51
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
52
|
Lai AKW, Ng TC, Hung VKL, Tam KC, Cheung CW, Chung SK, Lo ACY. Exacerbated VEGF up-regulation accompanies diabetes-aggravated hemorrhage in mice after experimental cerebral ischemia and delayed reperfusion. Neural Regen Res 2021; 17:1566-1575. [PMID: 34916442 PMCID: PMC8771109 DOI: 10.4103/1673-5374.330612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reperfusion therapy is the preferred treatment for ischemic stroke, but is hindered by its short treatment window, especially in patients with diabetes whose reperfusion after prolonged ischemia is often accompanied by exacerbated hemorrhage. The mechanisms underlying exacerbated hemorrhage are not fully understood. This study aimed to identify this mechanism by inducing prolonged 2-hour transient intraluminal middle cerebral artery occlusion in diabetic Ins2Akita/+ mice to mimic patients with diabetes undergoing delayed mechanical thrombectomy. The results showed that at as early as 2 hours after reperfusion, Ins2Akita/+ mice exhibited rapid development of neurological deficits, increased infarct and hemorrhagic transformation, together with exacerbated down-regulation of tight-junction protein ZO-1 and up-regulation of blood-brain barrier-disrupting matrix metallopeptidase 2 and matrix metallopeptidase 9 when compared with normoglycemic Ins2+/+ mice. This indicated that diabetes led to the rapid compromise of vessel integrity immediately after reperfusion, and consequently earlier death and further aggravation of hemorrhagic transformation 22 hours after reperfusion. This observation was associated with earlier and stronger up-regulation of pro-angiogenic vascular endothelial growth factor (VEGF) and its downstream phospho-Erk1/2 at 2 hours after reperfusion, which was suggestive of premature angiogenesis induced by early VEGF up-regulation, resulting in rapid vessel disintegration in diabetic stroke. Endoplasmic reticulum stress-related pro-apoptotic C/EBP homologous protein was overexpressed in challenged Ins2Akita/+ mice, which suggests that the exacerbated VEGF up-regulation may be caused by overwhelming endoplasmic reticulum stress under diabetic conditions. In conclusion, the results mimicked complications in patients with diabetes undergoing delayed mechanical thrombectomy, and diabetes-induced accelerated VEGF up-regulation is likely to underlie exacerbated hemorrhagic transformation. Thus, suppression of the VEGF pathway could be a potential approach to allow reperfusion therapy in patients with diabetic stroke beyond the current treatment window. Experiments were approved by the Committee on the Use of Live Animals in Teaching and Research of the University of Hong Kong [CULATR 3834-15 (approval date January 5, 2016); 3977-16 (approval date April 13, 2016); and 4666-18 (approval date March 29, 2018)].
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Tsz Chung Ng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Victor Ka Lok Hung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Chi Wai Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Sookja Kim Chung
- Macau University of Science and Technology, Taipa, Macau Special Administration Region; School of Biomedical Sciences, The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| |
Collapse
|
53
|
Patel D, Wairkar S. Biotechnology-based therapeutics for management of cerebral stroke. Eur J Pharmacol 2021; 913:174638. [PMID: 34801531 DOI: 10.1016/j.ejphar.2021.174638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Cerebral stroke, commonly caused due to hindrance in blood flow, is broadly classified into two categories-ischemic and haemorrhagic strokes. The onset of stroke triggers multiple mechanisms causing inflammation, generation of free radicals and protein damage leading to apoptosis of neuronal cells. The current therapies available for cerebral strokes involve use of complex surgical treatments and tissue plasminogen activator which increases the risk of internal bleeding, brain edema and cerebral damage, thereby restricting their use in clinical setting. The alarming need to develop safe, effective, target specific systems which, promote neuronal growth and reduce cerebral inflammation can be accomplished with use of biotechnological approaches. The article gives an insight to biotechnology-based advancements for tissue plasminogen activators, cell penetrating peptides, growth factors, ribonucleic acid systems and monoclonal antibodies for cerebral stroke. We also emphasis on challenges and future perspective of biotechnology-based therapeutics for better management of stroke.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
54
|
Wang LC, Wei WY, Ho PC, Wu PY, Chu YP, Tsai KJ. Somatosensory Cortical Electrical Stimulation After Reperfusion Attenuates Ischemia/Reperfusion Injury of Rat Brain. Front Aging Neurosci 2021; 13:741168. [PMID: 34867274 PMCID: PMC8632773 DOI: 10.3389/fnagi.2021.741168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Ischemic stroke is an important cause of death and disability worldwide. Early reperfusion by thrombolysis or thrombectomy has improved the outcome of acute ischemic stroke. However, the therapeutic window for reperfusion therapy is narrow, and adjuvant therapy for neuroprotection is demanded. Electrical stimulation (ES) has been reported to be neuroprotective in many neurological diseases. In this study, the neuroprotective effect of early somatosensory cortical ES in the acute stage of ischemia/reperfusion injury was evaluated. Methods: In this study, the rat model of transient middle cerebral artery occlusion was used to explore the neuroprotective effect and underlying mechanisms of direct primary somatosensory (S1) cortex ES with an electric current of 20 Hz, 2 ms biphasic pulse, 100 μA for 30 min, starting at 30 min after reperfusion. Results: These results showed that S1 cortical ES after reperfusion decreased infarction volume and improved functional outcome. The number of activated microglia, astrocytes, and cleaved caspase-3 positive neurons after ischemia/reperfusion injury were reduced, demonstrating that S1 cortical ES alleviates inflammation and apoptosis. Brain-derived neurotrophic factor (BDNF) and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were upregulated in the penumbra area, suggesting that BDNF/TrkB signals and their downstream PI3K/Akt signaling pathway play roles in ES-related neuroprotection. Conclusion: This study demonstrates that somatosensory cortical ES soon after reperfusion can attenuate ischemia/reperfusion injury and is a promising adjuvant therapy for thrombolytic treatment after acute ischemic stroke. Advanced techniques and devices for high-definition transcranial direct current stimulation still deserve further development in this regard.
Collapse
Affiliation(s)
- Liang-Chao Wang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yi Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ping Chu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
55
|
The Clinical Efficacy of Clopidogrel Bisulfate Tablets Combined with Olmesartan Medoxomil for Ischemic Stroke with Hypertension and the Effect of Angiotensin II Type 1 Receptor Level on Prognosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:4487393. [PMID: 34745325 PMCID: PMC8566065 DOI: 10.1155/2021/4487393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Background Ischemic stroke combined with hypertension can increase risks of stroke recurrence and death. Aim The aim of this study is to investigate the clinical efficacy of clopidogrel bisulfate tablets combined with olmesartan medoxomil in the treatment of ischemic stroke patients with hypertension and the effect of angiotensin II type 1 receptor (AT1R) level on prognosis. Methods Ninety ischemic stroke patients with hypertension were chosen for continuous treatment with clopidogrel bisulfate tablets and olmesartan medoxomil for 12 months. The Modified Edinburgh Scandinavian Stroke Scale (MESSS) score, Brunnstrom score, Barthel score, death, recurrence, and progression of cerebrovascular residual lesions were observed and recorded during the treatment period. According to the plasma AT1R expression of the patients before treatment, the patients were divided into a high-AT1R group and low-AT1R group. Then, survival analysis was performed. Results Compared with pretreatment, the MESSS scores of the patients at the first, second, third, sixth, ninth, and twelfth months after treatment were reduced (p < 0.01) while the Brunnstrom score and Barthel score were prominently boosted (p < 0.01). Compared with the low-AT1R group, patients in the high-AT1R group had higher rates of stroke recurrence and progression of residual cerebrovascular lesions (p < 0.05). Conclusion Clopidogrel bisulfate tablets combined with olmesartan medoxomil has prominent clinical effects in the treatment of ischemic stroke patients with hypertension, evidently improving the prognosis. In addition, the level of AT1R may be a vital factor affecting the prognosis.
Collapse
|
56
|
Li R, Shen Y, Li X, Lu L, Wang Z, Sheng H, Hoffmann U, Yang W. Activation of the XBP1s/O-GlcNAcylation Pathway Improves Functional Outcome After Cardiac Arrest and Resuscitation in Young and Aged Mice. Shock 2021; 56:755-761. [PMID: 34652341 PMCID: PMC9059164 DOI: 10.1097/shk.0000000000001732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT After cardiac arrest (CA) and resuscitation, the unfolded protein response (UPR) is activated in various organs including the brain. However, the role of the UPR in CA outcome remains largely unknown. One UPR branch involves spliced X-box-binding protein-1 (XBP1s). Notably, XBP1s, a transcriptional factor, can upregulate expression of specific enzymes related to glucose metabolism, and subsequently boost O-linked β-N-acetylglucosamine modification (O-GlcNAcylation). The current study is focused on effects of the XBP1 UPR branch and its downstream O-GlcNAcylation on CA outcome. Using both loss-of-function and gain-of-function mouse genetic tools, we provide the first evidence that activation of the XBP1 UPR branch in the post-CA brain is neuroprotective. Specifically, neuron-specific Xbp1 knockout mice had worse CA outcome, while mice with neuron-specific expression of Xbp1s in the brain had better CA outcome. Since it has been shown that the protective role of the XBP1s signaling pathway under ischemic conditions is mediated by increasing O-GlcNAcylation, we then treated young mice with glucosamine, and found that functional deficits were mitigated on day 3 post CA. Finally, after confirming that glucosamine can boost O-GlcNAcylation in the aged brain, we subjected aged mice to 8 min CA, and then treated them with glucosamine. We found that glucosamine-treated aged mice performed significantly better in behavioral tests. Together, our data indicate that the XBP1s/O-GlcNAc pathway is a promising target for CA therapy.
Collapse
Affiliation(s)
- Ran Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
58
|
Wei ZZ, Chen D, Lee MJH, Zhao Y, Gu X, Yu SP, Wei L. DL-3-n-butylphthalide Increases Collateriogenesis and Functional Recovery after Focal Ischemic Stroke in Mice. Aging Dis 2021; 12:1835-1849. [PMID: 34631224 PMCID: PMC8460296 DOI: 10.14336/ad.2020.1226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/26/2020] [Indexed: 12/25/2022] Open
Abstract
Recent evidence indicates that collateral circulation is critical for the outcome of ischemic stroke. DL-3-n-butylphthalide (NBP), a synthesized compound based on an extract from seeds of celery Apium graveolens Linn, has been used as a therapeutic drug, showing multiple neuroprotective and regenerative activities. A potential effect of NBP on collateral arterial regulation is unknown. We examined the effects of NBP on arteriogenesis of collateral arteries in vitro and a mouse ischemic stroke model. In cultures of mouse iPS cell-derived vascular progenitors, NBP (10 μM) significantly increased α-smooth muscle actin (αSMA)/CD-31 co-labeled cells and the expression of newly formed vasculature marker PDGFRα. A sensorimotor cortex ischemia was induced in transgenic mice expressing αSMA-GFP that allowed direct observation of arterial vasculatures in brain regions. NBP (80 mg/kg) was intranasally delivered 1 hr after stroke and once daily for 14 days. To label proliferating cells, 5-Bromo-2’-deoxyuridine (BrdU, 50 mg/kg, i.p.) was administrated every day from 3 days after stroke. Western blotting of peri-infarct tissue detected increased expressions of VEGF, Ang-1 and reduced nNOS level in NBP-treated mice. The NBP treatment significantly increased αSMA/BrdU co-labeled cells, the diameter of ipsilateral collaterals, and arterial area in ischemic and peri-infarct regions examined 14 days after stroke. Examined 3 days after stroke, NBP prevented functional deficits in the cylinder test and corner test. The NBP treatment of 14 days improved the local cerebral blood flow (LCBF) and functional performance in multiple tests. Thus, NBP promotes collateriogenesis, short and long-term structural and functional improvements after ischemic stroke.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew Joong H Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingying Zhao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
59
|
Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Su B, You H, Zhang T, Li X, Song H, Li C, Sun T, Jiang C. Macrophage-Disguised Manganese Dioxide Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Modulating Inflammatory Microenvironment in Acute Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101526. [PMID: 34436822 PMCID: PMC8529435 DOI: 10.1002/advs.202101526] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Indexed: 05/06/2023]
Abstract
Reperfusion injury is still a major challenge that impedes neuronal survival in ischemic stroke. However, the current clinical treatments are remained on single pathological process, which are due to lack of comprehensive neuroprotective effects. Herein, a macrophage-disguised honeycomb manganese dioxide (MnO2 ) nanosphere loaded with fingolimod (FTY) is developed to salvage the ischemic penumbra. In particular, the biomimetic nanoparticles can accumulate actively in the damaged brain via macrophage-membrane protein-mediated recognition with cell adhesion molecules that are overexpressed on the damaged vascular endothelium. MnO2 nanosphere can consume excess hydrogen peroxide (H2 O2 ) and convert it into desiderated oxygen (O2 ), and can be decomposed in acidic lysosome for cargo release, so as to reduce oxidative stress and promote the transition of M1 microglia to M2 type, eventually reversing the proinflammatory microenvironment and reinforcing the survival of damaged neuron. This biomimetic nanomedicine raises new strategy for multitargeted combined treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yifan Luo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tingting Ning
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Peixin Liu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qinjun Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yongchao Chu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qin Guo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Hongyi Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zheng Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yu Wang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Boyu Su
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haoyu You
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tongyu Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Xuwen Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haolin Song
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chufeng Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
60
|
Neuropeptide α-Melanocyte-Stimulating Hormone Promotes Neurological Recovery and Repairs Cerebral Ischemia/Reperfusion Injury in Type 1 Diabetes. Neurochem Res 2021; 47:394-408. [PMID: 34586586 DOI: 10.1007/s11064-021-03453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Persons with type 1 diabetes have an increased risk of stroke compared with the general population. α-Melanocyte-stimulating hormone (α-MSH) is a neuropeptide that has protective effects against ischemia/reperfusion (I/R) induced organ damages. In this study, we aimed to investigate the neuroprotective role of this peptide on I/R induced brain damage after experimental stroke associated with hyperglycemia using C57BL/6J Ins2Akita/+ mice. Experimental stroke was induced by blocking the right middle cerebral artery for 2 h with reperfusion for 2 and 22 h, respectively using the intraluminal method. Animals were treated intraperitoneally with or without α-MSH at 1 h after ischemia and 1 h after reperfusion. Significantly higher survival rate and lower neurological scores were recorded in animals injected with α-MSH. Similarly, neuron death, glial cells activation as well as oxidative and nitrosative stress were significantly decreased in α-MSH treated group. Relative intensities of matrix metallopeptidases 9, cyclooxygenase 2 and nuclear factor-κB were significantly decreased while intensities of Akt, heme oxygenase (HO) 1, HO-2 and B-cell lymphoma 2 were significantly increased after α-MSH treatment. In addition, gene expressions of monocarboxylate transporter (MCT) 1, MCT-2 and activity-regulated cytoskeleton-associated protein were significantly higher in brain samples treated with α-MSH, suggesting this peptide may have role in neuron survival by an involvement of lactate metabolism. In conclusion, α-MSH is neuroprotective under hyperglycemic condition against I/R induced brain damage by its anti-inflammatory, anti-oxidative and anti-apoptotic properties. The use of α-MSH analogues may be potential therapeutic agents for diabetic stroke.
Collapse
|
61
|
Kim ID, Cave JW, Cho S. Aflibercept, a VEGF (Vascular Endothelial Growth Factor)-Trap, Reduces Vascular Permeability and Stroke-Induced Brain Swelling in Obese Mice. Stroke 2021; 52:2637-2648. [PMID: 34192895 PMCID: PMC8312568 DOI: 10.1161/strokeaha.121.034362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Background and Purpose Brain edema is an important underlying pathology in acute stroke, especially when comorbidities are present. VEGF (Vascular endothelial growth factor) signaling is implicated in edema. This study investigated whether obesity impacts VEGF signaling and brain edema, as well as whether VEGF inhibition alters stroke outcome in obese subjects. Methods High-fat diet-induced obese mice were subjected to a transient middle cerebral artery occlusion. VEGF-A and VEGFR2 (receptor) expression, infarct volume, and swelling were measured 3 days post-middle cerebral artery occlusion. To validate the effect of an anti-VEGF strategy, we used aflibercept, a fusion protein that has a VEGF-binding domain and acts as a decoy receptor, in human umbilical vein endothelial cells stimulated with rVEGF (recombinant VEGF; 50 ng/mL) for permeability and tube formation. In vivo, aflibercept (10 mg/kg) or IgG control was administered in obese mice 3 hours after transient 30 minutes middle cerebral artery occlusion. Blood-brain barrier integrity was assessed by IgG staining and dextran extravasation in the postischemic brain. A separate cohort of nonobese (lean) mice was subjected to 40 minutes middle cerebral artery occlusion to test the effect of aflibercept on malignant infarction. Results Compared with lean mice, obese mice had increased mortality, infarct volume, swelling, and blood-brain barrier disruption. These outcomes were also associated with increased VEGF-A and VEGFR2 expression. Aflibercept reduced VEGF-A-stimulated permeability and tube formation in human umbilical vein endothelial cells. Compared with the IgG-treated controls, mice treated with aflibercept had reduced mortality rates (40% versus 17%), hemorrhagic transformation (43% versus 27%), and brain swelling (28% versus 18%), although the infarct size was similar. In nonobese mice with large stroke, aflibercept neither improved nor exacerbated stroke outcomes. Conclusions The study demonstrates that aflibercept selectively attenuates stroke-induced brain edema and vascular permeability in obese mice. These findings suggest the repurposing of aflibercept to reduce obesity-enhanced brain edema in acute stroke.
Collapse
Affiliation(s)
- Il-doo Kim
- Burke Neurological Institute, White Plains, NY (I.-d.K., S.C.)
| | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY (I.-d.K., S.C.)
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY (S.C.)
| |
Collapse
|
62
|
Han Y, Li X, Yang L, Zhang D, Li L, Dong X, Li Y, Qun S, Li W. Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice. J Ginseng Res 2021; 46:515-525. [PMID: 35818419 PMCID: PMC9270650 DOI: 10.1016/j.jgr.2021.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background The incidence of ischemic cerebrovascular disease is increasing in recent years and has been one of the leading causes of neurological dysfunction and death. Ginsenoside Rg1 has been found to protect against neuronal damage in many neurodegenerative diseases. However, the effect and mechanism by which Rg1 protects against cerebral ischemia-reperfusion injury (CIRI) are not fully understood. Here, we report the neuroprotective effects of Rg1 treatment on CIRI and its possible mechanisms in mice. Methods A bilateral common carotid artery ligation was used to establish a chronic CIRI model in mice. HT22 cells were treated with Rg1 after OGD/R to study its effect on [Ca2+]i. The open-field test and pole-climbing experiment were used to detect behavioral injury. The laser speckle blood flowmeter was used to measure brain blood flow. The Nissl and H&E staining were used to examine the neuronal damage. The Western blotting was used to examine MAP2, PSD95, Tau, p-Tau, NOX2, PLC, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging was used to test the level of [Ca2+]i. Results Rg1 treatment significantly improved cerebral blood flow, locomotion, and limb coordination, reduced ROS production, increased MAP2 and PSD95 expression, and decreased p-Tau, NOX2, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging results showed that Rg1 could inhibit calcium overload and resist the imbalance of calcium homeostasis after OGD/R in HT22 cells. Conclusion Rg1 plays a neuroprotective role in attenuating CIRI by inhibiting oxidative stress, calcium overload, and neuroinflammation. Rg1 ameliorates I/R-induced motor dysfunction and neuronal damage in mice. Rg1 decreases NOX2 expression and ROS accumulation in cerebral I/R mice. Rg1 inhibits calcium overload and CN-NFAT1 signaling in cerebral I/R mice. Rg1 down-regulates NLRP1 inflammasome in cerebral I/R mice.
Collapse
|
63
|
Yu Z, Li W, Lan J, Hayakawa K, Ji X, Lo EH, Wang X. EphrinB2-EphB2 signaling for dendrite protection after neuronal ischemia in vivo and oxygen-glucose deprivation in vitro. J Cereb Blood Flow Metab 2021; 41:1744-1755. [PMID: 33325764 PMCID: PMC8221775 DOI: 10.1177/0271678x20973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In order to rescue neuronal function, neuroprotection should be required not only for the neuron soma but also the dendrites. Here, we propose the hypothesis that ephrin-B2-EphB2 signaling may be involved in dendritic degeneration after ischemic injury. A mouse model of focal cerebral ischemia with middle cerebral artery occlusion (MCAO) method was used for EphB2 signaling test in vivo. Primary cortical neuron culture and oxygen-glucose deprivation were used to assess EphB2 signaling in vitro. siRNA and soluble ephrin-B2 ectodomain were used to block ephrin-B2-Ephb2 signaling. In the mouse model of focal cerebral ischemia and in neurons subjected to oxygen-glucose deprivation, clustering of ephrin-B2 with its receptor EphB2 was detected. Phosphorylation of EphB2 suggested activation of this signaling pathway. RNA silencing of EphB2 prevented neuronal death and preserved dendritic length. To assess therapeutic potential, we compared the soluble EphB2 ectodomain with the NMDA antagonist MK801 in neurons after oxygen-glucose deprivation. Both agents equally reduced lactate dehydrogenase release as a general marker of neurotoxicity. However, only soluble EphB2 ectodomain protected the dendrites. These findings provide a proof of concept that ephrin-B2-EphB2 signaling may represent a novel therapeutic target to protect both the neuron soma as well as dendrites against ischemic injury.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jing Lan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
64
|
Rocha M, Desai S, Son J, Tonetti DA, Jovin T, Jadhav AP. Clinical characteristics of fast and slow progressors of infarct growth in anterior circulation large vessel occlusion stroke. J Cereb Blood Flow Metab 2021; 41:271678X211015068. [PMID: 34139885 PMCID: PMC8221763 DOI: 10.1177/0271678x211015068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Fast and slow progressor phenotypes of infarct growth due to anterior circulation large vessel occlusion (ACLVO) remain poorly understood. We aimed to define clinical predictors of fast and slow progressors in a retrospective study of patients with ACLVO who underwent baseline advanced imaging within 24 hours of stroke onset. Fast progressors (ischemic core > 70 ml, < 6 hours after onset) and slow progressors (ischemic core ≤ 30 ml, 6 to 24 hours after onset) were identified amongst 185 patients. Clinical and laboratory variables were tested for association with fast or slow progressor status. In the early epoch, no significant differences were found between fast progressors and controls. In the delayed epoch, slow progressors had a median NIHSS of 14 versus 20 (p < 0.01) and MCA occlusion in 80% versus 63% (p < 0.05) relative to controls. In multivariate analyses, NIHSS (OR 0.83, 95% CI 0.73-0.95), hyperlipidemia (OR 4.24, 95% CI 1.01 - 19.3) and hemoglobin concentration (OR 0.75, 95% CI 0.57 - 0.99) were independently associated with slow progressor status. This study indicates that lower initial stroke symptom severity, a history of hyperlipidemia and mild anemia are associated with individual tolerance to ACLVO stroke.
Collapse
Affiliation(s)
- Marcelo Rocha
- Department of Neurology , University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shashvat Desai
- Department of Neurology , University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jiyeon Son
- Department of Neurology , University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel A Tonetti
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tudor Jovin
- Cooper University Hospital Neurological Institute, Camden, NJ, USA
| | - Ashutosh P Jadhav
- Department of Neurology , University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
65
|
Broocks G, Fiehler J, Hanning U. In Reply: Early Prediction of Malignant Cerebellar Edema in Posterior Circulation Stroke Using Quantitative Lesion Water Uptake. Neurosurgery 2021; 88:E476-E477. [PMID: 33555009 DOI: 10.1093/neuros/nyab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
66
|
Koehler RC, Dawson VL, Dawson TM. Targeting Parthanatos in Ischemic Stroke. Front Neurol 2021; 12:662034. [PMID: 34025565 PMCID: PMC8131834 DOI: 10.3389/fneur.2021.662034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parthanatos is a cell death signaling pathway in which excessive oxidative damage to DNA leads to over-activation of poly(ADP-ribose) polymerase (PARP). PARP then generates the formation of large poly(ADP-ribose) polymers that induce the release of apoptosis-inducing factor from the outer mitochondrial membrane. In the cytosol, apoptosis-inducing factor forms a complex with macrophage migration inhibitory factor that translocates into the nucleus where it degrades DNA and produces cell death. In a review of the literature, we identified 24 publications from 13 laboratories that support a role for parthanatos in young male mice and rats subjected to transient and permanent middle cerebral artery occlusion (MCAO). Investigators base their conclusions on the use of nine different PARP inhibitors (19 studies) or PARP1-null mice (7 studies). Several studies indicate a therapeutic window of 4-6 h after MCAO. In young female rats, two studies using two different PARP inhibitors from two labs support a role for parthanatos, whereas two studies from one lab do not support a role in young female PARP1-null mice. In addition to parthanatos, a body of literature indicates that PARP inhibitors can reduce neuroinflammation by interfering with NF-κB transcription, suppressing matrix metaloproteinase-9 release, and limiting blood-brain barrier damage and hemorrhagic transformation. Overall, most of the literature strongly supports the scientific premise that a PARP inhibitor is neuroprotective, even when most did not report behavior outcomes or address the issue of randomization and treatment concealment. Several third-generation PARP inhibitors entered clinical oncology trials without major adverse effects and could be repurposed for stroke. Evaluation in aged animals or animals with comorbidities will be important before moving into clinical stroke trials.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, The Johns Hopkins University, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
67
|
Guldbrandsen HO, Staehr C, Iversen NK, Postnov DD, Matchkov VV. Does Src Kinase Mediated Vasoconstriction Impair Penumbral Reperfusion? Stroke 2021; 52:e250-e258. [PMID: 33947213 DOI: 10.1161/strokeaha.120.032737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite successful recanalization, a significant number of patients with ischemic stroke experience impaired local brain tissue reperfusion with adverse clinical outcome. The cause and mechanism of this multifactorial complication are yet to be understood. At the current moment, major attention is given to dysfunction in blood-brain barrier and capillary blood flow but contribution of exaggerated constriction of cerebral arterioles has also been suggested. In the brain, arterioles significantly contribute to vascular resistance and thus control of perfusion. Accordingly, pathological changes in arteriolar wall function can, therefore, limit sufficient reperfusion in ischemic stroke, but this has not yet received sufficient attention. Although an increased vascular tone after reperfusion has been demonstrated in several studies, the mechanism behind it remains to be characterized. Importantly, the majority of conventional mechanisms controlling vascular contraction failed to explain elevated cerebrovascular tone after reperfusion. We propose here that the Na,K-ATPase-dependent Src kinase activation are the key mechanisms responsible for elevation of cerebrovascular tone after reperfusion. The Na,K-ATPase, which is essential to control intracellular ion homeostasis, also executes numerous signaling functions. Under hypoxic conditions, the Na,K-ATPase is endocytosed from the membrane of vascular smooth muscle cells. This initiates the Src kinase signaling pathway that sensitizes the contractile machinery to intracellular Ca2+ resulting in hypercontractility of vascular smooth muscle cells and, thus, elevated cerebrovascular tone that can contribute to impaired reperfusion after stroke. This mechanism integrates with cerebral edema that was suggested to underlie impaired reperfusion and is further supported by several studies, which are discussed in this article. However, final demonstration of the molecular mechanism behind Src kinase-associated arteriolar hypercontractility in stroke remains to be done.
Collapse
Affiliation(s)
| | - Christian Staehr
- Department of Biomedicine, MEMBRANES, Health (H.O.G., C.S., V.V.M.), Aarhus University, Denmark
| | - Nina Kerting Iversen
- Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine (N.K.I.), Aarhus University, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Denmark (D.D.P.)
| | - Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health (H.O.G., C.S., V.V.M.), Aarhus University, Denmark
| |
Collapse
|
68
|
Chen H, Yan C, Cao J, Liu Z, Sun Y, Wang Y. Design, Synthesis, and Biological Evaluation of Novel Tetramethylpyrazine- nitrone Derivatives as Antioxidants. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201117145311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Thrombolysis and endovascular thrombectomy are the two main therapeutic
strategies for ischemic stroke in clinic. However, reperfusion injury causes oxidative stress leading
to overproduction of reactive oxygen species, mitochondrial dysfunction and subsequent cell death.
Methods:
We designed and synthesized two tetramethylpyrazine-nitrone derivatives (T-003 and T-
005) and investigated their abilities for scavenging free radicals and protective effects as well as
neurite outgrowth promotion in vitro.
Results:
Both of them showed potent radical-scavenging activity and neuroprotective effects
against iodoacetic acid-induced cell injury. Furthermore, T-003 and T-005 significantly promoted
neurite outgrowth in PC12 cells.
Conclusion:
Our results suggest that compound T-003 and T-005 could be potent antioxidants for
the treatment of neurological disease, particularly ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Chunyan Yan
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Jie Cao
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou,China
| | - Zheng Liu
- Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan,China
| | - Yewei Sun
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou,China
| | - Yuqiang Wang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou,China
| |
Collapse
|
69
|
Bourourou M, Gouix E, Melis N, Friard J, Heurteaux C, Tauc M, Blondeau N. Inhibition of eIF5A hypusination pathway as a new pharmacological target for stroke therapy. J Cereb Blood Flow Metab 2021; 41:1080-1090. [PMID: 32615885 PMCID: PMC8054730 DOI: 10.1177/0271678x20928882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the polyamine pathway generates spermidine that activates the hypusination of the translation factor eukaryotic initiation factor 5A (eIF5A). Hypusinated-eIF5A modulates translation, elongation, termination and mitochondrial function. Evidence in model organisms like drosophila suggests that targeting polyamines synthesis might be of interest against ischemia. However, the potential of targeting eIF5A hypusination in stroke, the major therapeutic challenge specific to ischemia, is currently unknown. Using in vitro models of ischemic-related stress, we documented that GC7, a specific inhibitor of a key enzyme in the eIF5A activation pathway, affords neuronal protection. We identified the preservation of mitochondrial function and thereby the prevention of toxic ROS generation as major processes of GC7 protection. To represent a thoughtful opportunity of clinical translation, we explored whether GC7 administration reduces the infarct volume and functional deficits in an in vivo transient focal cerebral ischemia (tFCI) model in mice. A single GC7 pre- or post-treatment significantly reduces the infarct volume post-stroke. Moreover, GC7-post-treatment significantly improves mouse performance in the rotarod and Morris water-maze, highlighting beneficial effects on motor and cognitive post-stroke deficits. Our results identify the targeting of the polyamine-eIF5A-hypusine axis as a new therapeutic opportunity and new paradigm of research in stroke and ischemic diseases.
Collapse
Affiliation(s)
- Miled Bourourou
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, France
| | - Elsa Gouix
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, France
| | | | - Jonas Friard
- CNRS, LP2M, Université Côte d’Azur, Nice, France
| | | | - Michel Tauc
- CNRS, LP2M, Université Côte d’Azur, Nice, France
| | | |
Collapse
|
70
|
Wu L, Wu D, Chen J, Chen C, Yao T, He X, Ma Y, Zhi X, Liu R, Ji X. Intranasal salvinorin A improves neurological outcome in rhesus monkey ischemic stroke model using autologous blood clot. J Cereb Blood Flow Metab 2021; 41:723-730. [PMID: 32615886 PMCID: PMC7983500 DOI: 10.1177/0271678x20938137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salvinorin A (SA) exerts neuroprotection and improves neurological outcomes in ischemic stroke models in rodents. In this study, we investigated whether intranasal SA administration could improve neurological outcomes in a monkey ischemic stroke model. The stroke model was induced in adult male rhesus monkeys by occluding the middle cerebral artery M2 segment with an autologous blood clot. Eight adult rhesus monkeys were randomly administered SA or 10% dimethyl sulfoxide as control 20 min after ischemia. Magnetic resonance imaging was used to confirm the ischemia and extent of injury. Neurological function was evaluated using the Non-Human Primate Stroke Scale (NHPSS) over a 28-day observation period. SA significantly reduced infarct volume (3.9 ± 0.7 cm3 vs. 7.2 ± 1.0 cm3; P = 0.002), occupying effect (0.3 ± 0.2% vs. 1.4 ± 0.3%; P = 0.002), and diffusion limitation in the lesion (-28.2 ± 11.0% vs. -51.5 ± 7.1%; P = 0.012) when compared to the control group. SA significantly reduced the NHPSS scores to almost normal in a 28-day observation period as compared to the control group (P = 0.005). Intranasal SA reduces infarct volume and improves neurological outcomes in a rhesus monkey ischemic stroke model using autologous blood clot.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianqi Yao
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanqin Ma
- Nhwa Pharmaceutical Co. Ltd., Xuzhou, China
| | - Xinglong Zhi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Renyu Liu, Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
71
|
Boltze J, Didwischus N, Merrow M, Dallmann R, Plesnila N. Circadian effects on stroke outcome - Did we not wake up in time for neuroprotection? J Cereb Blood Flow Metab 2021; 41:684-686. [PMID: 33337257 PMCID: PMC7907996 DOI: 10.1177/0271678x20978711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The occurrence of stroke in humans peaks in the morning. A recent study revealed that time of day mitigates the therapeutic impact of neuroprotective paradigms. These findings might not only explain the previous failure of translation of neuroprotective therapies but inspire new paradigms in stroke chronopathophysiology research. Taking chronotype into account may complement the many factors that influence efficacy of experimental therapies in stroke.
Collapse
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Martha Merrow
- Faculty of Medicine, Institute of Medical Psychology, LMU Munich, Munich, Germany
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital and Faculty of Medicine, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| |
Collapse
|
72
|
Sommer CJ, Schäbitz WR. Principles and requirements for stroke recovery science. J Cereb Blood Flow Metab 2021; 41:471-485. [PMID: 33175596 PMCID: PMC7907998 DOI: 10.1177/0271678x20970048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The disappointing results in bench-to-bedside translation of neuroprotective strategies caused a certain shift in stroke research towards enhancing the endogenous recovery potential of the brain. One reason for this focus on recovery is the much wider time window for therapeutic interventions which is open for at least several months. Since recently two large clinical studies using d-amphetamine or fluoxetine, respectively, to enhance post-stroke neurological outcome failed again it is a good time for a critical reflection on principles and requirements for stroke recovery science. In principal, stroke recovery science deals with all events from the molecular up to the functional and behavioral level occurring after brain ischemia eventually ending up with any measurable improvement of various clinical parameters. A detailed knowledge of the spontaneously occurring post-ischemic regeneration processes is the indispensable prerequisite for any therapeutic approaches aiming to modify these responses to enhance post-stroke recovery. This review will briefly illuminate the molecular mechanisms of post-ischemic regeneration and the principle possibilities to foster post-stroke recovery. In this context, recent translational approaches are analyzed. Finally, the principal and specific requirements and pitfalls in stroke recovery research as well as potential explanations for translational failures will be discussed.
Collapse
Affiliation(s)
- Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the
Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
73
|
Ronaldson PT, Brzica H, Abdullahi W, Reilly BG, Davis TP. Transport Properties of Statins by Organic Anion Transporting Polypeptide 1A2 and Regulation by Transforming Growth Factor- β Signaling in Human Endothelial Cells. J Pharmacol Exp Ther 2021; 376:148-160. [PMID: 33168642 PMCID: PMC7839073 DOI: 10.1124/jpet.120.000267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Our in vivo rodent studies have shown that organic anion transporting polypeptide (Oatp) 1a4 is critical for blood-to-brain transport of statins, drugs that are effective neuroprotectants. Additionally, transforming growth factor-β (TGF-β) signaling via the activin receptor-like kinase 1 (ALK1) receptor regulates Oatp1a4 functional expression. The human ortholog of Oatp1a4 is OATP1A2. Therefore, the translational significance of our work requires demonstration that OATP1A2 can transport statins and is regulated by TGF-β/ALK1 signaling. Cellular uptake and monolayer permeability of atorvastatin, pravastatin, and rosuvastatin were investigated in vitro using human umbilical vein endothelial cells (HUVECs). Regulation of OATP1A2 by the TGF-β/ALK1 pathway was evaluated using bone morphogenetic protein 9 (BMP-9), a selective ALK1 agonist, and LDN193189, an ALK1 antagonist. We showed that statin accumulation in HUVECs requires OATP1A2-mediated uptake but is also affected by efflux transporters (i.e., P-glycoprotein, breast cancer resistance protein). Absorptive flux (i.e., apical-to-basolateral) for all statins was higher than secretory flux (i.e., basolateral-to-apical) and was decreased by an OATP inhibitor (i.e., estrone-3-sulfate). OATP1A2 protein expression, statin uptake, and cellular monolayer permeability were increased by BMP-9 treatment. This effect was attenuated in the presence of LDN193189. Apical-to-basolateral statin transport across human endothelial cellular monolayers requires functional expression of OATP1A2, which can be controlled by therapeutically targeting TGF-β/ALK1 signaling. Taken together with our previous work, the present data show that OATP-mediated drug transport is a critical mechanism in facilitating neuroprotective drug disposition across endothelial barriers of the blood-brain barrier. SIGNIFICANCE STATEMENT: Transporter data derived from rodent models requires validation in human models. Using human umbilical vein endothelial cells, this study has shown that statin transport is mediated by OATP1A2. Additionally, we demonstrated that OATP1A2 is regulated by transforming growth factor-β/activin receptor-like kinase 1 signaling. This work emphasizes the need to consider endothelial transporter kinetics and regulation during preclinical drug development. Furthermore, our forward-thinking approach can identify effective therapeutics for diseases for which drug development has been challenging (i.e., neurological diseases).
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
74
|
Hua H, Zhang W, Li J, Li J, Liu C, Guo Y, Cheng Y, Pi F, Xie Y, Yao W, Gao Y, Qian H. Neuroprotection against cerebral ischemia/reperfusion by dietary phytochemical extracts from Tibetan turnip (Brassica rapa L.). JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113410. [PMID: 32980487 DOI: 10.1016/j.jep.2020.113410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tibetan turnip (Brassica rapa L.) has a wide array of medicine properties including heat-clearing, detoxifying and anti-hypoxia as listed in the famous centuries-old Tibetan medicine classic "The Four Medical Tantras". Evidence-based medicine also indicated the anti-hypoxic effect of turnips, suggesting a potential link to neuroprotective effect on ischemic stroke. This thereby enables turnips to serve as a novel nontoxic agent in related treatment. AIM OF THE STUDY This study aimed to investigate the neuroprotective effect and elucidate the mechanism of aqueous extract of turnip (AET) on cerebral ischemia/reperfusion. MATERIALS AND METHODS The experimental models of cerebral ischemia included transient middle cerebral artery occlusion/reperfusion (MCAO) in C57BL/6J mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in HT-22 cells. Long-term effect of AET on infarct volume was evaluated by microtubule-associated protein 2 (MAP2) immunofluorescence 28 days after MCAO, and on neurofunctional outcomes determined by rotarod, grid walking, and cylinder tests in the meantime. Efficacy of AET was determined by the cell viability, the release of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) in neurons. The underlying mechanism of AET rescued OGD/R cells were characterized by PI3K, Akt and mTOR expressions, which were further used to validate AET's role in the pathway. RESULTS AET can reduce cerebral infarct volume and ameliorate behavioral deficits of MCAO/R mice dose-dependently. In vitro experiment further demonstrated that suitable concentrations of AET inhibited ROS, LDH production and restored mitochondrial expression induced by OGD/R. AET pretreatment can reverse the OGD/R-induced decreased level of phosphorylation of PI3K, Akt, mTOR, whereas this effect was blocked in the LY294002 (PI3K inhibitor) treatment group. CONCLUSIONS AET improved the survival of OGD/R-injured HT-22 cells by activating the PI3K/Akt/mTOR pathway. Based on the results above, aqueous extract of turnip has a protective effect on focal cerebral ischemic injury.
Collapse
Affiliation(s)
- Hanyi Hua
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenyi Zhang
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Li
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chang Liu
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Guo
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuliang Cheng
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yunfei Xie
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Weirong Yao
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - He Qian
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
75
|
Saliu IO, Amoo ZA, Khan MF, Olaleye MT, Rema V, Akinmoladun AC. Abatement of neurobehavioral and neurochemical dysfunctions in cerebral ischemia/reperfusion injury by Tetrapleura tetraptera fruit extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113284. [PMID: 32841692 DOI: 10.1016/j.jep.2020.113284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrapleura tetraptera Taub. (family Fabaceae), is generally found in the lowland forest of tropical Africa. Its leaves and fruits are traditionally used in West Africa for the management of brain disorders. AIM OF THE STUDY This study evaluated the effect of Tetrapleura tetraptera methanol fruit extract (TT) on bilateral common carotid artery occlusion-induced cerebral ischemia/reperfusion (I/R) injury in male Wistar rats. MATERIALS AND METHODS Rats pretreated with TT for 7 days before a 30 min bilateral common carotid artery occlusion and reperfusion for 24 h were assessed for neurobehavioural deficits. Cortical, striatal and hippocampal oxidative stress, pro-inflammatory events, electrolyte imbalance and neurochemical dysfunctions, as well as hippocampal histopathological alterations, were also evaluated. HPLC-DAD analysis was performed to identify likely compounds contributing to the bioactivity of the extract. RESULTS TT reduced I/R-induced behavioral deficits and ameliorated I/R-induced oxidative stress by restoring reduced glutathione level, increasing catalase and superoxide dismutase activities, and also reducing both lipid peroxidation and xanthine oxidase activity in the brain. TT attenuated I/R-increased myeloperoxidase and lactate dehydrogenase activities as well as disturbances in Na+ and K+ levels. Alterations elicited by I/R in the activities of Na+/K+ ATPase, complex I, glutamine synthetase, acetylcholinesterase, and dopamine metabolism were abated by TT pretreatment. TT prevented I/R-induced histological changes in the hippocampus. HPLC-DAD analysis revealed the presence of aridanin, a marker compound for Tetrapleura tetraptera, and other phytochemicals. CONCLUSIONS These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy.
Collapse
Affiliation(s)
- Ibrahim Olabayode Saliu
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria; Department of System Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Zainab Abiola Amoo
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Hardoi Road, Lucknow, 226003, UP, India
| | - M Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Velayudhan Rema
- Department of System Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria.
| |
Collapse
|
76
|
Liu Y, Li S, Wang R, Pu H, Zhao Y, Ye Q, Shi Y. Inhibition of TGFβ-activated kinase 1 promotes inflammation-resolving microglial/macrophage responses and recovery after stroke in ovariectomized female mice. Neurobiol Dis 2021; 151:105257. [PMID: 33434616 DOI: 10.1016/j.nbd.2021.105257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
TGFβ-activated kinase 1 (TAK1) is a master regulator that drives multiple cell death and proinflammatory signaling pathways, making it a promising therapeutic target to treat ischemic stroke. However, whether targeting TAK1 could improve stroke outcomes has never been tested in female subjects, hindering its potential translation into clinical use. Here we examined the therapeutic effect of 5Z-7-Oxozeaenol (OZ), a selective TAK1 inhibitor, in ovariectomized female mice after middle cerebral artery occlusion (MCAO). OZ significantly reduced neuronal cell death and axonal injury at the acute stage and mitigated neuroinflammation at the subacute stage after MCAO in ovariectomized female mice. Consistent with RNA sequencing analysis that TAK1 activation contributed to microglia/macrophage-mediated inflammatory responses in the post-stroke brain, inhibition of TAK1 with OZ caused phenotypic shift of microglia/macrophages toward an inflammation-resolving state. Furthermore, microglia/macrophage-specific TAK1 knockout (TAK1 mKO) reproduced OZ's effects, causally confirming the role of TAK1 in determining proinflammatory microglial/macrophage responses in post-stroke females. Post-stroke treatment with OZ for 5 days effectively promoted long-term neurological recovery and the integrity of both gray matter and white matter in female mice. Together, the TAK1 inhibitor OZ elicits long-lasting improvement of stroke outcomes in female mice, at least partially through enhancing beneficial microglial/macrophage responses and inflammation resolution. Given its therapeutic efficacy on both male and female rodents, TAK1 inhibitor is worth further investigation as a valid treatment to ischemic stroke.
Collapse
Affiliation(s)
- Yaan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Rongrong Wang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
77
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
78
|
Gulati A, Agrawal N, Vibha D, Misra UK, Paul B, Jain D, Pandian J, Borgohain R. Safety and Efficacy of Sovateltide (IRL-1620) in a Multicenter Randomized Controlled Clinical Trial in Patients with Acute Cerebral Ischemic Stroke. CNS Drugs 2021; 35:85-104. [PMID: 33428177 PMCID: PMC7872992 DOI: 10.1007/s40263-020-00783-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sovateltide (IRL-1620, PMZ-1620), an endothelin-B receptor agonist, has been previously shown to increase cerebral blood flow, have anti-apoptotic activity and produce neurovascular remodeling when administered intravenously following acute cerebral ischemic stroke in rats. Its safety and tolerability were confirmed in healthy human volunteers (CTRI/2016/11/007509). OBJECTIVE Our objective was to determine the safety, tolerability and efficacy of sovateltide as an addition to standard of care (SOC) in patients with acute cerebral ischemic stroke. METHODS A prospective, multicentric, randomized, double-blind, placebo-controlled study was conducted to compare the safety (primary objective) and efficacy (secondary objective) of sovateltide in patients with acute cerebral ischemic stroke. Adult males or females aged 18-70 years who had experienced a radiologically confirmed ischemic stroke within the last 24 h were included in the study. Patients with intracranial hemorrhage and those receiving endovascular therapy were excluded. Patients randomized to the sovateltide group received three doses of sovateltide (each dose 0.3 µg/kg) administered as an intravenous bolus over 1 min at an interval of 3 ± 1 h on day 1, day 3 and day 6 (total dose of 0.9 µg/kg/day). Patients randomized to the placebo group received an equal volume of saline. Every patient in both groups received SOC for stroke. Efficacy was evaluated using neurological outcomes based on National Institute of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS) and Barthel Index (BI) scores from day 1 through day 90. Quality of life was measured using the EuroQoL-5 Dimensions (EQ-5D) and Stroke-Specific Quality of Life (SSQoL) at 60 and 90 days of follow-up. RESULTS A total of 40 patients with acute cerebral ischemic stroke were enrolled in this study, of whom 36 completed the 90-day follow-up. Patients received saline (n = 18; 11 male and 7 female) or sovateltide (n = 18; 15 male and 3 female) within 24 h of onset of stroke. The number of patients receiving investigational drug within 20 h of onset of stroke was 14/18 in the saline group and 10/18 in the sovateltide group. The baseline characteristics and SOC in both cohorts was similar. Sovateltide was well-tolerated, and all patients received complete treatment with no incidence of drug-related adverse events. Hemodynamic, biochemical or hematological parameters were not affected by sovateltide. Sovateltide treatment resulted in improved mRS and BI scores on day 6 compared with day 1 (p < 0.0001), an effect not seen in the saline group. Sovateltide increased the frequency of favorable outcomes at 3 months. An improvement of ≥ 2 points on the mRS was observed in 60 and 40% of patients in the sovateltide and saline groups, respectively (p = 0.0519; odds ratio [OR] 5.25). An improvement on the BI of ≥ 40 points was seen in 64 and 36% of the sovateltide and saline groups, respectively (p = 0.0112; OR 12.44). An improvement of ≥6 points on the NIHSS was seen in 56% of patients in the sovateltide group versus 43% in the saline group (p = 0.2714; OR 2.275). The number of patients with complete recovery (defined as an NIHSS score of 0 and a BI of 100) was significantly greater (p < 0.05) in the sovateltide group than in the saline group. An assessment of complete recovery using an mRS score of 0 did not show a statistically significant difference between the treatment groups. Sovateltide treatment resulted in improved quality of life as measured by the EQ-5D and SSQoL on day 90. CONCLUSION Sovateltide was safe and well-tolerated and resulted in improved neurological outcomes in patients with acute cerebral ischemic stroke 90 days post-treatment. TRIAL REGISTRATION The study is registered at CTRI/2017/11/010654 and NCT04046484.
Collapse
Affiliation(s)
- Anil Gulati
- Pharmazz, Inc., 50 West 75th Street, Suite 105, Willowbrook, IL, 60527, USA.
- Midwestern University, Downers Grove, IL, USA.
| | | | - Deepti Vibha
- All India Inst of Medical Sciences, New Delhi, India
| | - U K Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | |
Collapse
|
79
|
Ta S, Rong X, Guo Z, Jin H, Zhang P, Li F, Li Z, Lin L, Zheng C, Gu Q, Zhang Y, Liu W, Yang Y, Chang J. Variants of WNT7A and GPR124 are associated with hemorrhagic transformation following intravenous thrombolysis in ischemic stroke. CNS Neurosci Ther 2021; 27:71-81. [PMID: 32991049 PMCID: PMC7804912 DOI: 10.1111/cns.13457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS The canonical Wnt signaling pathway plays an essential role in blood-brain barrier integrity and intracerebral hemorrhage in preclinical stroke models. Here, we sought to explore the association between canonical Wnt signaling and hemorrhagic transformation (HT) following intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients as well as to determine the underlying cellular mechanisms. METHODS 355 consecutive AIS patients receiving IVT were included. Blood samples were collected on admission, and HT was detected at 24 hours after IVT. 117 single-nucleotide polymorphisms (SNPs) of 28 Wnt signaling genes and exon sequences of 4 core cerebrovascular Wnt signaling components (GPR124, RECK, FZD4, and CTNNB1) were determined using a customized sequencing chip. The impact of identified genetic variants was further studied in HEK 293T cells using cellular and biochemical assays. RESULTS During the study period, 80 patients experienced HT with 27 parenchymal hematoma (PH). Compared to the non-PH patients, WNT7A SNPs (rs2163910, P = .001, OR 2.727; rs1124480, P = .002, OR 2.404) and GPR124 SNPs (rs61738775, P = .012, OR 4.883; rs146016051, P < .001, OR 7.607; rs75336000, P = .044, OR 2.503) were selectively enriched in the PH patients. Interestingly, a missense variant of GPR124 (rs75336000, c.3587G>A) identified in the PH patients resulted in a single amino acid alteration (p.Cys1196Tyr) in the intracellular domain of GPR124. This variant substantially reduced the activity of WNT7B-induced canonical Wnt signaling by decreasing the ability of GPR124 to recruit cytoplasmic DVL1 to the cellular membrane. CONCLUSION Variants of WNT7A and GPR124 are associated with increased risk of PH in patients with AIS after intravenous thrombolysis, likely through regulating the activity of canonical Wnt signaling.
Collapse
Affiliation(s)
- Song Ta
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xianfang Rong
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen‐Ni Guo
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hang Jin
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Peng Zhang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Fenge Li
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Zhihuan Li
- Dongguan Enlife Stem Cell Biotechnology InstituteDongguanChina
| | - Lilong Lin
- Dongguan Enlife Stem Cell Biotechnology InstituteDongguanChina
| | | | - Qingquan Gu
- Shenzhen RealOmics Biotech Co., Ltd.ShenzhenChina
| | - Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated HospitalShenzhen University School of MedicineShenzhenChina
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated HospitalShenzhen University School of MedicineShenzhenChina
| | - Yi Yang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
80
|
Kannan A, Delgardo M, Pennington-FitzGerald W, Jiang EX, Christophe BR, Connolly ES. Pharmacological management of cerebral ischemia in the elderly. Expert Opin Pharmacother 2020; 22:897-906. [PMID: 33382005 DOI: 10.1080/14656566.2020.1856815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: For elderly adults in the United States, stroke is the fifth leading cause of death of which ischemic strokes comprise a vast majority. Optimal pharmacological management of elderly ischemic stroke patients involves both reperfusion and supportive care. Recent research into pharmacological management has focused on vascular, immunomodulatory, cytoprotective, and alternative agents, some of which have shown limited success in clinical trials. However, no treatments have been established as a reliable mode for management of cerebral ischemia for elderly adults beyond acute thrombolysis.Areas covered: The authors conducted a literature search for ischemic stroke management in the elderly and a search for human drug studies for managing ischemic stroke on clinicaltrials.gov. Here, they describe recent progress in the pharmacological management of cerebral ischemia in the elderly.Expert opinion: Many drug classes (antihypertensive, cytoprotective and immunomodulatory, and alternative agents) have been explored with limited success in managing ischemic stroke, though some have shown preventative benefits. We generally observed a broad gap in evidence on elderly patients from studies across all drug classes, necessitating further studies to gain an understanding of effective management of ischemic stroke in this large demographic of patients.
Collapse
Affiliation(s)
- Adithya Kannan
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Mychael Delgardo
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | | | - Enoch X Jiang
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Brandon R Christophe
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
81
|
Shi L, Rocha M, Zhang W, Jiang M, Li S, Ye Q, Hassan SH, Liu L, Adair MN, Xu J, Luo J, Hu X, Wechsler LR, Chen J, Shi Y. Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:S49-S66. [PMID: 32438860 PMCID: PMC7687039 DOI: 10.1177/0271678x20925655] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
Senescence-associated alterations in microglia may have profound impact on cerebral homeostasis and stroke outcomes. However, the lack of a transcriptome-wide comparison between young and aged microglia in the context of ischemia limits our understanding of aging-related mechanisms. Herein, we performed RNA sequencing analysis of microglia purified from cerebral hemispheres of young adult (10-week-old) and aged (18-month-old) mice five days after distal middle cerebral artery occlusion or after sham operation. Considerable transcriptional differences were observed between young and aged microglia in healthy brains, indicating heightened chronic inflammation in aged microglia. Following stroke, the overall transcriptional activation was more robust (>13-fold in the number of genes upregulated) in young microglia than in aged microglia. Gene clusters with functional implications in immune inflammatory responses, immune cell chemotaxis, tissue remodeling, and cell-cell interactions were markedly activated in microglia of young but not aged stroke mice. Consistent with the genomic profiling predictions, post-stroke cerebral infiltration of peripheral immune cells was markedly decreased in aged mice compared to young mice. Moreover, post-ischemic aged microglia demonstrated reduced interaction with neighboring neurons and diminished polarity toward the infarct lesion. These alterations in microglial gene response and behavior may contribute to aging-driven vulnerability and poorer recovery after ischemic stroke.
Collapse
Affiliation(s)
- Ligen Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcelo Rocha
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenting Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sicheng Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ye
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Sulaiman H Hassan
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liqiang Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maya N Adair
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
82
|
Barfejani AH, Jafarvand M, Seyedsaadat SM, Rasekhi RT. Donepezil in the treatment of ischemic stroke: Review and future perspective. Life Sci 2020; 263:118575. [DOI: 10.1016/j.lfs.2020.118575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023]
|
83
|
Kühn AL, Vardar Z, Kraitem A, King RM, Anagnostakou V, Puri AS, Gounis MJ. Biomechanics and hemodynamics of stent-retrievers. J Cereb Blood Flow Metab 2020; 40:2350-2365. [PMID: 32428424 PMCID: PMC7820689 DOI: 10.1177/0271678x20916002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022]
Abstract
In 2015, multiple randomized clinical trials showed an unparalleled treatment benefit of stent-retriever thrombectomy as compared to standard medical therapy for the treatment of a large artery occlusion causing acute ischemic stroke. A short time later, the HERMES collaborators presented the patient-level pooled analysis of five randomized clinical trials, establishing class 1, level of evidence A for stent-retriever thrombectomy, in combination with intravenous thrombolysis when indicated to treat ischemic stroke. In the years following, evidence continues to mount for expanded use of this therapy for a broader category of patients. The enabling technology that changed the tide to support endovascular treatment of acute ischemic stroke is the stent-retriever. This review summarizes the history of intra-arterial treatment of stroke, introduces the biomechanics of embolus extraction with stent-retrievers, describes technical aspects of the intervention, provides a description of hemodynamic implications of stent-retriever embolectomy, and proposes future directions for a more comprehensive, multi-modal endovascular approach for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Anna Luisa Kühn
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zeynep Vardar
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Afif Kraitem
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert M King
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vania Anagnostakou
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ajit S Puri
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew J Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
84
|
Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab 2020; 40:S6-S24. [PMID: 32928017 PMCID: PMC7687032 DOI: 10.1177/0271678x20951995] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of CNS homeostasis. It possesses physical and biochemical characteristics (i.e. tight junction protein complexes, transporters) that are necessary for the BBB to perform this physiological role. Microvascular endothelial cells require support from astrocytes, pericytes, microglia, neurons, and constituents of the extracellular matrix. This intricate relationship implies the existence of a neurovascular unit (NVU). NVU cellular components can be activated in disease and contribute to dynamic remodeling of the BBB. This is especially true of microglia, the resident immune cells of the brain, which polarize into distinct proinflammatory (M1) or anti-inflammatory (M2) phenotypes. Current data indicate that M1 pro-inflammatory microglia contribute to BBB dysfunction and vascular "leak", while M2 anti-inflammatory microglia play a protective role at the BBB. Understanding biological mechanisms involved in microglia activation provides a unique opportunity to develop novel treatment approaches for neurological diseases. In this review, we highlight characteristics of M1 proinflammatory and M2 anti-inflammatory microglia and describe how these distinct phenotypes modulate BBB physiology. Additionally, we outline the role of other NVU cell types in regulating microglial activation and highlight how microglia can be targeted for treatment of disease with a focus on ischemic stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| |
Collapse
|
85
|
Jiang L, Mu H, Xu F, Xie D, Su W, Xu J, Sun Z, Liu S, Luo J, Shi Y, Leak RK, Wechsler LR, Chen J, Hu X. Transcriptomic and functional studies reveal undermined chemotactic and angiostimulatory properties of aged microglia during stroke recovery. J Cereb Blood Flow Metab 2020; 40:S81-S97. [PMID: 32065074 PMCID: PMC7687033 DOI: 10.1177/0271678x20902542] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Age-dependent alterations in microglia behavior have been implicated in neurodegeneration and CNS injuries. Here, we compared the transcriptional profiles of young versus aged microglia during stroke recovery. CD45intermediateCD11b+ microglia were FACS-isolated from the brains of young (10-week-old) and aged (18-month-old) male mice with sham operation or 14 days after distal middle cerebral artery occlusion and subjected to RNA-sequencing analysis. Functional groups enriched in young microglia are indicative of upregulation in cell movement, cell interactions, inflammatory responses and angiogenesis, while aged microglia exhibited a reduction or no change in these features. We confirmed reduced chemoattractive capacities of aged microglia toward ischemic brain tissue in organotypic slide co-cultures, and delayed accumulation of aged microglia around dead neurons injected into the striatum in vivo. In addition, aging is associated with an overall failure to increase the expression of microglial genes involved in cell-cell interactions, such as CXCL10. Finally, impaired upregulation of pro-angiogenic genes in aged microglia was associated with a decline in neovascularization in aged mice compared to young mice after distal middle cerebral artery occlusion. This study provides a new resource to understand the mechanisms underlying microglial alterations in the aged brain milieu and sheds light on new strategies to improve microglial functions in aged stroke victims.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hongfeng Mu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fei Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Di Xie
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Su
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeyu Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
86
|
AKAP12 Supports Blood-Brain Barrier Integrity against Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21239078. [PMID: 33260683 PMCID: PMC7730430 DOI: 10.3390/ijms21239078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.
Collapse
|
87
|
Abstract
Ischemic stroke, which is caused by a sudden clot in the blood vessels, may cause severe brain tissue damage and has become a leading cause of death globally. Currently, thrombolysis is the gold standard primary treatment of ischemic stroke in clinics. However, the short therapeutic window of opportunity limits thrombolysis utility. Secondary cerebral damage caused by stroke is also an urgent problem. In this review, we discuss the present methods of treating ischemic stroke in clinics and their limitations. Various new drug delivery strategies targeting ischemic stroke lesions have also been summarized, including pharmaceutical methods, diagnostic approaches and other routes. These strategies could change the pharmacokinetic behavior, improve targeted delivery or minimize side effects. A better understanding of the novel approaches utilized to facilitate drug delivery in ischemic stroke would improve outcomes.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Rong Yan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Jingjing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
88
|
Diabetes Mellitus/Poststroke Hyperglycemia: a Detrimental Factor for tPA Thrombolytic Stroke Therapy. Transl Stroke Res 2020; 12:416-427. [PMID: 33140258 DOI: 10.1007/s12975-020-00872-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Intravenous administration of tissue-type plasminogen activator (IV tPA) therapy has long been considered a mainstay in ischemic stroke management. However, patients respond to IV tPA therapy unequally with some subsets of patients having worsened outcomes after treatment. In particular, diabetes mellitus (DM) is recognized as a clinically important vascular comorbidity that leads to lower recanalization rates and increased risks of hemorrhagic transformation (HT). In this short-review, we summarize the recent advances in understanding of the underlying mechanisms involved in post-IV tPA worsening of outcome in diabetic stroke. Potential pathologic factors that are related to the suboptimal tPA recanalization in diabetic stroke include higher plasma plasminogen activator inhibitor (PAI)-1 level, diabetic atherogenic vascular damage, glycation of the tPA receptor annexin A2, and alterations in fibrin clot density. While factors contributing to the exacerbation of HT in diabetic stroke include hyperglycemia, vascular oxidative stress, and inflammation, tPA neurovascular toxicity and imbalance in extracellular proteolysis are discussed. Besides, impaired collaterals in DM also compromise the efficacy of IV tPA therapy. Additionally, several tPA combination approaches developed from experimental studies that may help to optimize IV tPA therapy are also briefly summarized. In summary, more research efforts are needed to improve the safety and efficacy of IV tPA therapy in ischemic stroke patients with DM/poststroke hyperglycemia.
Collapse
|
89
|
Xie D, He M, Hu X. Microglia/macrophage diversities in central nervous system physiology and pathology. CNS Neurosci Ther 2020; 25:1287-1289. [PMID: 31793210 PMCID: PMC7154592 DOI: 10.1111/cns.13257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Di Xie
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maxine He
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
90
|
CTRP3 Activates the AMPK/SIRT1-PGC-1α Pathway to Protect Mitochondrial Biogenesis and Functions in Cerebral Ischemic Stroke. Neurochem Res 2020; 45:3045-3058. [DOI: 10.1007/s11064-020-03152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
91
|
Wu D, Fu Y, Wu L, Huber M, Chen J, Yao T, Zhang M, Wu C, Song M, He X, Li S, Zhang Y, Li S, Ding Y, Ji X. Reperfusion plus Selective Intra-arterial Cooling (SI-AC) Improve Recovery in a Nonhuman Primate Model of Stroke. Neurotherapeutics 2020; 17:1931-1939. [PMID: 32710291 PMCID: PMC7851312 DOI: 10.1007/s13311-020-00895-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Early reperfusion is increasingly prioritized in ischemic stroke care, but outcomes remain suboptimal. Therefore, there is an urgent need to find neuroprotective approaches that can be combined with reperfusion to maximize efficacy. Here, the neuroprotective mechanisms behind therapeutic hypothermia were evaluated in a monkey model of ischemic stroke. Focal ischemia was induced in adult rhesus monkeys by placing autologous clots in the middle cerebral artery. Monkeys were treated with tissue plasminogen activator (t-PA) alone or t-PA plus selective intra-arterial cooling (SI-AC). Serial MRI scans and functional deficit were evaluated after ischemia. Histopathology and immunohistochemistry analysis were performed after the final MRI scan. t-PA plus SI-AC treatment led to a higher rate of MRI tissue rescue, and significantly improved neurologic deficits and daily activity scores compared with t-PA alone. In peri-infarct areas, higher fractional anisotropy values and greater fiber numbers were observed in models receiving t-PA plus SI-AC. Histological findings indicated that myelin damage, spheroids, and spongiosis were significantly ameliorated in models receiving SI-AC treatment. White matter integrity was also improved by SI-AC based on immunochemical staining. Our study demonstrates that SI-AC can be effectively combined with t-PA to improve both structural and functional recovery in a monkey model of focal ischemia. These findings provide proof-of-concept that it may be feasible to add neuroprotective agents as adjunctive treatments to reperfusion therapy for stroke.
Collapse
Affiliation(s)
- Di Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Longfei Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianqi Yao
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaoduo He
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Yongbiao Zhang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
92
|
Gao Y, Wu D, Liu D, Huber M, Chen J, Wang X, Lv K, He X, Yang H, Ren C, Ding Y, Ji X, Zhang X. Novel Acute Retinal Artery Ischemia and Reperfusion Model in Nonhuman Primates. Stroke 2020; 51:2568-2572. [PMID: 32684142 DOI: 10.1161/strokeaha.119.028809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The retina, as an externally located neural tissue, offers unique advantages in investigating the effect of therapeutic intervention on the brain. In this study, we put forth a clinically relevant model of retinal ischemia and reperfusion in nonhuman primates. METHODS Acute retinal artery ischemia and reperfusion was induced by injecting an autologous clot into the ophthalmic artery of adult rhesus monkeys, and recanalization was achieved by focal thrombolysis with tPA (tissue-type plasminogen activator). Digital subtraction angiography and fluorescein angiography were used to evaluate blood flow in the retina and the choroid. Electroretinogram, optical coherence tomography, and hematoxylin and eosin staining were used to evaluate the structure and function of the retina after ischemia. RESULTS Digital subtraction angiography and fluorescein angiography images confirmed occlusion of the ophthalmic and central retinal arteries, as well as recanalization after tPA thrombolysis. Electroretinogram indicated retinal functional damage following ischemia, and thrombolysis partially rescued its impairment. Optical coherence tomography and hematoxylin and eosin staining revealed ischemia-induced changes in the retina, and tPA partially mitigated these damages. CONCLUSIONS This novel acute retinal artery ischemia and reperfusion model in rhesus monkeys may closely simulate retinal ischemia/reperfusion in clinical practice and provide an optimal platform for screening neuroprotective strategies.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Ophthalmology (Y.G., D.L., X.W., K.L., H.Y., X.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering (Y.G.), Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine (Y.G., X.J.), Beihang University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience (D.W., J.C., X.H., X.J.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dachuan Liu
- Department of Ophthalmology (Y.G., D.L., X.W., K.L., H.Y., X.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mitchell Huber
- Department of Neurosurgery (M.H., Y.D.), Wayne State University School of Medicine, Detroit
| | - Jian Chen
- Department of Neurology and China-America Institute of Neuroscience (D.W., J.C., X.H., X.J.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xizhe Wang
- Department of Ophthalmology (Y.G., D.L., X.W., K.L., H.Y., X.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kui Lv
- Department of Ophthalmology (Y.G., D.L., X.W., K.L., H.Y., X.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaodu He
- Department of Neurology and China-America Institute of Neuroscience (D.W., J.C., X.H., X.J.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqing Yang
- Department of Ophthalmology (Y.G., D.L., X.W., K.L., H.Y., X.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Institute of Hypoxia Medicine (C.R.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery (M.H., Y.D.), Wayne State University School of Medicine, Detroit
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience (D.W., J.C., X.H., X.J.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine (Y.G., X.J.), Beihang University, Beijing, China
| | - Xuxiang Zhang
- Department of Ophthalmology (Y.G., D.L., X.W., K.L., H.Y., X.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
93
|
Zhao W, Wu C, Stone C, Ding Y, Ji X. Treatment of intracerebral hemorrhage: Current approaches and future directions. J Neurol Sci 2020; 416:117020. [PMID: 32711191 DOI: 10.1016/j.jns.2020.117020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) stands out among strokes, both for the severely morbid outcomes it routinely produces, and for the striking deficiency of defenses possessed against the same. The brain damage caused by ICH proceeds through multiple pathophysiological mechanisms, broadly differentiated into those considered primary, arising from the hematoma itself, and the secondary consequences of hematoma presence and expansion thereof. A number of interventions against ICH and its sequelae have been investigated (e.g., hemostatic therapies, blood pressure control, hematoma evacuation, and a variety of neuroprotective strategies), but conclusive demonstrations of clinical benefit have remained largely elusive. In this review, we begin with a description of these interventions and the trials in which they have been implemented, coupled with an attempt to account for their failure. Possible causes discussed include iatrogenic injury during hematoma evacuation, secondary injury initiated by hematoma persistence after evacuation, and inadequate therapeutic power arising from an excessively narrow focus on a single component of the complex pathophysiology of ICH injury. To conclude, we propose several strategies, such as enhancing endogenous hematoma resolution, hematoma evacuation-based neuroprotection, and multi-targeted therapy, that hold promise as prospects for the extension of anti-ICH therapy into the domain of clinical significance.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Municipal Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
94
|
Jia Q, Zhang X, Zhang A, Wu R, Liu Z, Chen Y, Wang J, Lv L. rLj-RGD4, the shortened peptide of rLj-RGD3 from Lampetra japonica, protects against cerebral ischemia/reperfusion injury via the PI3K/Akt pathway. Peptides 2020; 129:170310. [PMID: 32389578 DOI: 10.1016/j.peptides.2020.170310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022]
Abstract
The toxic RGD peptide, rLj-RGD4, characterized by 4 (Arg-Gly-Asp) (RGD) motifs, is a novel mutant of rLj-RGD3 from the salivary gland of Lampetra japonica. Our previous study showd that rLj-RGD3 exerts a protective effect against cerebral ischemia injury in rats. Through the induction of middle cerebral artery occlusion/reperfusion (MCAO) injuries in rats, the present study investigated the effects and the mechanism through which rLj-RGD4 protects against ischemic stroke. In rats, treatment with rLj-RGD4 2 h after MCAO enhanced survival rate, improved movement and ameliorated the severity of brain infarction and apoptosis by diminishing pathological changes. This study demonstrated that rLj-RGD4 can reverse the downregulation of Bcl2, and the upregulation of Caspase-3. Mechanistic studies showed that rLj-RGD4 upregulated the expression levels of FAK, p-FAK, PI3K and p-Akt. In contrast, caspase-3 expression was inhibited. These results showed that rLj-RGD4 may reduce cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qilan Jia
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Xin Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Ailin Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Rui Wu
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, 116029, China
| | - Zhien Liu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Yiheng Chen
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, 116029, China.
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
95
|
Wu D, Chen J, Hussain M, Wu L, Shi J, Wu C, Ma Y, Zhang M, Yang Q, Fu Y, Duan Y, Ma C, Yan F, Zhu Z, He X, Yao T, Song M, Zhi X, Wang C, Cai L, Li C, Li S, Zhang Y, Ding Y, Ji X. Selective intra-arterial brain cooling improves long-term outcomes in a non-human primate model of embolic stroke: Efficacy depending on reperfusion status. J Cereb Blood Flow Metab 2020; 40:1415-1426. [PMID: 32126876 PMCID: PMC7308521 DOI: 10.1177/0271678x20903697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all stroke neuroprotection modalities, including selective intra-arterial cooling (SI-AC), have failed to be translated from bench to bed side. Potentially overlooked reasons may be biological gaps, inadequate attention to reperfusion states and mismatched attention to neurological benefits. To advance stroke translation, we describe a novel thrombus-based stroke model in adult rhesus macaques. Intra-arterial thrombolysis with tissue plasminogen activator leads to three clinically relevant outcomes - complete, partial, and no recanalization based on digital subtraction angiography. We also find reperfusion as a prerequisite for SI-AC-induced benefits, in which models with complete or partial reperfusion exhibit significantly reduced infarct volumes, mitigated neurological deficits, improved upper limb motor dysfunction in both acute and chronic stages; however, no further neuroprotection is observed in those without reperfusion. In summary, we discover reperfusion as a crucial regulator of SI-AC-induced neuroprotection and provide insights of long-term functional benefits in behavior and imaging levels. Our findings could be important not only for the translational prerequisite and potential molecular targets, but also for this thrombus-thrombolysis model in monkeys as a powerful tool for further translational stroke studies.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mohammed Hussain
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Jingfei Shi
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Yanhui Ma
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunxia Duan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cui Ma
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Feng Yan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zixin Zhu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianqi Yao
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Song
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinglong Zhi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunxiu Wang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanhui Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengli Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongbiao Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Ding
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
96
|
Potential circadian effects on translational failure for neuroprotection. Nature 2020; 582:395-398. [PMID: 32494010 DOI: 10.1038/s41586-020-2348-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/20/2020] [Indexed: 12/26/2022]
Abstract
Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans1,2 may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in 'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reduced neuronal death only in 'inactive-phase' neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.
Collapse
|
97
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
98
|
Abstract
Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating "neurological resilience" in spite of brain injury can give us important insights into new translational therapies. Resilience is the process of active adaptation to a stressor. In the context of neuroprotection, models of preconditioning and unique animal models of extreme physiology (such as hibernating species) reliably demonstrate resilience in the laboratory setting. In the clinical setting, resilience is observed in young patients and can be found in those with specific genetic polymorphisms. These important examples of resilience can help transform and extend the current neuroprotective framework from simply countering the injurious cascade into one that anticipates, monitors, and optimizes patients' physiological responses from the time of injury throughout the process of recovery. This review summarizes the underpinnings of key adaptations common to models of resilience and how this understanding can be applied to new neuroprotective approaches.
Collapse
Affiliation(s)
- Neel S Singhal
- Department of Neurology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA.
| | - Chung-Huan Sun
- Department of Neurology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| | - Evan M Lee
- Cardiovascular Research Institute, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
- Department of Physiology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| | - Dengke K Ma
- Cardiovascular Research Institute, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
- Department of Physiology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| |
Collapse
|
99
|
Wu D, Wu L, Chen J, Huber M, He X, Li S, Ding Y, Ji X. Primate Version of Modified Rankin Scale for Classifying Dysfunction in Rhesus Monkeys. Stroke 2020; 51:1620-1623. [PMID: 32233743 DOI: 10.1161/strokeaha.119.028108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Nonhuman primates are increasingly used in translational studies of ischemic stroke. However, current scoring systems in monkeys (eg, Nonhuman Primate Stroke Scale) do not focus on impairments in activities of daily living, so clinically relevant data are scarce for evaluating functional deficits in this model. Methods- Here, we referenced the modified Rankin Scale to provide a primate version of Rankin Scale (pRS) for ranking neurological dysfunction in monkeys following stroke. We selected hand function and strength, level of activity, and general mobility as the main components of pRS. We also analyzed interobserver variability. Results- pRS is a simple scale with only 6 levels. Functional deficit can be easily classified into none (category 0), slight (categories 1-2), moderate (category 3-4), and severe disabilities (category 5) based on pRS. We validated this scoring system on 11 monkeys, all with varying levels of neurological dysfunction following stroke, assessed by blinded testers. After a short training period, both technicians and neurology residents were able to achieve a high level of consistency using this scoring system. Conclusions- pRS is a simple and reliable functional scale, similar to the widely used modified Rankin Scale, for evaluating long-term neurological dysfunction in nonhuman primates. We recommend further validation studies and analyses.
Collapse
Affiliation(s)
- Di Wu
- From the Department of Neurology and China-America Institute of Neuroscience (D.W., L.W., J.C., X.H., Y.D., X.J.), Xuanwu Hospital, Capital Medical University, Beijing
| | - Longfei Wu
- From the Department of Neurology and China-America Institute of Neuroscience (D.W., L.W., J.C., X.H., Y.D., X.J.), Xuanwu Hospital, Capital Medical University, Beijing
| | - Jian Chen
- From the Department of Neurology and China-America Institute of Neuroscience (D.W., L.W., J.C., X.H., Y.D., X.J.), Xuanwu Hospital, Capital Medical University, Beijing
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI (M.H.)
| | - Xiaoduo He
- From the Department of Neurology and China-America Institute of Neuroscience (D.W., L.W., J.C., X.H., Y.D., X.J.), Xuanwu Hospital, Capital Medical University, Beijing
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing, China (S.L.)
| | - Yuchuan Ding
- From the Department of Neurology and China-America Institute of Neuroscience (D.W., L.W., J.C., X.H., Y.D., X.J.), Xuanwu Hospital, Capital Medical University, Beijing
| | - Xunming Ji
- From the Department of Neurology and China-America Institute of Neuroscience (D.W., L.W., J.C., X.H., Y.D., X.J.), Xuanwu Hospital, Capital Medical University, Beijing
| |
Collapse
|
100
|
Wang R, Liu Y, Ye Q, Hassan SH, Zhao J, Li S, Hu X, Leak RK, Rocha M, Wechsler LR, Chen J, Shi Y. RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. J Cereb Blood Flow Metab 2020; 40:720-738. [PMID: 31722596 PMCID: PMC7168800 DOI: 10.1177/0271678x19888630] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Blood monocytes/macrophages infiltrate the brain after ischemic stroke and critically influence brain injury and regeneration. We investigated stroke-induced transcriptomic changes of monocytes/macrophages by RNA sequencing profiling, using a mouse model of permanent focal cerebral ischemia. Compared to non-ischemic conditions, brain ischemia induced only moderate genomic changes in blood monocytes, but triggered robust genomic reprogramming in monocytes/macrophages invading the brain. Surprisingly, functional enrichment analysis of the transcriptome of brain macrophages revealed significant overrepresentation of biological processes linked to neurovascular remodeling, such as angiogenesis and axonal regeneration, as early as five days after stroke, suggesting a previously underappreciated role for macrophages in initiating post-stroke brain repair. Upstream Regulator analysis predicted peroxisome proliferator-activated receptor gamma (PPARγ) as a master regulator driving the transcriptional reprogramming in post-stroke brain macrophages. Importantly, myeloid cell-specific PPARγ knockout (mKO) mice demonstrated lower post-stroke angiogenesis and neurogenesis than wild-type mice, which correlated significantly with the exacerbation of post-stroke neurological deficits in mKO mice. Collectively, our findings reveal a novel repair-enhancing transcriptome in brain macrophages during post-stroke neurovascular remodeling. As a master switch controlling genomic reprogramming, PPARγ is a rational therapeutic target for promoting and maintaining beneficial macrophage functions, facilitating neurorestoration, and improving long-term functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yaan Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ye
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Sulaiman H Hassan
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Jingyan Zhao
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sicheng Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Marcelo Rocha
- Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|