51
|
Palanisamy S, Xue C, Ishiyama S, Naga Prasad SV, Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal 2021; 86:110092. [PMID: 34303814 DOI: 10.1016/j.cellsig.2021.110092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Cell surface receptors including the epidermal growth factor receptor (EGFR) family and G-protein coupled receptors (GPCRs) play quintessential roles in physiology, and in diseases, including cardiovascular diseases. While downstream signaling from these individual receptor families has been well studied, the cross-talk between EGF and GPCR receptor families is still incompletely understood. Including members of both receptor families, the number of receptor and ligand combinations for unique interactions is vast, offering a frontier of pharmacologic targets to explore for preventing and treating disease. This molecular cross-talk, called receptor transactivation, is reviewed here with a focus on the cardiovascular system featuring the well-studied GPCR receptors, but also discussing less-studied receptors from both families for a broad understanding of context of expansile interactions, repertoire of cellular signaling, and disease consequences. Attention is given to cell type, level of chronicity, and disease context given that transactivation and comorbidities, including diabetes, hypertension, coronavirus infection, impact cardiovascular disease and health outcomes.
Collapse
Affiliation(s)
| | - Carolyn Xue
- University of California, Los Angeles, 101 Hershey Hall, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center, Department of Surgery, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Sathyamangla Venkata Naga Prasad
- NB50, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, 1, Cleveland, OH 44195, USA.
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Miller Research Building, Room 807, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
52
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
53
|
Wang Z, Chan HW, Gambarotta G, Smith NJ, Purdue BW, Pennisi DJ, Porrello ER, O'Brien SL, Reichelt ME, Thomas WG, Paravicini TM. Stimulation of the four isoforms of receptor tyrosine kinase ErbB4, but not ErbB1, confers cardiomyocyte hypertrophy. J Cell Physiol 2021; 236:8160-8170. [PMID: 34170016 DOI: 10.1002/jcp.30487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Epidermal growth factor (EGF) receptors (ErbB1-ErbB4) promote cardiac development and growth, although the specific EGF ligands and receptor isoforms involved in growth/repair versus pathology remain undefined. We challenged ventricular cardiomyocytes with EGF-like ligands and observed that selective activation of ErbB4 (the receptor for neuregulin 1 [NRG1]), but not ErbB1 (the receptor for EGF, EGFR), stimulated hypertrophy. This lack of direct ErbB1-mediated hypertrophy occurred despite robust activation of extracellular-regulated kinase 1/2 (ERK) and protein kinase B. Hypertrophic responses to NRG1 were unaffected by the tyrosine kinase inhibitor (AG1478) at concentrations that are selective for ErbB1 over ErbB4. NRG1-induced cardiomyocyte enlargement was suppressed by small interfering RNA (siRNA) knockdown of ErbB4 and ErbB2, whereas ERK phosphorylation was only suppressed by ErbB4 siRNA. Four ErbB4 isoforms exist (JM-a/JM-b and CYT-1/CYT-2), generated by alternative splicing, and their expression declines postnatally and following cardiac hypertrophy. Silencing of all four isoforms in cardiomyocytes, using an ErbB4 siRNA, abrogated NRG1-induced hypertrophic promoter/reporter activity, which was rescued by coexpression of knockdown-resistant versions of the ErbB4 isoforms. Thus, ErbB4 confers cardiomyocyte hypertrophy to NRG1, and all four ErbB4 isoforms possess the capacity to mediate this effect.
Collapse
Affiliation(s)
- Zhen Wang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hsiu-Wen Chan
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino, Italy
| | - Nicola J Smith
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brooke W Purdue
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Pennisi
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shannon L O'Brien
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tamara M Paravicini
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
54
|
Stroedecke K, Meinel S, Markwardt F, Kloeckner U, Straetz N, Quarch K, Schreier B, Kopf M, Gekle M, Grossmann C. The mineralocorticoid receptor leads to increased expression of EGFR and T-type calcium channels that support HL-1 cell hypertrophy. Sci Rep 2021; 11:13229. [PMID: 34168192 PMCID: PMC8225817 DOI: 10.1038/s41598-021-92284-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2021] [Indexed: 11/12/2022] Open
Abstract
The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important effector of the renin-angiotensin-aldosterone-system and elicits pathophysiological effects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR-mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identified a SNP within the EGFR promoter that modulates MR-induced EGFR expression. In RNA-sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to differential expression of cardiac ion channels, especially of the T-type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone- and EGF-responsiveness of CACNA1H expression was confirmed in HL-1 cells by Western blot and by measuring peak current density of T-type calcium channels. Aldosterone-induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T-type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL-1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an effect on HL-1 cell diameter, and the extent of this regulation seems to depend on the SNP-216 (G/T) genotype. This suggests that the EGFR may be an intermediate for MR-mediated cardiovascular changes and that SNP analysis can help identify subgroups of patients that will benefit most from MR antagonists.
Collapse
Affiliation(s)
- Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Sandra Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Fritz Markwardt
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Udo Kloeckner
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Katja Quarch
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Kopf
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany.
| |
Collapse
|
55
|
Guitart-Mampel M, Urquiza P, Borges JI, Lymperopoulos A, Solesio ME. Impact of Aldosterone on the Failing Myocardium: Insights from Mitochondria and Adrenergic Receptors Signaling and Function. Cells 2021; 10:1552. [PMID: 34205363 PMCID: PMC8235589 DOI: 10.3390/cells10061552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mineralocorticoid aldosterone regulates electrolyte and blood volume homeostasis, but it also adversely modulates the structure and function of the chronically failing heart, through its elevated production in chronic human post-myocardial infarction (MI) heart failure (HF). By activating the mineralocorticoid receptor (MR), a ligand-regulated transcription factor, aldosterone promotes inflammation and fibrosis of the heart, while increasing oxidative stress, ultimately induding mitochondrial dysfunction in the failing myocardium. To reduce morbidity and mortality in advanced stage HF, MR antagonist drugs, such as spironolactone and eplerenone, are used. In addition to the MR, aldosterone can bind and stimulate other receptors, such as the plasma membrane-residing G protein-coupled estrogen receptor (GPER), further complicating it signaling properties in the myocardium. Given the salient role that adrenergic receptor (ARs)-particularly βARs-play in cardiac physiology and pathology, unsurprisingly, that part of the impact of aldosterone on the failing heart is mediated by its effects on the signaling and function of these receptors. Aldosterone can significantly precipitate the well-documented derangement of cardiac AR signaling and impairment of AR function, critically underlying chronic human HF. One of the main consequences of HF in mammalian models at the cellular level is the presence of mitochondrial dysfunction. As such, preventing mitochondrial dysfunction could be a valid pharmacological target in this condition. This review summarizes the current experimental evidence for this aldosterone/AR crosstalk in both the healthy and failing heart, and the impact of mitochondrial dysfunction in HF. Recent findings from signaling studies focusing on MR and AR crosstalk via non-conventional signaling of molecules that normally terminate the signaling of ARs in the heart, i.e., the G protein-coupled receptor-kinases (GRKs), are also highlighted.
Collapse
Affiliation(s)
- Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| | - Jordana I. Borges
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| |
Collapse
|
56
|
de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021; 528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - João Pedro Tôrres Guimarães
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (ICB/USP), São Paulo, SP, Brazil; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brennan Mabry
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
57
|
OPALS: A New Osimertinib Adjunctive Treatment of Lung Adenocarcinoma or Glioblastoma Using Five Repurposed Drugs. Cells 2021; 10:cells10051148. [PMID: 34068720 PMCID: PMC8151869 DOI: 10.3390/cells10051148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pharmacological targeting aberrant activation of epidermal growth factor receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Osimertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have one of several common activating mutations in epidermal growth factor receptor. The emergence of resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen designed to increase osimertinib’s growth inhibition and thereby delay the development of resistance. Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is excellent. We have no data from humans on their tolerability when used as an ensemble. That there is no data from the individual drugs to suspect problematic interaction does not exclude the possibility. Data Sources: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophysiology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin, the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data showing they may be active in suppressing glioblastoma growth.
Collapse
|
58
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Yang H, Li GP, Liu Q, Zong SB, Li L, Xu ZL, Zhou J, Cao L, Wang ZZ, Zhang QC, Li M, Fan QR, Hu HF, Xiao W. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother Res 2021; 35:2727-2744. [PMID: 33452698 DOI: 10.1002/ptr.7018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/07/2022]
Abstract
The present study was undertaken to identify whether prostaglandin E2 receptor is the potential receptor/binding site for Ginkgolide A, Ginkgolide B, Ginkgolide K, and Bilobalide, the four main ingredients of the Ginkgo biloba L., leaves. Using functional assays, we identified EP4, coupled with Gs protein, as a target of Ginkgolide B. In human neuroblastoma SH-SY5Y cells suffered from oxygen-glucose deprivation/reperfusion, Ginkgolide B-activated PKA, Akt, and ERK1/2 as well as Src-mediated transactivation of epidermal growth factor receptor. These resulted in downstream signaling pathways, which enhanced cell survival and inhibited apoptosis. Knockdown of EP4 prevented Ginkgolide B-mediated Src, epidermal growth factor receptor (EGFR), Akt, and ERK1/2 phosphorylation and neuroprotective effects. Moreover, Src inhibitor prevented Ginkgolide B-mediated EGFR transactivation and the downstream Akt and ERK1/2 activation, while the phosphorylation of PKA induced by Ginkgolide B was not affected, indicating Ginkgolide B might transactivate EGFR in a ligand-independent manner. EP4 knockdown in a rat middle cerebral artery occlusion (MCAO) model prevented Ginkgolide B-mediated infarct size reduction and neurological assessment improvement. At the same time, the increased expressions of p-Akt, p-ERK1/2, p-PKA, p-Src, and p-EGFR and the deceased expression of cleaved capases-3 induced by Ginkgolide B in cerebral cortex were blocked due to EP4 knockdown. In conclusion, Ginkgolide B exerts neuroprotective effects in rat MCAO model through the activation of EP4 and the downstream transactivation of EGFR.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Gui-Ping Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qiu Liu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shao-Bo Zong
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhi-Liang Xu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Cao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhen-Zhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Quan-Chang Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Ming Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qi-Ru Fan
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Han-Fei Hu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
60
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
61
|
Endothelial epidermal growth factor receptor is of minor importance for vascular and renal function and obesity-induced dysfunction in mice. Sci Rep 2021; 11:7269. [PMID: 33790318 PMCID: PMC8012653 DOI: 10.1038/s41598-021-86587-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular EGF receptors (EGFR) influence function and structure of arterial vessels. In genetic mouse models we described the role of vascular smooth muscle (VSMC) EGFR for proper physiological function and structure as well as for pathophysiological alterations by obesity or angiotensin II. As the importance of endothelial (EC) EGFR in vivo is unknown, we analyzed the impact of EC-EGFR knockout in a conditional mouse model on vascular and renal function under control condition as well as in obesity and in comparison to VSMC-KO. Heart and lung weight, blood pressure and aortic transcriptome (determined by RNA-seq) were not affected by EC-EGFR-KO. Aortic reactivity to α1-adrenergic stimulation was not affected by EC-EGFR-KO contrary to VSMC-EGFR-KO. Endothelial-induced relaxation was reduced in abdominal aorta of EC-EGFR-KO animals, whereas it was enhanced in VSMC-EGFR-KO animals. Mesenteric arteries of EC-EGFR-KO animals showed enhanced sensitivity to α1-adrenergic stimulation, whereas endothelial-induced relaxation and vessel morphology were not affected. Renal weight, histomorphology, function (albumin excretion, serum creatinine, fractional water excretion) or transcriptome were not affected by EC-EGFR-KO, likewise in VSMC-EGFR-KO. High fat diet (HFD) over 18 weeks induced arterial wall thickening, renal weight increase, creatininemia, renal and aortic transcriptome alterations with a similar pattern in EC-EGFR-WT and EC-EGFR-KO animals by contrast to the previously reported impact of VSMC-EGFR-KO. HFD induced endothelial dysfunction in abdominal aortae of EC-EGFR-WT, which was not additive to the EC-EGFR-KO-induced endothelial dysfunction. As shown before, VSMC-EGFR-KO prevented HFD-induced endothelial dysfunction. HFD-induced albuminuria was less pronounced in EC-EGFR-KO animals and abrogated in VSMC-EGFR-KO animals. Our results indicate that EC-EGFR, in comparison to VSMC-EGFR, is of minor and opposite importance for basal renovascular function as well as for high fat diet-induced vascular remodeling and renal end organ damage.
Collapse
|
62
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
63
|
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling. Cell Signal 2021; 83:109993. [PMID: 33781845 DOI: 10.1016/j.cellsig.2021.109993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The Reversion Inducing Cysteine Rich Protein With Kazal Motifs (RECK) is a glycosylphosphatidylinositol (GPI) anchored membrane-bound regulator of matrix metalloproteinases (MMPs). It is expressed throughout the body and plays a role in extracellular matrix (ECM) homeostasis and inflammation. In initial studies, RECK expression was found to be downregulated in various invasive cancers and associated with poor prognostic outcome. Restoring RECK, however, has been shown to reverse the metastatic phenotype. Downregulation of RECK expression is also reported in non-malignant diseases, such as periodontal disease, renal fibrosis, and myocardial fibrosis. As such, RECK induction has therapeutic potential in several chronic diseases. Mechanistically, RECK negatively regulates various matrixins involved in cell migration, proliferation, and adverse remodeling by targeting the expression and/or activation of multiple MMPs, A Disintegrin And Metalloproteinase Domain-Containing Proteins (ADAMs), and A Disintegrin And Metalloproteinase With Thrombospondin Motifs (ADAMTS). Outside of its role in remodeling, RECK has also been reported to exert anti-inflammatory effects. In cardiac diseases, for example, it has been shown to counteract several downstream effectors of Angiotensin II (Ang-II) that play a role in adverse cardiac and vascular remodeling, such as Interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/glycoprotein 130 (IL-6 signal transducer) signaling and Epidermal Growth Factor Receptor (EGFR) transactivation. This review article focuses on the current understanding of the multifunctional effects of RECK and how its downregulation may contribute to adverse cardiovascular remodeling.
Collapse
Affiliation(s)
- Jacob J Russell
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America.
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| | - B Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
64
|
Johnstone EKM, Abhayawardana RS, See HB, Seeber RM, O'Brien SL, Thomas WG, Pfleger KDG. Complex interactions between the angiotensin II type 1 receptor, the epidermal growth factor receptor and TRIO-dependent signaling partners. Biochem Pharmacol 2021; 188:114521. [PMID: 33741329 DOI: 10.1016/j.bcp.2021.114521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Transactivation of the epidermal growth factor receptor (EGFR) by the angiotensin II (AngII) type 1 (AT1) receptor is involved in AT1 receptor-dependent growth effects and cardiovascular pathologies, however the mechanisms underpinning this transactivation are yet to be fully elucidated. Recently, a potential intermediate of this process was identified following the discovery that a kinase called TRIO was involved in AngII/AT1 receptor-mediated transactivation of EGFR. To investigate the mechanisms by which TRIO acts as an intermediate in AngII/AT1 receptor-mediated EGFR transactivation we used bioluminescence resonance energy transfer (BRET) assays to investigate proximity between the AT1 receptor, EGFR, TRIO and other proteins of interest. We found that AngII/AT1 receptor activation caused a Gαq-dependent increase in proximity of TRIO with Gγ2 and the AT1-EGFR heteromer, as well as trafficking of TRIO towards the Kras plasma membrane marker and into early, late and recycling endosomes. In contrast, we found that AngII/AT1 receptor activation caused a Gαq-independent increase in proximity of TRIO with Grb2, GRK2 and PKCζ, as well as trafficking of TRIO up to the plasma membrane from the Golgi. Furthermore, we confirmed the proximity between the AT1 receptor and the EGFR using the Receptor-Heteromer Investigation Technology, which showed AngII-induced recruitment of Grb2, GRK2, PKCζ, Gγ2 and TRIO to the EGFR upon AT1 coexpression. In summary, our results provide further evidence for the existence of the AT1-EGFR heteromer and reveal potential mechanisms by which TRIO contributes to the transactivation process.
Collapse
Affiliation(s)
- Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Rekhati S Abhayawardana
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Heng B See
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Ruth M Seeber
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
65
|
Bae J, Won YJ, Lee BW. Non-Albumin Proteinuria (NAP) as a Complementary Marker for Diabetic Kidney Disease (DKD). Life (Basel) 2021; 11:life11030224. [PMID: 33802211 PMCID: PMC7998887 DOI: 10.3390/life11030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common forms of chronic kidney disease. Its pathogenic mechanism is complex, and it can affect entire structures of the kidney. However, conventional approaches to early stage DKD have focused on changes to the glomerulus. Current standard screening tools for DKD, albuminuria, and estimated glomerular filtration rate are insufficient to reflect early tubular injury. Therefore, many tubular biomarkers have been suggested. Non-albumin proteinuria (NAP) contains a wide range of tubular biomarkers and is convenient to measure. We reviewed the clinical meanings of NAP and its significance as a marker for early stage DKD.
Collapse
Affiliation(s)
- Jaehyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon KS006, Korea; (J.B.); (Y.J.W.)
| | - Young Jun Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon KS006, Korea; (J.B.); (Y.J.W.)
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul KS013, Korea
- Correspondence:
| |
Collapse
|
66
|
Kilpatrick LE, Hill SJ. Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs): Recent insights using luminescence and fluorescence technologies. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 16:102-112. [PMID: 33748531 PMCID: PMC7960640 DOI: 10.1016/j.coemr.2020.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alterations in signalling due to bidirectional transactivation of G protein-coupled receptor (GPCRs) and receptor tyrosine kinases (RTKs) are well established. Transactivation significantly diversifies signalling networks within a cell and has been implicated in promoting both advantageous and disadvantageous physiological and pathophysiological outcomes, making the GPCR/RTK interactions attractive new targets for drug discovery programmes. Transactivation has been observed for a plethora of receptor pairings in multiple cell types; however, the precise molecular mechanisms and signalling effectors involved can vary with receptor pairings and cell type. This short review will discuss the recent applications of proximity-based assays, such as resonance energy transfer and fluorescence-based imaging in investigating the dynamics of GPCR/RTK complex formation, subsequent effector protein recruitment and the cellular locations of complexes in living cells.
Collapse
Key Words
- 5-hydroxytryptamine receptor 1A, (5-HT1A)
- Endocytosis
- Förster Resonance Energy Transfer, (FRET)
- G protein-coupled receptor
- G protein-coupled receptors, (GPCRs)
- GPCR kinases, (GRKs)
- Oligomeric complexes
- Receptor tyrosine kinase
- Resonance energy transfer
- Transactivation
- adrenoceptors, (AR)
- bioluminescence resonance energy transfer, (BRET)
- cannabinoid receptor 2, (CB2R)
- disintegrin and metalloproteinases, (ADAMs)
- epidermal growth factor receptor, (EGFR)
- epidermal growth factor, (EGF)
- fibroblast growth factor receptor, (FGFR)
- fluorescence correlation spectroscopy, (FCS)
- formyl peptide receptor, (FPR)
- free fatty acid, (FFA)
- heparin binding EGF, (Hb-EGF)
- hepatocyte growth factor, (HGF)
- human umbilical vein endothelial cells, (HUVECs)
- insulin growth factor receptor-1, (IGFR-1)
- insulin receptor, (IR)
- lysophosphatidic acid receptor 1, (LPA)
- matrix metalloproteinases, (MMPs)
- platelet-derived growth factor receptor, (PDGFR)
- proximity ligation assay, (PLA)
- reactive oxygen species, (ROS)
- receptor tyrosine kinases, (RTKs)
- sphingosine-1-phosphate receptor, (S1PR)
- tetrahydrocannabinol, (THC)
- total internal reflection fluorescence microscopy, (TIRF-M)
- vascular endothelial growth factor receptor 2, (VEGFR2)
- vascular endothelial growth factor, (VEGF)
- vasopressin 2 receptor, (V2R)
Collapse
Affiliation(s)
- Laura E. Kilpatrick
- Division of Bimolecular Sciences and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, NG7 2UH, UK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, NG7 2UH, UK
| |
Collapse
|
67
|
Sheng L, Bayliss G, Zhuang S. Epidermal Growth Factor Receptor: A Potential Therapeutic Target for Diabetic Kidney Disease. Front Pharmacol 2021; 11:598910. [PMID: 33574751 PMCID: PMC7870700 DOI: 10.3389/fphar.2020.598910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease worldwide and the major cause of renal failure among patients on hemodialysis. Numerous studies have demonstrated that transient activation of epidermal growth factor receptor (EGFR) pathway is required for promoting kidney recovery from acute injury whereas its persistent activation is involved in the progression of various chronic kidney diseases including DKD. EGFR-mediated pathogenesis of DKD is involved in hemodynamic alteration, metabolic disturbance, inflammatory response and parenchymal cellular dysfunction. Therapeutic intervention of this receptor has been available in the oncology setting. Targeting EGFR might also hold a therapeutic potential for DKD. Here we review the functional role of EGFR in the development of DKD, mechanisms involved and the perspective about use of EGFR inhibitors as a treatment for DKD.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
68
|
Updated Insights on EGFR Signaling Pathways in Glioma. Int J Mol Sci 2021; 22:ijms22020587. [PMID: 33435537 PMCID: PMC7827907 DOI: 10.3390/ijms22020587] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, due to recent advances in molecular biology, the pathogenesis of glioblastoma is better understood. For the newly diagnosed, the current standard of care is represented by resection followed by radiotherapy and temozolomide administration, but because median overall survival remains poor, new diagnosis and treatment strategies are needed. Due to the quick progression, even with aggressive multimodal treatment, glioblastoma remains almost incurable. It is known that epidermal growth factor receptor (EGFR) amplification is a characteristic of the classical subtype of glioma. However, targeted therapies against this type of receptor have not yet shown a clear clinical benefit. Many factors contribute to resistance, such as ineffective blood-brain barrier penetration, heterogeneity, mutations, as well as compensatory signaling pathways. A better understanding of the EGFR signaling network, and its interrelations with other pathways, are essential to clarify the mechanisms of resistance and create better therapeutic agents.
Collapse
|
69
|
Martínez MA, Úbeda A, Trillo MÁ. Role of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells. Electromagn Biol Med 2021; 40:103-116. [PMID: 33345643 DOI: 10.1080/15368378.2020.1851250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022]
Abstract
Our previous studies have shown that intermittent exposure to a 50-Hz, 100-µT sine wave magnetic field (MF) promotes human NB69 cell proliferation, mediated by activation of the epidermal growth factor receptor (EGFR) and pathways MAPK-ERK1/2 and p38; being the effects on proliferation and p38 activation blocked by the chelator N-acetylcysteine. The present work investigates the MF effects on free radical (FR) production, and the potential involvement of NADPH oxidase, the main source of reactive oxygen species (ROS), in the MF-induced activation of MAPK pathways. To this end, the field effects on MAPK-ERK1/2, -p38 and -JNK activation in the presence or absence of the NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), as well as the expression of the p67phox subunit, were analyzed. The results revealed that field exposure increases FR production and induces early, transient expression of the cytosolic component of the NADPH oxidase, p67phox. Also, the MF-induced activation of the MAPK-JNK pathway, but not that of -ERK1/2 or -p38 pathways, was prevented in the presence of the DPI, which has been shown to significantly reduce p67phox expression. These data, together with those from previous studies, identify various, FR-dependent or -independent mechanisms, involved in the MF-induced proliferative response mediated by MAPK signaling activation.
Collapse
Affiliation(s)
| | - Alejandro Úbeda
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| | - María Ángeles Trillo
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| |
Collapse
|
70
|
Zhou Y, Little PJ, Cao Y, Ta HT, Kamato D. Lysophosphatidic acid receptor 5 transactivation of TGFBR1 stimulates the mRNA expression of proteoglycan synthesizing genes XYLT1 and CHST3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118848. [PMID: 32920014 DOI: 10.1016/j.bbamcr.2020.118848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
Lysophosphatidic acid (LPA) via transactivation dependent signalling pathways contributes to a plethora of physiological and pathophysiological responses. In the vasculature, hyperelongation of glycosaminoglycan (GAG) chains on proteoglycans leads to lipid retention in the intima resulting in the early pathogenesis of atherosclerosis. Therefore, we investigated and defined the contribution of transactivation dependent signalling in LPA mediated GAG chain hyperelongation in human vascular smooth muscle cells (VSMCs). LPA acting via the LPA receptor 5 (LPAR5) transactivates the TGFBR1 to stimulate the mRNA expression of GAG initiation and elongation genes xylosyltransferase-1 (XYLT1) and chondroitin 6-sulfotransferase-1 (CHST3), respectively. We found that LPA stimulates ROS and Akt signalling in VSMCs, however they are not associated in LPAR5 transactivation of the TGFBR1. We observed that LPA via ROCK dependent pathways transactivates the TGFBR1 to stimulate genes associated with GAG chain elongation. We demonstrate that GPCR transactivation of the TGFBR1 occurs via a universal biochemical mechanism and the identified effectors represent potential therapeutic targets to inhibit pathophysiological effects of GPCR transactivation of the TGFBR1.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia.
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China.
| | - Yingnan Cao
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Hang T Ta
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia; School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia.
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China.
| |
Collapse
|
71
|
Stern C, Schreier B, Nolze A, Rabe S, Mildenberger S, Gekle M. Knockout of vascular smooth muscle EGF receptor in a mouse model prevents obesity-induced vascular dysfunction and renal damage in vivo. Diabetologia 2020; 63:2218-2234. [PMID: 32548701 PMCID: PMC7476975 DOI: 10.1007/s00125-020-05187-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Obesity causes type 2 diabetes leading to vascular dysfunction and finally renal end-organ damage. Vascular smooth muscle (VSM) EGF receptor (EGFR) modulates vascular wall homeostasis in part via serum response factor (SRF), a major regulator of VSM differentiation and a sensor for glucose. We investigated the role of VSM-EGFR during obesity-induced renovascular dysfunction, as well as EGFR-hyperglycaemia crosstalk. METHODS The role of VSM-EGFR during high-fat diet (HFD)-induced type 2 diabetes was investigated in a mouse model with inducible, VSM-specific EGFR-knockout (KO). Various structural and functional variables as well as transcriptome changes, in vivo and ex vivo, were assessed. The impact of hyperglycaemia on EGFR-induced signalling and SRF transcriptional activity and the underlying mechanisms were investigated at the cellular level. RESULTS We show that VSM-EGFR mediates obesity/type 2 diabetes-induced vascular dysfunction, remodelling and transcriptome dysregulation preceding renal damage and identify an EGFR-glucose synergism in terms of SRF activation, matrix dysregulation and mitochondrial function. EGFR deletion protects the animals from HFD-induced endothelial dysfunction, creatininaemia and albuminuria. Furthermore, we show that HFD leads to marked changes of the aortic transcriptome in wild-type but not in KO animals, indicative of EGFR-dependent SRF activation, matrix dysregulation and mitochondrial dysfunction, the latter confirmed at the cellular level. Studies at the cellular level revealed that high glucose potentiated EGFR/EGF receptor 2 (ErbB2)-induced stimulation of SRF activity, enhancing the graded signalling responses to EGF, via the EGFR/ErbB2-ROCK-actin-MRTF pathway and promoted mitochondrial dysfunction. CONCLUSIONS/INTERPRETATION VSM-EGFR contributes to HFD-induced vascular and subsequent renal alterations. We propose that a potentiated EGFR/ErbB2-ROCK-MRTF-SRF signalling axis and mitochondrial dysfunction underlie the role of EGFR. This advanced working hypothesis will be investigated in mechanistic depth in future studies. VSM-EGFR may be a therapeutic target in cases of type 2 diabetes-induced renovascular disease. DATA AVAILABILITY The datasets generated during and/or analysed during the current study are available in: (1) share_it, the data repository of the academic libraries of Saxony-Anhalt ( https://doi.org/10.25673/32049.2 ); and (2) in the gene expression omnibus database with the study identity GSE144838 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144838 ). Graphical abstract.
Collapse
Affiliation(s)
- Christian Stern
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Sindy Rabe
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Sigrid Mildenberger
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany.
| |
Collapse
|
72
|
Collier JB, Schnellmann RG. Extracellular signal-regulated kinase 1/2 regulates NAD metabolism during acute kidney injury through microRNA-34a-mediated NAMPT expression. Cell Mol Life Sci 2020; 77:3643-3655. [PMID: 31873757 PMCID: PMC11104937 DOI: 10.1007/s00018-019-03391-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/26/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Prior studies have established the important role of extracellular signal-regulated kinase 1/2 (ERK1/2) as a mediator of acute kidney injury (AKI). We demonstrated rapid ERK1/2 activation induced renal dysfunction following ischemia/reperfusion (IR)-induced AKI and downregulated the mitochondrial biogenesis (MB) regulator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) in mice. In this study, ERK1/2 regulation of cellular nicotinamide adenine dinucleotide (NAD) and PGC-1α were explored. Inhibition of ERK1/2 activation during AKI in mice using the MEK1/2 inhibitor, trametinib, attenuated renal cortical oxidized NAD (NAD+) depletion. The rate-limiting NAD biosynthesis salvage enzyme, NAMPT, decreased following AKI, and this decrease was prevented by ERK1/2 inhibition. The microRNA miR34a decreased with the inhibition of ERK1/2, leading to increased NAMPT protein. Mice treated with a miR34a mimic prevented increases in NAMPT protein in the renal cortex in the presence of ERK1/2 inhibition. In addition, ERK1/2 activation increased acetylated PGC-1α, the less active form, whereas inhibition of ERK1/2 activation prevented an increase in acetylated PGC-1α after AKI through SIRT1 and NAD+ attenuation. These results implicate IR-induced ERK1/2 activation as an important contributor to the downregulation of both PGC-1α and NAD+ pathways that ultimately decrease cellular metabolism and renal function. Inhibition of ERK1/2 activation prior to the initiation of IR injury attenuated decreases in PGC-1α and NAD+ and prevented kidney dysfunction.
Collapse
Affiliation(s)
- Justin B Collier
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA.
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Southern Arizona VA Health Care System, Tucson, AZ, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
73
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
74
|
Ferrannini G, Manca ML, Magnoni M, Andreotti F, Andreini D, Latini R, Maseri A, Maggioni AP, Ostroff RM, Williams SA, Ferrannini E. Coronary Artery Disease and Type 2 Diabetes: A Proteomic Study. Diabetes Care 2020; 43:843-851. [PMID: 31988066 DOI: 10.2337/dc19-1902] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/31/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Coronary artery disease (CAD) is a major challenge in patients with type 2 diabetes (T2D). Coronary computed tomography angiography (CCTA) provides a detailed anatomic map of the coronary circulation. Proteomics are increasingly used to improve diagnostic and therapeutic algorithms. We hypothesized that the protein panel is differentially associated with T2D and CAD. RESEARCH DESIGN AND METHODS In CAPIRE (Coronary Atherosclerosis in Outlier Subjects: Protective and Novel Individual Risk Factors Evaluation-a cohort of 528 individuals with no previous cardiovascular event undergoing CCTA), participants were grouped into CAD- (clean coronaries) and CAD+ (diffuse lumen narrowing or plaques). Plasma proteins were screened by aptamer analysis. Two-way partial least squares was used to simultaneously rank proteins by diabetes status and CAD. RESULTS Though CAD+ was more prevalent among participants with T2D (HbA1c 6.7 ± 1.1%) than those without diabetes (56 vs. 30%, P < 0.0001), CCTA-based atherosclerosis burden did not differ. Of the 20 top-ranking proteins, 15 were associated with both T2D and CAD, and 3 (osteomodulin, cartilage intermediate-layer protein 15, and HTRA1) were selectively associated with T2D only and 2 (epidermal growth factor receptor and contactin-1) with CAD only. Elevated renin and GDF15, and lower adiponectin, were independently associated with both T2D and CAD. In multivariate analysis adjusting for the Framingham risk panel, patients with T2D were "protected" from CAD if female (P = 0.007), younger (P = 0.021), and with lower renin levels (P = 0.02). CONCLUSIONS We concluded that 1) CAD severity and quality do not differ between participants with T2D and without diabetes; 2) renin, GDF15, and adiponectin are shared markers by T2D and CAD; 3) several proteins are specifically associated with T2D or CAD; and 4) in T2D, lower renin levels may protect against CAD.
Collapse
Affiliation(s)
- Giulia Ferrannini
- Department of Medical Sciences, Postgraduate School of Internal Medicine, University of Turin, Turin, Italy.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Magnoni
- IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Felicita Andreotti
- Institute of Cardiology, FPG IRCCS, Catholic University Medical School, Rome, Italy
| | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Roberto Latini
- Mario Negri Institute of Pharmacological Research-IRCCS, Milan, Italy
| | | | - Aldo P Maggioni
- ANMCO Research Center, Heart Care Foundation, Florence, Italy
| | | | | | | |
Collapse
|
75
|
Wang H, Yuan R, Cao Q, Wang M, Ren D, Huang X, Wu M, Zhang L, Zhao X, Huo X, Pan Y, Liu Q. Astragaloside III activates TACE/ADAM17‐dependent anti‐inflammatory and growth factor signaling in endothelial cells in a p38‐dependent fashion. Phytother Res 2020; 34:1096-1107. [PMID: 32197276 DOI: 10.1002/ptr.6603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/31/2019] [Accepted: 11/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Haifang Wang
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| | - Ruihua Yuan
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| | - Qingwen Cao
- Division of Medical ManagementShaanxi Provincial Hospital of Traditional Chinese Medicine Xi'an China
| | - Mian Wang
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| | - Dezhi Ren
- Department of CardiologyShaanxi Provincial Hospital of Traditional Chinese Medicine Xi'an China
| | - Xiaoyan Huang
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Min Wu
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Linping Zhang
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Xiangrong Zhao
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Xueping Huo
- Laboratory CenterShaanxi Provincial People's Hospital Xi'an China
| | - Yalei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research CenterShaanxi University of Chinese Medicine Xianyang China
| | - Qinshe Liu
- Shaanxi and Xianyang Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrated MedicineShaanxi University of Chinese Medicine Xianyang China
| |
Collapse
|
76
|
Jian W, Wei CM, Guan JH, Mo CH, Xu YT, Zheng WB, Li L, Gui C. Association between serum HER2/ErbB2 levels and coronary artery disease: a case-control study. J Transl Med 2020; 18:124. [PMID: 32160892 PMCID: PMC7066824 DOI: 10.1186/s12967-020-02292-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Research has associated human epidermal growth factor receptor (HER2) with glucose and lipid metabolism. However, the association between circulating HER2 levels and coronary artery disease (CAD) remains to be elucidated. Methods We performed a case–control study with 435 participants (237 CAD patients and 198 controls) who underwent diagnostic coronary angiography from September 2018 to October 2019. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for CAD were calculated with multiple logistic regression models after adjustment for confounders. Results Overall, increased serum HER2 levels were independently associated with the presence of CAD (OR per 1-standard deviation (SD) increase: 1.438, 95% CI 1.13–1.83; P = 0.003) and the number of stenotic vessels (OR per 1-SD increase: 1.399, 95% CI 1.15–1.71; P = 0.001). In the subgroup analysis, a significant interaction of HER2 with body mass index (BMI) on the presence of CAD was observed (adjusted interaction P = 0.046). Increased serum HER2 levels were strongly associated with the presence of CAD in participants with BMI ≥ 25 kg/m2 (OR per 1-SD increase: 2.143, 95% CI 1.37–3.35; P = 0.001), whereas no significant association was found in participants with BMI < 25 kg/m2 (OR per 1-SD increase: 1.225, 95% CI 0.90–1.67; P = 0.201). Conclusion Elevated HER2 level is associated with an increased risk of CAD, particularly in people with obesity. This finding yields new insight into the pathological mechanisms underlying CAD, and warrants further research regarding HER2 as a preventive and therapeutic target of CAD.
Collapse
Affiliation(s)
- Wen Jian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Mei Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Jia-Hui Guan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Chang-Hua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yu-Tao Xu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Wen-Bo Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
77
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
78
|
Brea MS, Díaz RG, Escudero DS, Zavala MR, Portiansky EL, Villa-Abrille MC, Caldiz CI, Pérez NG, Morgan PE. Silencing of epidermal growth factor receptor reduces Na+/H+ exchanger 1 activity and hypertensive cardiac hypertrophy. Biochem Pharmacol 2019; 170:113667. [DOI: 10.1016/j.bcp.2019.113667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
|
79
|
Furuya-Kanamori L, Doi SA, Onitilo A, Akhtar S. Is there truly an increase in risk of cardiovascular and hematological adverse events with vascular endothelial growth factor receptor tyrosine kinase inhibitors? Expert Opin Drug Saf 2019; 19:223-228. [PMID: 31698959 DOI: 10.1080/14740338.2020.1691167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objectives: Recent studies have shown an increase risk of cardiovascular and hematological adverse events associated with vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs). The authors hypothesize that the original studies may have produced exaggerated results because of the small baseline risks involved.Methods: A meta-analysis that included 71 trials, 8 different VEGFR-TKIs, and 11 adverse events were re-analyzed. The outcome of interest was re-defined as the complementary outcome (i.e. remaining free of an adverse event). The inverse variance heterogeneity model was used to pool the effect size.Results: VEGFR-TKIs decreased the risk of remaining free of hypertension by 7% (RR 0.93; 95%CI:0.88-0.97). Specific VEGFR-TKIs; pazopanib, regorafenib, and nintedanib were associated with a decrease risk of remaining free of an arterial thrombotic event (RR 0.96; 95%CI:0.93-0.99), thrombocytopenia (RR 0.91; 95%CI:0.89-0.93), and bleeding (RR 0.96; 95%CI:0.93-0.99) respectively. VEGFR-TKIs were not associated with the thrombotic event, myocardial infarction, stroke, venous thrombotic event, pulmonary embolism, left ventricular dysfunction, or QTc interval prolongation.Conclusion: VEGFR-TKIs are associated with a small increase in the risk of patients developing hypertension, arterial thrombotic events, thrombocytopenia, and bleeding. Previous studies overestimated the actual risk associated with VEGFR-TKIs by analyzing the outcome with the lower baseline risk.
Collapse
Affiliation(s)
- Luis Furuya-Kanamori
- Research School of Population Health, ANU College of Health and Medicine, Australian National University, Acton, Australia
| | - Suhail Ar Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Adedayo Onitilo
- Department of Hematology/Oncology, Marshfield Clinic, Weston, WI, USA
| | - Saghir Akhtar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
80
|
Abstract
GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as βARs (β-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, β-arrestin-mediated signaling, and conformational heterogeneity.
Collapse
Affiliation(s)
- Jialu Wang
- From the Department of Medicine (J.W., C.G., H.A.R.)
| | | | - Howard A Rockman
- From the Department of Medicine (J.W., C.G., H.A.R.).,Department of Cell Biology (H.A.R.).,Department of Molecular Genetics and Microbiology (H.A.R.), Duke University Medical Center, Durham, NC
| |
Collapse
|
81
|
Childers CL, Tessier SN, Storey KB. The heart of a hibernator: EGFR and MAPK signaling in cardiac muscle during the hibernation of thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PeerJ 2019; 7:e7587. [PMID: 31534849 PMCID: PMC6732209 DOI: 10.7717/peerj.7587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) experience dramatic changes in physiological and molecular parameters during winter hibernation. Notably, these animals experience reduced blood circulation during torpor, which can put numerous stresses on their hearts. The present study evaluates the role played by the epidermal growth factor receptor (EGFR) in signal transduction during hibernation at low body temperature to evaluate signaling mechanisms. By investigating the regulation of intracellular mitogen activated protein kinase (MAPK) pathway responses, anti-apoptosis signals, downstream transcription factors, and heat shock proteins in cardiac muscle we aim to determine the correlation between upstream tyrosine phosphorylation events and downstream outcomes. Methods Protein abundance of phosphorylated EGFR, MAPKs and downstream effector proteins were quantified using immunoblotting and Luminex® multiplex assays. Results Monitoring five time points over the torpor/arousal cycle, EGFR phosphorylation on T654, Y1068, Y1086 was found to increase significantly compared with euthermic control values particularly during the arousal process from torpor, whereas phosphorylation at Y1045 was reduced during torpor. Phosphorylation of intracellular MAPK targets (p-ERK 1/2, p-JNK, p-p38) also increased strongly during the early arousal stage with p-p38 levels also rising during prolonged torpor. However, of downstream MAPK effector kinases that were measured, only p-Elk-1 levels changed showing a decrease during interbout arousal (IA). Apoptosis markers revealed a strong reduction of the pro-apoptotic p-BAD protein during entrance into torpor that remained suppressed through torpor and IA. However, active caspase-9 protein rose strongly during IA. Levels of p-AKT were suppressed during the transition phases into and out of torpor. Of four heat shock proteins assessed, only HSP27 protein levels changed significantly (a 40% decrease) during torpor. Conclusion We show evidence of EGFR phosphorylation correlating to activation of MAPK signaling and downstream p-ELK1 suppression during hibernation. We also demonstrate a reduction in p-BAD mediated pro-apoptotic signaling during hibernation with active caspase-9 protein levels increasing only during IA. I. tridecemlineatus has natural mechanisms of tissue protection during hibernation that is largely due to cellular regulation through phosphorylation-mediated signaling cascade. We identify a possible link between EGFR and MAPK signaling via p-ERK, p-p38, and p-JNK in the cardiac muscle of these hibernating mammals that correlates with an apparent reduction in caspase-9 apoptotic signaling. This reveals a piece of the mechanism behind how these mammals are resilient to cardiac stresses during hibernation that would otherwise be damaging.
Collapse
Affiliation(s)
| | - Shannon N Tessier
- BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
82
|
Gao Y, Raj JU. Src and Epidermal Growth Factor Receptor: Novel Partners in Mediating Chronic Hypoxia-induced Pulmonary Artery Hypertension. Am J Respir Cell Mol Biol 2019; 62:5-7. [PMID: 31298924 PMCID: PMC6938126 DOI: 10.1165/rcmb.2019-0230ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yuansheng Gao
- Health Science CenterPeking UniversityBeijing, Chinaand
| | - J Usha Raj
- College of MedicineUniversity of Illinois at ChicagoChicago, Illinois
| |
Collapse
|
83
|
Wang W, Shen XB, Jia W, Huang DB, Wang Y, Pan YY. The p53/miR-193a/EGFR feedback loop function as a driving force for non-small cell lung carcinoma tumorigenesis. Ther Adv Med Oncol 2019; 11:1758835919850665. [PMID: 31205511 PMCID: PMC6535738 DOI: 10.1177/1758835919850665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-small cell lung carcinoma (NSCLC) is a major worldwide health threat due to its low cure rate and high lethality. Emerging evidence suggests that epidermal growth factor receptor (EGFR) plays vital roles in cancer initiation and progression, and is considered an important cancer-driving protein. However, how EGFR expression is regulated during NSCLC development remains to be fully elucidated. METHODS In NSCLC clinical samples, EGFR protein levels were measured by western blotting and qRT-PCR, respectively. Combining microRNA (miRNA) target prediction software and the pulldown assay, we predicted microRNAs (miRNAs) that targeted EGFR. Next, three NSCLC cell lines, A549 (p53 WT), H322 (p53 mutant), and H1299 (p53 null), were used to demonstrate the direct targeting of EGFR by miR-193a. In addition, we investigated the biological effects of EGFR inhibition by miR-193a in vitro using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU), transwell, and apoptosis assays. Then, using ChIP and luciferase assays, we demonstrated that miR-193a was directly activated by p53 at the transcriptional level and that p53-induced-miR-193a and EGFR form a double-negative feedback loop. RESULTS We found that EGFR mRNA and protein were upregulated in NSCLC. We predicted that EGFR was a target of miR-193a and validated that miR-193a bound directly to the 3'-UTR of the EGFR mRNA. Moreover, miR-193a inhibited NSCLC proliferation and invasion, and promotes NSCLC apoptosis by directly downregulating EGFR. Then, we demonstrated that p53 directly activated miR-193a transcription, whereas EGFR functioned as a transcriptional repressor to negatively control miR-193a expression, forming a feedback loop. The loop promoted NSCLC cell proliferation and migration and accelerated tumor growth in xenograft mice. CONCLUSIONS This study highlights a double-negative feedback loop in NSCLC. The feedback loop is crucial because overexpressing EGFR strongly accelerated tumor growth, while miR-193a restoration blocked tumor growth in vivo. Our findings are in line with the emerging opinion that miRNAs and protein regulators form regulatory networks in critical biological processes and that their dysregulation can lead to cellular dysfunction. In conclusion, this study provides important insights into the molecular mechanisms of NSCLC progression and may help inform the development of new therapeutics for managing NSCLC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Xia-Bo Shen
- Department of Medical Oncology, Anhui Provincial Hospital, Hefei, PR China
| | - Wei Jia
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Da-Bing Huang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Yue-Yin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Road, Luyang District, Hefei 230001, Anhui Province, PR China
| |
Collapse
|
84
|
Mindur JE, Swirski FK. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1275-1287. [PMID: 31092009 DOI: 10.1161/atvbaha.119.311994] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth factors, such as CSFs (colony-stimulating factors), EGFs (epidermal growth factors), and FGFs (fibroblast growth factors), are signaling proteins that control a wide range of cellular functions. Although growth factor networks are critical for intercellular communication and tissue homeostasis, their abnormal production or regulation occurs in various pathologies. Clinical strategies that target growth factors or their receptors are used to treat a variety of conditions but have yet to be adopted for cardiovascular disease. In this review, we focus on M-CSF (macrophage-CSF), GM-CSF (granulocyte-M-CSF), IL (interleukin)-3, EGFR (epidermal growth factor receptor), and FGF21 (fibroblast growth factor 21). We first discuss the efficacy of targeting these growth factors in other disease contexts (ie, inflammatory/autoimmune diseases, cancer, or metabolic disorders) and then consider arguments for or against targeting them to treat cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- John E Mindur
- From the Graduate Program in Immunology (J.E.M.), Massachusetts General Hospital and Harvard Medical School, Boston.,Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
85
|
Cao Z, Singh B, Li C, Markham NO, Carrington LJ, Franklin JL, Graves‐Deal R, Kennedy EJ, Goldenring JR, Coffey RJ. Protein kinase A-mediated phosphorylation of naked cuticle homolog 2 stimulates cell-surface delivery of transforming growth factor-α for epidermal growth factor receptor transactivation. Traffic 2019; 20:357-368. [PMID: 30941853 PMCID: PMC6618044 DOI: 10.1111/tra.12642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
The classic mode of G protein-coupled receptor (GPCR)-mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)-mediated cleavage of plasma membrane-anchored EGFR ligands. Herein, we show that the Gαs-activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E2 (PGE2 ) transactivate EGFR through increased cell-surface delivery of the EGFR ligand transforming growth factor-α (TGFα) in polarizing madin-darby canine kidney (MDCK) and Caco-2 cells. This is achieved by PKA-mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα-containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE2 rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser-223, a process that is facilitated by the molecular scaffold A-kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell-surface delivery of TGFα and increased EGFR activation. Thus, GPCR-triggered, PKA/AKAP12/NKD2-regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs.
Collapse
Affiliation(s)
- Zheng Cao
- Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
- Epithelial Biology CenterVanderbilt University School of MedicineNashvilleTennessee
| | - Bhuminder Singh
- Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
- Epithelial Biology CenterVanderbilt University School of MedicineNashvilleTennessee
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennessee
| | - Cunxi Li
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
- Genetics CenterShenzhen IVF Gynecology HospitalShenzhenChina
| | - Nicholas O. Markham
- Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
- Epithelial Biology CenterVanderbilt University School of MedicineNashvilleTennessee
| | | | - Jeffrey L. Franklin
- Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
- Epithelial Biology CenterVanderbilt University School of MedicineNashvilleTennessee
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennessee
- Department of MedicineVeterans Affairs Medical CenterNashvilleTennessee
| | - Ramona Graves‐Deal
- Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
- Epithelial Biology CenterVanderbilt University School of MedicineNashvilleTennessee
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of PharmacyUniversity of GeorgiaAthensGeorgia
| | - James R. Goldenring
- Epithelial Biology CenterVanderbilt University School of MedicineNashvilleTennessee
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennessee
- Department of MedicineVeterans Affairs Medical CenterNashvilleTennessee
- Department of SurgeryVanderbilt University School of MedicineNashvilleTennessee
| | - Robert J. Coffey
- Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
- Epithelial Biology CenterVanderbilt University School of MedicineNashvilleTennessee
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennessee
- Department of MedicineVeterans Affairs Medical CenterNashvilleTennessee
| |
Collapse
|
86
|
Chaudhary M, Chaudhary S. Functional relevance of promoter CpG island of human Angiotensin II type 1 receptor (AT1R) gene. Mol Cell Biochem 2019; 457:31-40. [PMID: 30790131 DOI: 10.1007/s11010-019-03509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022]
Abstract
Angiotensin II type 1 receptor can activate number of signalling pathways upon stimulation and consequently its involvement in cancer progression have also been revealed. But which epigenetic mechanisms are involved in its regulation, need to be further explored. In-silico analysis revealed a promoter CpG island (CGI) which was cloned and assayed for functional activity using reporter gene system. The effect of methylation on this CGI was analysed through varying degree of methyltransferase treatment of cloned fragment. Results thus obtained were validated by direct sequencing. To further establish the status of this effect, in-vivo analysis was done through screening of methylation pattern in the targeted region among hypertensives (HTN) and normotensives (NTN) using PCR-Bisulphite sequencing. Additionally, clinical details of all participants, biochemical parameters and lifestyle related information was also collected and statistically evaluated. Reporter gene assay assigned functional activity to the cloned promoter CpG island. Increased dose and durations of methyltransferase treatment decreased the expression of reporter gene indicating the role of promoter DNA methylation. Among all the human samples screened, only one of the HTN individual was found to have single hemi-methylated CpG site at a position which happens to be a part of Sp1 transcription factor binding site. To conclude, CpG island in the promoter region of AT1R (CpG.P.AT1R) gets regulated through epigenetic mechanism of DNA methylation.
Collapse
Affiliation(s)
- Mayank Chaudhary
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160 014, India
| | - Shashi Chaudhary
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
87
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
88
|
Abstract
Aldosterone is a mineralocorticoid hormone, as its main renal effect has been considered as electrolyte and water homeostasis in the distal tubule, thus maintaining blood pressure and extracellular fluid homeostasis through the activation of mineralocorticoid receptor (MR) in epithelial cells. However, over the past decade, numerous studies have documented the significant role of aldosterone in the progression of chronic kidney disease (CKD) which has become a subject of interest. It is being studied that aldosterone can affect cardiovascular and renal system, thereby contributing to tissue inflammation, injury, glomerulosclerosis, and interstitial fibrosis. Aldosterone acts on renal vessels, renal cells (glomerular mesangial cells, podocytes, vascular smooth muscle cells, tubular epithelial cells, and interstitial fibroblasts), and infiltrating inflammatory cells, inducing reactive oxygen species (ROS) production, upregulated epithelial growth factor receptor (EGFR), and type 1 angiotensin (AT1) receptor expressions, and activating nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and EGFR to further promote cell proliferation, apoptosis, and proliferation. Phenotypic transformation of epithelial cells stimulates the expression of transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), osteopontin (OPN), and plasminogen activator inhibitor-1 (PAI-1), eventually leading to renal fibrosis. MR antagonisms are related to inhibition of aldosterone-mediated pro-inflammatory and pro-fibrotic effect. In this review, we will summarize the important role of aldosterone in the pathogenesis of renal injury and fibrosis, emphasizing on its multiple underlying mechanisms and advances in aldosterone research along with the potential therapeutics for targeting MR in a renal fibrosis.
Collapse
|
89
|
Yan X, Zhang YL, Zhang L, Zou LX, Chen C, Liu Y, Xia YL, Li HH. Gallic Acid Suppresses Cardiac Hypertrophic Remodeling and Heart Failure. Mol Nutr Food Res 2018; 63:e1800807. [PMID: 30521107 DOI: 10.1002/mnfr.201800807] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/21/2018] [Indexed: 12/14/2022]
Abstract
SCOPE Gallic acid (GA) is a dietary phenolic acid found in tea, red wine, and some plants. It exhibits anti-oxidative and anti-inflammatory activities. Recent studies have revealed that GA has beneficial effects against several cardiovascular diseases; however, whether GA attenuates pressure-overload-induced cardiac hypertrophy and the underlying mechanism remains unclear. METHODS AND RESULTS Primary cardiomyocyte hypertrophy is stimulated with angiotensin II (Ang II). Cardiac hypertrophic remodeling is induced in mice by transverse aortic constriction (TAC). Myocardial function is evaluated by echocardiographic and hemodynamic analyses, while cardiac tissues are analyzed by histological staining. It is observed that GA significantly decreases Ang II-induced increases in cardiomyocyte size in vitro. Administration of GA in mice markedly improves TAC-induced cardiac dysfunction and attenuates pathological changes, including cardiac myocyte hypertrophy, fibrosis, inflammation, and oxidative stress. Mechanistically, GA inhibits ULK1 and activates autophagy, which induces the degradation of EGFR, gp130, and calcineurin A, thereby inhibiting the downstream signaling cascades (AKT, ERK1/2, JAK2/STAT3, and NFATc1). CONCLUSIONS The results demonstrate for the first time that GA prevents myocardial hypertrophy and dysfunction via an autophagy-dependent mechanism. Thus, GA represents a promising therapeutic candidate for treating cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116044, China.,Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yun-Long Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116044, China.,Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Liang Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116044, China.,Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei-Xin Zou
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116044, China.,Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116044, China.,Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ying Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Hui-Hua Li
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116044, China.,Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
90
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 718] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
91
|
O'Brien SL, Johnstone EKM, Devost D, Conroy J, Reichelt ME, Purdue BW, Ayoub MA, Kawai T, Inoue A, Eguchi S, Hébert TE, Pfleger KDG, Thomas WG. BRET-based assay to monitor EGFR transactivation by the AT 1R reveals G q/11 protein-independent activation and AT 1R-EGFR complexes. Biochem Pharmacol 2018; 158:232-242. [PMID: 30347205 DOI: 10.1016/j.bcp.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
The type 1 angiotensin II (AngII) receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR), which leads to pathological remodeling of heart, blood vessels and kidney. End-point assays are used as surrogates of EGFR activation, however these downstream readouts are not applicable to live cells, in real-time. Herein, we report the use of a bioluminescence resonance energy transfer (BRET)-based assay to assess recruitment of the EGFR adaptor protein, growth factor receptor-bound protein 2 (Grb2), to the EGFR. In a variety of cell lines, both epidermal growth factor (EGF) and AngII stimulated Grb2 recruitment to EGFR. The BRET assay was used to screen a panel of 9 G protein-coupled receptors (GPCRs) and further developed for other EGFR family members (HER2 and HER3); the AT1R was able to transactivate HER2, but not HER3. Mechanistically, AT1R-mediated ERK1/2 activation was dependent on Gq/11 and EGFR tyrosine kinase activity, whereas the recruitment of Grb2 to the EGFR was independent of Gq/11 and only partially dependent on EGFR tyrosine kinase activity. This Gq/11 independence of EGFR transactivation was confirmed using AT1R mutants and in CRISPR cell lines lacking Gq/11. EGFR transactivation was also apparently independent of β-arrestins. Finally, we used additional BRET-based assays and confocal microscopy to provide evidence that both AngII- and EGF-stimulation promoted AT1R-EGFR heteromerization. In summary, we report an alternative approach to monitoring AT1R-EGFR transactivation in live cells, which provides a more direct and proximal view of this process, including the potential for complexes between the AT1R and EGFR.
Collapse
Affiliation(s)
- Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jacinta Conroy
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Melissa E Reichelt
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Brooke W Purdue
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Mohammed A Ayoub
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Tatsuo Kawai
- Cardiovascular Research Centre, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Satoru Eguchi
- Cardiovascular Research Centre, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Centre for Cardiac and Vasculature Biology, The University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
92
|
Novel role for cardiac myocyte-derived β-2 microglobulin in mediating cardiac fibrosis. Clin Sci (Lond) 2018; 132:2117-2120. [PMID: 30291210 DOI: 10.1042/cs20180681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Hypertension is a significant risk factor for the development of cardiovascular ailments, including ischemic heart disease and diastolic dysfunction. In a recent issue of Clinical Science, Li et al. [Clin. Sci. (2018) 132, 1855-1874] report that β-2 microglobulin (β2M) is a novel secreted soluble factor released by cardiac myocytes during pressure overload that promotes profibrotic gene expression in cardiac fibroblasts both in vitro and in vivo Their study further identifies elevated β2M levels as a possible biomarker for hypertensive patients with cardiac complications. The authors propose a mechanism that mechanically stretched cardiomyocytes release soluble β2M which, through paracrine communication with cardiac fibroblasts, transactivates epidermal growth factor receptor (EGFR) to initiate acute signal transduction and up-regulate profibrotic genes, thereby promoting fibrosis. Here, we will discuss the background, significance of the study, alternative mechanisms, and future directions.
Collapse
|
93
|
Carnevale D, Facchinello N, Iodice D, Bizzotto D, Perrotta M, De Stefani D, Pallante F, Carnevale L, Ricciardi F, Cifelli G, Da Ros F, Casaburo M, Fardella S, Bonaldo P, Innocenzi G, Rizzuto R, Braghetta P, Lembo G, Bressan GM. Loss of EMILIN-1 Enhances Arteriolar Myogenic Tone Through TGF-β (Transforming Growth Factor-β)–Dependent Transactivation of EGFR (Epidermal Growth Factor Receptor) and Is Relevant for Hypertension in Mice and Humans. Arterioscler Thromb Vasc Biol 2018; 38:2484-2497. [DOI: 10.1161/atvbaha.118.311115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniela Carnevale
- From the Department of Molecular Medicine, Sapienza University of Rome, Italy (D.C., M.P., G.L.)
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Facchinello
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Daniele Iodice
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Marialuisa Perrotta
- From the Department of Molecular Medicine, Sapienza University of Rome, Italy (D.C., M.P., G.L.)
| | - Diego De Stefani
- Department of Biomedical Sciences (D.D.S., R.R.), University of Padova, Italy
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Franco Ricciardi
- Department of Neurosurgery (F.R., G.I.), IRCCS Neuromed, Pozzilli, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Francesco Da Ros
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Manuel Casaburo
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Stefania Fardella
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences (D.D.S., R.R.), University of Padova, Italy
| | - Paola Braghetta
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Giuseppe Lembo
- From the Department of Molecular Medicine, Sapienza University of Rome, Italy (D.C., M.P., G.L.)
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Giorgio M. Bressan
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| |
Collapse
|
94
|
Mitsuishi Y, Shibata H, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, Hayashi T, Jo R, Nakamura T, Morisaki M, Itoh H. Epidermal growth factor receptor/extracellular signal-regulated kinase pathway enhances mineralocorticoid receptor transcriptional activity through protein stabilization. Mol Cell Endocrinol 2018; 473:89-99. [PMID: 29391190 DOI: 10.1016/j.mce.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Activation of mineralocorticoid receptor (MR) is evoked by aldosterone, and it induces hypertension and cardiovascular disease when it's concomitant with excessive salt loading. We have proposed the notion of "MR-associated hypertension", in which add-on therapy of MR blockers is effective even though serum aldosterone level is within normal range. To elucidate its underlying molecular mechanism, we focused on the effect of epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) activation on MR activity. Epidermal growth factor (EGF) administration increased MR transcriptional activity through EGFR/ERK pathway and increased protein level by counteracting MR ubiquitylation in vitro. EGF administration in vivo also increased MR protein level and target gene expression in kidney, which were decreased by EGFR inhibitor. In addition, the administration of EGFR inhibitor lowered systolic blood pressure and MR activity in DOCA/salt-treated mice. In conclusion, EGFR/ERK pathway activation is considered as one of the underlying mechanisms of aberrant MR activation and EGFR/ERK pathway blockade could be an alternative approach for the prevention of MR-related cardiovascular events.
Collapse
Affiliation(s)
- Yuko Mitsuishi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Shibata
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamamachi, Yufu 879-5593, Oita, Japan.
| | - Isao Kurihara
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sakiko Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenichi Yokota
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayano Murai-Takeda
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Diabetes Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishimbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Rie Jo
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshifumi Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuha Morisaki
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
95
|
Mechanical stresses induce paracrine β-2 microglobulin from cardiomyocytes to activate cardiac fibroblasts through epidermal growth factor receptor. Clin Sci (Lond) 2018; 132:1855-1874. [PMID: 30072448 DOI: 10.1042/cs20180486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
By employing a proteomic analysis on supernatant of mechanically stretched cardiomyocytes, we found that stretch induced a significantly high level of β-2 microglobulin (β2M), a non-glycosylated protein, which is related to inflammatory diseases but rarely known in cardiovascular diseases. The present data showed that serum β2M level was increased in patients with hypertension and further increased in patients with chronic heart failure (HF) as compared with control group, and the high level of serum β2M level correlated to cardiac dysfunction in these patients. In pressure overload mice model by transverse aortic constriction (TAC), β2M levels in serum and heart tissue increased progressively in a time-dependent manner. Exogenous β2M showed pro-fibrotic effects in cultured cardiac fibroblasts but few effects in cardiomyocytes. Adeno-associated virus 9 (AAV9)-mediated knockdown of β2M significantly reduced cardiac β2M level and inhibited myocardial fibrosis and cardiac dysfunction but not cardiac hypertrophy at 4 weeks after TAC. In vitro, mechanical stretch induced the rapid secretion of β2M mainly from cardiomyocytes by activation of extracellular-regulated protein kinase (ERK). Conditional medium (CM) from mechanically stretched cardiomyocytes activated cultured cardiac fibroblasts, and the effect was partly abolished by CM from β2M-knockdown cardiomyocytes. In vivo, knockdown of β2M inhibited the increase in phosphorylation of epidermal growth factor receptor (EGFR) induced by TAC. In cultured cardiac fibroblasts, inhibition of EGFR significantly attenuated the β2M-induced the activation of EGFR and pro-fibrotic responses. The present study suggests that β2M is a paracrine pro-fibrotic mediator and associated with cardiac dysfunction in response to pressure overload.
Collapse
|
96
|
Wang F, Wang H, Liu X, Yu H, Zuo B, Song Z, Wang N, Huang W, Wang G. Pharmacological postconditioning with Neuregulin-1 mimics the cardioprotective effects of ischaemic postconditioning via ErbB4-dependent activation of reperfusion injury salvage kinase pathway. Mol Med 2018; 24:39. [PMID: 30134819 PMCID: PMC6069706 DOI: 10.1186/s10020-018-0040-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background The protective effect of Neuregulin-1 (NRG-1) on heart failure is well established. In this study, we assessed whether NRG-1 could protect the heart by mimicking the cardioprotective effects of ischaemic postconditioning (IP). Methods We used a myocardial reperfusion injury rat model in vivo to compare the cardioprotective effects of NRG-1(3 μg/kg, iv. at the onset of reperfusion) and IP. In Langendorff isolated heart perfusion experiments, we used the erythroblastic leukaemia viral oncogene homolog 4 (ErbB4) inhibitor AG1478, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and a mitogen-activated protein/extracellular signal regulated kinase (MEK) inhibitor PD98059 to clarify whether the protective effects of NRG-1and IP depend on the NRG-1/ErbB4 signals and the reperfusion injury salvage kinase (RISK) pathway. Infarct size was detected by Evans blue and TTC. Apoptosis was detected by TUNEL assays. The expression of NRG-1/ErbB4 and downstream ERK1/2, AKT, AMPK and p70s6K were detected by western blotting. Hematoxylin/eosin (H&E) staining was used for histological analysis. Results We found that NRG-1 and IP had similar effects on reducing myocardial infarct size and apoptosis in vivo. NRG-1 heart protein levels were upregulated in the IP group. Phosphorylation of AKT, ERK1/2 and ErbB4 were also increased in both the IP and NRG-1 groups. Furthermore, in Langendorff analyses, the ErbB4 inhibitor AG1478 suppressed the phosphorylation of ErbB4 and the RISK pathway and aggravated myocardial edema and fiber fracture, thereby inhibited the cardioprotective effects in both the IP and NRG-1 groups. For assessment of downstream signals, the PI3K inhibitor LY294002 and the MEK inhibitor PD98059 suppressed the phosphorylation of AKT and ERK1/2 respectively and abolished the cardioprotective effects induced by IP and NRG-1. Conclusion In conclusion, both IP and NRG-1 could reduce infarct size and apoptosis through ErbB4-dependent activation of the RISK pathway in the same model; these results indicated the therapeutic potential of NRG-1 as a pharmacological postconditioning agent against myocardial reperfusion injury.
Collapse
Affiliation(s)
- Fuhua Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Huan Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Xuejing Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Bo Zuo
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Zhu Song
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Ning Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Guisong Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
97
|
Wang H, Ma S, Li J, Zhao M, Huo X, Sun J, Sun L, Hu J, Liu Q. ADAM17 participates in the protective effect of paeoniflorin on mouse brain microvascular endothelial cells. J Cell Physiol 2018; 233:9320-9329. [DOI: 10.1002/jcp.26308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Haifang Wang
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Shuhui Ma
- Department of Clinical Traditional Chinese Medicine‐Western MedicineXi'an JiaoTong University School of MedicineXi'anChina
| | - Jing Li
- Department of Traditional Chinese MedicineShaanxi Provincial People's HospitalXi'anChina
| | - Miaomiao Zhao
- Department of Clinical Traditional Chinese Medicine‐Western MedicineXi'an JiaoTong University School of MedicineXi'anChina
| | - Xueping Huo
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Jingying Sun
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Lijun Sun
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Jun Hu
- Laboratory Center of Shaanxi Provincial People's HospitalXi'anChina
| | - Qinshe Liu
- Medical Experiment Center and Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular DiseasesShaanxi University of Chinese MedicineXi'anChina
| |
Collapse
|
98
|
Talwar P, Grover S, Sinha J, Chandna P, Agarwal R, Kushwaha S, Kukreti R. Multifactorial Analysis of a Biomarker Pool for Alzheimer Disease Risk in a North Indian Population. Dement Geriatr Cogn Disord 2018. [PMID: 28633142 DOI: 10.1159/000477206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a progressive neurodegenerative disease with a complex multifactorial etiology. Here, we aim to identify a biomarker pool comprised of genetic variants and blood biomarkers as predictor of AD risk. METHODS We performed a case-control study involving 108 cases and 159 non-demented healthy controls to examine the association of multiple biomarkers with AD risk. RESULTS The APOE genotyping revealed that ε4 allele frequency was significantly high (p value = 0.0001, OR = 2.66, 95% CI 1.58-4.46) in AD as compared to controls, whereas ε2 (p = 0.0430, OR = 0.29, CI 0.07-1.10) was overrepresented in controls. In biochemical assays, significant differences in levels of total copper, free copper, zinc, copper/zinc ratio, iron, epidermal growth factor receptor (EGFR), leptin, and albumin were also observed. The AD risk score (ADRS) as a linear combination of 6 candidate markers involving age, education status, APOE ε4 allele, levels of iron, Cu/Zn ratio, and EGFR was created using stepwise linear discriminant analysis. The area under the ROC curve of the ADRS panel for predicting AD risk was significantly high (AUC = 0.84, p < 0.0001, 95% CI 0.78-0.89, sensitivity = 70.0%, specificity = 83.8%) compared to individual parameters. CONCLUSION These findings support the multifactorial etiology of AD and demonstrate the ability of a panel involving 6 biomarkers to discriminate AD cases from non-demented healthy controls.
Collapse
Affiliation(s)
- Puneet Talwar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
99
|
Kowtharapu BS, Prakasam RK, Murín R, Koczan D, Stahnke T, Wree A, Jünemann AGM, Stachs O. Role of Bone Morphogenetic Protein 7 (BMP7) in the Modulation of Corneal Stromal and Epithelial Cell Functions. Int J Mol Sci 2018; 19:ijms19051415. [PMID: 29747422 PMCID: PMC5983782 DOI: 10.3390/ijms19051415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
In the cornea, healing of the wounded avascular surface is an intricate process comprising the involvement of epithelial, stromal and neuronal cell interactions. These interactions result to the release of various growth factors that play prominent roles during corneal wound healing response. Bone morphogenetic proteins (BMPs) are unique multi-functional potent growth factors of the transforming growth factor-beta (TGF-β) superfamily. Treatment of corneal epithelial cells with substance P and nerve growth factor resulted to an increase in the expression of BMP7 mRNA. Since BMP7 is known to modulate the process of corneal wound healing, in this present study, we investigated the influence of exogenous rhBMP7 on human corneal epithelial cell and stromal cell (SFs) function. To obtain a high-fidelity expression profiling of activated biomarkers and pathways, transcriptome-wide gene-level expression profiling of epithelial cells in the presence of BMP7 was performed. Gene ontology analysis shows BMP7 stimulation activated TGF-β signaling and cell cycle pathways, whereas biological processes related to cell cycle, microtubule and intermediate filament cytoskeleton organization were significantly impacted in corneal epithelial cells. Scratch wound healing assay showed increased motility and migration of BMP7 treated epithelial cells. BMP7 stimulation studies show activation of MAPK cascade proteins in epithelial cells and SFs. Similarly, a difference in the expression of claudin, Zink finger E-box-binding homeobox 1 was observed along with phosphorylation levels of cofilin in epithelial cells. Stimulation of SFs with BMP7 activated them with increased expression of α-smooth muscle actin. In addition, an elevated phosphorylation of epidermal growth factor receptor following BMP7 stimulation was also observed both in corneal epithelial cells and SFs. Based on our transcriptome analysis data on epithelial cells and the results obtained in SFs, we conclude that BMP7 contributes to epithelial-to-mesenchymal transition-like responses and plays a role equivalent to TGF-β in the course of corneal wound healing.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Ruby Kala Prakasam
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Radovan Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute for Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Anselm G M Jünemann
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| |
Collapse
|
100
|
Zeng F, Miyazawa T, Kloepfer LA, Harris RC. ErbB4 deletion accelerates renal fibrosis following renal injury. Am J Physiol Renal Physiol 2018; 314:F773-F787. [PMID: 28724608 PMCID: PMC6031915 DOI: 10.1152/ajprenal.00260.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis (TIF) is a prominent factor in the progression of chronic kidney disease regardless of etiology. Avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4) expression levels were inversely correlated to renal fibrosis in human fibrotic kidneys. In both unilateral ureteral obstruction (UUO) and ischemia-reperfusion injury followed by uninephrectomy (IRI/UNx) mouse models, expression levels of ErbB4 were elevated in the early stage of renal injury. Using mice with global ErbB4 deletion except for transgenic rescue in cardiac tissue ( ErbB4-/-ht+), we determined that UUO induced similar injury in proximal tubules compared with wild-type mice but more severe injury in distal nephrons. TIF was apparent earlier and was more pronounced following UUO in ErbB4-/-ht+ mice. With ErbB4 deletion, UUO injury inhibited protein kinase B phosphorylation and increased the percentage of cells in G2/M arrest. There was also increased nuclear immunostaining of yes-associated protein and increased expression of phospho-Mothers against decapentaplegic homolog 3, snail1, and vimentin. These results indicate that ErbB4 deletion accelerates the development and progression of renal fibrosis in obstructive nephropathy. Similar results were found in a mouse IRI/UNx model. In conclusion, increased expression of ErbB4 in the early stages of renal injury may reflect a compensatory effect to lessen tubulointerstitial injury.
Collapse
MESH Headings
- Acute Kidney Injury/etiology
- Acute Kidney Injury/genetics
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/pathology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Case-Control Studies
- Cell Cycle Proteins
- Cell Dedifferentiation
- Disease Models, Animal
- Disease Progression
- Fibrosis
- G2 Phase Cell Cycle Checkpoints
- Gene Deletion
- Genetic Predisposition to Disease
- Kidney/metabolism
- Kidney/pathology
- Mice, Knockout
- Nephrectomy
- Phenotype
- Phosphoproteins/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, ErbB-4/deficiency
- Receptor, ErbB-4/genetics
- Receptor, ErbB-4/metabolism
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Reperfusion Injury/etiology
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Severity of Illness Index
- Signal Transduction
- Smad3 Protein/metabolism
- Snail Family Transcription Factors/metabolism
- Time Factors
- Ureteral Obstruction/complications
- Vimentin/metabolism
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Fenghua Zeng
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Tomoki Miyazawa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Lance A Kloepfer
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
- Department of Veterans Affairs , Nashville, Tennessee
| |
Collapse
|