51
|
Estrach S, Cailleteau L, Franco CA, Gerhardt H, Stefani C, Lemichez E, Gagnoux-Palacios L, Meneguzzi G, Mettouchi A. Laminin-binding integrins induce Dll4 expression and Notch signaling in endothelial cells. Circ Res 2011; 109:172-82. [PMID: 21474814 DOI: 10.1161/circresaha.111.240622] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Integrins play a crucial role in controlling endothelial cell proliferation and migration during angiogenesis. The Delta-like 4 (Dll4)/Notch pathway establishes an adequate ratio between stalk and tip cell populations by restricting tip cell formation through "lateral inhibition" in response to a vascular endothelial growth factor gradient. Because angiogenesis requires a tight coordination of these cellular processes, we hypothesized that adhesion, vascular endothelial growth factor, and Notch signaling pathways are interconnected. OBJECTIVE This study was aimed at characterizing the cross-talk between integrin and Notch signaling in endothelial cells. METHODS AND RESULTS Adhesion of primary human endothelial cells to laminin-111 triggers Dll4 expression, leading to subsequent Notch pathway activation. SiRNA-mediated knockdown of α2β1 and α6β1 integrins abolishes Dll4 induction, which discloses a selective integrin signaling acting upstream of Notch pathway. The increase in Foxc2 transcription, triggered by α2β1 binding to laminin, is required but not sufficient per se for Dll4 expression. Furthermore, vascular endothelial growth factor stimulates laminin γ1 deposition, which leads to integrin signaling and Dll4 induction. Interestingly, loss of integrins α2 or α6 mimics the effects of Dll4 silencing and induces excessive network branching in an in vitro sprouting angiogenesis assay on three-dimensional matrigel. CONCLUSIONS We show that, in endothelial cells, ligation of α2β1 and α6β1 integrins induces the Notch pathway, and we disclose a novel role of basement membrane proteins in the processes controlling tip vs stalk cell selection.
Collapse
|
52
|
Matheeussen V, Baerts L, De Meyer G, De Keulenaer G, Van der Veken P, Augustyns K, Dubois V, Scharpé S, De Meester I. Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries. Biol Chem 2011; 392:189-98. [PMID: 21194356 DOI: 10.1515/bc.2011.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase IV (DPPIV)/CD26 is by far the most extensively studied member of the prolyl oligopeptidase family of serine proteases. The discovery of the related enzymes DPP8 and DPP9 necessitates a (re-)evaluation of the DPPIV-like enzymatic activity in cells and organs. In this study, we aimed (1) to investigate the expression of the individual dipeptidyl peptidases in different types of endothelial cells (ECs) and (2) to reconsider published data in relation to our findings. Examination of DPP expression in rat primary ECs of aortic, endocardial and cardiac microvascular origin revealed the presence of DPPIV-like activity in all cell lysates. More than half of this activity could be attributed to DPP8/9. Western blot analysis revealed an abundance of the DPP8 protein as compared to DPP9. The expression of DPPIV and DPP8 was significantly higher in the cardiac microvascular endothelium than in the other ECs, suggesting a more pronounced role of these DPPs in the microvasculature. In situ, DPP activity in ventricular microvasculature was completely inhibited by sitagliptin, indicating that DPPIV is the predominant DPPIV-like enzyme in this organ. By contrast, immunohistochemical studies indicated DPP9 as the predominant DPP in human carotid artery ECs. In conclusion, our results support a highly regulated expression of individual DPPs in ECs, with a spatial heterogeneity in the cardiovascular tree.
Collapse
Affiliation(s)
- Veerle Matheeussen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
De Paepe ME, Greco D, Mao Q. Angiogenesis-related gene expression profiling in ventilated preterm human lungs. Exp Lung Res 2010; 36:399-410. [PMID: 20718599 DOI: 10.3109/01902141003714031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preterm infants exposed to oxygen and mechanical ventilation are at risk for bronchopulmonary dysplasia (BPD), a multifactorial chronic lung disorder characterized by arrested alveolar development and nonsprouting, dysmorphic microvascular angiogenesis. The molecular regulation of this BPD-associated pathological angiogenesis remains incompletely understood. In this study, the authors used focused microarray technology to characterize the angiogenic gene expression profile in postmortem lung samples from short-term ventilated preterm infants (born at 24 to 27 weeks' gestation) and age-matched control infants. Microarray analysis identified differential expression of 13 of 112 angiogenesis-related genes. Genes significantly up-regulated in ventilated lungs included the antiangiogenic genes thrombospondin-1, collagen XVIII alpha-1, and tissue inhibitor of metalloproteinase-1 (TIMP1), as well as endoglin, transforming growth factor-alpha, and monocyte chemoattractant protein-1 (CCL2). Increased expression of thrombospondin-1 in ventilated lungs was verified by real-time polymerase chain reaction (PCR) and immunolocalized primarily to intravascular platelets and fibrin aggregates. Down-regulated genes included proangiogenic angiogenin and midkine, as well as vascular endothelial growth factor (VEGF)-B, VEGF receptor-2, and the angiopoietin receptor TEK/Tie-2. In conclusion, short-term ventilated lungs show a shift from traditional angiogenic growth factors to alternative, often antisprouting regulators. This angiogenic shift may be implicated in the regulation of dysmorphic angiogenesis and, consequently, deficient alveolarization characteristic of infants with BPD.
Collapse
Affiliation(s)
- Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, Rhode Island 02905, USA.
| | | | | |
Collapse
|
54
|
Brown LJ, Alawoki M, Crawford ME, Reida T, Sears A, Torma T, Albig AR. Lipocalin-7 is a matricellular regulator of angiogenesis. PLoS One 2010; 5:e13905. [PMID: 21085487 PMCID: PMC2976702 DOI: 10.1371/journal.pone.0013905] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/15/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Matricellular proteins are extracellular regulators of cellular adhesion, signaling and performing a variety of physiological behaviors such as proliferation, migration and differentiation. Within vascular microenvironments, matricellular proteins exert both positive and negative regulatory cues to vascular endothelium. The relative balance of these matricellular cues is believed to be critical for vascular homeostasis, angiogenesis activation or angiogenesis resolution. However, our knowledge of matricellular proteins within vascular microenvironments and the mechanisms by which these proteins impact vascular function remain largely undefined. The matricellular protein lipocalin-7 (LCN7) is found throughout vascular microenvironments, and circumstantial evidence suggests that LCN7 may be an important regulator of angiogenesis. Therefore, we hypothesized that LCN7 may be an important regulator of vascular function. METHODOLOGY AND PRINCIPAL FINDINGS To test this hypothesis, we examined the effect of LCN7 overexpression, recombinant protein and gene knockdown in a series of in vitro and in vivo models of angiogenesis. We found that overexpression of LCN7 in MB114 and SVEC murine endothelial cell lines or administration of highly purified recombinant LCN7 protein increased endothelial cell invasion. Similarly, LCN7 increased angiogenic sprouting from quiescent endothelial cell monolayers and ex vivo aortic rings. Moreover, LCN7 increased endothelial cell sensitivity to TGF-β but did not affect sensitivity to other pro-angiogenic growth factors including bFGF and VEGF. Finally, morpholino based knockdown of LCN7 in zebrafish embryos specifically inhibited angiogenic sprouting but did not affect vasculogenesis within injected embryos. CONCLUSIONS AND SIGNIFICANCE No functional analysis has previously been performed to elucidate the function of LCN7 in vascular or other cellular processes. Collectively, our results show for the first time that LCN7 is an important pro-angiogenic matricellular protein of vascular microenvironments.
Collapse
Affiliation(s)
- Leslie J. Brown
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Mariam Alawoki
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Mary E. Crawford
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Tiffany Reida
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Allison Sears
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Tory Torma
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Allan R. Albig
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- * E-mail:
| |
Collapse
|
55
|
Helms HC, Waagepetersen HS, Nielsen CU, Brodin B. Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS JOURNAL 2010; 12:759-70. [PMID: 20967520 DOI: 10.1208/s12248-010-9237-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/04/2010] [Indexed: 11/30/2022]
Abstract
Most attempts to develop in vitro models of the blood-brain barrier (BBB) have resulted in models with low transendothelial electrical resistances (TEER), as compared to the native endothelium. The aim of the present study was to investigate the impact of culture pH and buffer concentration on paracellular tightness of an established in vitro model of the BBB consisting of bovine brain capillary endothelial cells (BCEC) co-cultured with rat astrocytes. BCEC and rat astrocytes were isolated and co-cultured using astrocyte-conditioned media with cAMP increasing agonists and dexamethasone. The co-culture had average TEER values from 261 ± 26 Ω cm² to 760 ± 46 Ω cm² dependent on BCEC isolation batches. Furthermore, mRNA of occludin, claudin-1, claudin-5, JAM-1, and ZO-1 were detected. Increased buffer concentration by addition of HEPES, MOPS, or TES to the media during differentiation increased the TEER up to 1,638 ± 256 Ω cm² independent of the type of buffer. This correlated with increased expression of claudin-5, while expression of the other tight junction proteins remained unchanged. Thus, we show for the first time that increased buffer capacity of the medium during differentiation significantly increases tightness of the BCEC/astrocyte in vitro BBB model. This regulation may be mediated by increased claudin-5 expression. The observations have practical implications for generating tighter BBB cell culture models, and may also have physiological implications, if similar sensitivity to pH-changes can be demonstrated in vivo.
Collapse
Affiliation(s)
- Hans Christian Helms
- Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
56
|
Deville JL, Salas S, Figarella-Branger D, Ouafik L, Daniel L. Adrenomedullin as a therapeutic target in angiogenesis. Expert Opin Ther Targets 2010; 14:1059-72. [DOI: 10.1517/14728222.2010.522328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
57
|
Mao XW, Favre CJ, Fike JR, Kubinova L, Anderson E, Campbell-Beachler M, Jones T, Smith A, Rightnar S, Nelson GA. High-LET radiation-induced response of microvessels in the Hippocampus. Radiat Res 2010; 173:486-93. [PMID: 20334521 DOI: 10.1667/rr1728.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hippocampus is critical for learning and memory, and injury to this structure is associated with cognitive deficits. The response of the hippocampal microvessels after a relatively low dose of high-LET radiation remains unclear. In this study, endothelial population changes in hippocampal microvessels exposed to (56)Fe ions at doses of 0, 0.5, 2 and 4 Gy were quantified using unbiased stereological techniques. Twelve months after exposure, mice that received 0.5 Gy or 2 Gy of iron ions showed a 34% or 29% loss of endothelial cells, respectively, in the hippocampal cornu ammonis region 1 (CA1) compared to age-matched controls or mice that received 4 Gy (P < 0.05). We suggest that this "U-shaped" dose response indicates a repopulation from a sensitive subset of endothelial cells that occurred after 4 Gy that was stimulated by an initial rapid loss of endothelial cells. In contrast to the CA1, in the dentate gyrus (DG), there was no significant difference in microvessel cell and length density between irradiated groups and age-matched controls. Vascular topology differences between CA1 and DG may account for the variation in dose response. The correlation between radiation-induced alterations in the hippocampal microvessels and their functional consequences must be investigated in further studies.
Collapse
Affiliation(s)
- Xiao Wen Mao
- Departments of Radiation Medicine, Molecular Radiation Biology Laboratories, Loma Linda University, Loma Linda, California 92350, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule families and their corresponding receptors are described, including the semaphorins/neuropilins/plexins, ephrins and Eph receptors, netrin/DCC/UNC5, Slit/Robo and Notch/Delta. In addition, the possibility to target these molecules as a therapeutic approach in cancer is discussed.
Collapse
Affiliation(s)
- Patrick Nasarre
- Medical University of South Carolina, Division of Hematology/Oncology, Charleston, SC, USA
| | | | | | | |
Collapse
|
59
|
Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, Zhao JH, Ramasamy A, Zhai G, Vitart V, Huffman JE, Igl W, Albrecht E, Deloukas P, Henderson J, Granell R, McArdle WL, Rudnicka AR, Barroso I, Loos RJF, Wareham NJ, Mustelin L, Rantanen T, Surakka I, Imboden M, Wichmann HE, Grkovic I, Jankovic S, Zgaga L, Hartikainen AL, Peltonen L, Gyllensten U, Johansson A, Zaboli G, Campbell H, Wild SH, Wilson JF, Gläser S, Homuth G, Völzke H, Mangino M, Soranzo N, Spector TD, Polasek O, Rudan I, Wright AF, Heliövaara M, Ripatti S, Pouta A, Naluai AT, Olin AC, Torén K, Cooper MN, James AL, Palmer LJ, Hingorani AD, Wannamethee SG, Whincup PH, Smith GD, Ebrahim S, McKeever TM, Pavord ID, MacLeod AK, Morris AD, Porteous DJ, Cooper C, Dennison E, Shaheen S, Karrasch S, Schnabel E, Schulz H, Grallert H, Bouatia-Naji N, Delplanque J, Froguel P, Blakey JD, Britton JR, Morris RW, Holloway JW, Lawlor DA, Hui J, Nyberg F, Jarvelin MR, Jackson C, Kähönen M, Kaprio J, Probst-Hensch NM, Koch B, Hayward C, Evans DM, Elliott P, Strachan DP, Hall IP, Tobin MD. Genome-wide association study identifies five loci associated with lung function. Nat Genet 2010; 42:36-44. [PMID: 20010834 PMCID: PMC2862965 DOI: 10.1038/ng.501] [Citation(s) in RCA: 438] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/10/2009] [Indexed: 12/18/2022]
Abstract
Pulmonary function measures are heritable traits that predict morbidity and mortality and define chronic obstructive pulmonary disease (COPD). We tested genome-wide association with forced expiratory volume in 1 s (FEV(1)) and the ratio of FEV(1) to forced vital capacity (FVC) in the SpiroMeta consortium (n = 20,288 individuals of European ancestry). We conducted a meta-analysis of top signals with data from direct genotyping (n < or = 32,184 additional individuals) and in silico summary association data from the CHARGE Consortium (n = 21,209) and the Health 2000 survey (n < or = 883). We confirmed the reported locus at 4q31 and identified associations with FEV(1) or FEV(1)/FVC and common variants at five additional loci: 2q35 in TNS1 (P = 1.11 x 10(-12)), 4q24 in GSTCD (2.18 x 10(-23)), 5q33 in HTR4 (P = 4.29 x 10(-9)), 6p21 in AGER (P = 3.07 x 10(-15)) and 15q23 in THSD4 (P = 7.24 x 10(-15)). mRNA analyses showed expression of TNS1, GSTCD, AGER, HTR4 and THSD4 in human lung tissue. These associations offer mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease.
Collapse
Affiliation(s)
- Emmanouela Repapi
- Departments of Health Sciences and Genetics, Adrian Building, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Javerzat S, Franco M, Herbert J, Platonova N, Peille AL, Pantesco V, De Vos J, Assou S, Bicknell R, Bikfalvi A, Hagedorn M. Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS One 2009; 4:e7856. [PMID: 19924294 PMCID: PMC2774277 DOI: 10.1371/journal.pone.0007856] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. Methology/Principal Findings We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21–66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. Conclusions/Significance Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis.
Collapse
Affiliation(s)
- Sophie Javerzat
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Mélanie Franco
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| | - John Herbert
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Natalia Platonova
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Anne-Lise Peille
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Véronique Pantesco
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - John De Vos
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Said Assou
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Roy Bicknell
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Andreas Bikfalvi
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Martin Hagedorn
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| |
Collapse
|
61
|
Herbert JMJ, Buffa FM, Vorschmitt H, Egginton S, Bicknell R. A new procedure for determining the genetic basis of a physiological process in a non-model species, illustrated by cold induced angiogenesis in the carp. BMC Genomics 2009; 10:490. [PMID: 19852815 PMCID: PMC2771047 DOI: 10.1186/1471-2164-10-490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/23/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Physiological processes occur in many species for which there is yet no sequenced genome and for which we would like to identify the genetic basis. For example, some species increase their vascular network to minimise the effects of reduced oxygen diffusion and increased blood viscosity associated with low temperatures. Since many angiogenic and endothelial genes have been discovered in man, functional homolog relationships between carp, zebrafish and human were used to predict the genetic basis of cold-induced angiogenesis in Cyprinus Carpio (carp). In this work, carp sequences were collected and built into contigs. Human-carp functional homolog relationships were derived via zebrafish using a new Conditional Stepped Reciprocal Best Hit (CSRBH) protocol. Data sources including publications, Gene Ontology and cDNA libraries were then used to predict the identity of known or potential angiogenic genes. Finally, re-analyses of cold carp microarray data identified carp genes up-regulated in response to low temperatures in heart and muscle. RESULTS The CSRBH approach outperformed all other methods and attained 8,726 carp to human functional homolog relationships for 16,650 contiguous sequences. This represented 3,762 non-redundant genes and 908 of them were predicted to have a role in angiogenesis. The total number of up-regulated differentially expressed genes was 698 and 171 of them were putatively angiogenic. Of these, 5 genes representing the functional homologs NCL, RHOA, MMP9, GRN and MAPK1 are angiogenesis-related genes expressed in response to low temperature. CONCLUSION We show that CSRBH functional homologs relationships and re-analyses of gene expression data can be combined in a non-model species to predict genes of biological interest before a genome sequence is fully available. Programs to run these analyses locally are available from http://www.cbrg.ox.ac.uk/~jherbert/.
Collapse
Affiliation(s)
- John M J Herbert
- Cancer Research UK Angiogenesis Group, Institute for Biomedical Research, Schools of Immunity and Infection and Cancer studies, College of Medicine and Dentistry, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | | | | | |
Collapse
|
62
|
Franco CA, Liebner S, Gerhardt H. Vascular morphogenesis: a Wnt for every vessel? Curr Opin Genet Dev 2009; 19:476-83. [DOI: 10.1016/j.gde.2009.09.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/15/2009] [Indexed: 01/24/2023]
|
63
|
Shah MM, Tee JB, Meyer T, Meyer-Schwesinger C, Choi Y, Sweeney DE, Gallegos TF, Johkura K, Rosines E, Kouznetsova V, Rose DW, Bush KT, Sakurai H, Nigam SK. The instructive role of metanephric mesenchyme in ureteric bud patterning, sculpting, and maturation and its potential ability to buffer ureteric bud branching defects. Am J Physiol Renal Physiol 2009; 297:F1330-41. [PMID: 19726549 DOI: 10.1152/ajprenal.00125.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney organogenesis depends on reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM) to form the UB-derived collecting system and MM-derived nephron. With the advent of in vitro systems, it is clear that UB branching can occur independently of MM contact; however, little has been done to detail the role of MM cellular contact in this process. Here, a model system in which the cultured isolated UB is recombined with uninduced MM is used to isolate the effects of the MM progenitor tissue on the development and maturation of the collecting system. By morphometrics, we demonstrate that cellular contact with the MM is required for vectorial elongation of stalks and tapering of luminal caliber of UB-derived tubules. Expression analysis of developmentally significant genes indicates the cocultured tissue is most similar to an embryonic day 19 (E19) kidney. The likely major contributor to this is the functional maturation of the collecting duct and proximal nephron segments in the UB-induced MM, as measured by quantitative PCR, of the collecting duct-specific arginine vasopressin receptor and the nephron tubule segment-specific organic anion transporter OAT1, Na-P(i) type 2 cotransporter, and Tamm-Horsfall protein gene expressions. However, expression of aquaporin-2 is upregulated similarly in isolated UB and cocultured tissue, suggesting that some aspects of functional maturation can occur independently of MM cellular contact. In addition to its sculpting effects, the MM normalized a "branchless" UB morphology induced by FGF7 or heregulin in isolated UB culture. The morphological changes induced by the MM were accompanied by a reassignment of GFRalpha1 (a receptor for GDNF) to tips. Such "quality control" by the MM of UB morphology may provide resiliency to the branching program. This may help to explain a number of knockout phenotypes in which branching and/or cystic defects are less impressive than expected. A second hit in the MM may thus be necessary to make these defects fully apparent.
Collapse
Affiliation(s)
- Mita M Shah
- Department of Medicine, University of California, San Diego, California 92093-0693, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kerachian MA, Cournoyer D, Harvey EJ, Chow T, Séguin C. Isolation and Characterization of Human Bone-Derived Endothelial Cells. ACTA ACUST UNITED AC 2009; 14:115-21. [PMID: 17497368 DOI: 10.1080/10623320701347062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Historically, the etiology of local bone pathologies, such as avascular necrosis, has been related to intravascular occlusion. Recent reports have highlighted the occlusion of arteries, venules, and/or capillaries in bone tissue. Endothelium of bone presumably participates locally in the formation of the microvascular thrombosis. It is also known that endothelial cells (ECs) play a central role in angiogenesis, a process seen in osteosarcoma, amongst other bone diseases. Given the well-recognized heterogeneity of ECs throughout the body, investigations of local bone disease related to endothelium processes may be more appropriately targeted on bone ECs rather than other primary ECs or an immortalized EC line. In the current study, mechanical and enzymatic methods are described to isolate ECs from cancellous human bone tissue followed by immunomagnetic bead separation to purify the cell populations. The human bone-derived endothelial cells (hBDECs) were characterized based on endothelial cell antigen expression and functional assays. This study is the first report of isolation and expansion of ECs from human bone tissue. Isolation of hBDECs in human vascular bone diseases may facilitate the study of the molecular and/or genetic abnormalities in the vasculature system that contributes to the initiation and/or progression of the disease.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Department of Human Genetics, University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
65
|
Phng LK, Gerhardt H. Angiogenesis: A Team Effort Coordinated by Notch. Dev Cell 2009; 16:196-208. [DOI: 10.1016/j.devcel.2009.01.015] [Citation(s) in RCA: 628] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/29/2009] [Accepted: 01/24/2009] [Indexed: 01/22/2023]
|
66
|
Redies C, Heyder J, Kohoutek T, Staes K, Van Roy F. Expression of protocadherin-1 (Pcdh1) during mouse development. Dev Dyn 2009; 237:2496-505. [PMID: 18729229 DOI: 10.1002/dvdy.21650] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Protocadherin-1 (Pcdh1) is a member of the delta-protocadherin subgroup of non-clustered protocadherins. We studied the expression of Pcdh1 from the early embryonic to the adult stage of mouse development by semi-quantitative RT-PCR and in situ hybridization. Pcdh1 can be detected as early as embryonic day 9.5. In early embryogenesis, expression is especially prominent in blood vessels. During later development and in the adult mouse, organs derived from the embryonic gut, such as the esophagus, intestines, liver, lung, and submandibular gland, contain epithelia and other types of tissues that are Pcdh1-positive. Other positive organs include the brain, spinal cord, retina, peripheral ganglia, the inner ear, hair follicles, kidney, vagina, uterus, placenta, testis, prostate, and the seminal gland. The tight spatial and temporal regulation of Pcdh1 expression suggests that this protocadherin plays multiple roles not only during development but also in mature tissues and organs in the mouse.
Collapse
Affiliation(s)
- Christoph Redies
- Institute of Anatomy I, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | |
Collapse
|
67
|
Abstract
Here, we present a protocol for the isolation of endothelial cells (ECs) from tissues. ECs make up a minor population of cells in a tissue, but play a major role in tissue homeostasis, as well as in diverse pathologies. To understand the biology of ECs, characterization of this cell population is highly desirable, but requires the availability of purified cells. For this purpose, tissues are mechanically minced and subsequently digested enzymatically with collagenase and dispase. ECs in the resulting single-cell suspension are labeled with Abs against EC surface antigens and separated from the remainder of the cells and debris by capture with magnetic beads or by high-speed cell sorting. Purified ECs are viable and suitable for characterization of diverse cellular properties. This protocol is optimized for human tissues but can also be adapted for use with other species. Depending on the tissue, the procedure can be completed in approximately 6 h.
Collapse
|
68
|
Dhanabal M, Karumanchi SA, Sukhatme VP. Targeting tumor vascular endothelium: an emerging concept for cancer therapy. Drug Dev Res 2008. [DOI: 10.1002/ddr.20266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
69
|
Vanderbilt JN, Allen L, Gonzalez RF, Tigue Z, Edmondson J, Ansaldi D, Gillespie AM, Dobbs LG. Directed expression of transgenes to alveolar type I cells in the mouse. Am J Respir Cell Mol Biol 2008; 39:253-62. [PMID: 18367724 PMCID: PMC2542444 DOI: 10.1165/rcmb.2008-0049oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/07/2008] [Indexed: 01/27/2023] Open
Abstract
Podoplanin (RTI40, aggrus, T1alpha, hT1alpha-2, E11, PA2.26, RANDAM-2, gp36, gp38, gp40, OTS8) is a type I cell marker in rat lung. We show that a bacterial artificial chromosome vector containing the rat podoplanin gene (RTIbac) delivers a pattern of transgene expression in lung that is more restricted to mouse type I cells than that of the endogenous mouse podoplanin gene. RTIbac-transgenic mice expressed rat podoplanin in type I cells; type II cells, airways, and vascular endothelium were negative. A modified bacterial artificial chromosome containing internal ribosome entry site (IRES)-green fluorescent protein (GFP) sequences in the podoplanin 3'UTR expressed rat podoplanin and transgenic GFP in type I cells. RTIbac transgene expression was absent or reduced in pulmonary pleura, lymphatic endothelium, and putative lymphoid-associated stromal tissue, all of which contained abundant mouse podoplanin. Rat podoplanin mRNA levels in normal rat lung and RTIbac transgenic lung were 25-fold higher than in corresponding kidney and brain samples. On Western blots, transgenic rat and endogenous mouse podoplanin displayed very similar patterns of protein expression in various organs. Highest protein levels were observed in lung with 10- to 20-fold less in brain; there were low levels in thymus and kidney. Both GFP and rat podoplanin transgenes were expressed at extrapulmonary sites of endogenous mouse podoplanin gene expression, including choroid plexus, eye ciliary epithelium, and renal glomerulus. Because their pulmonary expression is more restricted than endogenous mouse podoplanin, RTIbac derivatives should be useful for mouse type I cell-specific transgene delivery.
Collapse
Affiliation(s)
- Jeff N Vanderbilt
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Snrk-1 is involved in multiple steps of angioblast development and acts via notch signaling pathway in artery-vein specification in vertebrates. Blood 2008; 113:1192-9. [PMID: 18723694 DOI: 10.1182/blood-2008-06-162156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vertebrates, molecular mechanisms dictate angioblasts' migration and subsequent differentiation into arteries and veins. In this study, we used a microarray screen to identify a novel member of the sucrose nonfermenting related kinase (snrk-1) family of serine/threonine kinases expressed specifically in the embryonic zebrafish vasculature and investigated its function in vivo. Using gain- and loss-of-function studies in vivo, we show that Snrk-1 plays an essential role in the migration, maintenance, and differentiation of angioblasts. The kinase function of Snrk-1 is critical for migration and maintenance, but not for the differentiation of angioblasts. In vitro, snrk-1 knockdown endothelial cells show only defects in migration. The snrk-1 gene acts downstream or parallel to notch and upstream of gridlock during artery-vein specification, and the human gene compensates for zebrafish snrk-1 knockdown, suggesting evolutionary conservation of function.
Collapse
|
71
|
Larson J, Schomberg S, Schroeder W, Carpenter TC. Endothelial EphA receptor stimulation increases lung vascular permeability. Am J Physiol Lung Cell Mol Physiol 2008; 295:L431-9. [PMID: 18599503 DOI: 10.1152/ajplung.90256.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mediators of angiogenesis such as VEGFs and angiopoietins may regulate pulmonary vascular permeability under normal and pathological conditions. Ephrin family receptor tyrosine kinases are expressed in the vasculature and also regulate angiogenesis under some circumstances, but whether they also modulate lung vascular permeability is unknown. We hypothesized that stimulation of lung endothelial EphA receptors with ephrin-a1 ligand would alter pulmonary vascular permeability and tested this idea in vivo and in vitro. We found that ephrin-a1 ligand and EphA2 receptors are expressed in distal normal lung vasculature and that their expression is increased in injured lung, suggesting a link to mechanisms of increased permeability. Intravenous injection of ephrin-a1 caused a large increase in the leakage of labeled albumin into the lungs of rats within 30 min (293 +/- 27 vs. 150 +/- 6 ng/mg dry lung, P < 0.01), along with histological evidence of the formation of endothelial disruptions. In cultured lung vascular endothelial cells, stimulation with ephrin-a1 increased monolayer permeability by 44% (P < 0.01), a permeability change similar to that seen with VEGF stimulation of the same cells. Ephrin-a1 stimulation in vivo and in vitro was associated with histological evidence for disruptions of tight and adherens junctions. These observations describe a novel role for ephrin-a1 and EphA receptors in the regulation of vascular permeability in the lung.
Collapse
Affiliation(s)
- Jacqueline Larson
- Developmental Lung Biology Laboratory, Box B-131, Univ. of Colorado School of Medicine, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
72
|
Baluk P, McDonald DM. Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 2008; 1131:1-12. [PMID: 18519955 DOI: 10.1196/annals.1413.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Imaging of lymphangiogenesis and angiogenesis requires robust and unambiguous markers of lymphatic and blood vessels. Although much progress has been made in recent years in identifying molecules specifically expressed on lymphatic and blood vessels, no perfect marker has been found that works reliably in all species, tissues, vascular beds, and in all physiological and pathologic conditions. The heterogeneity of expression of markers in both blood and lymphatic vessels reflects underlying differences in the phenotype of endothelial cells. Use of only one marker can lead to misleading interpretations, but these pitfalls can usually be avoided by use of multiple markers and three-dimensional whole-mount preparations. LYVE-1, VEGFR-3, Prox1, and podoplanin are among the most useful markers for microscopic imaging of lymphatic vessels, but, depending on histologic location, each marker can be expressed by other cell types, including vascular endothelial cells. Other markers, including CD31, junctional proteins, and receptors, such as VEGF-2, are shared by lymphatic and blood vessels.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
73
|
Dai DF, Thajeb P, Tu CF, Chiang FT, Chen CH, Yang RB, Chen JJ. Plasma concentration of SCUBE1, a novel platelet protein, is elevated in patients with acute coronary syndrome and ischemic stroke. J Am Coll Cardiol 2008; 51:2173-80. [PMID: 18510966 DOI: 10.1016/j.jacc.2008.01.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/19/2007] [Accepted: 01/07/2008] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study investigates the potential application of plasma SCUBE1 [signal peptide-CUB (complement C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor)-like domain-containing protein 1] as a biomarker of platelet activation in acute coronary syndrome (ACS) and acute ischemic stroke (AIS). BACKGROUND Platelet activation plays a crucial role in ACS and AIS. Platelet stimulation is associated with increased plasma concentration of SCUBE1, a novel platelet-endothelial secreted protein identified in our previous study. METHODS Plasma concentrations of SCUBE1 from 40 ACS and 40 AIS patients were measured by enzyme-linked immunoadsorbent assay and compared with the levels of 40 healthy control subjects and 83 chronic coronary artery disease (CAD) patients. Two-dimensional electrophoresis followed by Western blotting was used to characterize SCUBE1 protein in patients' plasma. RESULTS Plasma SCUBE1 concentration was virtually undetectable in healthy control subjects and CAD patients, but was significantly higher in ACS and AIS patients (median = 205 and 95.1 ng/ml, respectively, p < 0.01). The increase in plasma SCUBE1 was detectable in the plasma as early as 6 h after the onset of symptoms and remained detectable up to 84 h. Plasma SCUBE1 concentration is an independent predictor of stroke severity based on National Institutes of Health Stroke Scale (beta = 3.18, p < 0.001). Furthermore, smaller SCUBE1 fragments were detected in ACS patients' plasma, suggesting that plasma SCUBE1 might subject to a proteolytic regulation under pathological conditions. CONCLUSIONS Plasma SCUBE1 concentration is significantly elevated in ACS and AIS but not CAD patients. Plasma SCUBE1 is a potential biomarker of platelet activation in acute thrombotic disease.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Section of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
74
|
Wallgard E, Larsson E, He L, Hellström M, Armulik A, Nisancioglu MH, Genove G, Lindahl P, Betsholtz C. Identification of a core set of 58 gene transcripts with broad and specific expression in the microvasculature. Arterioscler Thromb Vasc Biol 2008; 28:1469-76. [PMID: 18483404 DOI: 10.1161/atvbaha.108.165738] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Pathological angiogenesis is an integral component of many diseases. Antiangiogenesis and vascular targeting are therefore promising new therapeutic principles. However, few endothelial-specific putative drug targets have been identified, and information is still limited about endothelial-specific molecular processes. Here we aimed at determining the endothelial cell-specific core transcriptome in vivo. METHODS AND RESULTS Analysis of publicly available microarray data identified a mixed vascular/lung cluster of 132 genes that correlated with known endothelial markers. Filtering against kidney glomerular/nonglomerular and brain vascular/nonvascular microarray profiles separated contaminating lung markers, leaving 58 genes with broad and specific microvascular expression. More than half of these have not previously been linked to endothelial functions or studied in detail before. The endothelial cell-specific expression of a selected subset of these, Eltd1, Gpr116, Ramp2, Slc9a3r2, Slc43a3, Rasip1, and NM_023516, was confirmed by real-time quantitative polymerase chain reaction and/or immunohistochemistry. CONCLUSIONS We have used a combination of publicly available and own microarray data to identify 58 gene transcripts with broad yet specific expression in microvascular endothelium. Most of these have unknown functions, but many of them are predicted to be cell surface expressed or implicated in cell signaling processes and should therefore be explored as putative microvascular drug targets.
Collapse
Affiliation(s)
- Elisabet Wallgard
- Department of Medical Biochemistry and Biophysics, KarolinskaInstitutet, Scheeles väg 2, A3, floor 4, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Van Langendonckt A, Donnez J, Defrere S, Dunselman GA, Groothuis PG. Antiangiogenic and vascular-disrupting agents in endometriosis: pitfalls and promises. Mol Hum Reprod 2008; 14:259-68. [DOI: 10.1093/molehr/gan019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
76
|
Kim MY, Park JH, Mo JS, Ann EJ, Han SO, Baek SH, Kim KJ, Im SY, Park JW, Choi EJ, Park HS. Downregulation by lipopolysaccharide of Notch signaling, via nitric oxide. J Cell Sci 2008; 121:1466-76. [PMID: 18411251 DOI: 10.1242/jcs.019018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Notch signaling pathway appears to perform an important function in inflammation. Here, we present evidence to suggest that lipopolysaccharide (LPS) suppresses Notch signaling via the direct modification of Notch by the nitration of tyrosine residues in macrophages. In the RAW264.7 macrophage cell line and in rat primary alveolar macrophages, LPS was found to inhibit Notch1 intracellular domain (Notch1-IC) transcription activity, which could then be rescued by treatment with N(G)-nitro-l-arginine, a nitric oxide synthase (NOS) inhibitor. Nitric oxide (NO), which was produced in cells that stably express endothelial NOS (eNOS) and brain NOS (bNOS), also induced the inhibition of Notch1 signaling. The NO-induced inhibition of Notch1 signaling remained unchanged after treatment with 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a guanylyl-cyclase inhibitor, and was not found to be mimicked by 8-bromo-cyclic GMP in the primary alveolar macrophages. With regards to the control of Notch signaling, NO appears to have a significant negative influence, via the nitration of Notch1-IC, on the binding that occurs between Notch1-IC and RBP-Jk, both in vitro and in vivo. By intrinsic fluorescence, we also determined that nitration could mediate conformational changes of Notch1-IC. The substitution of phenylalanine for tyrosine at residue 1905 in Notch1-IC abolished the nitration of Notch1-IC by LPS. Overall, our data suggest that an important relationship exists between LPS-mediated inflammation and the Notch1 signaling pathway, and that this relationship intimately involves the nitration of Notch1-IC tyrosine residues.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Buk-Ku, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
O’Brien LA, Richardson MA, Berg DT, Gerlitz B, Gupta A, Grinnell BW. The Puzzling Role of TRAIL in Endothelial Cell Biology. Arterioscler Thromb Vasc Biol 2008. [DOI: 10.1161/atvbaha.107.158949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lee A. O’Brien
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Ind
| | - Mark A. Richardson
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Ind
| | - David T. Berg
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Ind
| | - Bruce Gerlitz
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Ind
| | - Akanksha Gupta
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Ind
| | - Brian W. Grinnell
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Ind
| |
Collapse
|
78
|
Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007; 25:911-20. [PMID: 17664940 DOI: 10.1038/nbt1323] [Citation(s) in RCA: 683] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 07/03/2007] [Indexed: 12/27/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an essential regulator of normal and abnormal blood vessel growth. A monoclonal antibody (mAb) that targets VEGF suppresses tumor growth in murine cancer models and human patients. We investigated cellular and molecular events that mediate refractoriness of tumors to anti-angiogenic therapy. Inherent anti-VEGF refractoriness is associated with infiltration of the tumor tissue by CD11b+Gr1+ myeloid cells. Recruitment of these myeloid cells is also sufficient to confer refractoriness. Combining anti-VEGF treatment with a mAb that targets myeloid cells inhibits growth of refractory tumors more effectively than anti-VEGF alone. Gene expression analysis in CD11b+Gr1+ cells isolated from the bone marrow of mice bearing refractory tumors reveals higher expression of a distinct set of genes known to be implicated in active mobilization and recruitment of myeloid cells. These findings indicate that, in our models, refractoriness to anti-VEGF treatment is determined by the ability of tumors to prime and recruit CD11b+Gr1+ cells.
Collapse
Affiliation(s)
- Farbod Shojaei
- Genentech, Inc., 1 DNA Way, S. San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Li D, Mukai K, Suzuki T, Suzuki R, Yamashita S, Mitani F, Suematsu M. Adrenocortical zonation factor 1 is a novel matricellular protein promoting integrin-mediated adhesion of adrenocortical and vascular smooth muscle cells. FEBS J 2007; 274:2506-22. [PMID: 17425658 DOI: 10.1111/j.1742-4658.2007.05786.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of a previously cloned secretory protein named adrenocortical zonation factor 1 (AZ-1, also called Tin-ag-RP or lipocalin 7) is tightly linked with the zonal differentiation of adrenocortical cells. It is also present in vascular smooth muscle (VSM), although its function has remained unknown. In this study, the location of AZ-1 was specified to the basal laminae along adrenocortical sinusoidal capillaries and surrounding VSM cells in the arterial system, consistent with the fact that AZ-1 was extractable under denaturing conditions as a 52 kDa polypeptide. Purified recombinant AZ-1 exhibited abilities to bind to fibronectins via the first type III repeat (anastellin) and to collagens with affinities in submicromolar ranges. AZ-1 immobilized on substratum or bound to collagens or anastellin promoted adhesion and spreading of adrenocortical cells. Although VSM cells spread on AZ-1 slowly, AZ-1 bound to anastellin facilitated the spreading. The adhesion activity of AZ-1 was mediated by a subset of integrins, including alpha(1)beta(1), alpha(2)beta(1), and alpha(5)beta(1), in a cell type-specific manner. Collectively with the putative role of AZ-1 in the adrenocortical zonation, we propose that AZ-1 potentially regulates functions of adrenocortical and VSM cells by modulating cell-matrix interactions.
Collapse
Affiliation(s)
- Dan Li
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
80
|
Rennel E, Mellberg S, Dimberg A, Petersson L, Botling J, Ameur A, Westholm JO, Komorowski J, Lassalle P, Cross MJ, Gerwins P. Endocan is a VEGF-A and PI3K regulated gene with increased expression in human renal cancer. Exp Cell Res 2007; 313:1285-94. [PMID: 17362927 DOI: 10.1016/j.yexcr.2007.01.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Revised: 01/06/2007] [Accepted: 01/10/2007] [Indexed: 12/16/2022]
Abstract
An in vitro model of VEGF-A-induced angiogenesis was used to generate transcription profiles of human microvascular endothelial cells. Microarray analysis showed increased transcription of genes known to regulate angiogenesis, but also genes that previously have not been firmly associated with angiogenesis such as endocan, pinin, plakophilin, phosphodiesterase 4B and gelsolin. Increased endocan mRNA levels in response to VEGF-A in endothelial cells and in human renal cancer have previously been reported. We now show increased endocan protein levels in VEGF-A treated endothelial cells and in human renal clear cell carcinoma. Increased protein expression was observed both in tumor cells and in a subset of tumor vessels, while expression in normal kidney tissue was low. VEGF-A seemed to be a specific inducer of endocan transcription since FGF-2, PDGF-BB, HGF/SF and EGF did not alter expression levels. Inhibition of PI3K with LY294002 caused a 12-fold increase in endocan transcription suggesting a repressive function of PI3K. In contrast inhibition of Src or MEK, which are signaling pathways activated by VEGF-A, did not influence basal or VEGF-A-induced endocan levels. In conclusion our study shows that, among angiogenic growth factors, VEGF-A is a specific inducer of endocan transcription which is translated into increased protein levels in VEGF-A treated endothelial cells. Increased endocan protein expression in human renal cancer suggests a role in tumor growth.
Collapse
Affiliation(s)
- Emma Rennel
- Department of Genetics and Pathology, the Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Li P, Zhang HZ, Huff S, Nimmakayalu M, Qumsiyeh M, Yu J, Szekely A, Xu T, Pober BR. Karyotype-phenotype insights from 11q14.1-q23.2 interstitial deletions: FZD4 haploinsufficiency and exudative vitreoretinopathy in a patient with a complex chromosome rearrangement. Am J Med Genet A 2007; 140:2721-9. [PMID: 17103440 DOI: 10.1002/ajmg.a.31498] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We detected a unique de novo complex chromosome rearrangement (CCR) in a patient with multiple abnormalities including growth retardation, facial anomalies, exudative vitreoretinopathy (EVR), cleft palate, and minor digital anomalies. Cytogenetic analysis, fluorescent in situ hybridization, and microsatellite genotyping showed a reciprocal translocation between chromosomes 5 and 8, and a complex translocation-deletion-inversion process in the formation of derivative chromosomes 11 and 16. High-density whole-genome oligonucleotide array comparative genomic hybridization (oaCGH) defined a 35-megabase interstitial deletion of 11q14.1-q23.2 and a 1 megabase deletion of 16q22.3-q23.1. The Frizzled-4 (FZD4) gene is located within this 11q deletion. Parental studies and sequencing analysis confirmed that the patient was hemizygous for FZD4 due to the loss of a paternal allele on the derivative chromosome 11. Mutations in FZD4 are known to cause autosomal dominant exudative vitreoretinopathy (EVR1). Our patient's findings suggest that haploinsufficiency of the FZD4 gene product can also be a disease-causing mechanism for EVR1. We reviewed the clinical manifestations of 23 cases with 11q14-q23 interstitial deletions, with particular scrutiny of the present case and four reported cases characterized by molecular cytogenetics. These findings were used to construct a regional deletion map consisting of a haplosufficient segment at 11q14.3, a flanking centromeric segment at 11q14.1-q14.2, and a flanking telomeric segment at 11q21-q23.3. We propose that deletions of the FZD4 gene located within the centromeric segment cause retinal dysgenesis, while deletions within the telomeric segment account for dysmorphic craniofacial features, growth and mental retardation, and mild digital anomalies. These results provide insight into karyotype-phenotype correlations and prompt a rational analytic approach to cases with interstitial deletions of the 11q14-q23 region.
Collapse
Affiliation(s)
- Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Haworth K, Smith F, Zoupa M, Seppala M, Sharpe PT, Cobourne MT. Expression of the Scube3 epidermal growth factor-related gene during early embryonic development in the mouse. Gene Expr Patterns 2006; 7:630-4. [PMID: 17258941 DOI: 10.1016/j.modgep.2006.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/13/2006] [Accepted: 12/16/2006] [Indexed: 11/19/2022]
Abstract
Scube genes encode a small group of secreted plasma membrane-associated proteins characterised by a N-terminal signal peptide sequence, multiple EGF domains, a N-linked glycosylated spacer region and a C-terminal CUB region. Here we describe expression of the mouse Scube3 gene during early embryonic development. Transcripts were initially localised to neurectoderm of the developing embryo, in the ventral rhombencephalon and caudal neuropore. However, as development progressed, strong expression was detected in ectodermal, endodermal and mesodermal tissues. In particular, the neural tube, branchial arches and fronto-nasal region, the dermomyotome of differentiating somites and the limb buds. Scube3 also demonstrated a highly restricted and specific expression domain in the developing tooth and hair follicle. At later stages, expression was also localised to cartilaginous primordia of the skeleton and regions of intramembranous bone formation in the developing craniofacial region. In addition, Scube3 transcripts were also found in the developing kidney.
Collapse
Affiliation(s)
- Kim Haworth
- Department of Craniofacial Development, Dental Institute, King's College London, Floor 28, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
83
|
De Silva MG, Hildebrand MS, Christopoulos H, Newman MR, Bell K, Ritchie M, Smyth GK, Dahl HHM. Gene expression changes during step-wise differentiation of embryonic stem cells along the inner ear hair cell pathway. Acta Otolaryngol 2006; 126:1148-57. [PMID: 17050306 DOI: 10.1080/00016480600702118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONCLUSION Our study outlines an alternative approach for the selection and investigation of genes involved in inner ear function. OBJECTIVE To gain understanding of the gene pathways involved in the development of the normal cochlea. MATERIALS AND METHODS Microarray technology currently offers the most efficient approach to investigate gene expression and identify pathways involved in cell differentiation. Epidermal growth factor (EGF) induces cultures derived from the organ of Corti to proliferate and produce new hair cells. Since pluripotent embryonic stem (ES) cells have the capacity to generate all tissues, we induced murine ES cells to differentiate towards ectodermal and neuroectodermal cell types and from there investigated their commitment towards the hair cell lineage in the presence of EGF. Cells were collected at three points along the differentiation pathway and their expression profiles were determined using the Soares NMIE mouse inner ear cDNA library printed in microarray format. RESULTS Three genes up-regulated after addition of EGF (serine (or cysteine) proteinase inhibitor, clade H, member 1 (Serpinh1), solute carrier family 2 (facilitated glucose transporter), member 10 (Slc2a10) and secreted acidic cysteine-rich glycoprotein (Sparc)) were selected for further analysis and characterization. Of the three genes, Serpinh1 and Slc2a10 have never been implicated in the hearing process.
Collapse
Affiliation(s)
- Michelle G De Silva
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic 3052, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Aplin AC, Gelati M, Fogel E, Carnevale E, Nicosia RF. Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics 2006; 27:20-8. [PMID: 17018690 DOI: 10.1152/physiolgenomics.00048.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to identify novel transcriptional events occurring in the aortic wall before angiogenesis. We used a defined tissue culture system that takes advantage of the capacity of rat aortic rings to generate neovessels ex vivo in response to angiogenic factor stimulation. Total RNA isolated from aortic rings 18 h posttreatment with angiopoietin (Ang)-1 or vascular endothelial growth factor (VEGF) was used to probe oligonucleotide microarrays. Many genes were up- or downregulated by either Ang-1 or VEGF, with a subset being affected by treatment with both growth factors. Grouping of genes by biological function revealed that Ang-1 and VEGF both upregulated a host of immune-related genes including many inflammatory cytokines. A mixture of the Ang-1- and VEGF-induced cytokines stimulated the spontaneous angiogenic response of aortic rings and was synergistic with a low dose of recombinant VEGF. This effect was associated with enhanced recruitment of adventitial macrophages and dendritic cells in the angiogenic outgrowths. Thus Ang-1 and VEGF activate the innate immune system of the vessel wall, stimulating the production of proangiogenic inflammatory cytokines before the emergence of neovessels. This hitherto unreported feature of the angiogenic response might represent an important early component of the cellular and molecular cascade responsible for the angiogenic response of the aortic wall.
Collapse
Affiliation(s)
- Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW The microvasculature in asthma has been known to contribute to airway-wall thickening and oedema from early post-mortem series. Current concepts of airway inflammation in asthma highlight the importance of the role of the Th2 lymphocyte in the atopic response to aeroallergens, the importance of mast-cell mediators in airway remodelling, potential actions of the vascular response in determining airway thickness and mechanisms of angiogenesis involving endogenous as well as homing progenitor cells with angioblastic potential. RECENT FINDINGS The development of animal models of asthmatic airway inflammation and remodelling have given new insight into mechanisms of angiogenesis in asthma. The central role of vascular endothelial growth factor in angiogenesis, vessel leakage and vascular homeostasis is now recognized. A more recent finding is the influence of this factor in enhancing the Th2 response in airway inflammation. The ability of bone marrow-derived angioblasts to migrate to sites of inflammation and contribute to angiogenesis indicates a pivotal role of stem cells in this process. SUMMARY These findings now provide logical links between the inflammatory response, stem-cell mobilization, angiogenesis and airflow obstruction in the remodelled airway of asthma. Future studies examining airway-wall thickness will be able to account for the contribution of the vasculature and airway-wall oedema. Therapies aimed at vascular mechanisms may be useful adjuncts to current treatments and the recognition of stem cells as key players in airway remodelling may provide strategies to reduce fixed airflow obstruction in severe disease.
Collapse
Affiliation(s)
- John W Wilson
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Monash Medical School, Prahran, Australia.
| | | |
Collapse
|
86
|
Soini Y, Kinnula V, Kahlos K, Pääkkö P. Claudins in differential diagnosis between mesothelioma and metastatic adenocarcinoma of the pleura. J Clin Pathol 2006; 59:250-4. [PMID: 16505274 PMCID: PMC1860350 DOI: 10.1136/jcp.2005.028589] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To study the expression of claudins in mesothelioma and metastatic pleural adenocarcinoma. METHODS Immunohistochemical staining of claudins 1, 2, 3, 4, 5, and 7 was studied in 35 malignant mesotheliomas and the expression compared with 24 cases of pleural metastatic adenocarcinoma. All cases were also immunostained with calretinin. RESULTS Claudin 1, 2, 3, 4, 5, and 7 expression was seen in 40%, 80%, 18%, 23%, 14%, and 43% of mesotheliomas, respectively, while the corresponding figures for adenocarcinoma were 100%, 88%, 90%, 100%, 50%, and 92%. Claudins 1, 3, 4, 5, and 7 were significantly less positive in mesothelioma than in metastatic adenocarcinoma, while no difference was observed for claudin 2. Claudins 1, 3, 4, 5, and 7 were also inversely associated with calretinin positivity. Sarcomatoid and biphasic mesothelioma subtypes appeared more negative for these claudins than pure epithelioid subtypes. Claudin expression was not associated with survival of patients with malignant mesotheliomas. CONCLUSIONS The results show that malignant mesotheliomas have a lower expression of claudins 1, 3, 4, 5, and 7 than adenocarcinomas, and their expression could thus be used as an adjunct in differential diagnosis between the two. The difference was most evident for claudins 3 and 4, which were nearly as good as calretinin in mesothelioma detection. Sarcomatoid and biphasic mesotheliomas showed expression of these claudins only occasionally, which could be due to or contribute to their less epithelial appearance.
Collapse
Affiliation(s)
- Y Soini
- Department of Pathology, University of Oulu and Oulu University Hospital, Finland.
| | | | | | | |
Collapse
|
87
|
Ryschich E, Lizdenis P, Ittrich C, Benner A, Stahl S, Hamann A, Schmidt J, Knolle P, Arnold B, Hämmerling GJ, Ganss R. Molecular fingerprinting and autocrine growth regulation of endothelial cells in a murine model of hepatocellular carcinoma. Cancer Res 2006; 66:198-211. [PMID: 16397233 DOI: 10.1158/0008-5472.can-05-1636] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In a mouse model of hepatocellular carcinogenesis, highly vascularized tumors develop through two distinct morphologic phases of neovascularization. We show that increased vascular caliber occurs first, followed by extensive vessel sprouting in late-stage carcinomas. To define molecular pathways in tumor neovascularization, endothelial cells were directly purified from normal liver and advanced tumors. Gene expression profiling experiments were then designed to identify genes enriched in the vascular compartment. We report that Cathepsin S is the major protease specifically overexpressed during vessel sprouting. We also show that the CC chemokines CCL2 and CCL3 are secreted by neovessels and stimulate proliferation through their cognate receptors in an autocrine fashion. This suggests that chemokine signaling represents the most prominent signaling pathway in tumor-associated endothelial cells and directly regulates vessel remodeling. Furthermore, high angiogenic activity is associated with attenuated lymphocyte extravasation and correlates with expression of the immunomodulatory cytokine interleukin 10. This is the first comprehensive study addressing liver-specific vascular changes in a murine autochthonous tumor model. These novel insights into liver angiogenesis infer an environmental control of neovascularization and have important implications for the design of antiangiogenic therapies.
Collapse
MESH Headings
- Animals
- Cell Communication/physiology
- Cell Growth Processes/physiology
- Cell Movement/physiology
- Chemokines/biosynthesis
- Chemokines/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Leukocytes/immunology
- Leukocytes/pathology
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Signal Transduction
- Vascular Endothelial Growth Factor Receptor-1/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
Collapse
|
88
|
Edgar AJ, Chacón MR, Bishop AE, Yacoub MH, Polak JM. Upregulated genes in sporadic, idiopathic pulmonary arterial hypertension. Respir Res 2006; 7:1. [PMID: 16390543 PMCID: PMC1351173 DOI: 10.1186/1465-9921-7-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 01/03/2006] [Indexed: 01/04/2023] Open
Abstract
Background To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). Methods Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. Results We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. Conclusion Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively.
Collapse
Affiliation(s)
- Alasdair J Edgar
- Department of Craniofacial Development, King's College, London, SE1 9RT, UK
| | - Matilde R Chacón
- Hospital Universitari de Tarragona Joan XXIII, Unitat de Recerca, C/Dr. Mallafre Guash, 4, 43007 Tarragona, Spain
| | - Anne E Bishop
- Tissue Engineering and Regenerative Medicine Centre, Faculty of Medicine, Imperial College, London SW10 9NH, UK
| | - Magdi H Yacoub
- Heart Science Centre, Imperial College, Harefield, Middlesex, UB9 6JH, UK
| | - Julia M Polak
- Tissue Engineering and Regenerative Medicine Centre, Faculty of Medicine, Imperial College, London SW10 9NH, UK
| |
Collapse
|
89
|
Kerfoot SM, D'Mello C, Nguyen H, Ajuebor MN, Kubes P, Le T, Swain MG. TNF-alpha-secreting monocytes are recruited into the brain of cholestatic mice. Hepatology 2006; 43:154-62. [PMID: 16374849 DOI: 10.1002/hep.21003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Signaling occurs between the liver and brain in cholestatic liver disease, giving rise to sickness behaviors such as fatigue. However, the signaling pathways involved are poorly defined. Circulating inflammatory mediator levels are increased in cholestasis, leading to speculation that they may be capable of activating circulating immune cells that subsequently could gain access to the brain. Indeed, we have identified that at day 10 after bile duct resection-induced cholestasis, there is activation of circulating monocytes that express tumor necrosis factor alpha (TNF-alpha) in conjunction with increased expression of adhesion molecules by cerebral endothelium. Moreover, using intravital microscopy, we have identified markedly enhanced leukocytes rolling along cerebral endothelial cells, mediated by P-selectin, in bile duct-resected (BDR) but not control mice. In addition, we have identified increased infiltration of monocytes (but not lymphocytes) into the brains of BDR mice and found that these infiltrating monocytes produce TNF-alpha. Furthermore, infiltration of TNF-alpha-secreting monocytes into the brains of cholestatic mice is associated with a broad activation of resident brain macrophages to produce TNF-alpha. In conclusion, cholestasis is associated with an activation of cerebral endothelium that recruits TNF-alpha-producing monocytes into the brain. We hypothesize that enhanced TNF-alpha release within the brain may contribute to the development of cholestasis-associated sickness behaviors, including fatigue.
Collapse
Affiliation(s)
- Steven M Kerfoot
- Immunology Research Group, Health Sciences Center, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
90
|
Hu H, Sung A, Zhao G, Shi L, Qiu D, Nishimura T, Kao PN. Simvastatin enhances bone morphogenetic protein receptor type II expression. Biochem Biophys Res Commun 2006; 339:59-64. [PMID: 16297860 DOI: 10.1016/j.bbrc.2005.10.187] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 10/30/2005] [Indexed: 11/30/2022]
Abstract
Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.
Collapse
Affiliation(s)
- Hong Hu
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5236, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Almon RR, Lai W, DuBois DC, Jusko WJ. Corticosteroid-regulated genes in rat kidney: mining time series array data. Am J Physiol Endocrinol Metab 2005; 289:E870-82. [PMID: 15985454 PMCID: PMC3752664 DOI: 10.1152/ajpendo.00196.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Kidney is a major target for adverse effects associated with corticosteroids. A microarray dataset was generated to examine changes in gene expression in rat kidney in response to methylprednisolone. Four control and 48 drug-treated animals were killed at 16 times after drug administration. Kidney RNA was used to query 52 individual Affymetrix chips, generating data for 15,967 different probe sets for each chip. Mining techniques applicable to time series data that identify drug-regulated changes in gene expression were applied. Four sequential filters eliminated probe sets that were not expressed in the tissue, not regulated by drug, or did not meet defined quality control standards. These filters eliminated 14,890 probe sets (94%) from further consideration. Application of judiciously chosen filters is an effective tool for data mining of time series datasets. The remaining data can then be further analyzed by clustering and mathematical modeling. Initial analysis of this filtered dataset identified a group of genes whose pattern of regulation was highly correlated with prototype corticosteroid enhanced genes. Twenty genes in this group, as well as selected genes exhibiting either downregulation or no regulation, were analyzed for 5' GRE half-sites conserved across species. In general, the results support the hypothesis that the existence of conserved DNA binding sites can serve as an important adjunct to purely analytic approaches to clustering genes into groups with common mechanisms of regulation. This dataset, as well as similar datasets on liver and muscle, are available online in a format amenable to further analysis by others.
Collapse
Affiliation(s)
- Richard R Almon
- Dept. of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | |
Collapse
|
92
|
Ohlmann A, Scholz M, Goldwich A, Chauhan BK, Hudl K, Ohlmann AV, Zrenner E, Berger W, Cvekl A, Seeliger MW, Tamm ER. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J Neurosci 2005; 25:1701-10. [PMID: 15716406 PMCID: PMC6725931 DOI: 10.1523/jneurosci.4756-04.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.
Collapse
Affiliation(s)
- Andreas Ohlmann
- Department of Anatomy, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Ushizawa K, Takahashi T, Kaneyama K, Hosoe M, Hashizume K. Cloning of the bovine antiapoptotic regulator, BCL2-related protein A1, and its expression in trophoblastic binucleate cells of bovine placenta. Biol Reprod 2005; 74:344-51. [PMID: 16221993 DOI: 10.1095/biolreprod.105.042655] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This report studied the identification and sequence of a full-length cDNA for the bovine BCL2 antiapoptotic family member, BCL2-related protein A1 (BCL2A1), and its localized and quantitative expression in the placenta to clarify the regulatory mechanism of trophoblast cell proliferation and differentiation during implantation and placental development. We cloned a full-length bovine BCL2A1 cDNA with 725 nucleotides and an open-reading frame corresponding to a protein of 175 amino acids. The predicted amino acid sequence shared 78% homology with human BCL2A1. All BCL2 homology domains (BH1, BH2, BH3, and BH4) in bovine BCL2A1 were conserved as well as in other mammalian BCL2A1. In the placentomes, in situ hybridization demonstrated that the BCL2A1 was limited in binucleate cells expressing various pregnancy-specific molecules like placental lactogen. BCL2-associated X protein (BAX) was also expressed in binucleate cells. Quantitative real-time RT-PCR detection exhibited a high-level expression of BCL2A1 in the conceptus at Day 21 of gestation, and it was expressed and increased in the extraembryonic membrane, cotyledon, and intercotyledon from implantation to term. BAX expression intensity increased with progression of gestation and remained elevated in postpartum. Caspase-3 protein (CASP3) and mRNA (CASP3) were detected from late gestation to postpartum in placenta as well as in the results of TUNEL detection. We believe that the apoptosis of binucleate cells may be regulated by the balance of the BCL2A1 and BAX. BCL2A1 genes produced a BCL2A1 protein in the mammalian cell-expression system. This molecule is a new candidate for antiapoptotic maintenance of the binucleate cells that support placental functions throughout gestation in bovine.
Collapse
Affiliation(s)
- Koichi Ushizawa
- Reproductive Biology and Technology Laboratory, Developmental Biology Department, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
94
|
Ben-Shlomo I. Sharing of unrelated receptors and ligands by cognate partners: possible implications for ovarian and endometrial physiology. Reprod Biomed Online 2005; 11:259-69. [PMID: 16168228 DOI: 10.1016/s1472-6483(10)60967-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of the recognized extracellular signalling molecules are known to participate in paracrine and autocrine functions. The classical model of signalling involves a ligand and its cognate receptor. A unique number of ligands activate two phylogenetically unrelated receptors; some receptors are activated by more than one unrelated polypeptide ligand, and some unrelated receptors share common co-receptors. Such a situation introduces a new dimension of complexity into the processes governed by these signalling mechanisms. These unique 'three-way partnerships' often involve signalling molecules that have key roles in the reproductive system. This review presents the known cases of three-way partnerships and examines their possible significance to the reproductive processes in the ovary and endometrium. Most notably present in the ovary are Wnt, Frizzled, Dickkopf (Dkk), low density lipoprotein receptor-related protein (LRP)5, RYK and Kremen system, and semaphorin, plexin, vascular endothelial growth factor and neuropilin system. In the endometrium one finds potential three-way partnerships in Wnt, Frizzled and RYK system, and ATP, P2X7, P2Y2 system. Three-way partnerships may explain previously enigmatic cases of biphasic effects of a ligand, or may reveal that a ligand thought to be pleiotrophic through the activation of one receptor is actually affecting two unrelated signalling receptors in the same tissue. The potential significance to new pharmacological developments is evident.
Collapse
Affiliation(s)
- Izhar Ben-Shlomo
- Division of Reproduction, Department of Obstetrics and Gynecology, Ma'yanei HaYeshua Medical Centre, Bnei Brak, Israel.
| |
Collapse
|
95
|
van Beijnum JR, Griffioen AW. In silico analysis of angiogenesis associated gene expression identifies angiogenic stage related profiles. Biochim Biophys Acta Rev Cancer 2005; 1755:121-34. [PMID: 16038789 DOI: 10.1016/j.bbcan.2005.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 06/14/2005] [Indexed: 01/04/2023]
Abstract
In vitro models have been extensively used to map gene expression in ECs but few studies have used cells from in vivo sources directly. Here, we compare different gene expression surveys on both cultured and fresh tissue derived ECs, and it emerges that gene expression profiles can be paralleled with the angiogenic stage of the cells. ECs stimulated with different growth factors in monolayer cultures exhibit gene expression profiles indicative of an active proliferative state, whereas gene expression in tube forming cells in vitro involves genes implicated in cell adhesion processes. Genes overexpressed in tumor ECs are biased towards extracellular matrix remodeling, a late event in angiogenesis. The elucidation of gene expression profiles under these different conditions will contribute to a better understanding of the molecular mechanisms during angiogenesis in both pathological and physiological circumstances and will have implications for the development of angiogenesis interfering treatment strategies.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Research Institute for Growth and Development, Departments of Internal Medicine and Pathology, Maastricht University Hospital, PO Box 5800, 6202AZ Maastricht, The Netherlands
| | | |
Collapse
|
96
|
Campagnolo L, Leahy A, Chitnis S, Koschnick S, Fitch MJ, Fallon JT, Loskutoff D, Taubman MB, Stuhlmann H. EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:275-84. [PMID: 15972971 PMCID: PMC1451775 DOI: 10.1016/s0002-9440(10)62972-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endothelium of the adult vasculature is normally quiescent, with the exception of the vasculature of the female reproductive system. However, in response to appropriate stimuli (ie, wound healing, atherosclerosis, tumor growth and metastasis, arthritis) the vasculature becomes activated and grows new capillaries through angiogenesis. We have recently identified a novel endothelial-restricted gene, Egfl7, that encodes a 41-kd secreted protein (Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H: Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 2004, 230:316-324). Egfl7 is expressed at high levels early during mouse embryonic development and is strictly associated with the vascular bed. In this study, we investigated Egfl7 expression in the quiescent adult vasculature, in the pregnant uterus, and in two different models of arterial injury, namely ballooning and ferric chloride injury. By RNA in situ hybridization, Egfl7 expression in the vasculature was found to be restricted to the endothelium of the capillaries and mature vessels. In the pregnant uterus, increased vascularization was accompanied by up-regulation of Egfl7. On arterial injury, Egfl7 expression was up-regulated in the regenerating endothelium, but not in the neointima. Importantly, the EGFL7 protein acted as a chemoattractant for embryonic endothelial cells and fibroblasts in a cell migration assay. Together, these results suggest that Egfl7 functions in the formation and maintenance of endothelial integrity and that its up-regulation may be a critical component in the reorganization of the vascular bed in response to angiogenic stimuli.
Collapse
Affiliation(s)
- Luisa Campagnolo
- Division of Vascular Biology, Department of Cell Biology, The Scripps Research Institute, Mail CVN-26, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Wang J, Kataoka H, Suzuki M, Sato N, Nakamura R, Tao H, Maruyama K, Isogaki J, Kanaoka S, Ihara M, Tanaka M, Kanamori M, Nakamura T, Shinmura K, Sugimura H. Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene 2005; 24:5637-5647. [PMID: 16007213 DOI: 10.1038/sj.onc.1208720] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 03/11/2005] [Accepted: 03/21/2005] [Indexed: 11/09/2022]
Abstract
A significant reduction of EphA7 expression in human colorectal cancers was shown using semiquantitative reverse transcription-polymerase chain reaction analysis in 59 colorectal cancer tissues, compared to corresponding normal mucosas (P=0.008), and five colon cancer cell lines. To investigate the mechanism of EphA7 downregulation in colorectal cancer, we examined the methylation status of the 5'CpG island around the translation start site in five colon cancer cell lines using restriction enzymes, methylation-specific PCR, and bisulfite sequencing and found evidence of aberrant methylation. The expression of EphA7 in colon cancer cell lines was restored after treatment with 5-aza-2'-deoxycytidine. Analysis of methylation status in totally 75 tumors compared to clinicopathological parameters revealed that hypermethylation of colorectal cancers was more frequent in male than in female (P=0.0078), and in moderately differentiated than in well-differentiated adenocarcinomas (P=0.0361). There was a tendency that hypermethylation in rectal cancers was more frequent than in colon cancers (P=0.0816). Hypermethylation was also observed in colorectal adenomas. This is the first report describing the downregulation of an Eph family gene in a solid tumor via aberrant 5'CpG island methylation. It provides the evidence that EphA7 gene is involved in human colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jiandong Wang
- Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wang Z, Shu W, Lu MM, Morrisey EE. Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol Cell Biol 2005; 25:5022-30. [PMID: 15923619 PMCID: PMC1140585 DOI: 10.1128/mcb.25.12.5022-5030.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Wnt7b is a Wnt ligand that has been demonstrated to play critical roles in several developmental processes, including lung airway and vascular development and chorion-allantois fusion during placental development. Wnt signaling involves the binding of Wnt ligands to cell surface receptors of the frizzled family and coreceptors of the LRP5/6 family. However, little is known of the ligand-receptor specificity exhibited by different Wnts, Fzds, and LRPs in Wnt signaling. Expression analysis of Fzds and LRP5/6 in the developing lung and vasculature showed that Fzd1, -4, -7, and -10 and LRP5/6 are expressed in tissue-specific patterns during lung development. Fzd1, -4, and -7 are expressed primarily in the developing lung mesenchyme, and Fzd10 is expressed in airway epithelium. LRP5 and LRP6 are expressed in airway epithelium during lung development, whereas LRP5 but not LRP6 expression is observed in the muscular component of large blood vessels, including the aorta. Cell transfection studies demonstrate that Wnt7b can activate the canonical Wnt pathway but not the noncanonical Wnt pathway in a cell-specific manner. Biochemical analysis demonstrates that Wnt7b can bind to Fzd1 and -10 on the cell surface and cooperatively activate canonical Wnt signaling with these receptors in the presence of LRP5. Together, these data demonstrate that Wnt7b signals through Fzd1 and -10 and LRP5 and implicate these Wnt coreceptors in the regulation of lung airway and vascular development.
Collapse
MESH Headings
- Animals
- Cell Line
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Epithelial Cells/cytology
- Epithelial Cells/physiology
- Frizzled Receptors
- Gene Expression Profiling
- Genes, Reporter
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Heart/anatomy & histology
- Heart/growth & development
- Humans
- JNK Mitogen-Activated Protein Kinases/metabolism
- LDL-Receptor Related Proteins/genetics
- LDL-Receptor Related Proteins/metabolism
- Low Density Lipoprotein Receptor-Related Protein-5
- Lung/anatomy & histology
- Lung/growth & development
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/growth & development
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Neurotransmitter/genetics
- Receptors, Neurotransmitter/metabolism
- Signal Transduction/physiology
- Wnt Proteins
Collapse
Affiliation(s)
- Zhishan Wang
- Department of Medicine, University of Pennsylvania, 956 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
99
|
Pai JT, Ruoslahti E. Identification of endothelial genes up-regulated in vivo. Gene 2005; 347:21-33. [PMID: 15715960 DOI: 10.1016/j.gene.2004.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 11/25/2004] [Accepted: 12/15/2004] [Indexed: 11/30/2022]
Abstract
We have used microarrays to identify genes that are selectively expressed in endothelial cells in vivo. Analysis of freshly isolated endothelial cells from the lungs and kidneys reveals that 350 out of the 10,000 genes represented on the microarrays were expressed at higher levels than by the corresponding parenchymal cells. Thirteen of these genes were identified both in the lung and kidney screens from a subset of about 5000 genes. Many of these genes are known to be specifically expressed in endothelial cells, but about 200 genes were potentially novel endothelial genes. The preferential endothelial expression of a selected group of these genes was confirmed by quantitative polymerase chain reaction or in situ mRNA hybridization. Comparison of the genes expressed in lung and kidney endothelia revealed numerous differences. Notably, genes encoding components of an ephrin signaling pathway were highly expressed in lung endothelial cells. In summary, the genes we have identified represent potentially new pan-endothelial and tissue-specific endothelial markers.
Collapse
Affiliation(s)
- Jih-Tung Pai
- Cancer Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
100
|
Beckers J, Herrmann F, Rieger S, Drobyshev AL, Horsch M, Hrabé de Angelis M, Seliger B. Identification and validation of novel ERBB2 (HER2, NEU) targets including genes involved in angiogenesis. Int J Cancer 2005; 114:590-7. [PMID: 15609325 DOI: 10.1002/ijc.20798] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2; synonyms HER2, NEU) encodes a transmembrane glycoprotein with tyrosine kinase-specific activity that acts as a major switch in different signal-transduction processes. ERBB2 amplification and overexpression have been found in a number of human cancers, including breast, ovary and kidney carcinoma. Our aim was to detect ERBB2-regulated target genes that contribute to its tumorigenic effect on a genomewide scale. The differential gene expression profile of ERBB2-transfected and wild-type mouse fibroblasts was monitored employing DNA microarrays. Regulated expression of selected genes was verified by RT-PCR and validated by Western blot analysis. Genome wide gene expression profiling identified (i) known targets of ERBB2 signaling, (ii) genes implicated in tumorigenesis but so far not associated with ERBB2 signaling as well as (iii) genes not yet associated with oncogenic transformation, including novel genes without functional annotation. We also found that at least a fraction of coexpressed genes are closely linked on the genome. ERBB2 overexpression suppresses the transcription of antiangiogenic factors (e.g., Sparc, Timp3, Serpinf1) but induces expression of angiogenic factors (e.g., Klf5, Tnfaip2, Sema3c). Profiling of ERBB2-dependent gene regulation revealed a compendium of potential diagnostic markers and putative therapeutic targets. Identification of coexpressed genes that colocalize in the genome may indicate gene regulatory mechanisms that require further study to evaluate functional coregulation. (Supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.)
Collapse
Affiliation(s)
- Johannes Beckers
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|