51
|
Blanié S, Mortier J, Delverdier M, Bertagnoli S, Camus-Bouclainville C. M148R and M149R are two virulence factors for myxoma virus pathogenesis in the European rabbit. Vet Res 2008; 40:11. [PMID: 19019281 PMCID: PMC2695013 DOI: 10.1051/vetres:2008049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/13/2008] [Indexed: 11/24/2022] Open
Abstract
Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). MYXV has a linear double-stranded DNA genome that encodes several factors important for evasion from the host immune system. Among them, four ankyrin (ANK) repeat proteins were identified: M148R, M149R, M150R and M-T5. To date, only M150R and M-T5 were studied and characterized as critical virulence factors. This article presents the first characterization of M148R and M149R. Green Fluorescent Protein (GFP) fusions allowed us to localize them in a viral context. Whereas M149R is only cytoplasmic, interestingly, M148R is in part located in the nucleolus, a unique feature for an ANK repeat poxviral protein. In order to evaluate their implication in viral pathogenicity, targeted M148R, M149R, or both deletions were constructed in the wild type T1 strain of myxoma virus. In vitro infection of rabbit and primate cultured cells as well as primary rabbit cells allowed us to conclude that M148R and M149R are not likely to be implicated in cell tropism or host range functions. However, in vivo experiments revealed that they are virulence factors since after infection of European rabbits with mutant viruses, a delay in the onset of clinical signs, an increase of survival time and a dramatic decrease in mortality rate were observed. Moreover, histological analysis suggests that M148R plays a role in the subversion of host inflammatory response by MYXV.
Collapse
|
52
|
Wu C, Barbezange C, McConnell I, Blacklaws BA. Mapping and characterization of visna/maedi virus cytotoxic T-lymphocyte epitopes. J Gen Virol 2008; 89:2586-2596. [PMID: 18796728 DOI: 10.1099/vir.0.2008/002634-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8(+) cytotoxic T-lymphocyte (CTL) responses have been shown to be important in the control of human and simian immunodeficiency virus infections. Infection of sheep with visna/maedi virus (VISNA), a related lentivirus, induces specific CD8(+) CTL in vivo, but the specific viral proteins recognized are not known. To determine which VISNA antigens were recognized by sheep CTL, we used recombinant vaccinia viruses expressing the different genes of VISNA: in six sheep (Finnish LandracexDorset crosses, Friesland and Lleyn breeds) all VISNA proteins were recognized except TAT. Two sheep, shown to share major histocompatibility complex (MHC) class I alleles, recognized POL and were used to map the epitope. The pol gene is 3267 bp long encoding 1088 aa. By using recombinant vaccinia viruses a central portion (nt 1609-2176, aa 537-725) was found to contain the CTL epitope and this was mapped with synthetic peptides to a 25 aa region (aa 612-636). When smaller peptides were used, a cluster of epitopes was detected: at least three epitopes were present, at positions 612-623: DSRYAFEFMIRN; 620-631: MIRNWDEEVIKN; and 625-635: EEVIKNPIQAR. A DNA-prime-modified vaccinia virus Ankara (MVA)-boost strategy was employed to immunize four sheep shown to share MHC class I allele(s) with the sheep above. Specific CTL activity developed in all the immunized sheep within 3 weeks of the final MVA boost although half the sheep showed evidence of specific reactivity after the DNA-prime immunizations. This is the first report, to our knowledge, of induction of CTL by a DNA-prime-boost method in VISNA infection.
Collapse
Affiliation(s)
- Changxin Wu
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cyril Barbezange
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ian McConnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
53
|
Lee LYH, Ha DLA, Simmons C, de Jong MD, Chau NVV, Schumacher R, Peng YC, McMichael AJ, Farrar JJ, Smith GL, Townsend AR, Askonas BA, Rowland-Jones S, Dong T. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest 2008; 118:3478-90. [PMID: 18802496 PMCID: PMC2542885 DOI: 10.1172/jci32460] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to stimulate pre-existing memory T cells established by seasonal human influenza A infection that could cross-react with H5N1 by targeting highly conserved internal proteins. To determine how common cross-reactive T cells are, we performed a comprehensive ex vivo analysis of cross-reactive CD4+ and CD8+ memory T cell responses to overlapping peptides spanning the full proteome of influenza A/Viet Nam/CL26/2005 (H5N1) and influenza A/New York/232/2004 (H3N2) in healthy individuals from the United Kingdom and Viet Nam. Memory CD4+ and CD8+ T cells isolated from the majority of participants exhibited human influenza-specific responses and showed cross-recognition of at least one H5N1 internal protein. Participant CD4+ and CD8+ T cells recognized multiple synthesized influenza peptides, including peptides from the H5N1 strain. Matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of cross-recognition. In addition, cross-reactive CD4+ and CD8+ T cells recognized target cells infected with recombinant vaccinia viruses expressing either H5N1 M1 or NP. Thus, vaccine formulas inducing heterosubtypic T cell-mediated immunity may confer broad protection against avian and human influenza A viruses.
Collapse
Affiliation(s)
- Laurel Yong-Hwa Lee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Do Lien Anh Ha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cameron Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Menno D. de Jong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Nguyen Van Vinh Chau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Reto Schumacher
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yan Chun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J. McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeremy J. Farrar
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Geoffrey L. Smith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alain R.M. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Brigitte A. Askonas
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Tao Dong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
54
|
Yates NL, Yammani RD, Alexander-Miller MA. Dose-dependent lymphocyte apoptosis following respiratory infection with Vaccinia virus. Virus Res 2008; 137:198-205. [PMID: 18692098 DOI: 10.1016/j.virusres.2008.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 12/20/2022]
Abstract
Recently there has been renewed interest in poxvirus pathogenesis, especially with regard to infection via the respiratory route. Members of this family are known to produce a number of proteins that have the potential to negatively regulate the immune response. Vaccinia virus (VACV) has been used for a number of years as a model for the study of poxvirus infection. We have previously reported a dose-dependent decrease in virus-specific CD8(+) T cells following respiratory infection with VACV. In this study we have evaluated whether more generalized immunosuppressive effects are also observed following infection with a high dose of VACV. We have found that mice infected intranasally with a high, but non-lethal, dose of VACV exhibited significant weight loss as well as decreased thymocyte number. Although these mice mounted an immune response, there was a significant increase observed in bystander T and B cell apoptosis. While increased death was apparent in both naïve and activated/memory T cells populations, naïve T cells appeared more sensitive to this effect. These findings are important for our understanding of poxvirus regulation of the immune response and extends our previous understanding of VACV-mediated immunosuppression to include generalized apoptosis in the naïve and activated/memory repertoires.
Collapse
Affiliation(s)
- Nicole L Yates
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | | | | |
Collapse
|
55
|
Earl PL, Moss B, Wyatt LS, Carroll MW. Generation of recombinant vaccinia viruses. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2008; Chapter 5:Unit5.13. [PMID: 18429179 DOI: 10.1002/0471140864.ps0513s13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit first describes how to infect cells with vaccinia virus and then transfect them with a plasmid-transfer vector to generate a recombinant virus. Methods are also presented for purifying vaccinia virus and for isolating viral DNA, which can be used during transfection. Also presented are selection and screening methods used to isolate recombinant viruses and a method for the amplification of recombinant viruses. Finally, a method for live immunostaining that has been used primarily for detection of recombinant modified vaccinia virus Ankara (MVA) is presented.
Collapse
Affiliation(s)
- P L Earl
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
56
|
Dondji B, Deak E, Goldsmith-Pestana K, Perez-Jimenez E, Esteban M, Miyake S, Yamamura T, McMahon-Pratt D. Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania. Eur J Immunol 2008; 38:706-19. [PMID: 18286565 DOI: 10.1002/eji.200737660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using alpha-galactosyl-ceramide (alphaGalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving alphaGalCer + DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during alphaGalCer + DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4(+) and CD8(+) T cells producing granzyme and IFN-gamma, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4(+) T cells was significantly increased in mice primed with DNAp36 together with alphaGalCer. Notably 5 months after boosting, mice vaccinated with DNAp36 + alphaGalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using alphaGalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells).
Collapse
Affiliation(s)
- Blaise Dondji
- Department of Epidemiology & Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Johnson MC, Damon IK, Karem KL. A rapid, high-throughput vaccinia virus neutralization assay for testing smallpox vaccine efficacy based on detection of green fluorescent protein. J Virol Methods 2008; 150:14-20. [PMID: 18387679 DOI: 10.1016/j.jviromet.2008.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Virus neutralization remains a vital tool in assessment of vaccine efficacy for smallpox in the absence of animal smallpox models. In this regard, development of a rapid, sensitive, and high-throughput vaccinia neutralization assay has been sought for evaluating alternative smallpox vaccines, use in bridging studies, as well as understanding the effects of anti-viral immunotherapeutic regimes. The most frequently used method of measuring vaccinia virus neutralization by plaque reduction is time, labor, and material intensive, and therefore limiting in its utility for large scale, high-throughput analysis. Recent advances provide alternative methods that are less labor intensive and higher throughput but with limitations in reagents needed and ease of use. An innovative neutralization assay is described based on a modified Western Reserve vaccinia vector expressing green fluorescent protein (WR-GFP) and an adherent cell monolayer in multi-well plate format. The assay is quick, accurate, provides a large dynamic range and is well suited for large-scale vaccination studies using standard adherent cell lines.
Collapse
Affiliation(s)
- Matthew C Johnson
- Poxvirus Program, Division of Viral and Rickettsial Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, USA
| | | | | |
Collapse
|
58
|
Earl PL, Moss B, Wyatt LS, Carroll MW. Generation of recombinant vaccinia viruses. ACTA ACUST UNITED AC 2008; Chapter 16:Unit16.17. [PMID: 18265124 DOI: 10.1002/0471142727.mb1617s43] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit first describes how to infect cells with vaccinia virus and then transfect them with a plasmid-transfer vector to generate a recombinant virus. Methods are also presented for purifying vaccinia virus and for isolating viral DNA, which can be used during transfection. Also presented are selection and screening methods used to isolate recombinant viruses and a method for the amplification of recombinant viruses. Finally, a method for live immunostaining that has been used primarily for detection of recombinant modified vaccinia virus Ankara (MVA) is presented.
Collapse
Affiliation(s)
- P L Earl
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
59
|
Dzutsev AK, Belyakov IM, Isakov DV, Gagnon SJ, Margulies DH, Berzofsky JA. Estimation of low frequency antigen-presenting cells with a novel RELISPOT assay. J Immunol Methods 2008; 333:71-8. [PMID: 18294650 DOI: 10.1016/j.jim.2008.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/23/2007] [Accepted: 01/09/2008] [Indexed: 11/19/2022]
Abstract
Adequate presentation of self and foreign antigens is a key factor for efficient T-cell immunosurveillance against pathogens and tumors. Cells presenting foreign antigens usually comprise a rare population and are difficult to detect even at the peak of infection. Here we demonstrate a CD8(+) T-cell-based approach that allows detection of specific antigen-presenting cells (APC) at a frequency of less than 0.0005%. When T cells are in excess, they form rosettes with rare APCs, which appear as single spots in an IFN-gamma ELISPOT assay. Using this RELISPOT (Rosette ELISPOT) method we demonstrate the dynamic interplay between CD8 T cells and professional and non-professional APCs following virus challenge.
Collapse
|
60
|
Hickman HD, Takeda K, Skon CN, Murray FR, Hensley SE, Loomis J, Barber GN, Bennink JR, Yewdell JW. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol 2008; 9:155-65. [PMID: 18193049 DOI: 10.1038/ni1557] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/11/2007] [Indexed: 12/15/2022]
Abstract
It is uncertain how antiviral lymphocytes are activated in draining lymph nodes, the site where adaptive immune responses are initiated. Here, using intravital microscopy we show that after infection of mice with vaccinia virus (a large DNA virus) or vesicular stomatitis virus (a small RNA virus), virions drained to the lymph node and infected cells residing just beneath the subcapsular sinus. Naive CD8+ T cells rapidly migrated to infected cells in the peripheral interfollicular region and then formed tight interactions with dendritic cells, leading to complete T cell activation. Thus, antigen presentation at the lymph node periphery, not at lymphocyte exit sites in deeper lymph node venules, as dogma dictates, has a dominant function in antiviral CD8+ T cell activation.
Collapse
Affiliation(s)
- Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hebben M, Brants J, Birck C, Samama JP, Wasylyk B, Spehner D, Pradeau K, Domi A, Moss B, Schultz P, Drillien R. High level protein expression in mammalian cells using a safe viral vector: Modified vaccinia virus Ankara. Protein Expr Purif 2007; 56:269-78. [PMID: 17892951 DOI: 10.1016/j.pep.2007.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/27/2007] [Accepted: 08/05/2007] [Indexed: 11/25/2022]
Abstract
Vaccinia virus vectors are attractive tools to direct high level protein synthesis in mammalian cells. In one of the most efficient strategies developed so far, the gene to be expressed is positioned downstream of a bacteriophage T7 promoter within the vaccinia genome and transcribed by the T7 RNA polymerase, also encoded by the vaccinia virus genome. Tight regulation of transcription and efficient translation are ensured by control elements of the Escherichia coli lactose operon and the encephalomyocarditis virus leader sequence, respectively. We have integrated such a stringently controlled expression system, previously used successfully in a standard vaccinia virus backbone, into the modified vaccinia virus Ankara strain (MVA). In this manner, proteins of interest can be produced in mammalian cells under standard laboratory conditions because of the inherent safety of the MVA strain. Using this system for expression of beta-galactosidase, about 15 mg protein could be produced from 10(8) BHK21 cells over a 24-h period, a value 4-fold higher than the amount produced from an identical expression system based on a standard vaccinia virus strain. In another application, we employed the MVA vector to produce human tubulin tyrosine ligase and demonstrate that this protein becomes a major cellular protein upon induction conditions and displays its characteristic enzymatic activity. The MVA vector should prove useful for many other applications in which mammalian cells are required for protein production.
Collapse
Affiliation(s)
- Matthias Hebben
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596/CNRS-UMR7104, 1 rue Laurent Fries, 67404 Illkirch, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Fischer MA, Tscharke DC, Donohue KB, Truckenmiller ME, Norbury CC. Reduction of vector gene expression increases foreign antigen-specific CD8+ T-cell priming. J Gen Virol 2007; 88:2378-2386. [PMID: 17698646 DOI: 10.1099/vir.0.83107-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral vectors have been shown to induce protective CD8(+) T-cell populations in animal models, but significant obstacles remain to their widespread use for human vaccination. One such obstacle is immunodominance, where the CD8(+) T-cell response to a vector can suppress the desired CD8(+) T-cell response to a recombinantly encoded antigen. To overcome this hurdle, we broadly reduced vector-specific gene expression. We treated a recombinant vaccinia virus, encoding antigen as a minimal peptide determinant (8-10 aa), with psoralen and short-wave UV light. The resulting virus induced 66 % fewer vector-specific immunodominant CD8(+) T cells, allowing the in vivo induction of an increased number of CD8(+) T cells specific for the recombinant antigen.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| | - David C Tscharke
- Department of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia
| | - Keri B Donohue
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| | - Mary E Truckenmiller
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| | - Christopher C Norbury
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
63
|
Parker SD, Rottinghaus ST, Zajac AJ, Yue L, Hunter E, Whitley RJ, Parker JN. HIV-1(89.6) Gag expressed from a replication competent HSV-1 vector elicits persistent cellular immune responses in mice. Vaccine 2007; 25:6764-73. [PMID: 17706843 PMCID: PMC2084203 DOI: 10.1016/j.vaccine.2007.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 06/19/2007] [Accepted: 06/26/2007] [Indexed: 01/11/2023]
Abstract
We have constructed a replication competent, gamma(1)34.5-deleted herpes simplex virus type-1 (HSV-1) vector (J200) that expresses the gag gene from human immunodeficiency virus type-1, primary isolate 89.6 (HIV-1(89.6)), as a candidate vaccine for HIV-1. J200 replicates in vitro, resulting in abundant Gag protein production and accumulation in the extracellular media. Immunization of Balb/c mice with a single intraperitoneal injection of J200 elicited strong Gag-specific CD8 responses, as measured by intracellular IFN-gamma staining and flow cytometry analysis. Responses were highest between 6 weeks and 4 months, but persisted at 9 months post-immunization, the last time-point evaluated. These data highlight the potential utility of neuroattenuated, replication competent HSV-1 vectors for delivery of HIV-1 immunogens.
Collapse
Affiliation(s)
- Scott D. Parker
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott T. Rottinghaus
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Allan J. Zajac
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ling Yue
- Emory Vaccine Center, Emory University, Atlanta, Georgia, 30329
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, 30329
| | - Richard J. Whitley
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jacqueline N. Parker
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
64
|
Sriram V, Willard CA, Liu J, Brutkiewicz RR. Importance of N-linked glycosylation in the functional expression of murine CD1d1. Immunology 2007; 123:272-81. [PMID: 17725604 PMCID: PMC2433293 DOI: 10.1111/j.1365-2567.2007.02696.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mouse CD1d1 glycoprotein is specialized in presenting lipid antigens to a novel class of T cells called natural killer T (NKT) cells. CD1d1 is predicted to contain five potential N-linked glycosylation sites (asparagine residues at positions 25, 38, 60, 128, and 183). Glycosylation has been shown to invariably affect the molecular and functional properties of various glycoproteins, and in the current report it was found that a conservative change of the individual endogenous asparagine residues in CD1d1 to glutamine differentially affected its functional expression. Although the maturation rate of the glycosylation mutants was comparable to that of wild type, they differed in their relative levels of surface expression and in their ability to stimulate NKT cells. Mutating all five glycosylation residues resulted in the absence of detectable CD1d1 expression, with a concomitant lack of NKT cell activation. Therefore, these results demonstrate that glycosylation plays a significant role in the functional expression of CD1d1.
Collapse
Affiliation(s)
- Venkataraman Sriram
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
65
|
Gubser C, Goodbody R, Ecker A, Brady G, O'Neill LAJ, Jacobs N, Smith GL. Camelpox virus encodes a schlafen-like protein that affects orthopoxvirus virulence. J Gen Virol 2007; 88:1667-1676. [PMID: 17485525 PMCID: PMC2885618 DOI: 10.1099/vir.0.82748-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/25/2007] [Indexed: 11/18/2022] Open
Abstract
Camelpox virus (CMLV) gene 176R encodes a protein with sequence similarity to murine schlafen (m-slfn) proteins. In vivo, short and long members of the m-slfn family inhibited T-cell development, whereas in vitro, only short m-slfns caused arrest of fibroblast growth. CMLV 176 protein (v-slfn) is most closely related to short m-slfns; however, when expressed stably in mammalian cells, v-slfn did not inhibit cell growth. v-slfn is a predominantly cytoplasmic 57 kDa protein that is expressed throughout infection. Several other orthopoxviruses encode v-slfn proteins, but the v-slfn gene is fragmented in all sequenced variola virus and vaccinia virus (VACV) strains. Consistent with this, all 16 VACV strains tested do not express a v-slfn detected by polyclonal serum raised against the CMLV protein. In the absence of a small animal model to study CMLV pathogenesis, the contribution of CMLV v-slfn to orthopoxvirus virulence was studied via its expression in an attenuated strain of VACV. Recombinant viruses expressing wild-type v-slfn or v-slfn tagged at its C terminus with a haemagglutinin (HA) epitope were less virulent than control viruses. However, a virus expressing v-slfn tagged with the HA epitope at its N terminus had similar virulence to controls, implying that the N terminus has an important function. A greater recruitment of lymphocytes into infected lung tissue was observed in the presence of wild-type v-slfn but, interestingly, these cells were less activated. Thus, v-slfn is an orthopoxvirus virulence factor that affects the host immune response to infection.
Collapse
Affiliation(s)
- Caroline Gubser
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Rory Goodbody
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Andrea Ecker
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Gareth Brady
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A. J. O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Nathalie Jacobs
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
66
|
Hanke T, McMichael AJ, Dorrell L. Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J Gen Virol 2007; 88:1-12. [PMID: 17170430 DOI: 10.1099/vir.0.82493-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Candidate human immunodeficiency virus type 1 (HIV-1) vaccines focusing on T-cell induction, constructed as pTHr.HIVA DNA and modified vaccinia virus Ankara (MVA).HIVA, were delivered in a heterologous prime-boost regimen. The vaccines were tested in several hundred healthy or HIV-1-infected volunteers in Europe and Africa. Whilst larger trials of hundreds of volunteers suggested induction of HIV-1-specific T-cell responses in <15 % of healthy vaccinees, a series of small, rapid trials in 12-24 volunteers at a time with a more in-depth analysis of vaccine-elicited T-cell responses proved to be highly informative and provided more encouraging results. These trials demonstrated that the pTHr.HIVA vaccine alone primed consistently weak and mainly CD4(+), but also CD8(+) T-cell responses, and the MVA.HIVA vaccine delivered a consistent boost to both CD4(+) and CD8(+) T cells, which was particularly strong in HIV-1-infected patients. Thus, whilst the search is on for ways to enhance T-cell priming, MVA is a useful boosting vector for human subunit genetic vaccines.
Collapse
Affiliation(s)
- Tomáš Hanke
- Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, The John Radcliffe, Oxford OX3 9DS, UK
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, The John Radcliffe, Oxford OX3 9DS, UK
| | - Lucy Dorrell
- Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, The John Radcliffe, Oxford OX3 9DS, UK
| |
Collapse
|
67
|
Belyakov IM, Isakov D, Zhu Q, Dzutsev A, Klinman D, Berzofsky JA. Enhancement of CD8+ T cell immunity in the lung by CpG oligodeoxynucleotides increases protective efficacy of a modified vaccinia Ankara vaccine against lethal poxvirus infection even in a CD4-deficient host. THE JOURNAL OF IMMUNOLOGY 2006; 177:6336-43. [PMID: 17056564 DOI: 10.4049/jimmunol.177.9.6336] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunostimulatory CpG oligodeoxynucleotides (ODN) have proven effective as adjuvants for protein-based vaccines, but their impact on immune responses induced by live viral vectors is not known. We found that addition of CpG ODN to modified vaccinia Ankara (MVA) markedly improved the induction of longer-lasting adaptive protective immunity in BALB/c mice against intranasal pathogenic vaccinia virus (Western Reserve; WR). Protection was mediated primarily by CD8(+) T cells in the lung, as determined by CD8-depletion studies, protection in B cell-deficient mice, and greater protection correlating with CD8(+) IFN-gamma-producing cells in the lung but not with those in the spleen. Intranasal immunization was more effective at inducing CD8(+) T cell immunity in the lung, and protection, than i.m. immunization. Addition of CpG ODN increased the CD8(+) response but not the Ab response. Depletion of CD4 T cells before vaccination with MVA significantly diminished protection against pathogenic WR virus. However, CpG ODN delivered with MVA was able to substitute for CD4 help and protected CD4-depleted mice against WR vaccinia challenge. This study demonstrates for the first time a protective adjuvant effect of CpG ODN for a live viral vector vaccine that may overcome CD4 deficiency in the induction of protective CD8(+) T cell-mediated immunity.
Collapse
Affiliation(s)
- Igor M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Racek T, Jármy G, Jassoy C. Induction of humoral and cellular immune responses in mice by HIV-derived infectious pseudovirions. AIDS Res Hum Retroviruses 2006; 22:1162-6. [PMID: 17147504 DOI: 10.1089/aid.2006.22.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infectious pseudovirions based on HIV show the morphology of the parent virus and a genome that is partially expressed in infected cells. The constructs are capable of a single round of infection. In this study, we generated vesicular stomatitis virus (VSV) glycoprotein (G) pseudotyped HIV-1-derived pseudovirions that contain a codonoptimized p17/p24 HIV-1 gag or the green fluorescent protein (GFP) gene as transgene. BALB/c mice were immunized in a DNA prime pseudovirion boost fashion. Immunization induced a Gag-specific antibody response, high titers of neutralizing antibodies directed against the VSV-G protein and a Gag-specific IFN-gamma-secreting cytotoxic T lymphocyte (CTL) response. CTL responses were induced by both structural proteins contained in the pseudovirion preparation and through expression of the transgene. Infection properties similar to those of live attenuated HIV and the immunogenicity observed make infectious pseudovirions valuable tools to further study the mechanism of immune stimulation in models of HIV infection.
Collapse
Affiliation(s)
- Tomas Racek
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
69
|
Braun E, Zimmerman T, Hur TB, Reinhartz E, Fellig Y, Panet A, Steiner I. Neurotropism of herpes simplex virus type 1 in brain organ cultures. J Gen Virol 2006; 87:2827-2837. [PMID: 16963740 DOI: 10.1099/vir.0.81850-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of herpes simplex virus type 1 (HSV-1) penetration into the brain and its predilection to infect certain neuronal regions is unknown. In order to study HSV-1 neurotropism, an ex vivo system of mice organotypic brain slices was established and the tissue was infected with HSV-1 vectors. Neonate tissues showed restricted infection confined to leptomeningeal, periventricular and cortical brain regions. The hippocampus was the primary parenchymatous structure that was also infected. Infection was localized to early progenitor and ependymal cells. Increasing viral inoculum increased the intensity and enlarged the infected territory, but the distinctive pattern of infection was maintained and differed from that observed with adenovirus and Vaccinia virus. Neonate brain tissues were much more permissive for HSV-1 infection than adult mouse brain tissues. Taken together, these results indicate a complex interaction of HSV-1 with different brain-cell types and provide a useful vehicle to elucidate the mechanisms of viral neurotropism.
Collapse
Affiliation(s)
- Efrat Braun
- Department of Virology, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
- Department of Neurology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
- Laboratory of Neurovirology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
| | - Tal Zimmerman
- Department of Virology, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Tamir Ben Hur
- Department of Neurology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
| | - Etti Reinhartz
- Department of Neurology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
| | - Amos Panet
- Department of Virology, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Israel Steiner
- Department of Neurology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
- Laboratory of Neurovirology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel
| |
Collapse
|
70
|
CD4+ T cell-mediated presentation of non-infectious HIV-1 virion antigens to HIV-specific CD8+ T cells. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200610010-00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
71
|
Wang W, Golding B. The cytotoxic T lymphocyte response against a protein antigen does not decrease the antibody response to that antigen although antigen-pulsed B cells can be targets. Immunol Lett 2006; 100:195-201. [PMID: 15916814 DOI: 10.1016/j.imlet.2005.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 04/04/2005] [Indexed: 12/30/2022]
Abstract
The role of activated CD8+ T cells in shaping the dynamics of in vivo antigen presentation and immune responses is a subject receiving more attention. We studied whether cytotoxic T lymphocyte (CTL) would limit antibody responses by targeting antigen-specific B cells. A modified in vivo CTL assay was developed and used herein to demonstrate cytotoxicity in vivo, and to show that antigen-specific B cells that process exogenous antigen and present peptide in association with MHC class I can be the targets of CD8+ T cells. B cells from C57BL/6 mice immunized with ovalbumin (OVA)/alum were pulsed with OVA in vitro, and transferred into C57BL/6 recipient mice that had been immunized with vaccinia virus expressing SIINFEKL minigene to generate CD8+ CTL against K(b)/SIINFEKL. OVA-pulsed B220+ B cells from OVA-immunized mice were killed to a greater extent than B220+ B cells from naïve mice (28+/-20% versus 12+/-16%, p=0.0042). However, mice receiving vaccinia-SIINFEKL and generating CTL, did not appear to target endogenous B cells, since both primary and secondary antibody responses to OVA were unaffected. Our findings indicate that CTL responses to the protein antigen do not interfere with endogenous B cell responses, even though exogenous B cells expressing the CTL epitope can be efficiently lysed.
Collapse
Affiliation(s)
- Weila Wang
- Laboratory of Plasma Derivatives, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
72
|
Zook MB, Howard MT, Sinnathamby G, Atkins JF, Eisenlohr LC. Epitopes Derived by Incidental Translational Frameshifting Give Rise to a Protective CTL Response. THE JOURNAL OF IMMUNOLOGY 2006; 176:6928-34. [PMID: 16709853 DOI: 10.4049/jimmunol.176.11.6928] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aberrant gene expression can be caused by several different mechanisms at the transcriptional, RNA processing, and translational level. Although most of the resulting proteins may have no significant biological function, they can be meaningful for the immune system, which is sensitive to extremely low levels of Ag. We have tested this possibility by investigating the ability of CD8+ T cells (TCD8+) to respond to an epitope whose expression results from incidental ribosomal frameshifting at a sequence element within the HSV thymidine kinase gene. This element, with no apparent functional significance, has been identified due to its ability to facilitate escape from the antiviral compound acyclovir. Using a recombinant vaccinia virus expression system, we find that in vitro and in vivo TCD8+ responses to the frameshift-dependent epitope are easily discernible. Furthermore, the in vivo response is at a sufficient level to mediate protection from a tumor challenge. Thus, the targets of immune responses to infectious agents can extend beyond the products of conventional open reading frames. On a per-cell basis, responses to such minimally expressed epitopes may be exceedingly effective due to the selective expansion of high avidity TCD8+.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/physiology
- Cytotoxicity, Immunologic/genetics
- Egg Proteins/genetics
- Egg Proteins/physiology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/physiology
- Female
- Frameshifting, Ribosomal
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphoma/immunology
- Lymphoma/virology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Neoplasm Transplantation/immunology
- Nucleocapsid Proteins
- Nucleoproteins/genetics
- Nucleoproteins/physiology
- Ovalbumin/genetics
- Ovalbumin/physiology
- Peptide Fragments
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/physiology
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Thymidine Kinase/genetics
- Thymidine Kinase/physiology
- Viral Core Proteins/genetics
- Viral Core Proteins/physiology
Collapse
Affiliation(s)
- Matthew B Zook
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
73
|
Wang Z, La Rosa C, Lacey SF, Maas R, Mekhoubad S, Britt WJ, Diamond DJ. Attenuated poxvirus expressing three immunodominant CMV antigens as a vaccine strategy for CMV infection. J Clin Virol 2006; 35:324-31. [PMID: 16388983 DOI: 10.1016/j.jcv.2005.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/26/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Human cytomegalovirus (CMV) infection is an important risk factor in the post-transplant (Tx) recovery phase for both hematopoietic stem cell Tx (HSCT) and solid organ Tx (SOT) recipients. CMV infection may be prevented or controlled by simultaneously inducing both CMV-specific neutralizing antibody (nAb) and cellular immunity. Soluble (s) UL55 (surface glycoprotein), UL83 (tegument protein) and UL123/e4 (nuclear protein) are immunodominant in eliciting both CMV nAb and cellular immunity. An attenuated poxvirus, modified vaccinia Ankara (MVA) was selected to develop this vaccine strategy in Tx recipients, because of its clinical safety record, large foreign gene capacity, and capability to activate strong humoral and cellular immune responses against recombinant antigens. OBJECTIVES A subunit vaccine that targets multiple CMV antigens will be used to gain maximal coverage and protective function against CMV infection. rMVA simultaneously expressing sUL55, UL83 and UL123/e4 will be generated, and humoral and cellular immunity it elicits will be characterized, after murine immunization and in vitro to amplify clinical recall responses. STUDY DESIGN rMVA will be constructed in two steps using UL123/e4-pLW22 followed by sUL55-UL83-pLW51 transfer plasmids. Western blots will be used to characterize expression levels of each antigen. Primary immunity will be evaluated in mouse models, while recall responses to the virally expressed CMV antigens will be assessed in human peripheral blood. RESULTS We generated CMV-MVA via homologous recombination, and demonstrated high expression levels of sUL55, UL83 and UL123/e4 by Western blot. CMV-MVA immunization potently induced both humoral and cellular immunity to sUL55, UL83 and UL123 after murine immunization, and cellular immunity to UL83 and UL123 by in vitro amplification of T cell recall responses in human PBMC. CONCLUSIONS rMVA promotes high level expression of three immunodominant CMV antigens, which is reflected in results of immunization studies in which high titers of UL55-specific antibodies and CD4+ T-help are detected, as well as high levels of UL83-specific and moderate levels of UL123-specific CD8+ CTL.
Collapse
Affiliation(s)
- Zhongde Wang
- Laboratory of Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Tang J, Olive M, Pulmanausahakul R, Schnell M, Flomenberg N, Eisenlohr L, Flomenberg P. Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins. Virology 2006; 350:312-22. [PMID: 16499941 DOI: 10.1016/j.virol.2006.01.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 01/10/2006] [Accepted: 01/18/2006] [Indexed: 11/22/2022]
Abstract
Adenoviruses (Ads) cause fatal disease in allogeneic stem cell transplant recipients, but there is no established therapy. Ad-specific CD8+ T cells were detected in PBMC from healthy adults at a mean frequency of 77 per 10(5) CD8+ T cells (range 8-260) by interferon-gamma ELISPOT and cytokine flow cytometry assays. CD8+ T cell lines from 7 of 7 donors exhibited MHC-class-I-restricted killing of targets expressing the capsid protein hexon. In contrast, cytotoxicity against the capsid proteins fiber and penton base was weaker or not detected. Two HLA-A2-restricted hexon epitopes and one HLA-B-restricted epitope were identified, all of which are adjacent to or overlap an HLA-DP4-restricted epitope in the highly conserved C-terminus. Thus, hexon is the immunodominant T cell target among capsid proteins and contains multiple C-terminal epitopes conserved among serotypes. These data support evaluation of donor lymphocyte infusions for treatment of Ad disease post-transplant.
Collapse
Affiliation(s)
- Jie Tang
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Pérez-Jiménez E, Kochan G, Gherardi MM, Esteban M. MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes Infect 2006; 8:810-22. [PMID: 16504562 DOI: 10.1016/j.micinf.2005.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/15/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
An optimal vaccine against leishmaniasis should elicit parasite specific CD4+ and cytotoxic CD8+ T cells. In this investigation, we described a prime/boost immunization approach based on DNA and on poxvirus vectors (Western Reserve, WR, and the highly attenuated modified vaccinia virus Ankara, MVA), both expressing the LACK antigen of Leishmania infantum, that triggers different levels of specific CD8+ T cell responses and protection (reduction in lesion size and parasitemia) against L. major infection in mice. A prime/boost vaccination with DNA-LACK/MVA-LACK elicits higher CD8+ T cell responses than a similar protocol with the replication competent VV-LACK. Both CD4+ and CD8+ T cells were induced by DNA-LACK/MVA-LACK immunization. The levels of IFN-gamma and TNF-alpha secreting CD8+ T cells were higher in splenocytes from DNA-LACK/MVA-LACK than in DNA-LACK/VV-LACK immunized animals. Moreover, protection against L. major was significantly higher in DNA-LACK/MVA-LACK than in DNA-LACK/VV-LACK immunized animals when boosted with the same virus dose, and correlated with high levels of IFN-gamma and TNF-alpha secreting CD8+ T cells. In DNA-LACK/MVA-LACK vaccinated animals, the extent of lesion size reduction ranged from 65 to 92% and this protection was maintained for at least 17 weeks after challenge with the parasite. These findings demonstrate that in heterologous prime/boost immunization approaches, the protocol DNA-LACK/MVA-LACK is superior to DNA-LACK/VV-LACK in triggering specific CD8+ T cell immune responses and in conferring protection against cutaneous leishmaniasis. Thus, MVA-LACK is a safe and efficient vector for vaccination against leishmaniasis.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- DNA, Protozoan
- Drug Administration Schedule
- Female
- Immunization, Secondary
- Interferon-gamma/metabolism
- Leishmania major
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/pathology
- Leishmaniasis, Cutaneous/prevention & control
- Mice
- Mice, Inbred BALB C
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/adverse effects
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus
Collapse
Affiliation(s)
- Eva Pérez-Jiménez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
76
|
François-Bongarcon V, Feng Y, Lee SK, Chen G, Shankar P, Liu Y, Tao X, Shao Y, Lieberman J. Cross-clade CD8 T-cell responses to HIV(IIIB) and Chinese B' and C/B' viruses in North American and Chinese HIV-seropositive donors. J Acquir Immune Defic Syndr 2006; 37:1435-44. [PMID: 15602120 DOI: 10.1097/01.qai.0000145220.81304.b0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HIV variation presents an obstacle to a global AIDS vaccine. Viral diversity and host variations in MHC expression both affect vaccine responses. Whether CD8 T cells from HIV-infected donors in 1 part of the world cross-recognize isolates from other regions will provide guidance about whether country-specific vaccines are needed. We compared recognition of HIV(IIIB) and representative B' (Thai B) and recombinant C/B' virus strains endemic in China by CD8 T cells from 7 HIV-infected North American donors and 4 Chinese donors. IFN-gamma production in response to HIV(IIIB) or the Chinese viruses was comparable. Although 1.6 +/- 0.8% of American donor CD8 T cells produced IFN-gamma above the background level in response to IIIB virus, 1.5 +/- 0.8% responded to B' virus, and 1.4 +/- 0.7% responded to C/B' virus. Responses to adherent cells infected with vaccinia viruses expressing B' and C/B' virus gag and env were also comparable in magnitude with responses to IIIB virus. Cytolysis of CD4 T cells infected with B' virus was comparable with lysis of cells infected with IIIB virus, but lysis of the more divergent C/B' virus was somewhat reduced. T cells, selected for IFN-gamma production to IIIB virus, also efficiently lysed cells infected with Chinese viruses. Therefore, cross-clade CD8 T-cell responses to IIIB virus and prevalent Chinese viral strains are common.
Collapse
|
77
|
Estcourt MJ, McMichael AJ, Hanke T. Altered primary CD8+ T cell response to a modified virus Ankara(MVA)-vectored vaccine in the absence of CD4+ T cell help. Eur J Immunol 2005; 35:3460-7. [PMID: 16245361 DOI: 10.1002/eji.200526284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T cell receptor-transgenic F5 mice were used to assess primary CD8+ T cell responses to a modified virus Ankara (MVA)-vectored vaccine in the absence of CD4+ T cell help. Naive, CD8-enriched, CFSE-labelled F5 cells were transferred into normal or CD4+ cell-depleted mice and the mice were vaccinated with MVA.HIVA-NP. At different time points during the primary response, F5 cells were re-isolated and analysed on divisional basis for a number of parameters. We demonstrated that the primary CD8+ T cell response in the absence of CD4+ T cell help differed from that in normal CD4+ cell-undepleted mice. While in the absence of CD4+ T cell help, the initial migratory progress from the local response to a systemic one was not grossly affected, the proportion of dying F5 cells during the expansion phase was markedly increased and resulted in an overall smaller expansion and significantly decreased frequency of CD8+ T cell memory after contraction. T cells primed without help displayed accelerated proliferation and activation, while expression of interferon-gamma remained similar. These phenomena were observed in the lymph nodes draining the MVA.HIVA-NP immunization site and were similar, but delayed by 2-3 days in spleen and non-draining lymph nodes.
Collapse
Affiliation(s)
- Marie J Estcourt
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
| | | | | |
Collapse
|
78
|
McGettigan JP, Koser ML, McKenna PM, Smith ME, Marvin JM, Eisenlohr LC, Dietzschold B, Schnell MJ. Enhanced humoral HIV-1-specific immune responses generated from recombinant rhabdoviral-based vaccine vectors co-expressing HIV-1 proteins and IL-2. Virology 2005; 344:363-77. [PMID: 16226782 DOI: 10.1016/j.virol.2005.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/10/2005] [Accepted: 09/06/2005] [Indexed: 12/23/2022]
Abstract
Recombinant rabies virus (RV) vaccine strain-based vectors expressing HIV-1 antigens have been shown to induce strong and long-lasting cellular but modest humoral responses against the expressed antigens in mice. However, an effective vaccine against HIV-1 may require stronger responses, and the development of such an immune response may depend on the presence of certain cytokines at the time of the inoculation. Here, we describe several new RV-based vaccine vehicles expressing HIV-1 Gag or envelope (Env) and murine IL-2 or IL-4. Cells infected with recombinant RVs expressed high levels of functional IL-2 or IL-4 in culture supernatants in addition to HIV-1 proteins. The recombinant RV expressing IL-4 was highly attenuated in a cytokine-independent manner, indicating that the insertion of two foreign genes into the RV genome is mainly responsible for the attenuation observed. The expression of IL-4 resulted in a decrease in the cellular immune response against HIV-1 Gag and Env when compared with the parental virus not expressing IL-4 and only 2 of 20 mice seroconverted to HIV-1 Env after two inoculations. The IL-2-expressing RV was completely apathogenic after direct intracranial inoculation of mice. In addition, mice immunized with IL-2 maintained strong anti-HIV-1 Gag and Env cellular responses and consistently induced seroconversion against HIV-1 Env after two inoculations. This suggests the potential use of IL-2 in RV-based HIV-1 vaccine strategies, which may require the induction of both arms of the immune response.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB 330, Philadelphia, PA 19107-6799, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Milicic A, Price DA, Zimbwa P, Booth BL, Brown HL, Easterbrook PJ, Olsen K, Robinson N, Gileadi U, Sewell AK, Cerundolo V, Phillips RE. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:4618-26. [PMID: 16177107 DOI: 10.4049/jimmunol.175.7.4618] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.
Collapse
Affiliation(s)
- Anita Milicic
- James Martin 21st Century School and Nuffield Department of Clinical Medicine, The Peter Medawar Building, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Holzer GW, Mayrhofer J, Gritschenberger W, Falkner FG. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine. Virology 2005; 337:235-41. [PMID: 15882885 DOI: 10.1016/j.virol.2005.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 03/25/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes.
Collapse
Affiliation(s)
- Georg W Holzer
- Baxter BioScience/Vaccines, Biomedical Research Center, Uferstrasse 15, A-2304 Orth/Donau, Austria
| | | | | | | |
Collapse
|
81
|
Cho S, Knox KS, Kohli LM, He JJ, Exley MA, Wilson SB, Brutkiewicz RR. Impaired cell surface expression of human CD1d by the formation of an HIV-1 Nef/CD1d complex. Virology 2005; 337:242-52. [PMID: 15916790 DOI: 10.1016/j.virol.2005.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/07/2005] [Accepted: 04/16/2005] [Indexed: 11/20/2022]
Abstract
The HIV-1 Nef protein causes a decrease in major histocompatibility complex (MHC) class I and CD4 molecule expression on the cell surface. To determine if Nef can affect components of the innate immune response, we assessed the ability of Nef to alter the cell surface expression of human CD1d. In cells co-expressing CD1d and Nef, a substantial reduction in the cell surface level of CD1d was observed, with a concomitant reduction in the activation of CD1d-restricted NKT cells. Nef had a minimal effect on the cell surface expression of a mutant CD1d molecule in which the last 6 or 10 amino acids of the cytoplasmic tail were deleted. Additionally, it was found that Nef physically interacted with wild-type (but not tail-deleted) CD1d. Therefore, one means by which HIV-1 may be able to establish a foothold in an infected individual is by directly interfering with the functional cell surface expression of CD1d.
Collapse
Affiliation(s)
- Sungyoo Cho
- Department of Microbiology and Immunology, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Estcourt MJ, Létourneau S, McMichael AJ, Hanke T. Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur J Immunol 2005; 35:2532-40. [PMID: 16144036 DOI: 10.1002/eji.200535184] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of primary CD8+ T cell responses following administration of modified virus Ankara (MVA)- and DNA-vectored vaccines was investigated in a mouse model. To overcome the low frequency of naive antigen-specific precursors and follow the early expansion events, naive CFSE-labelled T cell receptor-transgenic F5 lymphocytes were transferred into syngeneic non-transgenic recipients prior to vaccination. Using the i.d., i.v. and i.m. routes and increasing recombinant MVA (rMVA) vaccine doses, the primary response was analysed on a divisional basis at local and distant lymphoid organs at various times after vaccination. The results indicated that F5 cell divisions were initiated in the local draining lymph nodes and cells only after five to six divisions appeared at more distant sites. The rMVA dose affected frequencies of cells entering division and at the peak response. When priming induced by rMVA and plasmid DNA was compared, dramatic differences in the cycling patterns were observed with plasmid DNA inducing a response slower and more sustained over the first 2 wk than rMVA. Both rMVA and DNA induced comparable IFN-gamma production, which increased with cell divisions. Taken together, the vaccine type, dose and route have a strong influence on the spatial and temporal patterns of initial T cell responses.
Collapse
Affiliation(s)
- Marie J Estcourt
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, United Kingdom
| | | | | | | |
Collapse
|
83
|
Baloglu S, Boyle SM, Vemulapalli R, Sriranganathan N, Schurig GG, Toth TE. Immune responses of mice to vaccinia virus recombinants expressing either Listeria monocytogenes partial listeriolysin or Brucella abortus ribosomal L7/L12 protein. Vet Microbiol 2005; 109:11-7. [PMID: 15941627 DOI: 10.1016/j.vetmic.2005.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 04/22/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
The Brucella abortus L7/L12 gene encoding ribosomal protein L7/L12 and the Listeria monocytogenes partial hly gene encoding the protective region of the hemolysin (partial listeriolysin, pLLO) were cloned into vaccinia virus by homologous recombination to produce recombinants WRL7/L12 and WRpLLO, respectively. The ability of these recombinants to induce humoral, cell mediated and protective immune response in mice was assessed. Although mice inoculated with WRL7/L12 recombinant produced antibodies specific to vaccinia virus and L7/L12 antigens, they were not protected against a virulent challenge with B. abortus 2308 strain. In contrast, mice inoculated with WRpLLO were protected against a challenge with virulent L. monocytogenes. Stimulation with purified fusion listeriolysin protein (MBP-LLO), but not with unrelated control protein (MBP), induced splenocytes from WRpLLO-inoculated mice to secrete significantly higher amounts of IFN-gamma than saline inoculated mice. Mice inoculated with either WRpLLO or WRL7/L12 recombinants produced predominantly IgG2a isotype antibody responses, indicative of a Th1 type of immune response. The protective potential of the WRpLLO recombinant correlated with the level of IFN-gamma produced in these mice.
Collapse
Affiliation(s)
- Simge Baloglu
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, VA 24060, USA
| | | | | | | | | | | |
Collapse
|
84
|
Troesch M, Jalbert E, Canobio S, Boulassel MR, Routy JP, Bernard NF, Bruneau J, Lapointe N, Boucher M, Soudeyns H. Characterization of humoral and cell-mediated immune responses directed against hepatitis C virus F protein in subjects co-infected with hepatitis C virus and HIV-1. AIDS 2005; 19:775-84. [PMID: 15867491 DOI: 10.1097/01.aids.0000168971.57681.6e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) F protein is encoded in an alternate reading frame overlapping the core protein region. Its precise sequence, biological function and mode of expression are currently unclear. This study was conducted to examine the prevalence and characteristics of host humoral and cell-mediated immune responses directed against F protein in patients co-infected with HCV and HIV-1. METHODS Mutations were introduced to allow the expression of HCV-1a F protein in the absence of core. This recombinant and a truncated form lacking the first 11 amino acid residues shared with core were expressed in Escherichia coli, and their amino acid sequences were verified by mass spectrometry. Vaccinia-F protein recombinants were used to test F protein-specific cytotoxic T lymphocyte (CTL) activity. The binding of F protein-derived peptides to HLA-A*0201 was studied to identify putative CTL epitopes. RESULTS Sera from 23 of 39 patients infected with various HCV genotypes recognized the truncated form, including 13 of 25 subjects co-infected with HIV-1, indicative of antigenic crossreactivity and consistent with the conservation of F protein coding sequences between HCV genotypes. Crossreactive F protein-specific CTL precursors were detected in nine of 11 HCV-infected subjects, including seven of nine patients co-infected with HCV and HIV-1. Finally, three novel putative HLA-A*0201-restricted CTL epitopes were identified. CONCLUSION These results indicate that patients co-infected with HCV and HIV-1 can mount immunoglobulin and CTL responses directed against HCV F protein that are fully comparable in scope and magnitude with those observed in individuals infected with HCV alone.
Collapse
Affiliation(s)
- Myriam Troesch
- Unité d'Immunopathologie Virale, Centre de Recherche, Hôpital Sainte-Justine, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Purow B, Staveley-O'Carroll K. Targeting of vaccinia virus using biotin-avidin viral coating and biotinylated antibodies. J Surg Res 2005; 123:49-54. [PMID: 15652950 DOI: 10.1016/j.jss.2004.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Indexed: 10/26/2022]
Abstract
INTRODUCTION To test a general method for altering the tropism of viral vectors, we conjugated targeting antibody to the surface of recombinant vaccinia virus with a biotin-avidin-biotin linker and assessed the resulting infectivity in target cells and controls. MATERIALS AND METHODS We biotinylated a vaccinia viral vector and used avidin to crosslink the biotinylated viral surface to a biotinylated antibody specific for a molecule on the surface of a target cell. In an in vitro model system, we coated a recombinant vaccinia construct containing the E. coli beta-galactosidase gene with antibody to the murine class I MHC molecule Db. Target cells were B78H1 murine melanoma cells transduced with either the Db gene or, as a control, the Kb gene. Infectivity was assessed by staining target cells with x-gal to demonstrate expression of virally delivered beta-galactosidase. This technique was also assessed in a second system with vaccinia/beta-gal targeted to the murine B7.2 molecule. The infectivity of the resulting construct was assessed for murine SA1 fibrosarcoma cells transfected with the B7.2 gene and for wild-type, B7.2-negative SA1. Experiments were repeated in each system with similar results. RESULTS This strategy demonstrated antibody-mediated viral targeting in both the B78H1 and the SA1 models. Importantly, addition of the targeting coat diminished the infectivity of the modified vaccinia for control cells but preserved infectivity for targeted cells. In the B78H1 system, Db-targeted vaccinia consistently had 2- to 3-fold greater infectivity for B78H1Db than B78H1Kb. Increasing the number of avidin molecules used per virion in the synthesis of the viral coat led to greater selectivity but decreased overall infectivity. In the SA1 system, B7.2-targeted vaccinia demonstrated completely ablated infectivity for control SA1 cells, but maintained infectivity for target SA1/B7.2 cells. CONCLUSIONS Recombinant viral vectors such as vaccinia may be coated with biotin/avidin and linked to biotinylated antibodies to preferentially target specific cell types in vitro. Such an approach may be useful in targeting recombinant lytic viruses to tumors for destruction and in immune up-regulation in vivo. Similarly, this approach may enhance nonlytic viruses for gene therapy applications.
Collapse
|
86
|
Liu X, Kremer M, Broyles SS. A natural vaccinia virus promoter with exceptional capacity to direct protein synthesis. J Virol Methods 2005; 122:141-5. [PMID: 15542137 DOI: 10.1016/j.jviromet.2004.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/16/2004] [Accepted: 08/19/2004] [Indexed: 11/22/2022]
Abstract
A survey of vaccinia virus promoters, through a reporter gene approach, has identified the viral I1L promoter as having exceptional activity. The I1L promoter exhibited over 10 times the activity of other vaccinia promoters and even rivaled the activity of the bacteriophage T7 promoter in the hybrid vaccinia/T7 expression system. The I1L promoter had high activity in both transient transfection experiments and in the context of recombinant viruses. The I1L promoter should be useful for high-level protein synthesis and poxvirus studies in general.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-1153, USA
| | | | | |
Collapse
|
87
|
Pudney VA, Leese AM, Rickinson AB, Hislop AD. CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. ACTA ACUST UNITED AC 2005; 201:349-60. [PMID: 15684323 PMCID: PMC2213038 DOI: 10.1084/jem.20041542] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antigen immunodominance is an unexplained feature of CD8+ T cell responses to herpesviruses, which are agents whose lytic replication involves the sequential expression of immediate early (IE), early (E), and late (L) proteins. Here, we analyze the primary CD8 response to Epstein-Barr virus (EBV) infection for reactivity to 2 IE proteins, 11 representative E proteins, and 10 representative L proteins, across a range of HLA backgrounds. Responses were consistently skewed toward epitopes in IE and a subset of E proteins, with only occasional responses to novel epitopes in L proteins. CD8+ T cell clones to representative IE, E, and L epitopes were assayed against EBV-transformed lymphoblastoid cell lines (LCLs) containing lytically infected cells. This showed direct recognition of lytically infected cells by all three sets of effectors but at markedly different levels, in the order IE > E ≫ L, indicating that the efficiency of epitope presentation falls dramatically with progress of the lytic cycle. Thus, EBV lytic cycle antigens display a hierarchy of immunodominance that directly reflects the efficiency of their presentation in lytically infected cells; the CD8+ T cell response thereby focuses on targets whose recognition leads to maximal biologic effect.
Collapse
Affiliation(s)
- Victoria A Pudney
- Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
88
|
Wang W, Merchlinsky M, Inman J, Golding B. Identification of a novel immunodominant cytotoxic T lymphocyte epitope derived from human factor VIII in a murine model of hemophilia A. Thromb Res 2005; 116:335-44. [PMID: 16038719 DOI: 10.1016/j.thromres.2004.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 11/26/2022]
Abstract
Gene therapy of hemophilia A could be complicated by the development of immune responses against the vector as well as the Factor VIII (FVIII) transgene. Previous efforts have been focused on identifying FVIII inhibitor antibody epitopes, whereas the cytotoxic T lymphocyte (CTL) epitopes have not been characterized. CTL would kill cells expressing such epitopes and thus limit the efficacy of gene therapy. To investigate CTL responses against human FVIII in a mouse model of hemophilia A, a computer algorithm program (BIMAS) was employed to predict CTL epitopes of human FVIII. The potential binding of these predicted peptides to MHC class I K(b) was evaluated in a TAP-deficient cell line. When recombinant vaccinia virus expressing B domain-deleted human FVIII (vv-FVIII) was used to immunize E16 hemophilia A mice, a specific CTL response against FVIII152-159 was generated. In contrast, a CTL response to four other FVIII peptides was not detected. Therefore, FVIII152-159 represents a dominant CTL epitope. Identification of this epitope raises the possibility that CTL response to FVIII gene-transduced cells can be diminished by deliberatively mutating the dominant CTL epitope while retaining the biologic function of FVIII for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Weila Wang
- Laboratory of Plasma Derivatives, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
89
|
Gallo P, Dharmapuri S, Nuzzo M, Maldini D, Iezzi M, Cavallo F, Musiani P, Forni G, Monaci P. Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int J Cancer 2005; 113:67-77. [PMID: 15386429 DOI: 10.1002/ijc.20536] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protective efficacy of xenogeneic vaccination with DNA encoding the HER2 oncogene was evaluated in BALB/c mice transgenic for the transforming form of the neu oncogene, which spontaneously develops carcinomas in all mammary glands. Intramuscular injection of either plasmid DNA followed by electrical stimulation (pVIJ-HER2 with ES) or an adenoviral vector (Ad5-HER2), both expressing the HER2 oncogene, was tested. Immunization using pVIJ-HER2 with ES elicited a cell-mediated response that was much lower than that elicited by the immunization with Ad5-HER2, as measured by the frequency of IFN-gamma-secreting spleen cells. The dominant T-cell epitope of the HER2 protein product (p185) in the BALB/c (H-2(d)) genetic background was identified. While the T-cell response elicited was only partially crossreactive with the corresponding rat epitopes because of sequence variations (89% similarity), a cytotoxic T-lymphocyte activity against the rat immunodominant epitope was also evident. The Ad5-HER2 vaccination induced also antibodies against p185, which crossreacted with the rat protein homolog. Both T- and B-cell responses slowly declined with time. Vaccination with Ad5-HER2 at 6 and 9 weeks of age delayed incidence and reduced multiplicity of tumors in neu transgenic mice.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- Antibodies, Heterophile/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitopes, B-Lymphocyte
- Epitopes, T-Lymphocyte
- Female
- Flow Cytometry
- Genes, erbB-2/immunology
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Immunodominant Epitopes
- Interferon-gamma
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Mice, Transgenic
- Plasmids/genetics
- Plasmids/immunology
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Pasquale Gallo
- Molecular and Cell Biology Department, Istituto di Ricerche di Biologia Melecolare P. Angeletti, Pomezia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Tscharke DC, Karupiah G, Zhou J, Palmore T, Irvine KR, Haeryfar SMM, Williams S, Sidney J, Sette A, Bennink JR, Yewdell JW. Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. ACTA ACUST UNITED AC 2004; 201:95-104. [PMID: 15623576 PMCID: PMC2212779 DOI: 10.1084/jem.20041912] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The large size of poxvirus genomes has stymied attempts to identify determinants recognized by CD8+ T cells and greatly impeded development of mouse smallpox vaccination models. Here, we use a vaccinia virus (VACV) expression library containing each of the predicted 258 open reading frames to identify five peptide determinants that account for approximately half of the VACV-specific CD8+ T cell response in C57BL/6 mice. We show that the primary immunodominance hierarchy is greatly affected by the route of VACV infection and the poxvirus strain used. Modified vaccinia virus ankara (MVA), a candidate replacement smallpox vaccine, failed to induce responses to two of the defined determinants. This could not be predicted by genomic comparison of viruses and is not due strictly to limited MVA replication in mice. Several determinants are immunogenic in cowpox and ectromelia (mousepox) virus infections, and immunization with the immunodominant determinant provided significant protection against lethal mousepox. These findings have important implications for understanding poxvirus immunity in animal models and bench-marking immune responses to poxvirus vaccines in humans.
Collapse
Affiliation(s)
- David C Tscharke
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Rose JJ, Janvier K, Chandrasekhar S, Sekaly RP, Bonifacino JS, Venkatesan S. CD4 down-regulation by HIV-1 and simian immunodeficiency virus (SIV) Nef proteins involves both internalization and intracellular retention mechanisms. J Biol Chem 2004; 280:7413-26. [PMID: 15611114 DOI: 10.1074/jbc.m409420200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the pleiotropic effects of Nef proteins of HIV and simian immunodeficiency virus (SIV), down-modulation of cell surface expression of CD4 is a prominent phenotype. It has been presumed that Nef proteins accelerate endocytosis of CD4 by linking the receptor to the AP-2 clathrin adaptor. However, the related AP-1 and AP-3 adaptors have also been shown to interact with Nef, hinting at role(s) for these complexes in the intracellular retention of CD4. By using genetic inhibitors of endocytosis and small interfering RNA-induced knockdown of AP-2, we show that accelerated CD4 endocytosis is not a dominant mechanism of HIV-1 (NL4-3 strain) Nef in epithelial cells, T lymphocyte cell lines, or peripheral blood lymphocytes. Furthermore, we show that both the CD4 recycling from the plasma membrane and the nascent CD4 in transit to the plasma membrane are susceptible to intracellular retention in HIV-1 Nef-expressing cells. In contrast, AP-2-mediated enhanced endocytosis constitutes the predominant mechanism for SIV (MAC-239 strain) Nef-induced down-regulation of human CD4 in human cells.
Collapse
Affiliation(s)
- Jeremy J Rose
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
92
|
Bera S, Malik L, Bhat B, Carroll SS, Hrin R, MacCoss M, McMasters DR, Miller MD, Moyer G, Olsen DB, Schleif WA, Tomassini JE, Eldrup AB. Synthesis and biological evaluation of 5R- and 5S-methyl substituted d- and l-configuration 1,3-dioxolane nucleoside analogs. Bioorg Med Chem 2004; 12:6237-47. [PMID: 15519166 DOI: 10.1016/j.bmc.2004.08.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/31/2004] [Accepted: 08/31/2004] [Indexed: 11/30/2022]
Abstract
1,3-Dioxolane and 1,3-oxathiolane nucleoside analogs play an important role in anti-viral and anti-neoplastic chemotherapy. We report here the synthesis of 2-hydroxymethyl-5-methyl-1,3-dioxolanylpurine nucleosides from 4-acetoxy-2-(benzyloxymethyl)-5-methyldioxolane. Dioxolanes of alpha-D-, beta-D-, alpha-L-, and beta-L-configuration were prepared, that included 5-methyl derivatives of both 5R and 5S configuration. Molecular mechanics calculations indicate that the 5S and 5R diastereoisomeric 1,3-dioxolanes possess distinct conformational bias, suggesting that methyl substitution may alter the conformational preference of 1,3-dioxolanes. The ability of the 1,3-dioxolanes to inhibit HCV RNA replication was evaluated in a cell-based, subgenomic replicon assay. In addition, activity against vaccinia and HIV was evaluated in cell-based assays. The 2-hydroxymethyl-5-methyl-1,3-dioxolanes were found to be inactive.
Collapse
Affiliation(s)
- Sanjib Bera
- Department of Medicinal Chemistry, Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Gray PM, Parks GD, Alexander-Miller MA. Modulation of CD8+ T cell avidity by increasing the turnover of viral antigen during infection. Cell Immunol 2004; 231:14-9. [PMID: 15919365 DOI: 10.1016/j.cellimm.2004.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/31/2004] [Accepted: 12/02/2004] [Indexed: 11/17/2022]
Abstract
The increased potency of high avidity CD8+ T cells for the clearance of viral infections has been well documented. We have previously reported the novel finding that intranasal infection with the paramyxovirus SV5 induces a CD8+ T cell response to the SV5 P protein that is almost exclusively of high avidity. Based on our results that the level of peptide presentation is a critical factor in the selective expansion of high versus low avidity cells in vitro, we hypothesized that the avidity of the anti-viral response generated in vivo could be altered by increasing the turnover of the P protein during viral infection through linkage to ubiquitin (UbP). Infection with a virus expressing UbP (VV-UbP) elicited a significant increase in low avidity cells in both BALB/c and C3H mice compared to the almost exclusively high avidity response elicited by VV-P. Our results are the first demonstration of the control of avidity during the antiviral response through an engineered change to a viral antigen. The implications of our findings for vaccine development are discussed.
Collapse
Affiliation(s)
- Peter M Gray
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
94
|
Nkolola JP, Wee EGT, Im EJ, Jewell CP, Chen N, Xu XN, McMichael AJ, Hanke T. Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa. Gene Ther 2004; 11:1068-80. [PMID: 15164090 DOI: 10.1038/sj.gt.3302241] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.
Collapse
Affiliation(s)
- J P Nkolola
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Vordermeier HM, Rhodes SG, Dean G, Goonetilleke N, Huygen K, Hill AVS, Hewinson RG, Gilbert SC. Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guérin. Immunology 2004; 112:461-70. [PMID: 15196215 PMCID: PMC1782509 DOI: 10.1111/j.1365-2567.2004.01903.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 04/25/2004] [Accepted: 04/21/2004] [Indexed: 11/29/2022] Open
Abstract
The development of novel vaccine strategies to replace or supplement bacille Calmette-Guérin (BCG) is urgently required. Here we study, in cattle, the use of heterologous prime-boost strategies based on vaccination with BCG and the mycobacterial mycolyl transferase Ag85A (Rv3804c) expressed either in recombinant modified vaccinia virus Ankara (MVA85A) or attenuated fowlpox strain FP9 (FP85A). Five different vaccination schedules were tested in the first experiment: MVA85A followed by BCG (group 1); BCG followed by MVA85A (group 2); BCG followed by FP85A and then MVA85A (group 3); MVA85A followed by MVA85A and then FP85A (group 4); and FP85A followed by FP85A and then MVA85A (group 5). Vaccine-induced levels of cellular immunity were assessed by determining interferon-gamma (IFN-gamma) responses in vitro. Prime-boost protocols, using recombinant MVA and BCG in combination (groups 1-3), resulted in significantly higher frequencies of Ag85-specific IFN-gamma-secreting cells than the two viral vectors used in combination (P=0.0055), or BCG used alone (groups 2 and 3, P=0.04). The T-cell repertoires of the calves in all five groups were significantly broader following heterologous booster immunizations than after the primary immunization. In a second experiment, the effects of BCG\MVA85A heterologous prime-boost vaccination were compared with BCG\BCG homologous revaccination. The results suggested a higher Ag85A-specific response with a wider T-cell repertoire in the MVA85A-boosted calves than in the BCG\BCG-vaccinated calves. In conclusion therefore, the present report demonstrates the effectiveness of heterologous prime-boost strategies based on recombinant MVA and BCG to induce strong cellular immune responses in cattle and prioritise such vaccination strategies for rapid assessment of protective efficacy in this natural target species of tuberculosis.
Collapse
Affiliation(s)
- H Martin Vordermeier
- TB Research Group, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Sekiya F, Poulin B, Kim YJ, Rhee SG. Mechanism of Tyrosine Phosphorylation and Activation of Phospholipase C-γ1. J Biol Chem 2004; 279:32181-90. [PMID: 15161916 DOI: 10.1074/jbc.m405116200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phospholipase C-gamma 1 (PLC-gamma 1) is phosphorylated on three tyrosine residues: Tyr-771, Tyr-783, and Tyr-1253. With the use of antibodies specific for each of these phosphorylation sites, we have now determined the kinetics and magnitude of phosphorylation at each site. Phosphorylation of Tyr-783, which is essential for lipase activation, was observed in all stimulated cell types examined. The extent of phosphorylation of Tyr-1253 was approximately 50 to 70% of that of Tyr-783 in cells stimulated with platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), but Tyr-1253 phosphorylation was not detected in B or T cell lines stimulated through B- and T-cell antigen receptors, respectively. Tyr-771 was phosphorylated only at a low level in all cells studied. In cells stimulated with PDGF, phosphorylation and dephosphorylation of Tyr-783 and of Tyr-1253 occurred with similar kinetics; the receptor kinase appeared to phosphorylate both sites, albeit with Tyr-783 favored over Tyr-1253, before the bound PLC-gamma 1 was released, and phosphorylation at the two sites occurred independently. PDGF and EGF induced similar levels of phosphorylation of Tyr-783 and of Tyr-1253 in a cell line that expressed receptors for both growth factors. However, only PDGF, not EGF, elicited substantial PLC activity, suggesting that Tyr-783 phosphorylation was not sufficient for enzyme activation. Finally, concurrent production of phosphatidylinositol 3,4,5-trisphosphate was found to contribute to the activation of phosphorylated PLC-gamma 1.
Collapse
Affiliation(s)
- Fujio Sekiya
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
97
|
Gibson L, Piccinini G, Lilleri D, Revello MG, Wang Z, Markel S, Diamond DJ, Luzuriaga K. Human cytomegalovirus proteins pp65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2004; 172:2256-64. [PMID: 14764694 DOI: 10.4049/jimmunol.172.4.2256] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant modified vaccinia Ankara- and peptide-based IFN-gamma ELISPOT assays were used to detect and measure human CMV (HCMV)-specific CD8(+) T cell responses to the pp65 (UL83) and immediate early protein 1 (IE1; UL123) gene products in 16 HCMV-infected infants and children. Age at study ranged from birth to 2 years. HCMV-specific CD8(+) T cells were detected in 14 (88%) of 16 children at frequencies ranging from 60 to >2000 spots/million PBMC. Responses were detected as early as 1 day of age in infants with documented congenital infection. Nine children responded to both pp65 and IE1, whereas responses to pp65 or IE1 alone were detected in three and two children, respectively. Regardless of the specificity of initial responses, IE1-specific responses predominated by 1 year of age. Changes in HCMV epitopes targeted by the CD8(+) T cell responses were observed over time; epitopes commonly recognized by HLA-A2(+) adults with latent HCMV infection did not fully account for responses detected in early childhood. Finally, the detection of HCMV-specific CD8(+) T cell responses was temporally associated with a decrease in peripheral blood HCMV load. Taken altogether, these data demonstrate that the fetus and young infant can generate virus-specific CD8(+) T cell responses. Changes observed in the protein and epitope-specificity of HCMV-specific CD8(+) T cells over time are consistent with those observed after other primary viral infections. The temporal association between the detection of HCMV-specific CD8(+) T cell responses and the reduction in blood HCMV load supports the importance of CD8(+) T cells in controlling primary HCMV viremia.
Collapse
Affiliation(s)
- Laura Gibson
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Nathaniel R, MacNeill AL, Wang YX, Turner PC, Moyer RW. Cowpox virus CrmA, Myxoma virus SERP2 and baculovirus P35 are not functionally interchangeable caspase inhibitors in poxvirus infections. J Gen Virol 2004; 85:1267-1278. [PMID: 15105544 DOI: 10.1099/vir.0.79905-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cowpox virus (CPV) expresses the serpin (serine proteinase inhibitor) CrmA, an anti-inflammatory, anti-apoptotic protein required for production of red pocks on chicken chorioallantoic membranes (CAMs). In vitro, CrmA inhibits several caspases and granzyme B. Altering the critical P1-aspartate in the CrmA reactive centre loop to alanine resulted in a virus (CPV-CrmA-D303A) that resembled CPV deleted for CrmA (CPVDeltaCrmA : : lacZ); on CAMs it produced white, inflammatory pocks with activated caspase-3 and reduced virus yields, suggesting that CrmA activities are mediated via proteinase inhibition. CrmA in CPV was replaced with SERP2 from Myxoma virus (MYX) or baculovirus P35, which inhibit similar proteinases in vitro. SERP2 and P35 each blocked caspase-3-mediated apoptosis but were unable to control inflammation of CAMs. However, SERP2 and P35 restored virus yields, indicating that the decreased virus titres seen with CPVDeltaCrmA : : lacZ resulted from apoptosis rather than inflammation. To compare the activities of CrmA and SERP2 further, rabbits were infected with MYX recombinant viruses. Intradermal infection of rabbits with MYX was uniformly lethal, generating raised primary lesions and many secondary lesions. In contrast, deletion of SERP2 from MYX (MYXDeltaSERP2 : : lacZ) caused little mortality and produced flat primary lesions with few secondary lesions. Replacement of SERP2 with CrmA (MYXDeltaSERP2 : : CrmA) resulted in partial complementation with flat primary lesions, many secondary lesions and death in 70 % of the rabbits. Therefore, CrmA and SERP2 were not functionally interchangeable during infection of CAMs or rabbits, implying that these serpins have activities that are not evident from biochemical studies with human caspases.
Collapse
Affiliation(s)
- Rajkumar Nathaniel
- Section of Digestive Disease and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy L MacNeill
- University of Florida, College of Medicine, Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610-0266, USA
| | - Yun-Xiang Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter C Turner
- University of Florida, College of Medicine, Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610-0266, USA
| | - Richard W Moyer
- University of Florida, College of Medicine, Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610-0266, USA
| |
Collapse
|
99
|
Wang Z, La Rosa C, Mekhoubad S, Lacey SF, Villacres MC, Markel S, Longmate J, Ellenhorn JDI, Siliciano RF, Buck C, Britt WJ, Diamond DJ. Attenuated poxviruses generate clinically relevant frequencies of CMV-specific T cells. Blood 2004; 104:847-56. [PMID: 15090456 DOI: 10.1182/blood-2003-10-3469] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunotherapeutic approaches to limit cytomegalovirus (CMV) morbidity and mortality after hematopoietic stem cell transplants (HSCTs) are currently under investigation as alternatives to antiviral drugs. In this context, we have inserted full-length and ubiquitin-modified CMV phosphoprotein 65 (pp65), phosphoprotein 150 (pp150), and immediate early protein 1 (IE1) immunodominant antigens into the virulent Western Reserve strain of vaccinia virus (VV) and the highly attenuated strain, modified vaccinia Ankara (MVA). Recombinant (r) VV or rMVA stimulated vigorous expansion of CMV-specific CD8+ T cells in CMV-positive donor peripheral blood mononuclear cells (PBMCs), which showed minimal alloreactivity and high levels of HLA tetramer binding, cytokine production, and cytotoxicity. Ubiquitinated antigens had a profound effect when expressed in VV. Single antigen rMVA expressing pp65 or IE1, either ubiquitin-modified or native, stimulated both cytotoxic T lymphocyte (CTL) populations to be expanded up to 500-fold in a 60-mL blood draw from the same donor. This result demonstrates the clinical feasibility of simultaneously amplifying multiple CMV-CTL populations. Transgenic HLA A2.1 (HHD II) mice, immunized with the same rMVA as used with human PBMCs, produced a robust cytotoxic response to both CMV pp65 and IE1. The specificity of the vigorous immunologic response to rMVA, both in vitro and in vivo, makes them candidates for clinical evaluation in the context of adoptive immunotherapy for hematopoietic stem cell transplant (HSCT) recipients or donor vaccination.
Collapse
Affiliation(s)
- Zhongde Wang
- Laboratory of Vaccine Research, Beckman Research Institute of the City of Hope,City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Heinemann L, Dillon S, Crawford A, Bäckström BT, Hibma MH. Flow cytometric quantitation of the protective efficacy of dendritic cell based vaccines in a human papillomavirus type 16 murine challenge model. J Virol Methods 2004; 117:9-18. [PMID: 15019255 DOI: 10.1016/j.jviromet.2003.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 11/18/2003] [Accepted: 11/20/2003] [Indexed: 11/23/2022]
Abstract
A murine model for the assessment of protective immunity to human papillomavirus (HPV) type 16, a virus that does not naturally infect mice, is described. In this system, protection was tested following intranasal challenge of mice with a recombinant vaccinia virus expressing both the selected HPV antigen and a beta-galactosidase (beta-gal) reporter. The extent of viral infectivity was determined by measuring beta-gal positive lung cells using flow cytometry. The efficacy of this model to measure protective immunity was evaluated by priming mice with the beta-gal vaccinia virus then challenging the mice with the same virus. Vaccinia primed mice had negligible numbers of beta-gal positive cells in the lung 5 days following viral challenge indicating protection, whereas around 50% of cells were infected in immunologically naive, challenged mice. The protective efficacy of two dendritic cell vaccines for HPV16 was measured in this model. Both vaccines provided some protection to subsequent viral challenge, compared with their controls. Although this protection model was applied to HPV in this study, it may also have broad application to other viruses that do not infect mice naturally.
Collapse
Affiliation(s)
- Lucy Heinemann
- Virus Research Unit, Department of Microbiology, University of Otago, P.O. Box 56, Dunedin 9001, New Zealand
| | | | | | | | | |
Collapse
|