stimulating mTOR, does not affect Rheb.GTP levels and is the major mechanism whereby adenovirus activates mTOR in quiescent primary cells. We demonstrate that mTOR is activated through a mechanism that is dependent on the E4-ORF4 protein phosphatase 2A-binding domain. We also show that mTOR activation is required for efficient S-phase entry, independently of E2F activation, in adenovirus-infected quiescent primary cells. These data reveal that adenovirus has evolved proteins that activate the mTOR pathway, irrespective of the cellular microenvironment, and which play a requisite role in viral replication.
Collapse
Affiliation(s)
- Clodagh O'Shea
- Cancer Research Institute, University of California, San Francisco, CA, USA
- UCSF Cancer Center, 2340 Sutter Street, Box 0128, San Francisco, CA 94115, USA. E-mail:
| | - Kristina Klupsch
- Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Serah Choi
- Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Bridget Bagus
- Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Conrado Soria
- Cancer Research Institute, University of California, San Francisco, CA, USA
| | | | - Frank McCormick
- Cancer Research Institute, University of California, San Francisco, CA, USA
| | - David Stokoe
- Cancer Research Institute, University of California, San Francisco, CA, USA
- UCSF Cancer Center, 2340 Sutter Street, Box 0128, San Francisco, CA 94115, USA. Tel.: +1 415 502 2598; Fax: +1 415 502 3179; E-mail:
| |
Collapse
|
91
|
Koch A, Mancini A, El Bounkari O, Tamura T. The SH2-domian-containing inositol 5-phosphatase (SHIP)-2 binds to c-Met directly via tyrosine residue 1356 and involves hepatocyte growth factor (HGF)-induced lamellipodium formation, cell scattering and cell spreading. Oncogene 2005; 24:3436-47. [PMID: 15735664 DOI: 10.1038/sj.onc.1208558] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, evidence has been accumulating that inositol and phosphatidylinositol polyphosphate play important roles in a variety of signal transduction systems including membrane traffic, actin cytoskeleton rearrangement and cell motility. In this paper, we show for the first time that the SH2-domain-containing inositol 5-phosphatase (SHIP)-2 binds directly to the hepatocyte growth factor (HGF/SF) receptor, c-Met, via phosphotyrosine 1356. HGF induces the breakdown of cell junctions and the dispersion of colonies of epithelial cells including MDCK cells. Whereas only few lamellipodia are observed in MDCK cells 2 min after stimulation with HGF, both SHIP-2- and SHIP-1-overexpressing cells form large, broad lamellipodia. The number of lamellipodia is 2-4-fold greater than that of mock-transfected MDCK cells in the same time period and SHIP is found to colocalize with actin at the leading edge. Furthermore, overexpression of a catalytic inactive mutant of SHIP-2 suppresses HGF-potentiated cell scattering and cell spreading, although these mutant-expressing cells form enhanced number of lamellipodia 2 min after HGF stimulation. Interestingly, cells expressing a mutant lacking the proline-rich domain of SHIP-2 at the C-terminal form few lamellipodia, but still spread and scatter upon stimulation with HGF at a reduced rate. These data suggest that phosphatase activity is required for HGF-mediated cell spreading and scattering but not for alteration of lamellipodium formation, while the proline-rich region influences lamellipodium formation. Furthermore, treatment with 10 microM of phosphatidylinositol 3 (PI3) kinase inhibitor, LY294002, abrogates HGF-induced cell scattering of SHIP-2-overexpressing cells but not parental HEK293 cells, suggesting that a balance between PI3 kinase and SHIP is important for cell motility.
Collapse
Affiliation(s)
- Alexandra Koch
- Institut für Biochemie, Medizinische Hochschule Hannover, OE 4310, Carl-Neuberg-Str. 1, Hannover D-30623, Germany
| | | | | | | |
Collapse
|
92
|
Prasad NK, Decker SJ. SH2-containing 5'-inositol phosphatase, SHIP2, regulates cytoskeleton organization and ligand-dependent down-regulation of the epidermal growth factor receptor. J Biol Chem 2005; 280:13129-36. [PMID: 15668240 DOI: 10.1074/jbc.m410289200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phosphoinositide lipid second messengers are integral components of signaling pathways mediated by insulin, growth factors, and integrins. SHIP2 dephosphorylates phosphatidylinositol 3,4,5-trisphosphate generated by the activated phosphatidylinositol 3'-kinase. SHIP2 down-regulates insulin signaling and is present at higher levels in diabetes and obesity. SHIP2 associates with p130Cas and filamin, regulators of cell adhesion/migration and cytoskeleton, influencing cell adhesion/spreading. Type I collagen specifically induces Src-mediated tyrosine phosphorylation of SHIP2. To better understand SHIP2 function, we employed RNA interference (RNAi) approach to silence the expression of the endogenous SHIP2 in HeLa cells. Suppression of SHIP2 levels caused severe F-actin deformities characterized by weak cortical actin and peripheral actin spikes. SHIP2 RNAi cells displayed cell-spreading defects involving a notable absence of focal contact structures and the formation of multiple slender membrane protrusions capped by actin spikes. Furthermore, decreased SHIP2 levels altered distribution of early endocytic antigen 1 (EEA1)-positive endocytic vesicles and of vesicles containing internalized epidermal growth factor (EGF) and transferrin. EGF treatment of SHIP2 RNAi cells led to the following: enhanced EGF receptor (EGFR) degradation; increased EGFR ubiquitination; and increased association of EGFR with c-Cbl ubiquitin ligase. Taken together, these experiments demonstrate that SHIP2 functions in the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation. Accordingly, we suggest that, in HeLa cells, SHIP2 plays a distinct role in signaling pathways mediated by integrins and growth factor receptors.
Collapse
Affiliation(s)
- Nagendra K Prasad
- Department of Basic Medical Sciences and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
93
|
Wang Y, Keogh RJ, Hunter MG, Mitchell CA, Frey RS, Javaid K, Malik AB, Schurmans S, Tridandapani S, Marsh CB. SHIP2 Is Recruited to the Cell Membrane upon Macrophage Colony-Stimulating Factor (M-CSF) Stimulation and Regulates M-CSF-Induced Signaling. THE JOURNAL OF IMMUNOLOGY 2004; 173:6820-30. [PMID: 15557176 DOI: 10.4049/jimmunol.173.11.6820] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Src homology 2-containing inositol phosphatase SHIP1 functions in hemopoietic cells to limit activation events mediated by PI3K products, including Akt activation and cell survival. In contrast to the limited cellular expression of SHIP1, the related isoform SHIP2, is widely expressed in both parenchymal and hemopoietic cells. The goal of this study was to determine how SHIP2 functions to regulate M-CSF signaling. We report that 1) SHIP2 was tyrosine-phosphorylated in M-CSF-stimulated human alveolar macrophages, human THP-1 cells, murine macrophages, and the murine macrophage cell line RAW264; 2) SHIP2 associated with the M-CSF receptor after M-CSF stimulation; and 3) SHIP2 associated with the actin-binding protein filamin and localization to the cell membrane, requiring the proline-rich domain, but not on the Src homology 2 domain of SHIP2. Analyzing the function of SHIP2 in M-CSF-stimulated cells by expressing either wild-type SHIP2 or an Src homology 2 domain mutant of SHIP2 reduced Akt activation in response to M-CSF stimulation. In contrast, the expression of a catalytically deficient mutant of SHIP2 or the proline-rich domain of SHIP2 enhanced Akt activation. Similarly, the expression of wild-type SHIP2 inhibited NF-kappaB-mediated gene transcription. Finally, fetal liver-derived macrophages from SHIP2 gene knockout mice enhanced activation of Akt in response to M-CSF treatment. These data suggest a novel regulatory role for SHIP2 in M-CSF-stimulated myeloid cells.
Collapse
Affiliation(s)
- Yijie Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Brandts CH, Bilanges B, Hare G, McCormick F, Stokoe D. Phosphorylation-independent stabilization of p27kip1 by the phosphoinositide 3-kinase pathway in glioblastoma cells. J Biol Chem 2004; 280:2012-9. [PMID: 15542603 DOI: 10.1074/jbc.m408348200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The PTEN tumor suppressor gene is a frequent target of somatic mutation, particularly in glioblastoma multiform and prostate cancer. The expression of PTEN in PTEN-mutant glioblastoma cells leads to a cell cycle arrest in G(0)/G(1) that is mediated at least partially by increased p27(kip1) levels. Here we show that p27(kip1) is not regulated by transcriptional control but that p27(kip1) protein shows increased stability after inhibition of the phosphoinositide (PI) 3-kinase pathway. Because p27(kip1) protein stability is known to be regulated by phosphorylation, we have examined modifications in the phosphorylation pattern after PI 3-kinase inhibition. Biochemical evidence suggests that p27(kip1) is phosphorylated on several serine residues, including Ser-10 and Ser-178, but that phosphorylation is unaltered by PI 3-kinase activity. This is further confirmed by the inducible expression of p27(kip1) phosphorylation site mutants, suggesting that p27(kip1) is destabilized in a phosphorylation-independent manner by the PI 3-kinase pathway at the G(1)/S transition.
Collapse
Affiliation(s)
- Christian H Brandts
- Cancer Research Institute, University of California, San Francisco, California 94115-0128, USA
| | | | | | | | | |
Collapse
|
95
|
Sheikh SSE, Domin J, Abel P, Stamp G, Lalani EN. Phosphorylation of both EGFR and ErbB2 is a reliable predictor of prostate cancer cell proliferation in response to EGF. Neoplasia 2004; 6:846-53. [PMID: 15720812 PMCID: PMC1531689 DOI: 10.1593/neo.04379] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 06/08/2004] [Accepted: 06/18/2004] [Indexed: 01/08/2023]
Abstract
Despite multiple reports of overexpression in prostate cancer (PC), the reliance of PC cells on activated epidermal growth factor receptor (EGFR) and its downstream signaling to phosphoinositide 3'-kinase/Akt (PI3K/Akt/PTEN) and/or mitogen-activated protein kinase (MAPK/ERK) pathways has not been fully elucidated. In this study, we compared the role of EGF-mediated signaling in nonmalignant (BPH-1, PNT1A, and PNT1B) and PC cell lines (DU145, PC3, LNCaP, and CWR22Rv1). EGF-induced proliferation was observed in all EGFR-expressing PC cells except PC3, indicating that EGFR expression does not unequivocally trigger proliferation following EGF stimulation. ErbB2 recruitment potentiated EGF-induced signals and was associated with the most pronounced effects of EGF despite low EGFR expression. In this way, the sum of EGFR and ErbB2 receptor phosphorylation proved to be a more sensitive indicator of EGF-induced proliferation than quantification of the expression of either receptor alone. Both Akt and ERK were rapidly phosphorylated in response to EGF, with ERK phosphorylation being the weakest in PC3 cells. Extrapolation of these findings to clinical PC suggests that assessment of phosphorylated EGFR + ErbB2 together could serve as a marker for sensitivity to anti-EGFR-targeted therapies.
Collapse
Affiliation(s)
- Soha Salama El Sheikh
- Department of Histopathology Imperial College, Hammersmith Hospital Campus, Ducane Road, London W12 0NN, UK
| | - Jan Domin
- Department of Renal Medicine Imperial College Hammersmith Hospital Campus, Ducane Road, London W12 0NN, UK
| | - Paul Abel
- Department of Surgery Imperial College, Hammersmith Hospital Campus, Ducane Road, London W12 0NN, UK
| | - Gordon Stamp
- Department of Histopathology Imperial College, Hammersmith Hospital Campus, Ducane Road, London W12 0NN, UK
| | - El-Nasir Lalani
- Department of Histopathology Imperial College, Hammersmith Hospital Campus, Ducane Road, London W12 0NN, UK
| |
Collapse
|
96
|
Saito Y, Gopalan B, Mhashilkar AM, Roth JA, Chada S, Zumstein L, Ramesh R. Adenovirus-mediated PTEN treatment combined with caffeine produces a synergistic therapeutic effect in colorectal cancer cells. Cancer Gene Ther 2004; 10:803-13. [PMID: 14605666 DOI: 10.1038/sj.cgt.7700644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 (PTEN) gene is a negative regulator of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt/PKB) signaling pathway. Overexpression of PTEN in cancer cells results in cell-cycle arrest and cell death through inhibition of PI3K. Caffeine, a xanthine analogue, is well known to enhance the cytocidal and growth-inhibitory effects of DNA-damaging agents such as radiation, UV light, and anticancer agents on tumor cells by abrogating DNA-damage checkpoints through inhibition of ataxia-telangiectasia-mutated (ATM), and ATM and Rad3-related (ATR) kinase activity. In this study, we demonstrate that treatment with a combination of adenovirus-mediated transfer of PTEN (Ad-PTEN) and caffeine synergistically suppressed cell growth and induced apoptosis in colorectal cancer cells but not in normal colorectal fibroblast cells. This synergistic effect was induced through abrogation of G(2)/M arrest, downregulation of the Akt pathway, and modulation of the p44/42MAPK pathway. Thus, combined treatment with Ad-PTEN and caffeine is a potential therapy for colorectal cancer.
Collapse
Affiliation(s)
- Yuji Saito
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Schmid AC, Byrne RD, Vilar R, Woscholski R. Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett 2004; 566:35-8. [PMID: 15147864 DOI: 10.1016/j.febslet.2004.03.102] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 03/30/2004] [Indexed: 11/22/2022]
Abstract
The tumour suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) shares homology with protein tyrosine phosphatases (PTPases). Similarly, bisperoxovanadium (bpV) molecules that are well-established PTPase inhibitors were shown to inhibit PTEN, but at up to 100-fold lower concentrations. The preference and potency of the bpVs towards PTEN was validated in vivo as demonstrated by: (i) an increase of Ser473 phosphorylation of protein kinase B (PKB) at similar low nanomolar doses, (ii) the lack of any effect on the PKB phosphorylation in the PTEN negative cell line UM-UC-3, (iii) the ability to rescue Ly294002-induced phosphoinositide 3-kinase inhibition and (iv) a lack of tyrosine phosphorylation at low nanomolar doses.
Collapse
Affiliation(s)
- Annette C Schmid
- Department of Biological Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
98
|
Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18:189-218. [PMID: 14737178 DOI: 10.1038/sj.leu.2403241] [Citation(s) in RCA: 524] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.
Collapse
Affiliation(s)
- L S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | |
Collapse
|
99
|
Backers K, Blero D, Paternotte N, Zhang J, Erneux C. The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. ADVANCES IN ENZYME REGULATION 2004; 43:15-28. [PMID: 12791379 DOI: 10.1016/s0065-2571(02)00043-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Katrien Backers
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
100
|
Knobbe CB, Reifenberger G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3'-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 2004; 13:507-18. [PMID: 14655756 PMCID: PMC8095764 DOI: 10.1111/j.1750-3639.2003.tb00481.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Glioblastomas frequently carry mutations in the PTEN tumor suppressor gene on 10q23.3. The tumor suppressor properties of Pten are closely related to its inhibitory effect on the phosphatidyl-inositol-3'-kinase (Pi3k)-dependent activation of protein kinase B (Akt) signalling. Here, we report on the analysis of 17 genes related to the Pi3k/Akt signalling pathway for genetic alteration and aberrant expression in a series of 103 glioblastomas. Mutation, homozygous deletion or loss of expression of PTEN was detected in 32% of the tumors. In contrast, we did not find any aberrations in the inositol polyphosphate phosphatase like-1 gene (INPPL1), whose gene product may also counteract Pi3k-dependent Akt activation. Analysis of genes encoding proteins that may activate the pathway upstream of Pi3k revealed variable fractions of tumors with EGFR amplification (31%), PDGFRA amplification (8%), and IRS2 amplification (2%). The protein tyrosine kinase 2 (PTK2/FAK1) gene was neither amplified nor overexpressed at the mRNA level. Investigation of three genes encoding catalytic subunits of Pi3k (PIK3CA, PIK3CD, and PIK3C2B) revealed amplification of PIK3C2B (1q32) in 6 tumors (6%). Overexpression of PIK3C2B mRNA was detected in 4 of these cases. PIK3CD (1p36.2) and PIK3CA (3q26.3) were not amplified but PIK3CD mRNA was overexpressed in 6 tumors (6%). Amplification and overexpression of AKT1 was detected in a single case of gliosarcoma. The IRS1, PIK3R1, PIK3R2, AKT2, AKT3, FRAP1, and RPS6KB1 genes were neither amplified nor overexpressed in any of the tumors. Taken together, our data indicate that different genes related to the Pi3k/Akt signalling pathway may be aberrant in glioblastomas.
Collapse
Affiliation(s)
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich‐Heine‐University, Düsseldorf, Germany
| |
Collapse
|