51
|
Tan D, Tseng HHL, Zhong Z, Wang S, Vong CT, Wang Y. Glycyrrhizic Acid and Its Derivatives: Promising Candidates for the Management of Type 2 Diabetes Mellitus and Its Complications. Int J Mol Sci 2022; 23:10988. [PMID: 36232291 PMCID: PMC9569462 DOI: 10.3390/ijms231910988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which is characterized by hyperglycemia, chronic insulin resistance, progressive decline in β-cell function, and defect in insulin secretion. It has become one of the leading causes of death worldwide. At present, there is no cure for T2DM, but it can be treated, and blood glucose levels can be controlled. It has been reported that diabetic patients may suffer from the adverse effects of conventional medicine. Therefore, alternative therapy, such as traditional Chinese medicine (TCM), can be used to manage and treat diabetes. In this review, glycyrrhizic acid (GL) and its derivatives are suggested to be promising candidates for the treatment of T2DM and its complications. It is the principal bioactive constituent in licorice, one type of TCM. This review comprehensively summarized the therapeutic effects and related mechanisms of GL and its derivatives in managing blood glucose levels and treating T2DM and its complications. In addition, it also discusses existing clinical trials and highlights the research gap in clinical research. In summary, this review can provide a further understanding of GL and its derivatives in T2DM as well as its complications and recent progress in the development of potential drugs targeting T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
52
|
Lee SY, Chung KS, Son SR, Lee SY, Jang DS, Lee JK, Kim HJ, Na CS, Lee SH, Lee KT. A Botanical Mixture Consisting of Inula japonica and Potentilla chinensis Relieves Obesity via the AMPK Signaling Pathway in 3T3-L1 Adipocytes and HFD-Fed Obese Mice. Nutrients 2022; 14:nu14183685. [PMID: 36145056 PMCID: PMC9505034 DOI: 10.3390/nu14183685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive lipid accumulation in white adipose tissue (WAT) is the major cause of obesity. Herein, we investigated the anti-obesity effect and molecular mechanism of a botanical mixture of 30% EtOH extract from the leaves of Inula japonica and Potentilla chinensis (EEIP) in 3T3-L1 preadipocytes and high-fat diet (HFD)-fed obese mice. In vitro, EEIP prevented lipid accumulation by downregulating the expression of lipogenesis-related transcription factors such as CCAAT/enhancer binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein (SREBP)-1 via AMP-activated protein kinase (AMPK) activation and G0/G1 cell cycle arrest by regulating the Akt-mTOR pathways without inducing cytotoxicity. In vivo, EEIP significantly reduced body weight gain and body fat mass in the group administered concurrently with HFD (pre-) or administered during the maintenance of HFD (post-) including subcutaneous, gonadal, renal, and mesenteric fats, and improved blood lipid profiles and metabolic hormones. EEIP pre-administration also alleviated WAT hypertrophy and liver lipid accumulation by reducing C/EBPα, PPARγ, and SREBP-1 expression via AMPK activation. In the brown adipose tissue, EEIP pre-administration upregulated the expression of thermogenic factors. Furthermore, EEIP improved the HFD-induced altered gut microbiota in mice. Taken together, our data indicated that EEIP improves HFD-induced obesity through adipogenesis inhibition in the WAT and liver and is a promising dietary natural material for improving obesity.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - So Young Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jong-Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Jae Kim
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea
| | - Chang-Seon Na
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| |
Collapse
|
53
|
Fatahi S, Sayyari AA, Salehi M, Safa M, Sohouli M, Shidfar F, Santos HO. The effects of chitosan supplementation on anthropometric indicators of obesity, lipid and glycemic profiles, and appetite-regulated hormones in adolescents with overweight or obesity: a randomized, double-blind clinical trial. BMC Pediatr 2022; 22:527. [PMID: 36064382 DOI: 10.1186/s12887-022-03590-x.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Chitosan is one of dietary fiber that has received great attention in improving obesity-related markers, but little is known on its effects on adolescents. OBJECTIVES To analyze the effects of chitosan supplementation on obesity-related cardiometabolic markers and appetite-related hormones in adolescents with overweight or obesity. METHODS AND ANALYSIS A randomized clinical trial was performed on 64 adolescents with overweight and obesity, who were randomly allocated to receive chitosan supplementation (n = 32) or placebo as control (n = 32) for 12 weeks. Anthropometric measures, lipid and glycemic profiles, and appetite-related hormones were examined. RESULTS Sixty-one participants completed study (chitosan = 31, placebo = 30). Chitosan supplementation significantly improved anthropometric indicators of obesity (body weight: - 3.58 ± 2.17 kg, waist circumference: - 5.00 ± 3.11 cm, and body mass index: - 1.61 ± 0.99 kg/m2 and - 0.28 ± 0.19 Z-score), lipid (triglycerides: - 5.67 ± 9.24, total cholesterol: - 14.12 ± 13.34, LDL-C: - 7.18 ± 10.16, and HDL-C: 1.83 ± 4.64 mg/dL) and glycemic markers (insulin: - 5.51 ± 7.52 μIU/mL, fasting blood glucose: - 5.77 ± 6.93 mg/dL, and homeostasis model assessment of insulin resistance: - 0.24 ± 0.44), and appetite-related hormones (adiponectin: 1.69 ± 2.13 ng/dL, leptin - 19.40 ± 16.89, and neuropeptide Y: - 41.96 ± 79.34 ng/dL). When compared with the placebo group, chitosan supplementation had greater improvement in body weight, body mass index (kg/m2 and Z-score), waist circumference, as well as insulin, adiponectin, and leptin levels. Differences were significant according to P-value < 0.05. CONCLUSION Chitosan supplementation can improve cardiometabolic parameters (anthropometric indicators of obesity and lipid and glycemic markers) and appetite-related hormones (adiponectin, leptin, and NPY) in adolescents with overweight or obesity.
Collapse
Affiliation(s)
- Somaye Fatahi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Sayyari
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadhassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
54
|
Fatahi S, Sayyari AA, Salehi M, Safa M, Sohouli M, Shidfar F, Santos HO. The effects of chitosan supplementation on anthropometric indicators of obesity, lipid and glycemic profiles, and appetite-regulated hormones in adolescents with overweight or obesity: a randomized, double-blind clinical trial. BMC Pediatr 2022; 22:527. [PMID: 36064382 PMCID: PMC9442917 DOI: 10.1186/s12887-022-03590-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 01/16/2023] Open
Abstract
Background Chitosan is one of dietary fiber that has received great attention in improving obesity-related markers, but little is known on its effects on adolescents. Objectives To analyze the effects of chitosan supplementation on obesity-related cardiometabolic markers and appetite-related hormones in adolescents with overweight or obesity. Methods and analysis A randomized clinical trial was performed on 64 adolescents with overweight and obesity, who were randomly allocated to receive chitosan supplementation (n = 32) or placebo as control (n = 32) for 12 weeks. Anthropometric measures, lipid and glycemic profiles, and appetite-related hormones were examined. Results Sixty-one participants completed study (chitosan = 31, placebo = 30). Chitosan supplementation significantly improved anthropometric indicators of obesity (body weight: − 3.58 ± 2.17 kg, waist circumference: − 5.00 ± 3.11 cm, and body mass index: − 1.61 ± 0.99 kg/m2 and − 0.28 ± 0.19 Z-score), lipid (triglycerides: − 5.67 ± 9.24, total cholesterol: − 14.12 ± 13.34, LDL-C: − 7.18 ± 10.16, and HDL-C: 1.83 ± 4.64 mg/dL) and glycemic markers (insulin: − 5.51 ± 7.52 μIU/mL, fasting blood glucose: − 5.77 ± 6.93 mg/dL, and homeostasis model assessment of insulin resistance: − 0.24 ± 0.44), and appetite-related hormones (adiponectin: 1.69 ± 2.13 ng/dL, leptin − 19.40 ± 16.89, and neuropeptide Y: − 41.96 ± 79.34 ng/dL). When compared with the placebo group, chitosan supplementation had greater improvement in body weight, body mass index (kg/m2 and Z-score), waist circumference, as well as insulin, adiponectin, and leptin levels. Differences were significant according to P-value < 0.05. Conclusion Chitosan supplementation can improve cardiometabolic parameters (anthropometric indicators of obesity and lipid and glycemic markers) and appetite-related hormones (adiponectin, leptin, and NPY) in adolescents with overweight or obesity.
Collapse
Affiliation(s)
- Somaye Fatahi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Sayyari
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadhassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
55
|
Valenti MT, Braggio M, Minoia A, Dorelli G, Bertacco J, Bertoldo F, Cominacini M, De Simone T, Romanelli MG, Bhandary L, Mottes M, Dalle Carbonare L. Effects of a 4400 km ultra-cycling non-competitive race and related training on body composition and circulating progenitors differentiation. Lab Invest 2022; 20:397. [PMID: 36058924 PMCID: PMC9441096 DOI: 10.1186/s12967-022-03591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/14/2022] [Indexed: 11/12/2022]
Abstract
Background NorthCape4000 (NC4000) is the most participated ultra-endurance cycling race. Eight healthy male Caucasian amateur cyclists were evaluated: (a) before starting the preparation period; (b) in the week preceding NC4000 (after the training period); (c) after NC4000 race, with the aim to identify the effects of ultra-cycling on body composition, aerobic capacity and biochemical parameters as well as on the differentiation of progenitor cells. Methods Bioelectrical impedance analysis (BIA) and dual energy x-ray absorptiometry (DEXA) assessed body composition; cardiopulmonary exercise test (CPET) evaluated aerobic capacity. Differentiation of circulating progenitor cells was evaluated by analyzing the modulation in the expression of relevant transcription factors. In addition, in vitro experiments were performed to investigate the effects of sera of NC4000 participants on adipogenesis and myogenesis. The effects of NC4000 sera on Sestrins and Sirtuin modulation and the promotion of brown adipogenesis in progenitor cells was investigated as well. Two-tailed Student’s paired-test was used to perform statistical analyses. Results We observed fat mass decrease after training as well as after NC4000 performance; we also recorded that vitamin D and lipid profiles were affected by ultra-cycling. In addition, our findings demonstrated that post-NC4000 participant’s pooled sera exerted a positive effect in stimulating myogenesis and in inducing brown adipogenesis in progenitor cells. Conclusions The training program and Ultra-cycling lead to beneficial effects on body composition and biochemical lipid parameters, as well as changes in differentiation of progenitor cells, with significant increases in brown adipogenesis and in MYOD levels.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - Michele Braggio
- Department of Medicine, Section of Internal Medicine, University of Verona, Piazzale Scuro, 10, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Arianna Minoia
- Department of Medicine, Section of Internal Medicine, University of Verona, Piazzale Scuro, 10, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Gianluigi Dorelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Piazzale Scuro, 10, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Jessica Bertacco
- Department of Medicine, Section of Internal Medicine, University of Verona, Piazzale Scuro, 10, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Francesco Bertoldo
- Department of Medicine, Section of Internal Medicine, University of Verona, Piazzale Scuro, 10, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Mattia Cominacini
- Department of Medicine, Section of Internal Medicine, University of Verona, Piazzale Scuro, 10, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Tonia De Simone
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - Luca Dalle Carbonare
- Department of Medicine, Section of Internal Medicine, University of Verona, Piazzale Scuro, 10, Policlinico G.B. Rossi, 37134, Verona, Italy.
| |
Collapse
|
56
|
Li Y, Li Y, Chen N, Feng L, Gao J, Zeng N, He Z, Gong Q. Icariside II Exerts Anti-Type 2 Diabetic Effect by Targeting PPARα/γ: Involvement of ROS/NF-κB/IRS1 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11091705. [PMID: 36139776 PMCID: PMC9495514 DOI: 10.3390/antiox11091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multisystem and complex metabolic disorder which is associated with insulin resistance and impairments of pancreatic β-cells. Previous studies have shown that icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exerts potent anti-inflammatory and anti-oxidative properties. In this study, we investigated whether ICS II exerted anti-T2DM profile and further explored its possible underlying mechanism both in vivo and in vitro. db/db mice were administered ICS II (10, 20, 40 mg·kg−1) for 7 weeks. We found that ICS II dose-dependently attenuated hyperglycemia and dyslipidemia, as well as inhibited hepatic steatosis and islet architecture damage in db/db mice. Moreover, ICS II not only dramatically reduced inflammatory cytokines and oxidative stress, but also up-regulated PPARα/γ protein expressions, phosphorylation of Akt, GSK3β and IR, meanwhile, down-regulated phosphorylation of NF-κB(p65) and IRS1 in db/db mice. In palmitic acid (PA)-treated HepG2 or MIN6 cells, ICS II (5−20 μM) concentration-dependently promoted the cell viability via mediating PPARα/γ/NF-κB signaling pathway. PPARα/γ knockout by CRISPR-Cas9 system partly abolished the protective effects of ICS II on HepG2 or MIN6 cells following PA insults. These findings reveal that ICS II effectively confer anti-T2DM property by targeting PPARα/γ through mediation of ROS/NF-κB/IRS1 signaling pathway.
Collapse
Affiliation(s)
- Yiqi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yeli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Nana Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Linying Feng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Nan Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Qihai Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Correspondence: ; Tel./Fax: +86-851-286-423-03
| |
Collapse
|
57
|
Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice. Metabolites 2022; 12:metabo12080743. [PMID: 36005615 PMCID: PMC9412644 DOI: 10.3390/metabo12080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Polyunsaturated fats are energy substrates and precursors to the biosynthesis of lipid mediators of cellular processes. Adipose tissue not only provides energy storage, but influences whole-body energy metabolism through endocrine functions. How diet influences adipose-lipid mediator balance may have broad impacts on energy metabolism. To determine how dietary lipid sources modulate brown and white adipose tissue and plasma lipid mediators, mice were fed low-fat (15% kcal fat) isocaloric diets, containing either palm oil (POLF) or linoleate-rich safflower oil (SOLF). Baseline and post body weight, adiposity, and 2-week and post fasting blood glucose were measured and lipid mediators were profiled in plasma, and inguinal white and interscapular brown adipose tissues. We identified over 30 species of altered lipid mediators between diets and found that these changes were unique to each tissue. We identified changes to lipid mediators with known functional roles in the regulation of adipose tissue expansion and function, and found that there was a relationship between the average fold difference in lipid mediators between brown adipose tissue and plasma in mice consuming the SOLF diet. Our findings emphasize that even with a low-fat diet, dietary fat quality has a profound effect on lipid mediator profiles in adipose tissues and plasma.
Collapse
|
58
|
Islam MA, Khairnar R, Fleishman J, Thompson K, Kumar S. Lipocalin-Type Prostaglandin D 2 Synthase Protein- A Central Player in Metabolism. Pharm Res 2022; 39:2951-2963. [PMID: 35799081 DOI: 10.1007/s11095-022-03329-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Lipocalin-type prostaglandin D synthase was previously known as β-trace protein (BTP), a low-molecular-weight glycoprotein that is heavily expressed in human cerebrospinal fluid. Nevertheless, it is also seen to be expressed in numerous other tissues including the kidney, liver, lung, heart, adipose, muscle, and pancreas. Functionally, L-PGDS behaves like a lipocalin type protein where it helps in binding and transportation of small lipophilic substances, such as steroids, retinoids, and other lipophilic ligands. Enzymatically, L-PGDS functions as a prostaglandin synthase where it helps in the production of PGD2 by catalyzing the isomerization of PGH2, a common precursor of the two series of prostaglandins. PGD2 regulates its physiological function through two individual receptors named DP1 and DP2. L-PGDS has been a central player in many diseases, its role in metabolism including diabetes, fatty liver disease, and obesity has gathered a large attention. In this review, we summarize the current state of knowledge about L-PGDS and it's signaling in adipose, hepatic, skeletal muscle, and pancreas tissues, which are core targets for metabolic studies. Modulation of L-PGDS signaling can be considered as a potential future therapeutic target for the treatment of insulin resistance as well as fatty liver disease.
Collapse
Affiliation(s)
- Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Kamala Thompson
- Department of Biology, Chemistry, and Environmental Studies, Molloy College, Rockville Centre, NY, 11571, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
59
|
Quispe R, Alfaddagh A, Kazzi B, Zghyer F, Marvel FA, Blumenthal RS, Sharma G, Martin SS. Controversies in the Use of Omega-3 Fatty Acids to Prevent Atherosclerosis. Curr Atheroscler Rep 2022; 24:571-581. [PMID: 35499805 DOI: 10.1007/s11883-022-01031-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We discuss current controversies in the clinical use of omega-3 fatty acids (FA), primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and examine discrepancies between recent trials. Furthermore, we discuss potential side effects reported in these studies and the role of mixed omega-3 FA dietary supplements and concerns about their use. RECENT FINDINGS REDUCE-IT showed that addition of icosapent ethyl, a highly purified form of EPA, can reduce risk of cardiovascular events among statin-treated individuals with high triglycerides. Additional supportive evidence for EPA has come from other trials and meta-analyses of omega-3 FA therapy. In contrast, trials of mixed EPA/DHA products have consistently failed to improve cardiovascular outcomes. Discrepancies in results reported in RCTs could be explained by differences in omega-3 FA products, dosing, study populations, and study designs including the placebo control formulation. Evidence obtained from highly purified forms should not be extrapolated to other mixed formulations, including "over-the-counter" omega-3 supplements. Targeting TG-rich lipoproteins represents a new frontier for mitigating ASCVD risk. Clinical and basic research evidence suggests that the use of omega-3 FA, specifically EPA, appears to slow atherosclerosis by reducing triglyceride-rich lipoproteins and/or inflammation, therefore addressing residual risk of clinical ASCVD.
Collapse
Affiliation(s)
- Renato Quispe
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Abdulhamied Alfaddagh
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Brigitte Kazzi
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Fawzi Zghyer
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Francoise A Marvel
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Roger S Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Garima Sharma
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Seth S Martin
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA.
| |
Collapse
|
60
|
Fryklund C, Morén B, Neuhaus M, Periwal V, Stenkula KG. Rosiglitazone treatment enhances intracellular actin dynamics and glucose transport in hypertrophic adipocytes. Life Sci 2022; 299:120537. [PMID: 35398016 DOI: 10.1016/j.lfs.2022.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To accommodate surplus energy, adipose tissue expands by increasing both adipose cell size (hypertrophy) and cell number (hyperplasia). Enlarged, hypertrophic adipocytes are known to have reduced insulin response and impaired glucose transport, which negatively influence whole-body glucose homeostasis. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, known to stimulate hyperplasia and to efficiently improve insulin sensitivity. Still, a limited amount of research has investigated the effects of rosiglitazone in mature, hypertrophic adipocytes. Therefore, the objective of this study was to examine rosiglitazone's effect on insulin-stimulated glucose uptake in hypertrophic adipocytes. MAIN METHODS C57BL/6J male mice were subjected to 2 weeks of high-fat diet (HFD) followed by 1 week of HFD combined with daily administration of rosiglitazone (10 mg/kg). Adipose cell-size distribution and gene expression were analysed in intact adipose tissue, and glucose uptake, insulin response, and protein expression were examined using primary adipocytes isolated from epididymal and inguinal adipose tissue. KEY FINDINGS HFD-feeding induced an accumulation of hypertrophic adipocytes, which was not affected by rosiglitazone-treatment. Still, rosiglitazone efficiently improved insulin-stimulated glucose transport without restoring insulin signaling or GLUT4 expression in similar-sized adipocytes. This improvement occurred concurrently with extracellular matrix remodelling and restored intracellular levels of targets involved in actin turnover. SIGNIFICANCE These results demonstrate that rosiglitazone improves glucose transport in hypertrophic adipocytes, and highlights the importance of the cytoskeleton and extracellular matrix as potential therapeutic targets.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, USA
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
61
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
62
|
Tabaei BS, Mousavi SN, Rahimian A, Rostamkhani H, Mellati AA, Jameshorani M. Co-Administration of Vitamin E and Atorvastatin Improves Insulin Sensitivity and Peroxisome Proliferator-Activated Receptor-γ Expression in Type 2 Diabetic Patients: A Randomized Double-Blind Clinical Trial. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:114-122. [PMID: 35291435 PMCID: PMC8919307 DOI: 10.30476/ijms.2021.89102.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Negative effects of statins on glucose metabolism have been reported. The present study aimed to investigate the effects of co-administration of vitamin E and atorvastatin on glycemic control in hyperlipidemic patients with type 2 diabetes mellitus (T2DM). METHODS A randomized double-blind clinical trial was conducted at Vali-e-Asr Teaching Hospital (Zanjan, Iran) from July 2017 to March 2018. A total of 30 T2DM female patients were allocated to two groups, namely atorvastatin with placebo (n=15) and atorvastatin with vitamin E (n=15). The patients received daily 20 mg atorvastatin and 400 IU vitamin E or placebo for 12 weeks. Anthropometric and biochemical measures were recorded pre- and post-intervention. Peroxisome proliferator-activated receptor-γ (PPAR-γ) expression was measured in peripheral blood mononuclear cells (PBMCs). Independent sample t test and paired t test were used to analyze between- and within-group variables, respectively. The analysis of covariance (ANCOVA) was used to adjust the effect of baseline variables on the outcomes. P<0.05 was considered statistically significant. RESULTS After baseline adjustment, there was a significant improvement in homeostatic model assessment for insulin resistance (HOMA-IR) (P=0.04) and serum insulin (P<0.001) in the atorvastatin with vitamin E group compared to the atorvastatin with the placebo group. In addition, co-administration of vitamin E with atorvastatin significantly upregulated PPAR-γ expression (OR=5.4, P=0.04) in the PBMCs of T2DM patients. CONCLUSION Co-administration of vitamin E and atorvastatin reduced insulin resistance and improved PPAR-γ mRNA expression. Further studies are required to substantiate our findings. TRIAL REGISTRATION NUMBER IRCT 20170918036256N.
Collapse
Affiliation(s)
- Banafsheh Sadat Tabaei
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aliasghar Rahimian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Rostamkhani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Jameshorani
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
63
|
Iqbal A, Ziyi P, Yu H, Jialing L, Haochen W, Jing F, Ping J, Zhihui Z. C4BPA: A Novel Co-Regulator of Immunity and Fat Metabolism in the Bovine Mammary Epithelial Cells. Front Genet 2022; 12:830566. [PMID: 35173767 PMCID: PMC8842232 DOI: 10.3389/fgene.2021.830566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
The C4b binding protein alpha (C4BPA) chain primarily engages in critical inflammatory and coagulation processes. The previous transcriptomic analysis showed that C4BPA is a differentially expressed gene in lower and higher fat content mammary gland cell lines from Chinese Holstein. This study aimed to investigate the effects of C4BPA on the inflammation and milk fat synthesis in bMECs by C4BPA knockdown and overexpression. The results highlighted that knockdown of C4BPA in bMECs could suppress the mRNA and protein expression of IL-6, IL-8, IL-12, and the TLR-4/NF-κB pathway-related genes and promote the expression of complement and coagulation cascade pathways related genes as well as TNF-α. Moreover, knockdown of C4BPA expression in bMECs reduced the content of triglyceride (TG) and cholesterol (CHOL) in bMECs, increased NEFA content, reduced mRNA and protein expression of ACSL1 and PPARA, and increased the mRNA and protein expression of ELOVL6, FADS1, and LPL. The bMECs, with the overexpression of C4BPA, showed the enhanced expression of TLR-4/NF-κB linked genes, IL-6, IL-8, IL-12, and mRNA and protein level while reduced mRNA expression of TNF-α, compliment, and coagulation cascade related genes was observed. In bMECs, overexpression of C4BPA enhanced the content of TG and CHOL while reducing NEFA and stimulated the mRNA and protein expression of ACSL1, PPARA, and PPARG genes while inhibiting the mRNA and protein expression of FADS1 and LPL genes. Our results show that C4BPA not only regulates the lipid metabolism through the PPAR signaling pathway in bMECs but also contributes to the inflammatory response through TLR-4/NF-κB and the complement and coagulation cascade pathways. This study, for the first time, provides the primary basis for understanding the role of C4BPA in immunity and fat metabolism, which enables the researchers for innovative direction to investigate genes associated with fat metabolism and immunity. This study also advocates that the breeders must pay attention to such type of genes with multiple functions during animal breeding.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Sciences, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Pan Ziyi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Haibin Yu
- Department of Animal Sciences, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Li Jialing
- Department of Animal Sciences, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wu Haochen
- Department of Animal Sciences, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Fan Jing
- Department of Animal Sciences, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jiang Ping
- Department of Animal Sciences, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhao Zhihui
- Department of Animal Sciences, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
64
|
Sedghi M, Mohammadi I, Sarrami Z, Ghasemi R, Azarfar A. Effects of a yeast cell wall product on the performance of broiler chickens and PGC-1α, TLR4, IL-10 and PPARγ genes expression. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.2025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Razie Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
65
|
Yarmohammadi F, Hayes AW, Karimi G. Targeting PPARs Signaling Pathways in Cardiotoxicity by Natural Compounds. Cardiovasc Toxicol 2022; 22:281-291. [DOI: 10.1007/s12012-021-09715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
|
66
|
Nag D, Goel A, Padwad Y, Singh D. In Vitro Characterisation Revealed Himalayan Dairy Kluyveromyces marxianus PCH397 as Potential Probiotic with Therapeutic Properties. Probiotics Antimicrob Proteins 2022; 15:761-773. [PMID: 35040023 DOI: 10.1007/s12602-021-09874-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Recently, probiotics have gained much attention for their roles against various clinical conditions. Obesity is a worldwide health problem that triggers various other major complications like type 2 diabetes (T2D) and cancers, including colorectal cancer (CRC). Earlier, Kluyveromyces marxianus PCH397 isolated from yak (Bos grunniens) milk has been characterised by us for its efficient β-galactosidase-producing ability, an important probiotic property. In the present study, yeast PCH397 has been evaluated for various parameters for its probiotic use. PCH397 exhibited tolerance to GI tract conditions (low pH, pancreatin, pepsin, and bile salts) with 78 to 99% survivability, possessed around 81% cell surface hydrophobicity, and 96% autoaggregation ability. The cell-free extract (CFE) and cell-free supernatant (CFS) from PCH397 improved insulin sensitisation by enhancing 2-NBDG (a glucose analogue) uptake in 3T3-L1 adipocytes, an approach useful in T2D treatment. They also exhibited lower intracellular lipid accumulation, triglyceride storage, and reactive oxygen species in differentiated adipocytes, indicating their anti-adipogenic ability. Also, CFE and intact cells (ICs) exhibited 73.33 ± 1.11% and 34.88 ± 2.80% DPPH radical scavenging activity, respectively. Furthermore, CFS showed a cytotoxic effect on SW-480 colorectal cancer (CRC) cells and induced the cell cycle phase arrest after 24 h of treatment. In conclusion, these results demonstrate that K. marxianus PCH397 could be used as a potential probiotic yeast and presents a therapeutic potential against obesity, T2D, and colon cancer.
Collapse
Affiliation(s)
- Deepika Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Goel
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
67
|
Lee D, Trinh TA, Shin MS, Kang KS. Adipose tissue. RECENT ADVANCEMENTS IN MICROBIAL DIVERSITY 2022:209-228. [DOI: 10.1016/b978-0-12-822368-0.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
68
|
Bao T, Liu J, Leng J, Cai L. The cGAS-STING pathway: more than fighting against viruses and cancer. Cell Biosci 2021; 11:209. [PMID: 34906241 PMCID: PMC8670263 DOI: 10.1186/s13578-021-00724-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the classic Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, downstream signals can control the production of type I interferon and nuclear factor kappa-light-chain-enhancer of activated B cells to promote the activation of pro-inflammatory molecules, which are mainly induced during antiviral responses. However, with progress in this area of research, studies focused on autoimmune diseases and chronic inflammatory conditions that may be relevant to cGAS-STING pathways have been conducted. This review mainly highlights the functions of the cGAS-STING pathway in chronic inflammatory diseases. Importantly, the cGAS-STING pathway has a major impact on lipid metabolism. Different research groups have confirmed that the cGAS-STING pathway plays an important role in the chronic inflammatory status in various organs. However, this pathway has not been studied in depth in diabetes and diabetes-related complications. Current research on the cGAS-STING pathway has shown that the targeted therapy of diseases that may be caused by inflammation via the cGAS-STING pathway has promising outcomes.
Collapse
Affiliation(s)
- Terigen Bao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Departments of Pharmacology and Toxicology, The University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
69
|
Yousefzadeh N, Jeddi S, Shokri M, Afzali H, Norouzirad R, Kashfi K, Ghasemi A. Long Term Sodium Nitrate Administration Positively Impacts Metabolic and Obesity Indices in Ovariectomized Rats. Arch Med Res 2021; 53:147-156. [PMID: 34696904 DOI: 10.1016/j.arcmed.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In postmenopausal women, nitric oxide (NO) deficiency is associated with obesity and type 2 diabetes (T2D). This study aims at determining the long-term effects of low-dose nitrate administration on metabolic and obesity indices in ovariectomized (OVX) rats. METHODS OVX rat model was induced using the two dorsolateral skin incision method. Two months after ovariectomy, rats were divided into three groups (n = 10/group): Control, OVX, and OVX+nitrate, and the latter received sodium nitrate at a dose of 100 mg/L in their drinking water for nine months. Fasting serum glucose and lipid profile were measured every month. A glucose tolerance test was performed at months 1, 3, and 9 (the end of the study). Obesity indices were calculated, and histological analyses were performed on the gonadal adipose tissues at month 9. RESULTS OVX rats had impaired fasting glucose, glucose intolerance, and dyslipidemia with higher obesity indices at month 9. Nitrate improved glucose and lipid metabolism in OVX rats and decreased body weight (6.9%), body mass index (12.5%), Lee index (5.4%), adiposity index (23.9%), abdominal circumference (10.5%), and thoracic circumference (17.1%). Also, nitrate decreased adipocyte area by 49% and increased adipocyte density by 193% in gonadal adipose tissue. CONCLUSION Long-term low-dose nitrate administration improves glucose and lipid metabolism in OVX rats in association with decreasing OVX-induced adiposity, increasing adipocyte density, and decreasing adipocyte area. These findings provide support for a potential therapeutic role of nitrate in postmenopausal women with some features of metabolic syndrome.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
70
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
71
|
Xiao B, Li DD, Wang Y, Kim EL, Zhao N, Jin SW, Bai DH, Sun LD, Jung JH. Cyclooxygenase-2 Inhibitor Parecoxib Was Disclosed as a PPAR-γ Agonist by In Silico and In Vitro Assay. Biomol Ther (Seoul) 2021; 29:519-526. [PMID: 33883322 PMCID: PMC8411028 DOI: 10.4062/biomolther.2021.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.
Collapse
Affiliation(s)
- Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos 017000, China
| | - Dan-Dan Li
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ying Wang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Na Zhao
- Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos 017000, China
| | - Shang-Wu Jin
- The Fourth People's Hospital of Ordos, Ordos 017000, China
| | - Dong-Hao Bai
- The Fourth People's Hospital of Ordos, Ordos 017000, China
| | - Li-Dong Sun
- The Fourth People's Hospital of Ordos, Ordos 017000, China
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
72
|
Santos D, Carvalho E. Adipose-related microRNAs as modulators of the cardiovascular system: the role of epicardial adipose tissue. J Physiol 2021; 600:1171-1187. [PMID: 34455587 DOI: 10.1113/jp280917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022] Open
Abstract
Adipose tissue expansion and subsequent metabolic dysfunction has been considered one of the major risk factors for development of cardiometabolic disease. Epicardial adipose tissue (EAT) in particular is a unique subtype of visceral adipose tissue located on the surface of the heart, around the coronary arteries. Due to its proximity, EAT can modulate the local metabolic and immune function of cardiomyocytes and coronary arteries. Several microRNAs have been described as key players in both cardiac and vascular function that when dysregulated will contribute to dysfunction. Here we review the influence of obesity in the crosstalk between specific adipose tissue types, in particular the EAT-secreted microRNAs, as key modulators of cardiac disease progression, not only as early biomarkers but also as therapeutic targets for cardiometabolic disease.
Collapse
Affiliation(s)
- Diana Santos
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,Portuguese Diabetes Association (APDP), Lisbon, Portugal
| |
Collapse
|
73
|
Romero A, Eckel J. Organ Crosstalk and the Modulation of Insulin Signaling. Cells 2021; 10:cells10082082. [PMID: 34440850 PMCID: PMC8394808 DOI: 10.3390/cells10082082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
A highly complex network of organ communication plays a key role in regulating metabolic homeostasis, specifically due to the modulation of the insulin signaling machinery. As a paradigm, the role of adipose tissue in organ crosstalk has been extensively investigated, but tissues such as muscles and the liver are equally important players in this scenario. Perturbation of organ crosstalk is a hallmark of insulin resistance, emphasizing the importance of crosstalk molecules in the modulation of insulin signaling, potentially leading to defects in insulin action. Classically secreted proteins are major crosstalk molecules and are able to affect insulin signaling in both directions. In this review, we aim to focus on some crosstalk mediators with an impact on the early steps of insulin signaling. In addition, we also summarize the current knowledge on the role of extracellular vesicles in relation to insulin signaling, a more recently discovered additional component of organ crosstalk. Finally, an attempt will be made to identify inter-connections between these two pathways of organ crosstalk and the potential impact on the insulin signaling network.
Collapse
|
74
|
Lertpatipanpong P, Lee J, Kim I, Eling T, Oh SY, Seong JK, Baek SJ. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep 2021; 11:15027. [PMID: 34294853 PMCID: PMC8298384 DOI: 10.1038/s41598-021-94581-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) plays a role in various diseases. Here, the anti-diabetic effects of NAG-1 were evaluated using a high-fat diet/streptozotocin-induced diabetic mouse model. NAG-1-overexpressing transgenic (NAG-1 Tg) mice exhibited lower body weight, fasting blood glucose levels, and serum insulin levels than wild-type (WT) mice. The homeostatic model assessment of insulin resistance scores of NAG-1 Tg mice were lower than those of WT mice. Hematoxylin and eosin staining revealed a smaller lipid droplet size in the adipose tissues, lower lipid accumulation in the hepatocytes, and larger beta cell area in the pancreas of NAG-1 Tg mice than in those of WT mice. Immunohistochemical analysis revealed downregulated expression of cleaved caspase-3, an apoptosis marker, in the beta cells of NAG-1 Tg mice. Adiponectin and leptin mRNA levels were upregulated and downregulated in NAG-1 Tg mice, respectively. Additionally, the expression of IRS1/PI3K/AKT signaling pathway components, especially Foxo1, which regulates gluconeogenesis in the muscle and white adipose tissue, was downregulated in NAG-1 Tg mice. Furthermore, NAG-1 overexpression promoted the expression of As160 in both muscles and adipocytes, and the mRNA levels of the NLRP3 pathway members were downregulated in NAG-1 Tg mice. Our findings suggest that NAG-1 expression alleviates diabetes in mice.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jaehak Lee
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ilju Kim
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Thomas Eling
- National Institute of Environmental Health Science, 111 TW Alexander Dr. Research Triangle Park, NC, 27709, USA
| | - Seung Yeon Oh
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, 08826, South Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
75
|
Świderska E, Strycharz J, Wróblewski A, Czarny P, Szemraj J, Drzewoski J, Śliwińska A. Chronic and Intermittent Hyperglycemia Modulates Expression of Key Molecules of PI3K/AKT Pathway in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021; 22:ijms22147712. [PMID: 34299331 PMCID: PMC8304829 DOI: 10.3390/ijms22147712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Due to its prominence in the regulation of metabolism and inflammation, adipose tissue is a major target to investigate alterations in insulin action. This hormone activates PI3K/AKT pathway which is essential for glucose homeostasis, cell differentiation, and proliferation in insulin-sensitive tissues, like adipose tissue. The aim of this work was to evaluate the impact of chronic and intermittent high glucose on the expression of biomolecules of insulin signaling pathway during the differentiation and maturation of human visceral preadipocytes. Methods: Human visceral preadipocytes (HPA-V) cells were treated with high glucose (30 mM)during the proliferation and/or differentiation and/or maturation stage. The level of mRNA (by Real-Time PCR) and protein (by Elisa tests) expression of IRS1, PI3K, PTEN, AKT2, and GLUT4 was examined after each culture stage. Furthermore, we investigated whether miR-29a-3p, miR-143-3p, miR-152-3p, miR-186-5p, miR-370-3p, and miR-374b-5p may affect the expression of biomolecules of the insulin signaling pathway. Results: Both chronic and intermittent hyperglycemia affects insulin signaling in visceral pre/adipocytes by upregulation of analyzed PI3K/AKT pathway molecules. Both mRNA and protein expression level is more dependent on stage-specific events than the length of the period of high glucose exposure. What is more, miRs expression changes seem to be involved in PI3K/AKT expression regulation in response to hyperglycemic stimulation.
Collapse
Affiliation(s)
- Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
- Correspondence: ; Tel.: +48-693-843-960
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Józef Drzewoski
- Central Hospital of Medical University, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland;
| |
Collapse
|
76
|
Liu QK. Triglyceride-lowering and anti-inflammatory mechanisms of omega-3 polyunsaturated fatty acids for atherosclerotic cardiovascular risk reduction. J Clin Lipidol 2021; 15:556-568. [PMID: 34172393 DOI: 10.1016/j.jacl.2021.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/08/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death globally. Omega-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid and docosahexaenoic acid have been extensively studied as both dietary supplement and pharmaceutical agent for the prevention of ASCVD. Epidemiological and retrospective studies have long shown the inverse relationship of omega-3 PUFA consumption and ASCVD event but results of previous large randomized controlled trials have not consistently shown the same effect. Meta-analysis and a recent clinical trial using a high dose of eicosapentaenoic acid showed convincing protective effects of omega-3 PUFAs on ASCVD. Emerging evidence shows that both chronic inflammation and hypertriglyceridemia increase the risk of atherosclerosis. Amelioration of the inflammatory process and reduction of hypertriglyceridemia provide two mechanisms on the prevention and management of ASCVD, and agents with both of these effects are more potent and desirable. Omega-3 PUFAs exert anti-hypertriglyceridemia effect, ameliorate inflammation, and maintain the resolution of inflammation homeostasis pleiotropically through multiple molecular and cellular mechanisms. This review presents the pathophysiology of atherosclerosis, the mechanisms of omega-3 PUFAs on the reduction of the atherosclerotic risk, and the current clinical utilities of omega-3 PUFAs on the prevention of ASCVD.
Collapse
Affiliation(s)
- Qiyuan Keith Liu
- MedStar Medical Group, MedStar Montgomery Medical Center, Olney, MD 20832, USA.
| |
Collapse
|
77
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
78
|
Szychowski KA, Skóra B, Kryshchyshyn-Dylevych A, Kaminskyy D, Khyluk D, Lesyk R. 4-thiazolidinone-based derivatives rosiglitazone and pioglitazone affect the expression of antioxidant enzymes in different human cell lines. Biomed Pharmacother 2021; 139:111684. [PMID: 34243632 DOI: 10.1016/j.biopha.2021.111684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
PPARγ regulate the expression of genes involved in peripheral insulin sensitivity, adipogenesis, and glucose homeostasis. Moreover, PPARγ agonists, such as pioglitazone and rosiglitazone, are used in the treatment of various diseases, e.g. diabetes (type II), atherosclerosis, inflammatory skin disease, and some types of cancers. PPARγ agonists have also been found to reduce oxidative-stress (OS) and OS-induced apoptosis. Therefore, the aim of the present study was to evaluate the impact of 4-thiazolidinone-based derivatives Les-2194, Les-3377, and Les-3640 on the expression of antioxidant enzymes in human squamous cell carcinoma (SCC-15), lung carcinoma (A549), colon adenocarcinoma (CACO-2), and skin fibroblast (BJ) cell lines. After 24 h of exposure, Les-2194 caused an increase in ROS production in the SCC-15 and CACO-2 cell lines; however, no changes in caspase-3 activity and metabolic activity were observed. Nevertheless, the Ki67 level was significantly decreased. Les-3377 was able to increase ROS production in all tested cell lines, but no impact on metabolic activity and caspase-3 activity were noticed. In turn, Les-3640 was able to induce ROS overproduction in BJ, SCC-15, and CACO-2 and did not affect metabolic activity. However, an increase in caspase-3 activity was observed at the 10 µM concentration in all tested cell lines. All tested compounds were able to influence CAT and SOD1 expression and decreased (Les-2194 in the BJ cells) or increased (Les-3640 in the SCC-15 and CACO-2 cells) PPARγ expression.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Dmytro Khyluk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Roman Lesyk
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| |
Collapse
|
79
|
Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, Saravia F, Beauquis J. Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Front Neurosci 2021; 15:653651. [PMID: 33967682 PMCID: PMC8102834 DOI: 10.3389/fnins.2021.653651] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Overnutrition and modern diets containing high proportions of saturated fat are among the major factors contributing to a low-grade state of inflammation, hyperglycemia and dyslipidemia. In the last decades, the global rise of type 2 diabetes and obesity prevalence has elicited a great interest in understanding how changes in metabolic function lead to an increased risk for premature brain aging and the development of neurodegenerative disorders such as Alzheimer's disease (AD). Cognitive impairment and decreased neurogenic capacity could be a consequence of metabolic disturbances. In these scenarios, the interplay between inflammation and insulin resistance could represent a potential therapeutic target to prevent or ameliorate neurodegeneration and cognitive impairment. The present review aims to provide an update on the impact of metabolic stress pathways on AD with a focus on inflammation and insulin resistance as risk factors and therapeutic targets.
Collapse
Affiliation(s)
- Angeles Vinuesa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Pomilio
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amal Gregosa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Bentivegna
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jessica Presa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina Bellotto
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
80
|
Ibrahim D, Moustafa A, Metwally AS, Nassan MA, Abdallah K, Eldemery F, Tufarelli V, Laudadio V, Kishawy ATY. Potential Application of Cornelian Cherry Extract on Broiler Chickens: Growth, Expression of Antioxidant Biomarker and Glucose Transport Genes, and Oxidative Stability of Frozen Meat. Animals (Basel) 2021; 11:ani11041038. [PMID: 33917066 PMCID: PMC8067757 DOI: 10.3390/ani11041038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Supplementation of the poultry diet with plant extracts rich in polyphenolic compounds could improve the performance of animals as well as the oxidative stability of their derived meat. The present study evaluated the efficacy of cornelian cherry extract (CCE) on the expression of genes controlling glucose transporters and different assays regulating the oxidative stability of frozen, stored meat over a long period of time (90 days of storage). The results indicated that the addition of 200 mg/kg of CCE to the diet could improve the growth rate and antioxidant status of broiler chickens and thus increase their productivity. Moreover, polyphenolic compounds rich in CCE can act as antioxidant agents to increase the shelf-life extension of frozen, stored poultry meat. Finally, supplementation with CCE could increase the total concentration of phenolic compounds in poultry meat offered to human consumers. Abstract The use of natural plant extracts in poultry feed could improve their productivity as well as the oxidative stability of stored derived meat. The roles of cornelian cherry extract (CCE) in growth, cecal microbes, and meat antioxidative markers of broiler chickens were evaluated. A total of 500 Ross 308 broiler chicks were fed diets supplemented with CCE (0, 50, 100, 200, 400 mg/kg of diet) for 38 days. The highest levels of weight gain and feed utilization were observed in a group fed 200 mg/kg of CCE. Maximum upregulation of glucose transporters—1 and 2 and sodium-dependent glucose transporter genes—were found in the group fed 200 mg/kg of CCE. Lactobacilli and Bifidobacterium colonization increased as the CCE levels increased. The greatest upregulation of antioxidant genes (glutathione peroxidase, catalase, and superoxide dismutase) in breast meat was observed in groups fed CCE (200 and 400 mg/kg). Dietary CCE significantly delayed the lipid oxidation of breast meat compared with that of the control group. The total phenolic content, 2,2-Diphenyl-1-Picrihydrzyl (DPPH) radical scavenging activity and reducing power in meat improved with higher levels of CCE. Dietary CCE improved the growth, performance of broilers, and meat antioxidant stability after 90 days of storage.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (D.I.); (A.T.Y.K.)
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Aya Sh. Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan 81511, Egypt;
| | - Mohamed A. Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Karima Abdallah
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari, Strada Provinciale per Casamassima km 3, 70010 Valenzano, Italy; (V.T.); (V.L.)
| | - Vito Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari, Strada Provinciale per Casamassima km 3, 70010 Valenzano, Italy; (V.T.); (V.L.)
| | - Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (D.I.); (A.T.Y.K.)
| |
Collapse
|
81
|
Yan J, Qiu Y, Ribeiro Dos Santos AM, Yin Y, Li YE, Vinckier N, Nariai N, Benaglio P, Raman A, Li X, Fan S, Chiou J, Chen F, Frazer KA, Gaulton KJ, Sander M, Taipale J, Ren B. Systematic analysis of binding of transcription factors to noncoding variants. Nature 2021; 591:147-151. [PMID: 33505025 PMCID: PMC9367673 DOI: 10.1038/s41586-021-03211-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/11/2020] [Indexed: 12/30/2022]
Abstract
Many sequence variants have been linked to complex human traits and diseases1, but deciphering their biological functions remains challenging, as most of them reside in noncoding DNA. Here we have systematically assessed the binding of 270 human transcription factors to 95,886 noncoding variants in the human genome using an ultra-high-throughput multiplex protein-DNA binding assay, termed single-nucleotide polymorphism evaluation by systematic evolution of ligands by exponential enrichment (SNP-SELEX). The resulting 828 million measurements of transcription factor-DNA interactions enable estimation of the relative affinity of these transcription factors to each variant in vitro and evaluation of the current methods to predict the effects of noncoding variants on transcription factor binding. We show that the position weight matrices of most transcription factors lack sufficient predictive power, whereas the support vector machine combined with the gapped k-mer representation show much improved performance, when assessed on results from independent SNP-SELEX experiments involving a new set of 61,020 sequence variants. We report highly predictive models for 94 human transcription factors and demonstrate their utility in genome-wide association studies and understanding of the molecular pathways involved in diverse human traits and diseases.
Collapse
Affiliation(s)
- Jian Yan
- School of Medicine, Northwest University, Xi'an, China.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - André M Ribeiro Dos Santos
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Universidade Federal do Pará, Institute of Biological Sciences, Belém, Brazil
| | - Yimeng Yin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Yang E Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nick Vinckier
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Naoki Nariai
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Anugraha Raman
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Xiaoyu Li
- School of Medicine, Northwest University, Xi'an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Shicai Fan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Fulin Chen
- School of Medicine, Northwest University, Xi'an, China
| | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland.
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
82
|
Montes-Grajales D, Morelos-Cortes X, Olivero-Verbel J. Discovery of New Protein Targets of BPA Analogs and Derivatives Associated with Noncommunicable Diseases: A Virtual High-Throughput Screening. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37009. [PMID: 33769846 PMCID: PMC7997610 DOI: 10.1289/ehp7466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bisphenol A analogs and derivatives (BPs) have emerged as new contaminants with little or no information about their toxicity. These have been found in numerous everyday products, from thermal paper receipts to plastic containers, and measured in human samples. OBJECTIVES The objectives of this research were to identify in silico new protein targets of BPs associated with seven noncommunicable diseases (NCDs), and to study their protein-ligand interactions using computer-aided tools. METHODS Fifty BPs were identified by a literature search and submitted to a virtual high-throughput screening (vHTS) with 328 proteins associated with NCDs. Protein-protein interactions between predicted targets were examined using STRING, and the protocol was validated in terms of binding site recognition and correlation between in silico affinities and in vitro data. RESULTS According to the vHTS, several BPs may target proteins associated with NCDs, some of them with stronger affinities than bisphenol A (BPA). The best affinity score (the highest in silico affinity absolute value) was obtained after docking 4,4'-bis(N-carbamoyl-4-methylbenzensulfonamide)diphenylmethane (BTUM) on estradiol 17-beta-dehydrogenase 1 (-13.7 kcal/mol). However, other molecules, such as bisphenol A bis(diphenyl phosphate) (BDP), bisphenol PH (BPPH), and Pergafast 201 also exhibited great affinities (top 10 affinity scores for each disease) with proteins related to NCDs. DISCUSSION Molecules such as BTUM, BDP, BPPH, and Pergafast 201 could be targeting key signaling pathways related to NCDs. These BPs should be prioritized for in vitro and in vivo toxicity testing and to further assess their possible role in the development of these diseases. https://doi.org/10.1289/EHP7466.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Xiomara Morelos-Cortes
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
83
|
Kumar A, Sundaram K, Mu J, Dryden GW, Sriwastva MK, Lei C, Zhang L, Qiu X, Xu F, Yan J, Zhang X, Park JW, Merchant ML, Bohler HCL, Wang B, Zhang S, Qin C, Xu Z, Han X, McClain CJ, Teng Y, Zhang HG. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun 2021; 12:213. [PMID: 33431899 PMCID: PMC7801461 DOI: 10.1038/s41467-020-20500-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) decreases insulin sensitivity. How high-fat diet causes insulin resistance is largely unknown. Here, we show that lean mice become insulin resistant after being administered exosomes isolated from the feces of obese mice fed a HFD or from patients with type II diabetes. HFD altered the lipid composition of exosomes from predominantly phosphatidylethanolamine (PE) in exosomes from lean animals (L-Exo) to phosphatidylcholine (PC) in exosomes from obese animals (H-Exo). Mechanistically, we show that intestinal H-Exo is taken up by macrophages and hepatocytes, leading to inhibition of the insulin signaling pathway. Moreover, exosome-derived PC binds to and activates AhR, leading to inhibition of the expression of genes essential for activation of the insulin signaling pathway, including IRS-2, and its downstream genes PI3K and Akt. Together, our results reveal HFD-induced exosomes as potential contributors to the development of insulin resistance. Intestinal exosomes thus have potential as broad therapeutic targets.
Collapse
Affiliation(s)
- Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Gerald W Dryden
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiaolan Qiu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Henry C L Bohler
- Department of Reproductive Endocrinology and Infertility, University of Louisville, Louisville, KY40202, USA
| | - Baomei Wang
- Department of Dermatology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute, 215 Memorial Drive, Dalton, GA, 30720, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ziying Xu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA.
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA.
| |
Collapse
|
84
|
Dumesic DA, Tulberg A, Leung KL, Fisch SC, Grogan TR, Abbott DH, Naik R, Chazenbalk GD. Accelerated subcutaneous abdominal stem cell adipogenesis predicts insulin sensitivity in normal-weight women with polycystic ovary syndrome. Fertil Steril 2020; 116:232-242. [PMID: 33341231 DOI: 10.1016/j.fertnstert.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine whether subcutaneous (SC) abdominal adipose stem cell differentiation into adipocytes in vitro predicts insulin sensitivity (Si) in vivo in normal-weight women with polycystic ovary syndrome (PCOS) and controls. DESIGN Prospective cohort study. SETTING Academic medical center. PATIENT(S) Eight normal-weight women with PCOS and 8 age- and body mass index-matched controls. INTERVENTION(S) Women underwent circulating hormone/metabolic determinations, intravenous glucose tolerance testing, total-body dual-energy x-ray absorptiometry, and SC abdominal fat biopsy. MAIN OUTCOME MEASURE(S) PPARγ and CEBPa gene expression and lipid content of adipocytes matured in vitro were compared between women with PCOS and control women, and correlated with patient characteristics, systemic Si, and adipose insulin resistance (adipose-IR). RESULT(S) Serum androgen levels, adipose-IR, and percentage of android fat were greater in women with PCOS than control women. Stem cell PPARγ and CEBPa gene expression increased maximally by day 12 without a female-type effect. In control cells, gene expression positively correlated with fasting serum insulin levels (both genes) and adipose-IR (CEBPa) and negatively correlated with Si (CEBPa). Conversely, CEBPa gene expression in PCOS cells negatively correlated with adipose-IR and serum free testosterone, whereas total lipid accumulation in these cells positively corelated with Si. CONCLUSION In normal-weight women with PCOS, accelerated SC abdominal adipose stem cell differentiation into adipocytes in vitro favors Si in vivo, suggesting a role for hyperandrogenism in the evolution of metabolic thrift to enhance fat storage through increased cellular glucose uptake.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California.
| | - Ayli Tulberg
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Karen L Leung
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Samantha C Fisch
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California
| | - David H Abbott
- OB/GYN, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, Wisconsin
| | - Rajanigandha Naik
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
85
|
Naghiaee Y, Didehdar R, Pourrajab F, Rahmanian M, Heiranizadeh N, Mohiti A, Mohiti-Ardakani J. Metformin downregulates miR223 expression in insulin-resistant 3T3L1 cells and human diabetic adipose tissue. Endocrine 2020; 70:498-508. [PMID: 32970287 DOI: 10.1007/s12020-020-02459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
AIMS AND DESIGNS Metformin, an anti-diabetic drug, is the first line medication for the treatment of type 2 diabetes mellitus and some studies show its relationship with micro-RNAs. This study set up to determine the effect of metformin on miR223 expression and content of AKT/GLUT4 proteins in insulin resistant signaling in 3T3L1 cells and adipocyte of human diabetic patients. MATERIALS AND METHODS Subcutaneous adipose tissues were taken from newly diagnosed diabetic patients (HOMA-IR > 1.8), before and after three months treatment with 500 mg of metformin twice a day. Cellular homogenate was prepared and miR223 expression and AKT/GLUT4 protein expression were determined by quantitative real-time PCR and western blotting. The results were compared to insulin resistant 3T3L1 adipocytes that were treated with 10 mM Metformin. RESULTS MiR223 expression was significantly overexpressed both in insulin-resistant 3T3L1 adipocytes compared to non-insulin resistant adipocytes and in human diabetic adipose tissue, compared to non-diabetics (P value < 0.01). Metformin treatment downregulated miR223 expression in both adipocytes and human diabetic adipose tissue. In contrast the IRS/PI3-K/AKT pathway signaling components, Akt and GLUT4 increased in insulin-resistant 3T3L1 adipocytes and human diabetic adipose tissue after three months of metformin treatment. CONCLUSIONS Metformin reduced insulin resistance in adipocytes by reduction of miR223 expression and improving of IRS/Akt/GLUT4 signaling pathways. Plasma miR223 expression of human diabetic patients was reduced by metformin treatment. These results point to a novel mechanism of miR223 in insulin resistance.
Collapse
Affiliation(s)
- Yousof Naghiaee
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Didehdar
- Department of Biochemistry, Faculty of Medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Pourrajab
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Department of Endocrinology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Naeime Heiranizadeh
- Department of General Surgery, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azra Mohiti
- Department of Oral Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Mohiti-Ardakani
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
86
|
A hypothesis for insulin resistance in primary human adipocytes involving MRTF-A and suppression of PPARγ. Biochem Biophys Res Commun 2020; 533:64-69. [PMID: 32921413 DOI: 10.1016/j.bbrc.2020.08.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Obesity is the main risk factor behind insulin resistance and type 2 diabetes. Still, the mechanism behind adipocyte dysfunction is not yet resolved. Recently, we reported that rapid actin remodeling correlates with adipose cell size changes after short-term overfeeding. Therefore, we hypothesized that the actin-driven myocardin-related transcription factor (MRTF-A) contributes to impaired mature adipocyte function. Primary human adipocytes were subjected to adenoviral overexpression of MRTF-A or MRTF-B, followed by Western blot analysis and tracer glucose uptake assay. Further, we assessed cell size distribution, insulin response, MRTF-A localization, actin organization and degree of polymerization in adipocytes isolated from Ob/Ob mice. Overexpression of MRTF-A, but not MRTF-B, markedly suppressed PPARγ expression. Further, MRTF-A expression resulted in decreased IRS-1 level, shifted phosphorylation of Akt (pS473/pT308), IRS-1 (pS302) and AS160 (pT642), and lowered insulin-stimulated glucose uptake. Hypertrophic adipocytes from Ob/Ob mice displayed an increased proportion of polymerized actin, and increased nuclear translocation of MRTF-A compared with control (Ob/+). Similar with human adipocytes overexpressing MRTF-A, adipocytes isolated from Ob/Ob mice had reduced expression of IRS-1 and PPARγ, as well as impaired insulin response. Together, these data demonstrate that MRTF-A negatively influences insulin sensitivity and the expression of key targets in fully mature human adipocytes. This suggests that MRTF-A is poised to exert a transcriptional response in hypertrophic adipocytes, contributing to adipocyte dysfunction and insulin resistance.
Collapse
|
87
|
Conart JB, Blot G, Augustin S, Millet-Puel G, Roubeix C, Beguier F, Charles-Messance H, Touhami S, Sahel JA, Berrod JP, Léveillard T, Guillonneau X, Delarasse C, Sennlaub F. Insulin inhibits inflammation-induced cone death in retinal detachment. J Neuroinflammation 2020; 17:358. [PMID: 33243251 PMCID: PMC7694924 DOI: 10.1186/s12974-020-02039-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rhegmatogenous retinal detachment (RD) involving the macula is a major cause of visual impairment despite high surgical success rate, mainly because of cone death. RD causes the infiltration of activated immune cells, but it is not clear whether and how infiltrating inflammatory cells contribute to cone cell loss. METHODS Vitreous samples from patients with RD and from control patients with macular hole were analyzed to characterize the inflammatory response to RD. A mouse model of RD and retinal explants culture were then used to explore the mechanisms leading to cone death. RESULTS Analysis of vitreous samples confirms that RD induces a marked inflammatory response with increased cytokine and chemokine expression in humans, which is closely mimicked by experimental murine RD. In this model, we corroborate that myeloid cells and T-lymphocytes contribute to cone loss, as the inhibition of their accumulation by Thrombospondin 1 (TSP1) increased cone survival. Using monocyte/retinal co-cultures and TSP1 treatment in RD, we demonstrate that immune cell infiltration downregulates rod-derived cone viability factor (RdCVF), which physiologically regulates glucose uptake in cones. Insulin and the insulin sensitizers rosiglitazone and metformin prevent in part the RD-induced cone loss in vivo, despite the persistence of inflammation CONCLUSION: Our results describe a new mechanism by which inflammation induces cone death in RD, likely through cone starvation due to the downregulation of RdCVF that could be reversed by insulin. Therapeutic inhibition of inflammation and stimulation of glucose availability in cones by insulin signaling might prevent RD-associated cone death until the RD can be surgically repaired and improve visual outcome after RD. TRIAL REGISTRATION ClinicalTrials.gov NCT03318588.
Collapse
Affiliation(s)
- Jean-Baptiste Conart
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.,Département d'Ophtalmologie, CHRU Nancy, Allée du Morvan, Vandoeuvre-lès-Nancy, France
| | - Guillaume Blot
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Sébastien Augustin
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Géraldine Millet-Puel
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Christophe Roubeix
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Fanny Beguier
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Hugo Charles-Messance
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Sara Touhami
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - José-Alain Sahel
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Jean-Paul Berrod
- Département d'Ophtalmologie, CHRU Nancy, Allée du Morvan, Vandoeuvre-lès-Nancy, France
| | - Thierry Léveillard
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Xavier Guillonneau
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| | - Cécile Delarasse
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| | - Florian Sennlaub
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
88
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
89
|
Chen S, Sbuh N, Veedu RN. Antisense Oligonucleotides as Potential Therapeutics for Type 2 Diabetes. Nucleic Acid Ther 2020; 31:39-57. [PMID: 33026966 DOI: 10.1089/nat.2020.0891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from inefficient signaling and insufficient production of insulin. Conventional management of T2D has largely relied on small molecule-based oral hypoglycemic medicines, which do not halt the progression of the disease due to limited efficacy and induce adverse effects as well. To this end, antisense oligonucleotide has attracted immense attention in developing antidiabetic agents because of their ability to downregulate the expression of disease-causing genes at the RNA and protein level. To date, seven antisense agents have been approved by the United States Food and Drug Administration for therapies of a variety of human maladies, including genetic disorders. Herein, we provide a comprehensive review of antisense molecules developed for suppressing the causative genes believed to be responsible for insulin resistance and hyperglycemia toward preventing and treating T2D.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
90
|
Ge G, Long Y, Shi L, Ren J, Yan J, Li C, Li Q, Cui Z. Transcriptomic profiling revealed key signaling pathways for cold tolerance and acclimation of two carp species. BMC Genomics 2020; 21:539. [PMID: 32758130 PMCID: PMC7430846 DOI: 10.1186/s12864-020-06946-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background Closely related species of the carp family (Cyprinidae) have evolved distinctive abilities to survive under cold stress, but molecular mechanisms underlying the generation of cold resistance remain largely unknown. In this study, we compared transcriptomic profiles of two carp species to identify key factors and pathways for cold tolerance and acclimation. Results Larvae of Songpu mirror carp and Barbless carp that were pretreated at 18 °C for 24 h significantly improved their survival rates under lethal cold temperature at 8 °C or 10 °C, indicating that two carp species possess the ability of cold acclimation. However, Songpu mirror carp exhibited stronger abilities of cold tolerance and acclimation than Barbless carp. Transcriptomic profiles of Songpu mirror carp and Barbless carp larvae at 28 °C and 18 °C were compared during cold acclimation through RNA-seq. Differentially expressed genes that are closely associated with the differences in cold acclimation between two carp species were identified through bioinformatics and Venn’s diagram analysis. GO enrichment analysis of these genes indicated that cellular component assembly involved in morphogenesis, secondary alcohol metabolism and drug transport were the most up-regulated biological processes during cold acclimation of Songpu mirror carp. Conversely, positive regulation of macroautophagy, intracellular protein transport, and organonitrogen compound catabolism were the most down-regulated biological processes during cold acclimation of Barbless carp. KEGG enrichment analysis revealed that factors in the FoxO-related signaling pathways are mainly responsible for the development of differences in cold tolerance and acclimation between two carp species since altering the phosphorylation of key proteins in the FoxO-related signaling pathways with inhibitors or an activator significantly decreased the cold tolerance and acclimation of Songpu mirror carp. These data provided key clues for dissection of molecular mechanisms underlying the development of cold tolerance and acclimation in carps. Conclusions These findings indicate that larvae of two carp species possess different abilities of cold tolerance and can build cold acclimation under mild low temperature. Multiple biological processes and FoxO-related signaling pathways are closely associated with the development of differences in cold tolerance and acclimation between two carp species.
Collapse
Affiliation(s)
- Guodong Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lianyu Shi
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Ha'erbin, 150070, China
| | - Jing Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chitao Li
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Ha'erbin, 150070, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
91
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
92
|
Behrouz V, Dastkhosh A, Sohrab G. Overview of dietary supplements on patients with type 2 diabetes. Diabetes Metab Syndr 2020; 14:325-334. [PMID: 32298985 DOI: 10.1016/j.dsx.2020.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The primary approach for managing type 2 diabetes mellitus (T2DM) involves lifestyle modification and diet therapy along with pharmacologic interventions. Many patients are interested to identify nutritional supplements that may provide benefit in prevention and management of diabetes. However, the efficacy and safety of nutritional supplements such as chromium, n-3 polyunsaturated fatty acids (PUFAs), vitamin D, zinc and magnesium in disease treatment is a worrying and controversial matter. In this narrative review, patients and health care providers are introduced to the effects of mentioned dietary supplements that may help in choosing or not choosing these supplements in treatment of diabetes. METHODS This review was carried out using comprehensive and systematic literature reports on the dietary supplements in the management of diabetes. Empirical searches were conducted using Google Scholar, Science Direct and PubMed databases. Searches were also undertaken using keywords, in English, such as "chromium" OR "vitamin D" OR "omega-3 fatty acids" OR "zinc" OR "magnesium" in combination with "type 2 diabetes". RESULTS The available evidence is insufficient to create a definite conclusion that nutritional supplements including chromium, n-3 PUFAs, vitamin D, zinc and magnesium might be beneficial for the prevention and treatment of T2DM and therefore, the general recommendation to use these supplements in the management of diabetes cannot be justified. The results of most studies lack uniformity across multiple aspects, including different dose and formation of supplements, duration, and subjects under intervention. CONCLUSIONS There is a need for well-designed, high quality, large and long-term studies to strengthen the available evidence and ensure the safety and efficacy of products.
Collapse
Affiliation(s)
- Vahideh Behrouz
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Dastkhosh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
93
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
94
|
Yan K, Wang X, Zhu H, Pan H, Wang L, Yang H, Liu M, Jin M, Zang B, Gong F. Safflower yellow improves insulin sensitivity in high-fat diet-induced obese mice by promoting peroxisome proliferator-activated receptor-γ2 expression in subcutaneous adipose tissue. J Diabetes Investig 2020; 11:1457-1469. [PMID: 32356607 PMCID: PMC7610129 DOI: 10.1111/jdi.13285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aims/Introduction Safflower yellow (SY) and its main component, hydroxysafflor yellow A, have been demonstrated to show anti‐obesity effects. Peroxisome proliferator‐activated receptor‐γ2 (PPARγ2) is a critical transcription factor in adipose tissue metabolism. The aim of the present study was to explore the effects of SY in high‐fat diet‐induced obese mice, and further investigate the mechanism involving PPARγ2. Methods High‐fat diet‐induced obese mice were given 120 mg/kg/day SY for 8 weeks. Glucose and insulin tolerance tests were carried out. Fat mass and serum levels of glucose and insulin were measured. The expression of insulin signaling pathway‐related genes and PPARγ2 in the adipose tissue was measured. In vitro, the effects of SY (0–500 mg/L) and hydroxysafflor yellow A (0–100 mg/L) on PPARγ2 promoter activities and PPARγ2 messenger ribonucleic acid (mRNA) levels in 3T3‐L1 preadipocytes or adipocytes were also detected. Results Safflower yellow reduced fat mass, decreased glucose levels and improved insulin sensitivity in obese mice. SY also increased the mRNA levels of insulin signaling pathway‐related genes, and increased PPARγ2 mRNA levels by 39.1% in subcutaneous adipose tissue (P < 0.05). In vitro, SY and hydroxysafflor yellow A significantly enhanced PPARγ2 promoter activities by 1.3–2.1‐fold, and increased PPARγ2 mRNA levels by 1.2–1.6‐fold in 3T3‐L1 preadipocytes or adipocytes (P < 0.05). Conclusions SY could reduce fat mass, decrease glucose levels and improve insulin sensitivity in high‐fat diet‐induced obese mice. The probable mechanism is to increase PPARγ2 expression by stimulating PPARγ2 promoter activities, further increasing the expression of insulin signaling pathway‐related genes in subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Jin
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Baoxia Zang
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
95
|
Descending Expression of miR320 in Insulin-Resistant Adipocytes Treated with Ascending Concentrations of Metformin. Biochem Genet 2020; 58:661-676. [PMID: 32367399 DOI: 10.1007/s10528-020-09964-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
Some miRNAs are supposed to play a role in insulin resistance and metabolic disorders. Such miRNAs can be differentially expressed in response to a pharmacologic intervention for insulin resistance as a biomarker/risk factor for insulin resistance. This study aimed at determining the effect of Metformin on miR320 expression in insulin-resistant (IR) adipocytes. The 3T3L1 cells were expanded in DMEM, differentiated into adipocytes by differentiating medium, became resistant to insulin, and then were treated with ascending concentrations of Metformin. Quantitative real-time PCR was performed to profile the miR320 expression in 3T3L1 adipocytes, IR adipocytes, and Metformin-treated IR adipocytes. Compared to the normal adipocytes, IR adipocytes exhibited a significantly higher level of miR320 expression, however, in response to Metformin graded concentrations, IR adipocytes down-regulated miR320 and were almost at normal level. The maximum effect of Metformin was at 10 mM. In IR adipocytes, miR320 expression is over-expressed which can be down-regulated by Metformin treatment. The findings provide some information on a potentially new marker to determine insulin resistance and to predict response to insulin resistance therapy.
Collapse
|
96
|
Poklukar K, Čandek-Potokar M, Batorek Lukač N, Tomažin U, Škrlep M. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals (Basel) 2020; 10:E424. [PMID: 32138208 PMCID: PMC7142902 DOI: 10.3390/ani10030424] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/25/2022] Open
Abstract
Modern pig breeds, which have been genetically improved to achieve fast growth and a lean meat deposition, differ from local pig breeds with respect to fat deposition, fat specific metabolic characteristics and various other properties. The present review aimed to elucidate the mechanisms underlying the differences between fatty local and modern lean pig breeds in adipose tissue deposition and lipid metabolism, taking into consideration morphological, cellular, biochemical, transcriptomic and proteomic perspectives. Compared to modern breeds, local pig breeds accumulate larger amounts of fat, which generally contains more monounsaturated and saturated fatty acids; they exhibit a higher adipocyte size and higher activity of lipogenic enzymes. Studies using transcriptomic and proteomic approaches highlighted several processes like immune response, fatty-acid turn-over, oxidoreductase activity, mitochondrial function, etc. which differ between local and modern pig breeds.
Collapse
Affiliation(s)
- Klavdija Poklukar
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| | - Marjeta Čandek-Potokar
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
- University of Maribor, Faculty of Agriculture and Life Sciences, Hoče SI-2311, Slovenia
| | - Nina Batorek Lukač
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| | - Urška Tomažin
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| | - Martin Škrlep
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| |
Collapse
|
97
|
Mosana M, Ayeleso A, Nyakudya T, Erlwanger K, Mukwevho E. Potential Protective Effects of Neonatal Supplementation with Oleanolic Acid on Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)-Ligand Dependent Regulation of Glucose Homeostasis in High Fructose-Fed Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20913747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of neonatal oral supplementation of oleanolic acid (OA) on peroxisome proliferator-activated receptor gamma (PPARγ)-1 on glucose homeostasis in high fructose-fed rats was investigated. Rat pups (7 days old) were randomly assigned to and randomly administered with control (Distilled water, DW), OA (60 mg/kg), metformin (MET, 500 mg/kg), high fructose solution (HFS, 20% w/v), OA + HFS, MET + HFS, and treated till postnatal day (PND) 14. The pups were weaned onto a standard diet on PND 21 up to PND 111 and terminated on PND 112. Glucose derivatives and gene expressions of PPARγ-1 and glucose transporter type 4 (Glut-4) in the skeletal muscles were determined by using reverse transcription-quantitative polymerase chain reaction and gas chromatography-mass spectrometry, respectively. HFS significantly lowered glucose concentration and showed the propensity to suppress the expression of PPARγ-1, but not significantly. OA and MET alone significantly increased PPARγ-1 and Glut-4 expressions. There was no significant difference between the OA and OA + HFS for PPARγ-1 and Glut-4 expressions, although OA expressions were always higher than that of the OA + HFS group. An elevated level of glucose-6-phosphate was observed in OA, MET, and OA + HFS groups. Ribose-5-phosphate was significantly higher in OA and MET groups than the control. Ribose-5-phosphate was also significantly high in OA-treated group compared with OA + HFS. It is concluded that the neonatal supplementation with OA could help to improve the activity of PPARγ in reducing the burden of metabolic diseases.
Collapse
Affiliation(s)
- Mmahiine Mosana
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Ademola Ayeleso
- Department of Biochemistry, Faculty of Science, Adeleke University, Ede 250, Osun State, Nigeria
| | - Trevor Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Kennedy Erlwanger
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Emmanuel Mukwevho
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
98
|
Li T, Li X, Meng H, Chen L, Meng F. ACSL1 affects Triglyceride Levels through the PPARγ Pathway. Int J Med Sci 2020; 17:720-727. [PMID: 32218693 PMCID: PMC7085263 DOI: 10.7150/ijms.42248] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
In clinical cohort studies, high expression of long-chain acyl-coenzyme A synthetases 1 (ACSL1 gene) in peripheral white blood cells of patients with acute myocardial infarction (AMI) has been utilized as molecular markers of myocardial infarction diagnosis. The plasma triglyceride level of AMI patients is significantly higher than that of healthy individuals. We hypothesized that the high expression of ACSL1 increases the level of triglyceride, which is one of the pathogenesis of AMI promoted by ACSL1. In this report, cell culture based methods were adopted to test the hypothesis and further investigate the effect and mechanism of ACSL1 on lipid metabolism. In this study, liver cells of healthy individuals were cultured, the overexpression and the knockdown vectors of ACSL1 were constructed and transfected into liver cells. The transfection was verified at the mRNA and protein level. Intracellular triglyceride content was quantitatively analyzed using ELISA. Changes of genes related to lipid metabolism were subsequently measured through PCR array. Overexpression of ACSL1 led to higher gene expression and protein levels compared to control and the triglyceride content was significantly increased in overexpressing cells. The expression level of fatty acid oxidation pathway PPARγ was significantly down-regulated compared with the control group, as were genes associated with fatty acid synthesis pathways: SREBP1, ACC, FAS, and SCD1. ACSL1 knockdown decreased the content of triglyceride whereas PPARγ was up-regulated and SREBP1, ACC, FAS, and SCD1 were down-regulated compared with the control group. In summary, high expression of ACSL1 reduced fatty acid β-oxidation through the PPARγ pathway, thereby increasing triglyceride levels.
Collapse
Affiliation(s)
| | | | | | | | - Fanbo Meng
- Department of Cardiology China-Japan Union Hospital of Jilin University, Changchun, China 130033
| |
Collapse
|
99
|
Increase in Leptin and PPAR-γ Gene Expression in Lipedema Adipocytes Differentiated in vitro from Adipose-Derived Stem Cells. Cells 2020; 9:cells9020430. [PMID: 32059474 PMCID: PMC7072543 DOI: 10.3390/cells9020430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.
Collapse
|
100
|
Wu L, Song Y, Zhang Y, Liang B, Deng Y, Tang T, Ye YC, Hou HY, Wang CC. Novel Genetic Variants of PPARγ2 Promoter in Gestational Diabetes Mellitus and its Molecular Regulation in Adipogenesis. Front Endocrinol (Lausanne) 2020; 11:499788. [PMID: 33551986 PMCID: PMC7862745 DOI: 10.3389/fendo.2020.499788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ2 (PPARγ2) is a nuclear hormone receptor of ligand-dependent transcription factor with a key role in adipogenesis and insulin sensitization in diabetes mellitus. In this study, we investigated genetic variants in PPARγ2 promoter, its association with gestational diabetes mellitus (GDM), and its molecular regulation. PPARγ2 promoter and start codon (-2,091 to +82 bp) from 400 pregnancies with GDM and 400 gestational-age matched control pregnancies were sequenced. Association and linkage disequilibrium of the identified polymorphisms with GDM was determined. ChIP-seq, gene silencing, and dual-luciferase reporter assays were performed to confirm transcription factor binding sites and promoter activity of the variants. Transfection experiments were carried out to determine the effects of variants on gene expression and adipogenesis. Among 15 variants identified, 7 known variants were not significantly associated with the risk of GDM (odds ratio: 0.710-1.208, 95% confidence interval: 0.445-0.877 to 1.132-1.664, P > 0.05) while linkage disequilibrium was significant (D' > 0.7, R2 > 0.9). However, T-A-A-T-G haplotype was not significantly associated with GDM (χ2 = 2.461, P = 0.117). Five rare variants and 3 novel variants (rs948820149, rs1553638909, and rs1553638903) were only found in GDM. Transcription factor glucocorticoid receptor β (GRβ) bound to -807A/C (rs948820149) and knockdown of GRβ suppressed PPARγ2 promoter activity. This mutation significantly down-regulated PPARγ2 expression and alleviated adipogenesis. In conclusion, a novel -807A/C in PPARγ2 promoter was identified in Chinese women with GDM and the mutation affected GRβ binding and transcription of PPARγ2 for adipogenesis.
Collapse
Affiliation(s)
- Ling Wu
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yi Song
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Liang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yan Deng
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tao Tang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yan Chou Ye
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Ying Hou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Development and Reproduction Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Chi Chiu Wang,
| |
Collapse
|