51
|
Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat Commun 2022; 13:3671. [PMID: 35760778 PMCID: PMC9237085 DOI: 10.1038/s41467-022-31238-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.
Collapse
|
52
|
Singh S, Lee N, Pedroza DA, Bado IL, Hamor C, Zhang L, Aguirre S, Hu J, Shen Y, Xu Y, Gao Y, Zhao N, Chen SH, Wan YW, Liu Z, Chang JT, Hollern D, Perou CM, Zhang XH, Rosen JM. Chemotherapy Coupled to Macrophage Inhibition Induces T-cell and B-cell Infiltration and Durable Regression in Triple-Negative Breast Cancer. Cancer Res 2022; 82:2281-2297. [PMID: 35442423 PMCID: PMC9219596 DOI: 10.1158/0008-5472.can-21-3714] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Immunosuppressive elements within the tumor microenvironment, such as tumor-associated macrophages (TAM), can present a barrier to successful antitumor responses by cytolytic T cells. Here we employed preclinical syngeneic p53 null mouse models of triple-negative breast cancer (TNBC) to develop a treatment regimen that harnessed the immunostimulatory effects of low-dose cyclophosphamide coupled with the pharmacologic inhibition of TAMs using either a small-molecule CSF1R inhibitor or an anti-CSF1R antibody. This therapeutic combination was effective in treating several highly aggressive TNBC murine mammary tumor and lung metastasis models. Single-cell RNA sequencing characterized tumor-infiltrating lymphocytes including Th cells and antigen-presenting B cells that were highly enriched in responders to combination therapy. In one model that exhibited long-term posttreatment tumor regression, high-dimensional imaging techniques identified the close spatial localization of B220+/CD86+-activated B cells and CD4+ T cells in tertiary lymphoid structures that were present up to 6 weeks posttreatment. The transcriptional and metabolic heterogeneity of TAMs was also characterized in two closely related claudin-low/mesenchymal subtype tumor models with differential treatment responses. A murine TAM signature derived from the T12 model was highly conserved in human claudin-low breast cancers, and high expression of the TAM signature correlated with reduced overall survival in patients with breast cancer. This TAM signature may help identify human patients with claudin-low breast cancer that will benefit from the combination of cyclophosphamide and anti-CSF1R therapy. These studies illustrate the complexity of the tumor immune microenvironment and highlight different immune responses that result from rational immunotherapy combinations. SIGNIFICANCE Immunostimulatory chemotherapy combined with pharmacologic inhibition of TAMs results in durable treatment responses elicited by Th cells and B cells in claudin-low TNBC models.
Collapse
Affiliation(s)
- Swarnima Singh
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Nigel Lee
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
| | - Diego A. Pedroza
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Igor L. Bado
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Clark Hamor
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Licheng Zhang
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute (HMRI), Houston, TX
| | - Sergio Aguirre
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Jingyuan Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
| | - Yichao Shen
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Yitian Xu
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute (HMRI), Houston, TX
| | - Yang Gao
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Na Zhao
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Shu-Hsia Chen
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute (HMRI), Houston, TX
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jeffrey T. Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Daniel Hollern
- Salk Institute for Biological Studies, Salk Cancer Center, NOMIS Center for Immunobiology and Microbial Pathogenesis, La Jolla, CA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Xiang H.F. Zhang
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
53
|
The AKT1E17K Allele Promotes Breast Cancer in Mice. Cancers (Basel) 2022; 14:cancers14112645. [PMID: 35681625 PMCID: PMC9179273 DOI: 10.3390/cancers14112645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The main finding reported in this manuscript is that the gain-of-function mutation AKT1E17K is a bona fide oncogene for mammary epithelium, being able to efficiently initiate breast cancer in mice. On the basis of high-molecular-weight cytokeratins expressed by AKT1E17K-derived tumors supported by additional integrative gene expression analysis these tumors resulted similar to human basal-like cancer, phenotypically and molecularly. These results indicate that the AKTE17K strain may represent an appropriate model of human basal-like breast cancer for the identification of novel therapies specific for this type of tumor. Abstract The gain-of-function mutation in the pleckstrin homology domain of AKT1 (AKT1E17K) occurs in lung and breast cancer. Through the use of human cellular models and of a AKT1E17K transgenic Cre-inducible murine strain (R26-AKT1E17K mice), we have demonstrated that AKT1E17K is a bona fide oncogene for lung epithelial cells. However, the role of AKT1E17K in breast cancer remains to be determined. Here, we report the generation and the characterization of a MMTV-CRE; R26-AKT1E17K mouse strain that expresses the mutant AKT1E17K allele in the mammary epithelium. We observed that AKT1E17K stimulates the development of mammary tumors classified as ductal adenocarcinoma of medium–high grade and presented a variety of proliferative alterations classified as adenosis with low-to-high grade dysplasia in the mammary epithelium. A subsequent immunohistochemical characterization suggested they were PR−/HER2−/ER+, basal-like and CK8−/CK10−/CK5+/CK14+. We also observed that, in parallel with an increased proliferation rate, tumors expressing mutant AKT1E17K presented an activation of the GSK3/cyclin D1 pathway in the mammary epithelium and cluster significantly with the human basal-like tumors. In conclusion, we demonstrate AKT1E17K is a bona fide oncogene that can initiate tumors at high efficiency in murine mammary epithelium in vivo.
Collapse
|
54
|
Werner RL, Nekritz EA, Yan KK, Ju B, Shaner B, Easton J, Yu PJ, Silva J. Single-cell analysis reveals Comma-1D as a unique cell model for mammary gland development and breast cancer. J Cell Sci 2022; 135:275228. [PMID: 35502723 DOI: 10.1242/jcs.259329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
The mammary epithelial tree contains two distinct populations, luminal and basal. The investigation of how this heterogeneity is developed and how it influences tumorigenesis has been hampered by the need to perform these studies using animal models. Comma-1D is an immortalized mouse mammary epithelial cell line that has unique morphogenetic properties. By performing single-cell RNA-seq studies we found that Comma-1D cultures consist of two main populations with luminal and basal features and a smaller population with mixed lineage and bipotent characteristics. We demonstrated that multiple transcription factors associated with the differentiation of the mammary epithelium in vivo also modulate this process in Comma-1D cultures. Additionally, we found that only cells with luminal features were able to acquire transformed characteristics after an oncogenic HER2 mutant was introduced in their genomes. Overall, our studies characterize at a single-cell level the heterogeneity of the Comma-1D cell line and illustrate how Comma-1D cells can be used as an experimental model to study both the differentiation and the transformation processes in vitro.
Collapse
Affiliation(s)
- Rachel L Werner
- Graduate School, Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Erin A Nekritz
- Graduate School, Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bridget Shaner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jose Silva
- Graduate School, Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
55
|
Spina E, Simundza J, Incassati A, Chandramouli A, Kugler MC, Lin Z, Khodadadi-Jamayran A, Watson CJ, Cowin P. Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency. Nat Commun 2022; 13:1421. [PMID: 35302059 PMCID: PMC8931046 DOI: 10.1038/s41467-022-28937-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Gpr125 is an orphan G-protein coupled receptor, with homology to cell adhesion and axonal guidance factors, that is implicated in planar polarity and control of cell movements. By lineage tracing we demonstrate that Gpr125 is a highly specific marker of bipotent mammary stem cells in the embryo and of multiple long-lived unipotent basal mammary progenitors in perinatal and postnatal glands. Nipple-proximal Gpr125+ cells express a transcriptomic profile indicative of chemo-repulsion and cell movement, whereas Gpr125+ cells concentrated at invasive ductal tips display a hybrid epithelial-mesenchymal phenotype and are equipped to bind chemokine and growth factors and secrete a promigratory matrix. Gpr125 progenitors acquire bipotency in the context of transplantation and cancer and are greatly expanded and massed at the pushing margins of short latency MMTV-Wnt1 tumors. High Gpr125 expression identifies patients with particularly poor outcome within the basal breast cancer subtype highlighting its potential utility as a factor to stratify risk. Gpr125 has emerged as a specific marker of mammary stem cells and basal progenitors. Here they show that Gpr125 cells congregate at ductal tips during morphogenesis and amass at tumor margins, and that high Gpr125 predicts early tumor onset and poor outcome in basal breast cancer.
Collapse
Affiliation(s)
- Elena Spina
- Department of Cell Biology, New York University School of Medicine, New York, USA.
| | - Julia Simundza
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Angela Incassati
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, USA.,Department of Dermatology, New York University School of Medicine, New York, USA
| | - Matthias C Kugler
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, USA
| | - Ziyan Lin
- Department of Applied Bioinformatics, New York University School of Medicine, New York, USA
| | | | | | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, USA. .,Department of Dermatology, New York University School of Medicine, New York, USA.
| |
Collapse
|
56
|
Liao C, Glodowski CR, Fan C, Liu J, Mott KR, Kaushik A, Vu H, Locasale JW, McBrayer SK, DeBerardinis RJ, Perou CM, Zhang Q. Integrated Metabolic Profiling and Transcriptional Analysis Reveals Therapeutic Modalities for Targeting Rapidly Proliferating Breast Cancers. Cancer Res 2022; 82:665-680. [PMID: 34911787 PMCID: PMC8857046 DOI: 10.1158/0008-5472.can-21-2745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Metabolic dysregulation is a prominent feature in breast cancer, but it remains poorly characterized in patient tumors. In this study, untargeted metabolomics analysis of triple-negative breast cancer (TNBC) and patient with estrogen receptor (ER)-positive breast cancer samples, as well as TNBC patient-derived xenografts (PDX), revealed two major metabolic groups independent of breast cancer histologic subtypes: a "Nucleotide/Carbohydrate-Enriched" group and a "Lipid/Fatty Acid-Enriched" group. Cell lines grown in vivo more faithfully recapitulated the metabolic profiles of patient tumors compared with those grown in vitro. Integrated metabolic and gene expression analyses identified genes that strongly correlate with metabolic dysregulation and predict patient prognosis. As a proof of principle, targeting Nucleotide/Carbohydrate-Enriched TNBC cell lines or PDX xenografts with a pyrimidine biosynthesis inhibitor or a glutaminase inhibitor led to therapeutic efficacy. In multiple in vivo models of TNBC, treatment with the pyrimidine biosynthesis inhibitor conferred better therapeutic outcomes than chemotherapeutic agents. This study provides a metabolic stratification of breast tumor samples that can guide the selection of effective therapeutic strategies targeting breast cancer subsets. In addition, we have developed a public, interactive data visualization portal (http://brcametab.org) based on the data generated from this study to facilitate future research. SIGNIFICANCE A multiomics strategy that integrates metabolic and gene expression profiling in patient tumor samples and animal models identifies effective pharmacologic approaches to target rapidly proliferating breast tumor subtypes.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally
| | - Cherise Ryan Glodowski
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- These authors contributed equally
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin R. Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Akash Kaushik
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hieu Vu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Charles M. Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
57
|
Kumar B, Adebayo AK, Prasad M, Capitano ML, Wang R, Bhat-Nakshatri P, Anjanappa M, Simpson E, Chen D, Liu Y, Schilder JM, Colter AB, Maguire C, Temm CJ, Sandusky G, Doud EH, Wijeratne AB, Mosley AL, Broxmeyer HE, Nakshatri H. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. SCIENCE ADVANCES 2022; 8:eabh3375. [PMID: 35020422 PMCID: PMC8754301 DOI: 10.1126/sciadv.abh3375] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/18/2021] [Indexed: 06/06/2023]
Abstract
Preclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O2, ~21%). However, O2 concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O2 environment in vivo. Although effects of O2 tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air. Similarly, sensitivity of primary cancer cells to anticancer agents is routinely examined at ambient O2. Here, we demonstrate that tumors collected, processed, and propagated at physiologic O2 compared to ambient air display distinct differences in key signaling networks including LGR5/WNT, YAP, and NRF2/KEAP1, nuclear reactive oxygen species, alternative splicing, and sensitivity to targeted therapies. Therefore, evaluating cancer cells under physioxia could more closely recapitulate their physiopathologic status in the in vivo microenvironment.
Collapse
Affiliation(s)
- Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mayuri Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maegan L. Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Edward Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Duojiao Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeanne M. Schilder
- Department of Gynecology and Obstetrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Austyn B. Colter
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Callista Maguire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Constance J. Temm
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aruna B. Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
58
|
Elisia I, Yeung M, Wong J, Kowalski S, Larsen M, Shyp T, Sorensen PH, krystal G. A low carbohydrate diet containing soy protein and fish oil reduces breast but not prostate cancer in C3(1)/Tag mice. Carcinogenesis 2021; 43:115-125. [DOI: 10.1093/carcin/bgab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
We recently showed that a low carbohydrate (CHO) diet containing soy protein and fish oil dramatically reduces lung nodules in a mouse model of lung cancer when compared to a Western diet. To explore the universality of this finding, we herein compared this low CHO diet to a Western diet on in preventing breast and prostate cancer using a mouse model that expresses the SV40 large T antigen specifically in breast epithelia in females and prostate epithelia in males. We found that breast cancer was significantly reduced with this low CHO diet and this correlated with a reduction in plasma levels of glucose, insulin, IL-6, TNFα and PGE2. This also corresponded with a reduction in the Ki67 proliferation index within breast tumors. On the other hand, this low CHO diet did not reduce the incidence of prostate cancer in the male mice. Although it reduced both blood glucose and insulin to the same extent as in the female mice, there was no reduction in plasma IL-6, TNFα or PGE2 levels, nor in the Ki67 proliferation index in prostate lesions. Based on immunohistochemistry studies with antibodies to PFKFB3, CPT1a and FAS, it is likely that this difference in response of the two cancer types to this low CHO diet reflects differences in the glucose dependence of breast and prostate cancer, with the former being highly dependent on glucose for energy and the latter being more dependent on fatty acids.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | - Taras Shyp
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Gerald krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| |
Collapse
|
59
|
How Lineage Tracing Studies Can Unveil Tumor Heterogeneity in Breast Cancer. Biomedicines 2021; 10:biomedicines10010003. [PMID: 35052683 PMCID: PMC8772890 DOI: 10.3390/biomedicines10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Lineage tracing studies have become a well-suited approach to reveal cellular hierarchies and tumor heterogeneity. Cellular heterogeneity, particularly in breast cancer, is still one of the main concerns regarding tumor progression and resistance to anti-cancer therapies. Here, we review the current knowledge about lineage tracing analyses that have contributed to an improved comprehension of the complexity of mammary tumors, highlighting how targeting different mammary epithelial cells and tracing their progeny can be useful to explore the intra- and inter-heterogeneity observed in breast cancer. In addition, we examine the strategies used to identify the cell of origin in different breast cancer subtypes and summarize how cellular plasticity plays an important role during tumorigenesis. Finally, we evaluate the clinical implications of lineage tracing studies and the challenges remaining to address tumor heterogeneity in breast cancer.
Collapse
|
60
|
Nekritz EA, Rodriguez‐Barrueco R, Yan K, Davis ML, Werner RL, Devis‐Jauregui L, Mukhopadhyay P, Yu J, Llobet‐Navas D, Silva J. miR-424/503 modulates Wnt/β-catenin signaling in the mammary epithelium by targeting LRP6. EMBO Rep 2021; 22:e53201. [PMID: 34633138 PMCID: PMC8647148 DOI: 10.15252/embr.202153201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/09/2022] Open
Abstract
During the female lifetime, the expansion of the epithelium dictated by the ovarian cycles is supported by a transient increase in the mammary epithelial stem cell population (MaSCs). Notably, activation of Wnt/β-catenin signaling is an important trigger for MaSC expansion. Here, we report that the miR-424/503 cluster is a modulator of canonical Wnt signaling in the mammary epithelium. We show that mammary tumors of miR-424(322)/503-depleted mice exhibit activated Wnt/β-catenin signaling. Importantly, we show a strong association between miR-424/503 deletion and breast cancers with high levels of Wnt/β-catenin signaling. Moreover, miR-424/503 cluster is required for Wnt-mediated MaSC expansion induced by the ovarian cycles. Lastly, we show that miR-424/503 exerts its function by targeting two binding sites at the 3'UTR of the LRP6 co-receptor and reducing its expression. These results unveil an unknown link between the miR-424/503, regulation of Wnt signaling, MaSC fate, and tumorigenesis.
Collapse
Affiliation(s)
- Erin A Nekritz
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| | - Ruth Rodriguez‐Barrueco
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L’Hospitalet de LlobregatBarcelonaSpain
| | - Koon‐Kiu Yan
- Department of Computational BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Meredith L Davis
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
- Department of PathologyDuke University School of MedicineDurhamNCUSA
| | - Rachel L Werner
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| | - Laura Devis‐Jauregui
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
| | - Partha Mukhopadhyay
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| | - Jiyang Yu
- Department of Computational BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - David Llobet‐Navas
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Jose Silva
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| |
Collapse
|
61
|
Gao Y, Kabotyanski EB, Shepherd JH, Villegas E, Acosta D, Hamor C, Sun T, Montmeyor-Garcia C, He X, Dobrolecki LE, Westbrook TF, Lewis MT, Hilsenbeck SG, Zhang XHF, Perou CM, Rosen JM. Tumor suppressor PLK2 may serve as a biomarker in triple-negative breast cancer for improved response to PLK1 therapeutics. CANCER RESEARCH COMMUNICATIONS 2021; 1:178-193. [PMID: 35156101 PMCID: PMC8827906 DOI: 10.1158/2767-9764.crc-21-0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Polo-like kinase (PLK) family members play important roles in cell cycle regulation. The founding member PLK1 is oncogenic and preclinically validated as a cancer therapeutic target. Paradoxically, frequent loss of chromosome 5q11-35 which includes PLK2 is observed in basal-like breast cancer. In this study, we found that PLK2 was tumor suppressive in breast cancer, preferentially in basal-like and triple-negative breast cancer (TNBC) subtypes. Knockdown of PLK1 rescued phenotypes induced by PLK2-loss both in vitro and in vivo. We also demonstrated that PLK2 directly interacted with PLK1 at prometaphase through the kinase but not the polo-box domains of PLK2, suggesting PLK2 functioned at least partially through the interaction with PLK1. Furthermore, an improved treatment response was seen in both Plk2-deleted/low mouse preclinical and PDX TNBC models using the PLK1 inhibitor volasertib alone or in combination with carboplatin. Re-expression of PLK2 in an inducible PLK2-null mouse model reduced the therapeutic efficacy of volasertib. In summary, this study delineates the effects of chromosome 5q loss in TNBC that includes PLK2, the relationship between PLK2 and PLK1, and how this may render PLK2-deleted/low tumors more sensitive to PLK1 inhibition in combination with chemotherapy.
Collapse
Affiliation(s)
- Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Elena B. Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Deanna Acosta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Clark Hamor
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Tingting Sun
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | | | - Xiaping He
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lacey E. Dobrolecki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Thomas F. Westbrook
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael T. Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G. Hilsenbeck
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas
| | - Charles M. Perou
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Corresponding Author: Jeffrey M. Rosen, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030. Phone: 832-215-9503; E-mail:
| |
Collapse
|
62
|
Breast cancer immune microenvironment: from pre-clinical models to clinical therapies. Breast Cancer Res Treat 2021; 191:257-267. [PMID: 34731350 DOI: 10.1007/s10549-021-06431-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
The breast cancer tumour microenvironment (BC-TME) is characterized by significant cellular and spatial heterogeneity that has important clinical implications and can affect response to therapy. There is a growing need to develop methods that reliably quantify and characterize the BC-TME and model its composition and functions in experimental systems, in the hope of developing new treatments for patients. In this review, we examine the role of immune-activating cells (including tumour-infiltrating lymphocytes and natural killer cells) and immune inhibitory cells (including T regulatory cells, tumour-associated macrophages and myeloid-derived suppressor cells) in the BC-TME. We summarize methods being used to characterize the microenvironment, with specific attention to pre-clinical models including co-cultures, organoids, and genetically modified and humanized mouse models. Finally, we explore the implications and applications of existing preclinical data for drug development and highlight several drugs designed to alter the BC-TME in order to improve treatment outcomes for patients.
Collapse
|
63
|
Price LS, Rivera JN, Madden AJ, Herity LB, Piscitelli JA, Mageau S, Santos CM, Roques JR, Midkiff B, Feinberg NN, Darr D, Chang SX, Zamboni WC. Minibeam radiation therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple-negative breast cancer mouse model. Ther Adv Med Oncol 2021; 13:17588359211053700. [PMID: 34733359 PMCID: PMC8558804 DOI: 10.1177/17588359211053700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Minibeam radiation therapy is an experimental radiation therapy utilizing an array of parallel submillimeter planar X-ray beams. In preclinical studies, minibeam radiation therapy has been shown to eradicate tumors and cause significantly less damage to normal tissue compared to equivalent radiation doses delivered by conventional broadbeam radiation therapy, where radiation dose is uniformly distributed. METHODS Expanding on prior studies that suggested minibeam radiation therapy increased perfusion in tumors, we compared a single fraction of minibeam radiation therapy (peak dose:valley dose of 28 Gy:2.1 Gy and 100 Gy:7.5 Gy) and broadbeam radiation therapy (7 Gy) in their ability to enhance tumor delivery of PEGylated liposomal doxorubicin and alter the tumor microenvironment in a murine tumor model. Plasma and tumor pharmacokinetic studies of PEGylated liposomal doxorubicin and tumor microenvironment profiling were performed in a genetically engineered mouse model of claudin-low triple-negative breast cancer (T11). RESULTS Minibeam radiation therapy (28 Gy) and broadbeam radiation therapy (7 Gy) increased PEGylated liposomal doxorubicin tumor delivery by 7.1-fold and 2.7-fold, respectively, compared to PEGylated liposomal doxorubicin alone, without altering the plasma disposition. The enhanced tumor delivery of PEGylated liposomal doxorubicin by minibeam radiation therapy is consistent after repeated dosing, is associated with changes in tumor macrophages but not collagen or angiogenesis, and nontoxic to local tissues. Our study indicated that the minibeam radiation therapy's ability to enhance the drug delivery decreases from 28 to 100 Gy peak dose. DISCUSSION Our studies suggest that low-dose minibeam radiation therapy is a safe and effective method to significantly enhance the tumor delivery of nanoparticle agents.
Collapse
Affiliation(s)
- Lauren S.L. Price
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Judith N. Rivera
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Andrew J. Madden
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah B. Herity
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A. Piscitelli
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Savannah Mageau
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry (ATPAC) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlene M. Santos
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- The Animal Studies Core, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Jose R. Roques
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- The Animal Studies Core, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Bentley Midkiff
- Translational Pathology Lab, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Nana N. Feinberg
- Translational Pathology Lab, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - David Darr
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Sha X. Chang
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Radiation Oncology, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - William C. Zamboni
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 1022B Genetic Medicine Building, 120 Mason Farm Road, Campus Box 7361, Chapel Hill, NC 27599-7361, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Carolina Center of Cancer Nanotechnology Excellence (C-CCNE), Chapel Hill, NC, USA
- North Carolina Biomedical Innovation Network, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
64
|
Breast cancer dormancy is associated with a 4NG1 state and not senescence. NPJ Breast Cancer 2021; 7:140. [PMID: 34707097 PMCID: PMC8551199 DOI: 10.1038/s41523-021-00347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Reactivation of dormant cancer cells can lead to cancer relapse, metastasis, and patient death. Dormancy is a nonproliferative state and is linked to late relapse and death. No targeted therapy is currently available to eliminate dormant cells, highlighting the need for a deeper understanding and reliable models. Here, we thoroughly characterize the dormant D2.OR and ZR-75-1, and proliferative D2A1 breast cancer cell line models in vivo and/or in vitro, and assess if there is overlap between a dormant and a senescent phenotype. We show that D2.OR but not D2A1 cells become dormant in the liver of an immunocompetent model. In vitro, we show that D2.OR and ZR-75-1 cells in response to a 3D environment or serum-free conditions are growth-arrested in G1, of which a subpopulation resides in a 4NG1 state. The dormancy state is reversible and not associated with a senescence phenotype. This will aid future research on breast cancer dormancy.
Collapse
|
65
|
Rädler PD, Wehde BL, Triplett AA, Shrestha H, Shepherd JH, Pfefferle AD, Rui H, Cardiff RD, Perou CM, Wagner KU. Highly metastatic claudin-low mammary cancers can originate from luminal epithelial cells. Nat Commun 2021; 12:3742. [PMID: 34145248 PMCID: PMC8213728 DOI: 10.1038/s41467-021-23957-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Claudin-low breast cancer represents an aggressive molecular subtype that is comprised of mostly triple-negative mammary tumor cells that possess stem cell-like and mesenchymal features. Little is known about the cellular origin and oncogenic drivers that promote claudin-low breast cancer. In this study, we show that persistent oncogenic RAS signaling causes highly metastatic triple-negative mammary tumors in mice. More importantly, the activation of endogenous mutant KRAS and expression of exogenous KRAS specifically in luminal epithelial cells in a continuous and differentiation stage-independent manner induces preneoplastic lesions that evolve into basal-like and claudin-low mammary cancers. Further investigations demonstrate that the continuous signaling of oncogenic RAS, as well as regulators of EMT, play a crucial role in the cellular plasticity and maintenance of the mesenchymal and stem cell characteristics of claudin-low mammary cancer cells.
Collapse
Affiliation(s)
- Patrick D Rädler
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hridaya Shrestha
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Jonathan H Shepherd
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam D Pfefferle
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert D Cardiff
- Center of Comparative Medicine, University of California, Davis, CA, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
66
|
Regua AT, Arrigo A, Doheny D, Wong GL, Lo HW. Transgenic mouse models of breast cancer. Cancer Lett 2021; 516:73-83. [PMID: 34090924 DOI: 10.1016/j.canlet.2021.05.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Transgenic breast cancer mouse models are critical tools for preclinical studies of human breast cancer. Genetic editing of the murine mammary gland allows for modeling of abnormal genetic events frequently found in human breast cancers. Genetically engineered mouse models (GEMMs) of breast cancer employ tissue-specific genetic manipulation for tumorigenic induction within the mammary tissue. Under the transcriptional control of mammary-specific promoters, transgenic mouse models can simulate spontaneous mammary tumorigenesis by expressing one or more putative oncogenes, such as MYC, HRAS, and PIK3CA. Alternatively, the Cre-Lox system allows for tissue-specific deletion of tumor suppressors, such as p53, Rb1, and Brca1, or specific knock-in of putative oncogenes. Thus, GEMMs can be designed to implement one or more genetic events to induce mammary tumorigenesis. Features of GEMMs, such as age of transgene expression, breeding quality, tumor latency, histopathological characteristics, and propensity for local and distant metastasis, are variable and strain-dependent. This review aims to summarize currently available transgenic breast cancer mouse models that undergo spontaneous mammary tumorigenesis upon genetic manipulation, their varying characteristics, and their individual genetic manipulations that model aberrant signaling events observed in human breast cancers.
Collapse
Affiliation(s)
- Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| |
Collapse
|
67
|
Sena IFG, Rocha BGS, Picoli CC, Santos GSP, Costa AC, Gonçalves BOP, Garcia APV, Soltani-Asl M, Coimbra-Campos LMC, Silva WN, Costa PAC, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Heller D, Cassali GD, Mintz A, Birbrair A. C(3)1-TAg in C57BL/6 J background as a model to study mammary tumor development. Histochem Cell Biol 2021; 156:165-182. [PMID: 34003355 DOI: 10.1007/s00418-021-01995-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer. However, carcinogenesis caused by this transgene was characterized in the Friend Virus B (FVB) background. As most genetic studies are done in mice with C57BL/6 J background, we aimed to define the histological alterations in C3(1)-TAg C57BL/6 J animals. Our results showed that C3(1)-TAg animals with C57BL/6 J background develop solid-basaloid adenoid cystic carcinomas with increased fibrosis, decreased area of adipocytes, and a high proliferative index, which are triple-negative for progesterone, estrogen, and human epidermal growth factor receptor 2 (HER2) receptors. Our results also revealed that tumor development is slower in the C57BL/6 J background when compared with the FVB strain, providing a better model to study the different stages in breast cancer progression.
Collapse
Affiliation(s)
- Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula V Garcia
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maryam Soltani-Asl
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora Heller
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Cruzeiro Do Sul University, São Paulo, Brazil
| | - Geovanni D Cassali
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
68
|
Nathanson SD, Detmar M, Padera TP, Yates LR, Welch DR, Beadnell TC, Scheid AD, Wrenn ED, Cheung K. Mechanisms of breast cancer metastasis. Clin Exp Metastasis 2021; 39:117-137. [PMID: 33950409 PMCID: PMC8568733 DOI: 10.1007/s10585-021-10090-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Invasive breast cancer tends to metastasize to lymph nodes and systemic sites. The management of metastasis has evolved by focusing on controlling the growth of the disease in the breast/chest wall, and at metastatic sites, initially by surgery alone, then by a combination of surgery with radiation, and later by adding systemic treatments in the form of chemotherapy, hormone manipulation, targeted therapy, immunotherapy and other treatments aimed at inhibiting the proliferation of cancer cells. It would be valuable for us to know how breast cancer metastasizes; such knowledge would likely encourage the development of therapies that focus on mechanisms of metastasis and might even allow us to avoid toxic therapies that are currently used for this disease. For example, if we had a drug that targeted a gene that is critical for metastasis, we might even be able to cure a vast majority of patients with breast cancer. By bringing together scientists with expertise in molecular aspects of breast cancer metastasis, and those with expertise in the mechanical aspects of metastasis, this paper probes interesting aspects of the metastasis cascade, further enlightening us in our efforts to improve the outcome from breast cancer treatments.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Cancer Institute, 2799 W Grand Boulevard, Detroit, MI, USA.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Timothy P Padera
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thomas C Beadnell
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Adam D Scheid
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
69
|
Roarty K, Echeverria GV. Laboratory Models for Investigating Breast Cancer Therapy Resistance and Metastasis. Front Oncol 2021; 11:645698. [PMID: 33777805 PMCID: PMC7988094 DOI: 10.3389/fonc.2021.645698] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023] Open
Abstract
While numerous therapies are highly efficacious in early-stage breast cancers and in particular subsets of breast cancers, therapeutic resistance and metastasis unfortunately arise in many patients. In many cases, tumors that are resistant to standard of care therapies, as well as tumors that have metastasized, are treatable but incurable with existing clinical strategies. Both therapy resistance and metastasis are multi-step processes during which tumor cells must overcome diverse environmental and selective hurdles. Mechanisms by which tumor cells achieve this are numerous and include acquisition of invasive and migratory capabilities, cell-intrinsic genetic and/or epigenetic adaptations, clonal selection, immune evasion, interactions with stromal cells, entering a state of dormancy or senescence, and maintaining self-renewal capacity. To overcome therapy resistance and metastasis in breast cancer, the ability to effectively model each of these mechanisms in the laboratory is essential. Herein we review historic and the current state-of-the-art laboratory model systems and experimental approaches used to investigate breast cancer metastasis and resistance to standard of care therapeutics. While each model system has inherent limitations, they have provided invaluable insights, many of which have translated into regimens undergoing clinical evaluation. We will discuss the limitations and advantages of a variety of model systems that have been used to investigate breast cancer metastasis and therapy resistance and outline potential strategies to improve experimental modeling to further our knowledge of these processes, which will be crucial for the continued development of effective breast cancer treatments.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Gloria V Echeverria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States.,Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
70
|
ATF3-Induced Mammary Tumors Exhibit Molecular Features of Human Basal-Like Breast Cancer. Int J Mol Sci 2021; 22:ijms22052353. [PMID: 33652981 PMCID: PMC7956570 DOI: 10.3390/ijms22052353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Basal-like breast cancer (BLBC) is an aggressive and deadly subtype of human breast cancer that is highly metastatic, displays stem-cell like features, and has limited treatment options. Therefore, developing and characterizing preclinical mouse models with tumors that resemble BLBC is important for human therapeutic development. ATF3 is a potent oncogene that is aberrantly expressed in most human breast cancers. In the BK5.ATF3 mouse model, overexpression of ATF3 in the basal epithelial cells of the mammary gland produces tumors that are characterized by activation of the Wnt/β-catenin signaling pathway. Here, we used RNA-Seq and microRNA (miRNA) microarrays to better define the molecular features of BK5.ATF3-derived mammary tumors. These analyses showed that these tumors share many characteristics of human BLBC including reduced expression of Rb1, Esr1, and Pgr and increased expression of Erbb2, Egfr, and the genes encoding keratins 5, 6, and 17. An analysis of miRNA expression revealed reduced levels of Mir145 and Mir143, leading to the upregulation of their target genes including both the pluripotency factors Klf4 and Sox2 as well as the cancer stem-cell-related gene Kras. Finally, we show through knock-down experiments that ATF3 may directly modulate MIR145/143 expression. Taken together, our results indicate that the ATF3 mouse mammary tumor model could provide a powerful model to define the molecular mechanisms leading to BLBC, identify the factors that contribute to its aggressiveness, and, ultimately, discover specific genes and gene networks for therapeutic targeting.
Collapse
|
71
|
Wang R, Kumar B, Bhat-Nakshatri P, Prasad MS, Jacobsen MH, Ovalle G, Maguire C, Sandusky G, Trivedi T, Mohammad KS, Guise T, Penthala NR, Crooks PA, Liu J, Zimmers T, Nakshatri H. Aging-associated skeletal muscle defects in HER2/Neu transgenic mammary tumor model. JCSM RAPID COMMUNICATIONS 2021; 4:24-39. [PMID: 33842876 PMCID: PMC8028024 DOI: 10.1002/rco2.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of skeletal muscle volume and resulting in functional limitations are poor prognostic markers in breast cancer patients. Several molecular defects in skeletal muscle including reduced MyoD levels and increased protein turn over due to enhanced proteosomal activity have been suggested as causes of skeletal muscle loss in cancer patients. However, it is unknown whether molecular defects in skeletal muscle are dependent on tumor etiology. METHODS We characterized functional and molecular defects of skeletal muscle in MMTV-Neu (Neu+) mice (n= 6-12), an animal model that represents HER2+ human breast cancer, and compared the results with well-characterized luminal B breast cancer model MMTV-PyMT (PyMT+). Functional studies such as grip strength, rotarod performance, and ex vivo muscle contraction were performed to measure the effects of cancer on skeletal muscle. Expression of muscle-enriched genes and microRNAs as well as circulating cytokines/chemokines were measured. Since NF-κB pathway plays a significant role in skeletal muscle defects, the ability of NF-κB inhibitor dimethylaminoparthenolide (DMAPT) to reverse skeletal muscle defects was examined. RESULTS Neu+ mice showed skeletal muscle defects similar to accelerated aging. Compared to age and sex-matched wild type mice, Neu+ tumor-bearing mice had lower grip strength (202±6.9 vs. 179±6.8 g grip force, p=0.0069) and impaired rotarod performance (108±12.1 vs. 30±3.9 seconds, P<0.0001), which was consistent with reduced muscle contractibility (p<0.0001). Skeletal muscle of Neu+ mice (n=6) contained lower levels of CD82+ (16.2±2.9 vs 9.0±1.6) and CD54+ (3.8±0.5 vs 2.4±0.4) muscle stem and progenitor cells (p<0.05), suggesting impaired capacity of muscle regeneration, which was accompanied by decreased MyoD, p53 and miR-486 expression in muscles (p<0.05). Unlike PyMT+ mice, which showed skeletal muscle mitochondrial defects including reduced mitochondria levels and Pgc1β, Neu+ mice displayed accelerated aging-associated changes including muscle fiber shrinkage and increased extracellular matrix deposition. Circulating "aging factor" and cachexia and fibromyalgia-associated chemokine Ccl11 was elevated in Neu+ mice (1439.56±514 vs. 1950±345 pg/ml, p<0.05). Treatment of Neu+ mice with DMAPT significantly restored grip strength (205±6 g force), rotarod performance (74±8.5 seconds), reversed molecular alterations associated with skeletal muscle aging, reduced circulating Ccl11 (1083.26 ±478 pg/ml), and improved animal survival. CONCLUSIONS These results suggest that breast cancer subtype has a specific impact on the type of molecular and structure changes in skeletal muscle, which needs to be taken into consideration while designing therapies to reduce breast cancer-induced skeletal muscle loss and functional limitations.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Max H. Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriela Ovalle
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Calli Maguire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Trupti Trivedi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khalid S Mohammad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Theresa Guise
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
72
|
Attalla S, Taifour T, Bui T, Muller W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 2021; 40:475-491. [PMID: 33235291 PMCID: PMC7819848 DOI: 10.1038/s41388-020-01560-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer is associated with the second highest cancer-associated deaths worldwide. Therefore, understanding the key events that determine breast cancer progression, modulation of the tumor-microenvironment and metastasis, which is the main cause of cancer-associated death, are of great importance. The mammary specific polyomavirus middle T antigen overexpression mouse model (MMTV-PyMT), first published in 1992, is the most commonly used genetically engineered mouse model (GEMM) for cancer research. Mammary lesions arising in MMTV-PyMT mice follow similar molecular and histological progression as human breast tumors, making it an invaluable tool for cancer researchers and instrumental in understanding tumor biology. In this review, we will highlight key studies that demonstrate the utility of PyMT derived GEMMs in understanding the molecular basis of breast cancer progression, metastasis and highlight its use as a pre-clinical tool for therapeutic discovery.
Collapse
Affiliation(s)
- Sherif Attalla
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Tarek Taifour
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
- Faculty of Medicine, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Tung Bui
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - William Muller
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
73
|
Ferrucci V, Asadzadeh F, Collina F, Siciliano R, Boccia A, Marrone L, Spano D, Carotenuto M, Chiarolla CM, De Martino D, De Vita G, Macrì A, Dassi L, Vandenbussche J, Marino N, Cantile M, Paolella G, D'Andrea F, di Bonito M, Gevaert K, Zollo M. Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer. iScience 2020; 24:101938. [PMID: 33426510 PMCID: PMC7779777 DOI: 10.1016/j.isci.2020.101938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-β enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations. Prune-1 correlates to M2-TAMs confirming lung metastatic dissemination in GEMM Cytokines and EV proteins are responsible of M2-TAMs polarization processes A small molecule with immunomodulatory properties ameliorates metastatic dissemination Identification of gene variants within immune response and cell adhesion in TNBC
Collapse
Affiliation(s)
- Veronica Ferrucci
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy
| | - Fatemeh Asadzadeh
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | | | - Laura Marrone
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Marianeve Carotenuto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Daniela De Martino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Gennaro De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Luisa Dassi
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy
| | - Jonathan Vandenbussche
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Natascia Marino
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Department of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis 46202, USA
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | - Francesco D'Andrea
- Dipartimento di Sanità pubblica - AOU, Università; degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Maurizio di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | - Kris Gevaert
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Massimo Zollo
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Federico II, Naples 80131, Italy
| |
Collapse
|
74
|
Schaafsma E, Zhao Y, Zhang L, Li Y, Cheng C. MYC Activity Inference Captures Diverse Mechanisms of Aberrant MYC Pathway Activation in Human Cancers. Mol Cancer Res 2020; 19:414-428. [PMID: 33234576 DOI: 10.1158/1541-7786.mcr-20-0526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
c-MYC (MYC) is deregulated in more than 50% of all cancers. While MYC amplification is the most common MYC-deregulating event, many other alterations can increase MYC activity. We thus systematically investigated MYC pathway activity across different tumor types. Using a logistic regression framework, we established tumor type-specific, transcriptomic-based MYC activity scores that can accurately capture MYC activity. We show that MYC activity scores reflect a variety of MYC-regulating mechanisms, including MYCL and/or MYCN amplification, MYC promoter methylation, MYC mRNA expression, lncRNA PVT1 expression, MYC mutations, and viral integrations near the MYC locus. Our MYC activity score incorporates all of these mechanisms, resulting in better prognostic predictions compared with MYC amplification status, MYC promoter methylation, and MYC mRNA expression in several cancer types. In addition, we show that tumor proliferation and immune evasion are likely contributors to this reduction in survival. Finally, we developed a MYC activity signature for liquid tumors in which MYC translocation is commonly observed, suggesting that our approach can be applied to different types of genomic alterations. In conclusion, we developed a MYC activity score that captures MYC pathway activity and is clinically relevant. IMPLICATIONS: By using cancer type-specific MYC activity profiles, we were able to assess MYC activity across many more tumor types than previously investigated. The range of different MYC-related alterations captured by our MYC activity score can be used to facilitate the application of future MYC inhibitors and aid physicians to preselect patients for targeted therapy.
Collapse
Affiliation(s)
- Evelien Schaafsma
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, New Hampshire
| | - Yanding Zhao
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey.,Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, Texas
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
75
|
Abstract
Every year, over 2 million women are diagnosed with breast cancer. Although considerable progress was made within the last years in cancer prevention, diagnosis and treatment, breast cancer is still responsible for over 600,000 of deaths per year. Over the years, numerous mouse models have been developed to understand breast cancer etiology and progression. Among those, mammary carcinomas induced by carcinogen, such as 7,12-dimethylbenz[a]anthracene (DMBA), has been widely used. Generally, 30-70% of mice exposed to 4-6 weekly doses of 1mg of DMBA during the peripubertal period (4-10 weeks of age) will develop mammary tumors within 150-200 days after the first exposure, that sometime metastasize to the lungs. As a result, DMBA-induced tumorigenesis is thought to be an accurate and relevant model to study breast cancer as it closely mimics this multistep process. This chapter presents the typical protocol used in mice to induce mammary gland tumors using DMBA. The influence of the number of doses and the total burden of DMBA given, as well as of the age and strain of the mice on mammary gland incident and on tumor onset are discussed. The current knowledge regarding mechanisms involved in DMBA-induced tumorigenesis is also presented.
Collapse
|
76
|
Crosby EJ, Acharya CR, Haddad AF, Rabiola CA, Lei G, Wei JP, Yang XY, Wang T, Liu CX, Wagner KU, Muller WJ, Chodosh LA, Broadwater G, Hyslop T, Shepherd JH, Hollern DP, He X, Perou CM, Chai S, Ashby BK, Vincent BG, Snyder JC, Force J, Morse MA, Lyerly HK, Hartman ZC. Stimulation of Oncogene-Specific Tumor-Infiltrating T Cells through Combined Vaccine and αPD-1 Enable Sustained Antitumor Responses against Established HER2 Breast Cancer. Clin Cancer Res 2020; 26:4670-4681. [PMID: 32732224 DOI: 10.1158/1078-0432.ccr-20-0389] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Despite promising advances in breast cancer immunotherapy, augmenting T-cell infiltration has remained a significant challenge. Although neither individual vaccines nor immune checkpoint blockade (ICB) have had broad success as monotherapies, we hypothesized that targeted vaccination against an oncogenic driver in combination with ICB could direct and enable antitumor immunity in advanced cancers. EXPERIMENTAL DESIGN Our models of HER2+ breast cancer exhibit molecular signatures that are reflective of advanced human HER2+ breast cancer, with a small numbers of neoepitopes and elevated immunosuppressive markers. Using these, we vaccinated against the oncogenic HER2Δ16 isoform, a nondriver tumor-associated gene (GFP), and specific neoepitopes. We further tested the effect of vaccination or anti-PD-1, alone and in combination. RESULTS We found that only vaccination targeting HER2Δ16, a driver of oncogenicity and HER2-therapeutic resistance, could elicit significant antitumor responses, while vaccines targeting a nondriver tumor-specific antigen or tumor neoepitopes did not. Vaccine-induced HER2-specific CD8+ T cells were essential for responses, which were more effective early in tumor development. Long-term tumor control of advanced cancers occurred only when HER2Δ16 vaccination was combined with αPD-1. Single-cell RNA sequencing of tumor-infiltrating T cells revealed that while vaccination expanded CD8 T cells, only the combination of vaccine with αPD-1 induced functional gene expression signatures in those CD8 T cells. Furthermore, we show that expanded clones are HER2-reactive, conclusively demonstrating the efficacy of this vaccination strategy in targeting HER2. CONCLUSIONS Combining oncogenic driver targeted vaccines with selective ICB offers a rational paradigm for precision immunotherapy, which we are clinically evaluating in a phase II trial (NCT03632941).
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Chaitanya R Acharya
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Anthony-Fayez Haddad
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Christopher A Rabiola
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Gangjun Lei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Jun-Ping Wei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Xiao-Yi Yang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Tao Wang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Cong-Xiao Liu
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Kay U Wagner
- Department of Oncology, Wayne State University, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - William J Muller
- Departments of Biochemistry and Medicine, Goodman Cancer Center, McGill University, Montreal, Quebec
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gloria Broadwater
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Jonathan H Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin K Ashby
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina.,Computational Medicine Program, University of North Carolina, Chapel Hill, North Carolina
| | - Joshua C Snyder
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina.,Department of Cell Biology, Duke University, Durham, North Carolina
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, North Carolina
| | - Michael A Morse
- Department of Medicine, Duke University, Durham, North Carolina
| | - Herbert K Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina.,Department of Immunology, Duke University, Durham, North Carolina.,Department of Pathology, Duke University, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina. .,Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
77
|
Whittaker AL, Hickman DL. The Impact of Social and Behavioral Factors on Reproducibility in Terrestrial Vertebrate Models. ILAR J 2020; 60:252-269. [PMID: 32720675 DOI: 10.1093/ilar/ilaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The use of animal models remains critical in preclinical and translational research. The reliability of the animal models and aspects of their validity is likely key to effective translation of findings to medicine. However, despite considerable uniformity in animal models brought about by control of genetics, there remain a number of social as well as innate and acquired behavioral characteristics of laboratory animals that may impact on research outcomes. These include the effects of strain and genetics, age and development, sex, personality and affective states, and social factors largely brought about by housing and husbandry. In addition, aspects of the testing environment may also influence research findings. A number of considerations resulting from the animals' innate and acquired behavioral characteristics as well as their social structures are described. Suggestions for minimizing the impact of these factors on research are provided.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
78
|
Teo WS, Holliday H, Karthikeyan N, Cazet AS, Roden DL, Harvey K, Konrad CV, Murali R, Varghese BA, Thankamony AP, Chan CL, McFarland A, Junankar S, Ye S, Yang J, Nikolic I, Shah JS, Baker LA, Millar EKA, Naylor MJ, Ormandy CJ, Lakhani SR, Kaplan W, Mellick AS, O'Toole SA, Swarbrick A, Nair R. Id Proteins Promote a Cancer Stem Cell Phenotype in Mouse Models of Triple Negative Breast Cancer via Negative Regulation of Robo1. Front Cell Dev Biol 2020; 8:552. [PMID: 32766238 PMCID: PMC7380117 DOI: 10.3389/fcell.2020.00552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo. Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro, as well as primary tumor growth and metastatic colonization of the lung in vivo. Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 (Robo1) leading to activation of a Myc transcriptional programme.
Collapse
Affiliation(s)
- Wee S. Teo
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Holly Holliday
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Nitheesh Karthikeyan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Aurélie S. Cazet
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel L. Roden
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Kate Harvey
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Binitha Anu Varghese
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, India
| | - Chia-Ling Chan
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Andrea McFarland
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Simon Junankar
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Sunny Ye
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jessica Yang
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Iva Nikolic
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Jaynish S. Shah
- Gene & Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Laura A. Baker
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Ewan K. A. Millar
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Anatomical Pathology, NSW Health Pathology, St George Hospital, Kogarah, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Matthew J. Naylor
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Discipline of Physiology & Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher J. Ormandy
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, School of Medicine and Pathology Queensland, Royal Brisbane & Women's Hospital, The University of Queensland, Herston, QLD, Australia
| | - Warren Kaplan
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Albert S. Mellick
- UNSW Medicine, University of NSW, Kensington, NSW, Australia
- Medical Oncology Group, Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, Liverpool, NSW, Australia
| | - Sandra A. O'Toole
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alexander Swarbrick
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Radhika Nair
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
79
|
Christin JR, Wang C, Chung CY, Liu Y, Dravis C, Tang W, Oktay MH, Wahl GM, Guo W. Stem Cell Determinant SOX9 Promotes Lineage Plasticity and Progression in Basal-like Breast Cancer. Cell Rep 2020; 31:107742. [PMID: 32521267 PMCID: PMC7658810 DOI: 10.1016/j.celrep.2020.107742] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Lineage plasticity is important for the development of basal-like breast cancer (BLBC), an aggressive cancer subtype. While BLBC is likely to originate from luminal progenitor cells, it acquires substantial basal cell features and contains a heterogenous collection of cells exhibiting basal, luminal, and hybrid phenotypes. Why luminal progenitors are prone to BLBC transformation and what drives luminal-to-basal reprogramming remain unclear. Here, we show that the transcription factor SOX9 acts as a determinant for estrogen-receptor-negative (ER-) luminal stem/progenitor cells (LSPCs). SOX9 controls LSPC activity in part by activating both canonical and non-canonical nuclear factor κB (NF-κB) signaling. Inactivation of TP53 and RB via expression of SV40 TAg in a BLBC mouse tumor model leads to upregulation of SOX9, which drives luminal-to-basal reprogramming in vivo. Furthermore, SOX9 deletion inhibits the progression of ductal carcinoma in situ (DCIS)-like lesions to invasive carcinoma. These data show that ER- LSPC determinant SOX9 acts as a lineage plasticity driver for BLBC progression.
Collapse
Affiliation(s)
- John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chunhui Wang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wei Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonic Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
80
|
Hollern DP, Xu N, Thennavan A, Glodowski C, Garcia-Recio S, Mott KR, He X, Garay JP, Carey-Ewend K, Marron D, Ford J, Liu S, Vick SC, Martin M, Parker JS, Vincent BG, Serody JS, Perou CM. B Cells and T Follicular Helper Cells Mediate Response to Checkpoint Inhibitors in High Mutation Burden Mouse Models of Breast Cancer. Cell 2020; 179:1191-1206.e21. [PMID: 31730857 DOI: 10.1016/j.cell.2019.10.028] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nuo Xu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aatish Thennavan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Cherise Glodowski
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph P Garay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kelly Carey-Ewend
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John Ford
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Siyao Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah C Vick
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañon, CIBERONC, Universidad Complutense, Madrid, Spain
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
81
|
Ross C, Szczepanek K, Lee M, Yang H, Qiu T, Sanford JD, Hunter K. The genomic landscape of metastasis in treatment-naïve breast cancer models. PLoS Genet 2020; 16:e1008743. [PMID: 32463822 PMCID: PMC7282675 DOI: 10.1371/journal.pgen.1008743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/09/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies.
Collapse
Affiliation(s)
- Christina Ross
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Karol Szczepanek
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tinghu Qiu
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jack D. Sanford
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
82
|
Fougner C, Bergholtz H, Norum JH, Sørlie T. Re-definition of claudin-low as a breast cancer phenotype. Nat Commun 2020; 11:1787. [PMID: 32286297 PMCID: PMC7156396 DOI: 10.1038/s41467-020-15574-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
The claudin-low breast cancer subtype is defined by gene expression characteristics and encompasses a remarkably diverse range of breast tumors. Here, we investigate genomic, transcriptomic, and clinical features of claudin-low breast tumors. We show that claudin-low is not simply a subtype analogous to the intrinsic subtypes (basal-like, HER2-enriched, luminal A, luminal B and normal-like) as previously portrayed, but is a complex additional phenotype which may permeate breast tumors of various intrinsic subtypes. Claudin-low tumors are distinguished by low genomic instability, mutational burden and proliferation levels, and high levels of immune and stromal cell infiltration. In other aspects, claudin-low tumors reflect characteristics of their intrinsic subtype. Finally, we explore an alternative method for identifying claudin-low tumors and thereby uncover potential weaknesses in the established claudin-low classifier. In sum, these findings elucidate the heterogeneity in claudin-low breast tumors, and substantiate a re-definition of claudin-low as a cancer phenotype. In breast cancer, the claudin-low breast cancer subtype is remarkably diverse. Here, the authors propose that claudin-low is not a classical intrinsic breast cancer subtype, but rather a complex additional phenotype that can occur across intrinsic subtypes.
Collapse
Affiliation(s)
- Christian Fougner
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helga Bergholtz
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jens Henrik Norum
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
83
|
Rohrberg J, Van de Mark D, Amouzgar M, Lee JV, Taileb M, Corella A, Kilinc S, Williams J, Jokisch ML, Camarda R, Balakrishnan S, Shankar R, Zhou A, Chang AN, Chen B, Rugo HS, Dumont S, Goga A. MYC Dysregulates Mitosis, Revealing Cancer Vulnerabilities. Cell Rep 2020; 30:3368-3382.e7. [PMID: 32160543 PMCID: PMC7085414 DOI: 10.1016/j.celrep.2020.02.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/18/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Tumors that overexpress the MYC oncogene are frequently aneuploid, a state associated with highly aggressive cancers and tumor evolution. However, how MYC causes aneuploidy is not well understood. Here, we show that MYC overexpression induces mitotic spindle assembly defects and chromosomal instability (CIN) through effects on microtubule nucleation and organization. Attenuating MYC expression reverses mitotic defects, even in established tumor cell lines, indicating an ongoing role for MYC in CIN. MYC reprograms mitotic gene expression, and we identify TPX2 to be permissive for spindle assembly in MYC-high cells. TPX2 depletion blocks mitotic progression, induces cell death, and prevents tumor growth. Further elevating TPX2 expression reduces mitotic defects in MYC-high cells. MYC and TPX2 expression may be useful biomarkers to stratify patients for anti-mitotic therapies. Our studies implicate MYC as a regulator of mitosis and suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.
Collapse
Affiliation(s)
- Julia Rohrberg
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| | - Daniel Van de Mark
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Meelad Amouzgar
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Joyce V Lee
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Moufida Taileb
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra Corella
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Seda Kilinc
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy Williams
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Marie-Lena Jokisch
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Roman Camarda
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sanjeev Balakrishnan
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Rama Shankar
- Department of Pediatrics and Human Development and Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Alicia Zhou
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bin Chen
- Department of Pediatrics and Human Development and Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Hope S Rugo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Dumont
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
84
|
Giraddi RR, Chung CY, Heinz RE, Balcioglu O, Novotny M, Trejo CL, Dravis C, Hagos BM, Mehrabad EM, Rodewald LW, Hwang JY, Fan C, Lasken R, Varley KE, Perou CM, Wahl GM, Spike BT. Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Rep 2020; 24:1653-1666.e7. [PMID: 30089273 PMCID: PMC6301014 DOI: 10.1016/j.celrep.2018.07.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 01/23/2023] Open
Abstract
The mammary gland consists of cells with gene expression patterns
reflecting their cellular origins, function, and spatiotemporal context.
However, knowledge of developmental kinetics and mechanisms of lineage
specification is lacking. We address this significant knowledge gap by
generating a single-cell transcriptome atlas encompassing embryonic, postnatal,
and adult mouse mammary development. From these data, we map the chronology of
transcriptionally and epigenetically distinct cell states and distinguish fetal
mammary stem cells (fMaSCs) from their precursors and progeny. fMaSCs show
balanced co-expression of factors associated with discrete adult lineages and a
metabolic gene signature that subsides during maturation but reemerges in some
human breast cancers and metastases. These data provide a useful resource for
illuminating mammary cell heterogeneity, the kinetics of differentiation, and
developmental correlates of tumorigenesis. Single-cell RNA sequencing of developing mouse mammary epithelia reveals
the timing of lineage specification. Giraddi et al. find that fetal mammary stem
cells co-express factors that define distinct lineages in their progeny and bear
functionally relevant metabolic program signatures that change with
differentiation and are resurrected in human breast cancers and metastases.
Collapse
Affiliation(s)
- Rajshekhar R Giraddi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Richard E Heinz
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ozlen Balcioglu
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Novotny
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Christy L Trejo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Berhane M Hagos
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Elnaz Mirzaei Mehrabad
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Luo Wei Rodewald
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jae Y Hwang
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roger Lasken
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Katherine E Varley
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Benjamin T Spike
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
85
|
Parsons J, Francavilla C. 'Omics Approaches to Explore the Breast Cancer Landscape. Front Cell Dev Biol 2020; 7:395. [PMID: 32039208 PMCID: PMC6987401 DOI: 10.3389/fcell.2019.00395] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer incidence is increasing worldwide with more than 600,000 deaths reported in 2018 alone. In current practice treatment options for breast cancer patients consists of surgery, chemotherapy, radiotherapy or targeting of classical markers of breast cancer subtype: estrogen receptor (ER) and HER2. However, these treatments fail to prevent recurrence and metastasis. Improved understanding of breast cancer and metastasis biology will help uncover novel biomarkers and therapeutic opportunities to improve patient stratification and treatment. We will first provide an overview of current methods and models used to study breast cancer biology, focusing on 2D and 3D cell culture, including organoids, and on in vivo models such as the MMTV mouse model and patient-derived xenografts (PDX). Next, genomic, transcriptomic, and proteomic approaches and their integration will be considered in the context of breast cancer susceptibility, breast cancer drivers, and therapeutic response and resistance to treatment. Finally, we will discuss how 'Omics datasets in combination with traditional breast cancer models are useful for generating insights into breast cancer biology, for suggesting individual treatments in precision oncology, and for creating data repositories to undergo further meta-analysis. System biology has the potential to catalyze the next great leap forward in treatment options for breast cancer patients.
Collapse
Affiliation(s)
- Joseph Parsons
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
86
|
Zhang W, Borcherding N, Kolb R. IL-1 Signaling in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:1-23. [PMID: 32060884 DOI: 10.1007/978-3-030-38315-2_1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin 1 (IL-1) has long been known for its pleiotropic effects on inflammation that plays a complex, and sometimes contrasting, role in different stages of cancer development. As a major proinflammatory cytokine, IL-1β is mainly expressed by innate immune cells. IL-1α, however, is expressed by various cell types under physiological and pathological conditions. IL-1R1 is the main receptor for both ligands and is expressed by various cell types, including innate and adaptive immune cell types, epithelial cells, endothelial cells, adipocytes, chondrocytes, fibroblasts, etc. IL-1 and IL-1R1 receptor interaction leads to a set of common signaling pathways, mainly the NF-kB and MAP kinase pathways, as a result of complex positive and negative regulations. The variety of cell types with IL-1R1 expression dictates the role of IL-1 signaling at different stages of cancer, which under certain circumstances leads to contrasting roles in tumor development. Recent availability of IL-1R1 conditional knockout mouse model has made it possible to dissect the role of IL-1/IL-1R1 signaling transduction in different cell types within the tumor microenvironment. This chapter will focus on the role of IL-1/IL-1R1 in different cell types within the tumor microenvironment and discuss the potential of targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| | | | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
87
|
Swiatnicki MR, Andrechek ER. How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. J Mammary Gland Biol Neoplasia 2019; 24:231-243. [PMID: 31227983 DOI: 10.1007/s10911-019-09433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.
Collapse
Affiliation(s)
- Matthew R Swiatnicki
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
88
|
Fougner C, Bergholtz H, Kuiper R, Norum JH, Sørlie T. Claudin-low-like mouse mammary tumors show distinct transcriptomic patterns uncoupled from genomic drivers. Breast Cancer Res 2019; 21:85. [PMID: 31366361 PMCID: PMC6670237 DOI: 10.1186/s13058-019-1170-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Claudin-low breast cancer is a molecular subtype associated with poor prognosis and without targeted treatment options. The claudin-low subtype is defined by certain biological characteristics, some of which may be clinically actionable, such as high immunogenicity. In mice, the medroxyprogesterone acetate (MPA) and 7,12-dimethylbenzanthracene (DMBA)-induced mammary tumor model yields a heterogeneous set of tumors, a subset of which display claudin-low features. Neither the genomic characteristics of MPA/DMBA-induced claudin-low tumors nor those of human claudin-low breast tumors have been thoroughly explored. METHODS The transcriptomic characteristics and subtypes of MPA/DMBA-induced mouse mammary tumors were determined using gene expression microarrays. Somatic mutations and copy number aberrations in MPA/DMBA-induced tumors were identified from whole exome sequencing data. A publicly available dataset was queried to explore the genomic characteristics of human claudin-low breast cancer and to validate findings in the murine tumors. RESULTS Half of MPA/DMBA-induced tumors showed a claudin-low-like subtype. All tumors carried mutations in known driver genes. While the specific genes carrying mutations varied between tumors, there was a consistent mutational signature with an overweight of T>A transversions in TG dinucleotides. Most tumors carried copy number aberrations with a potential oncogenic driver effect. Overall, several genomic events were observed recurrently; however, none accurately delineated claudin-low-like tumors. Human claudin-low breast cancers carried a distinct set of genomic characteristics, in particular a relatively low burden of mutations and copy number aberrations. The gene expression characteristics of claudin-low-like MPA/DMBA-induced tumors accurately reflected those of human claudin-low tumors, including epithelial-mesenchymal transition phenotype, high level of immune activation, and low degree of differentiation. There was an elevated expression of the immunosuppressive genes PTGS2 (encoding COX-2) and CD274 (encoding PD-L1) in human and murine claudin-low tumors. CONCLUSIONS Our findings show that the claudin-low breast cancer subtype is not demarcated by specific genomic aberrations, but carries potentially targetable characteristics warranting further research.
Collapse
Affiliation(s)
- Christian Fougner
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Helga Bergholtz
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Raoul Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jens Henrik Norum
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway. .,Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
89
|
Hollern DP, Swiatnicki MR, Rennhack JP, Misek SA, Matson BC, McAuliff A, Gallo KA, Caron KM, Andrechek ER. E2F1 Drives Breast Cancer Metastasis by Regulating the Target Gene FGF13 and Altering Cell Migration. Sci Rep 2019; 9:10718. [PMID: 31341204 PMCID: PMC6656723 DOI: 10.1038/s41598-019-47218-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
In prior work we demonstrated that loss of E2F transcription factors inhibits metastasis. Here we address the mechanisms for this phenotype and identify the E2F regulated genes that coordinate tumor cell metastasis. Transcriptomic profiling of E2F1 knockout tumors identified a role for E2F1 as a master regulator of a suite of pro-metastatic genes, but also uncovered E2F1 target genes with an unknown role in pulmonary metastasis. High expression of one of these genes, Fgf13, is associated with early human breast cancer metastasis in a clinical dataset. Together these data led to the hypothesis that Fgf13 is critical for breast cancer metastasis, and that upregulation of Fgf13 may partially explain how E2F1 promotes breast cancer metastasis. To test this hypothesis we ablated Fgf13 via CRISPR. Deletion of Fgf13 in a MMTV-PyMT breast cancer cell line reduces colonization of the lungs in a tail vein injection. In addition, loss of Fgf13 reduced in vitro cell migration, suggesting that Fgf13 may be critical for tumor cells to escape the primary tumor and to colonize the distal sites. The significance of this work is twofold: we have both uncovered genomic features by which E2F1 regulates metastasis and we have identified new pro-metastatic functions for the E2F1 target gene Fgf13.
Collapse
Affiliation(s)
- Daniel P Hollern
- Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, United States
| | - Matthew R Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Jonathan P Rennhack
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Sean A Misek
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Brooke C Matson
- University of North Carolina Department of Cell Biology, Chapel Hill, United States
| | - Andrew McAuliff
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Kathleen M Caron
- Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, United States
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, United States.
| |
Collapse
|
90
|
Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nat Commun 2019; 10:3261. [PMID: 31332182 PMCID: PMC6646342 DOI: 10.1038/s41467-019-11236-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Mouse models have an essential role in cancer research, yet little is known about how various models resemble human cancer at a genomic level. Here, we complete whole genome sequencing and transcriptome profiling of two widely used mouse models of breast cancer, MMTV-Neu and MMTV-PyMT. Through integrative in vitro and in vivo studies, we identify copy number alterations in key extracellular matrix proteins including collagen 1 type 1 alpha 1 (COL1A1) and chondroadherin (CHAD) that drive metastasis in these mouse models. In addition to copy number alterations, we observe a propensity of the tumors to modulate tyrosine kinase-mediated signaling through mutation of phosphatases such as PTPRH in the MMTV-PyMT mouse model. Mutation in PTPRH leads to increased phospho-EGFR levels and decreased latency. These findings underscore the importance of understanding the complete genomic landscape of a mouse model and illustrate the utility this has in understanding human cancers. Mouse models are an essential tool in breast cancer research. Here, the authors present the genomic and transcriptomic profiles of two widely used mouse models, revealing parallels with the human disease specifically with metastasis and treatment response.
Collapse
|
91
|
Pellacani D, Tan S, Lefort S, Eaves CJ. Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer. EMBO J 2019; 38:e100330. [PMID: 31304632 PMCID: PMC6627240 DOI: 10.15252/embj.2018100330] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The mammary gland in adult women consists of biologically distinct cell types that differ in their surface phenotypes. Isolation and molecular characterization of these subpopulations of mammary cells have provided extensive insights into their different transcriptional programs and regulation. This information is now serving as a baseline for interpreting the heterogeneous features of human breast cancers. Examination of breast cancer mutational profiles further indicates that most have undergone a complex evolutionary process even before being detected. The consequent intra-tumoral as well as inter-tumoral heterogeneity of these cancers thus poses major challenges to deriving information from early and hence likely pervasive changes in potential therapeutic interest. Recently described reproducible and efficient methods for generating human breast cancers de novo in immunodeficient mice transplanted with genetically altered primary cells now offer a promising alternative to investigate initial stages of human breast cancer development. In this review, we summarize current knowledge about key transcriptional regulatory processes operative in these partially characterized subpopulations of normal human mammary cells and effects of disrupting these processes in experimentally produced human breast cancers.
Collapse
Affiliation(s)
- Davide Pellacani
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Susanna Tan
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Sylvain Lefort
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Connie J Eaves
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| |
Collapse
|
92
|
Tian L, Truong MJ, Lagadec C, Adriaenssens E, Bouchaert E, Bauderlique-Le Roy H, Figeac M, Le Bourhis X, Bourette RP. s-SHIP Promoter Expression Identifies Mouse Mammary Cancer Stem Cells. Stem Cell Reports 2019; 13:10-20. [PMID: 31204299 PMCID: PMC6626869 DOI: 10.1016/j.stemcr.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
During normal mammary gland development, s-SHIP promoter expression marks a distinct type of mammary stem cells, at two different stages, puberty and early mid-pregnancy. To determine whether s-SHIP is a marker of mammary cancer stem cells (CSCs), we generated bitransgenic mice by crossing the C3(1)-SV40 T-antigen transgenic mouse model of breast cancer, and a transgenic mouse (11.5kb-GFP) expressing green fluorescent protein from the s-SHIP promoter. Here we show that in mammary tumors originating in these bitransgenic mice, s-SHIP promoter expression enriches a rare cell population with CSC activity as demonstrated by sphere-forming assays in vitro and limiting dilution transplantation in vivo. These s-SHIP-positive CSCs are characterized by lower expression of Delta-like non-canonical Notch ligand 1 (DLK1), a negative regulator of the Notch pathway. Inactivation of Dlk1 in s-SHIP-negative tumor cells increases their tumorigenic potential, suggesting a role for DLK1 in mammary cancer stemness.
Collapse
Affiliation(s)
- Lu Tian
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Institut de Biologie de Lille, 1 rue du Professeur Calmette, CS 54447, Lille Cedex 59000/59021, France
| | - Marie-José Truong
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Institut de Biologie de Lille, 1 rue du Professeur Calmette, CS 54447, Lille Cedex 59000/59021, France
| | - Chann Lagadec
- Université de Lille, INSERM U908 - CPAC - Cell Plasticity and Cancer, Lille 59000, France
| | - Eric Adriaenssens
- Université de Lille, INSERM U908 - CPAC - Cell Plasticity and Cancer, Lille 59000, France
| | | | | | - Martin Figeac
- Functional Genomics Platform, Université de Lille, Lille 59000, France
| | - Xuefen Le Bourhis
- Université de Lille, INSERM U908 - CPAC - Cell Plasticity and Cancer, Lille 59000, France
| | - Roland P Bourette
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Institut de Biologie de Lille, 1 rue du Professeur Calmette, CS 54447, Lille Cedex 59000/59021, France.
| |
Collapse
|
93
|
Norum JH, Frings O, Kasper M, Bergholtz H, Zell Thime H, Bergström Å, Andersson A, Kuiper R, Fredlund E, Sørlie T, Toftgård R. GLI1‐induced mammary gland tumours are transplantable and maintain major molecular features. Int J Cancer 2019; 146:1125-1138. [DOI: 10.1002/ijc.32522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jens Henrik Norum
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Oliver Frings
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska Institutet Stockholm Sweden
| | - Maria Kasper
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Helga Bergholtz
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Helene Zell Thime
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Åsa Bergström
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Agneta Andersson
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Raoul Kuiper
- Department of Laboratory Medicine and Center for Innovative Medicine (CIMED)Karolinska Institutet Huddinge Sweden
| | - Erik Fredlund
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska Institutet Stockholm Sweden
| | - Therese Sørlie
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Rune Toftgård
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| |
Collapse
|
94
|
Pfefferle AD, Darr DB, Calhoun BC, Mott KR, Rosen JM, Perou CM. The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor. Dis Model Mech 2019; 12:dmm.037192. [PMID: 31213486 PMCID: PMC6679375 DOI: 10.1242/dmm.037192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
The Wnt gene family encodes an evolutionarily conserved group of proteins that regulate cell growth, differentiation and stem cell self-renewal. Aberrant Wnt signaling in human breast tumors has been proposed as a driver of tumorigenesis, especially in the basal-like tumor subtype where canonical Wnt signaling is both enriched and predictive of poor clinical outcomes. The development of effective Wnt-based therapeutics, however, has been slowed in part by a limited understanding of the context-dependent nature with which these aberrations influence breast tumorigenesis. We previously reported that MMTV-Wnt1 mice, an established model for studying Wnt signaling in breast tumors, develop two subtypes of tumors by gene expression classification: Wnt1-EarlyEx and Wnt1-LateEx Here, we extend this initial observation and show that Wnt1-EarlyEx tumors exhibit high expression of canonical Wnt, non-canonical Wnt, and EGFR signaling pathway signatures. Therapeutically, Wnt1-EarlyEx tumors showed a dynamic reduction in tumor volume when treated with an EGFR inhibitor. Wnt1-EarlyEx tumors had primarily Cd49fpos/Epcamneg FACS profiles, but it was not possible to serially transplant these tumors into wild-type FVB female mice. Conversely, Wnt1-LateEx tumors had a bloody gross pathology, which was highlighted by the presence of 'blood lakes' identified by H&E staining. These tumors had primarily Cd49fpos/Epcampos FACS profiles, but also contained a secondary Cd49fpos/Epcamneg subpopulation. Wnt1-LateEx tumors were enriched for activating Hras1 mutations and were capable of reproducing tumors when serially transplanted into wild-type FVB female mice. This study definitively shows that the MMTV-Wnt1 mouse model produces two phenotypically distinct subtypes of mammary tumors that differ in multiple biological aspects including sensitivity to an EGFR inhibitor.
Collapse
Affiliation(s)
- Adam D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin C Calhoun
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
95
|
Wang H, Xiang D, Liu B, He A, Randle HJ, Zhang KX, Dongre A, Sachs N, Clark AP, Tao L, Chen Q, Botchkarev VV, Xie Y, Dai N, Clevers H, Li Z, Livingston DM. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell 2019; 178:135-151.e19. [PMID: 31251913 PMCID: PMC6716369 DOI: 10.1016/j.cell.2019.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.
Collapse
Affiliation(s)
- Hua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aina He
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helena J Randle
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qing Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Dai
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, New Brunswick, NJ 08901, USA
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
96
|
Machida Y, Sudo Y, Uchiya N, Imai T. Increased susceptibility to mammary carcinogenesis and an opposite trend in endometrium in Trp53 heterozygous knockout female mice by backcrossing the BALB/c strain onto the background C3H strain. J Toxicol Pathol 2019; 32:197-203. [PMID: 31404346 PMCID: PMC6682560 DOI: 10.1293/tox.2018-0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Patients with dominantly inherited Li-Fraumeni syndrome have a loss-of-function mutation in TP53 and develop diverse mesenchymal and epithelial neoplasms at multiple sites. Trp53 +/- female mice with the BALB/c background provide unique characteristics for the study of breast cancer in Li-Fraumeni syndrome; however, we previously found that female C3H-Trp53+/ - mice did not spontaneously develop mammary tumors. Therefore, we obtained F1 and N2-N4 female mice by backcrossing the BALB/c strain and examined the incidence of mammary and other tumors in lifetime studies. Malignant lymphomas, osteosarcomas, and uterine adenocarcinomas spontaneously developed in approximately 20% or more of Trp53+/ - mice with the C3H background. In contrast, the incidence of uterine adenocarcinomas showed a tendency to decrease, while that of mammary adenocarcinomas gradually increased in mice with the BALB/c strain backcross. Wild-type BALB/c female mice are predisposed to a wide spectrum of neoplasms, including mammary tumors, partly due to genetic factors, whereas uterine tumors are uncommon not only in BALB/c mice but also C3H mice. Thus, genetic factors appear to contribute to a strain-specific predisposition to malignant neoplasms in Trp53+/- mice, and further studies are needed to clarify the detailed mechanisms.
Collapse
Affiliation(s)
- Yukino Machida
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.,Department of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yukiko Sudo
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoaki Uchiya
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
97
|
GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene 2019; 38:5294-5307. [PMID: 30914799 DOI: 10.1038/s41388-019-0793-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Glycoprotein Nmb (GPNMB) is overexpressed in triple-negative and basal-like breast cancers and its expression is predictive of poor prognosis within this aggressive breast cancer subtype. GPNMB promotes breast cancer growth, invasion, and metastasis; however, its role in mammary tumor initiation remains unknown. To address this question, we overexpressed GPNMB in the mammary epithelium to generate MMTV/GPNMB transgenic mice and crossed these animals to the MMTV/Wnt-1 mouse model, which is known to recapitulate features of human basal breast cancers. We show that GPNMB alone does not display oncogenic properties; however, its expression dramatically accelerates tumor onset in MMTV/Wnt-1 mice. MMTV/Wnt-1 × MMTV/GPNMB bigenic mice also exhibit a significant increase in the growth rate of established primary tumors, which is attributable to increased proliferation and decreased apoptosis. To elucidate molecular mechanisms underpinning the tumor-promoting effects of GPNMB in this context, we interrogated activated pathways in tumors derived from the MMTV/Wnt-1 and MMTV/Wnt-1 × MMTV/GPNMB mice using RPPA analysis. These data revealed that MMTV/Wnt-1 × MMTV/GPNMB bigenic tumors exhibit a pro-growth signature characterized by elevated PI3K/AKT/mTOR signaling and increased β-catenin activity. Furthermore, we extended these observations to an independent Wnt-1 expressing model of aggressive breast cancer, and confirmed that GPNMB enhances canonical Wnt pathway activation, as evidenced by increased β-catenin transcriptional activity, in breast cancer cells and tumors co-expressing Wnt-1 and GPNMB. GPNMB-dependent engagement of β-catenin occurred, in part, through AKT activation. Taken together, these data ascribe a novel, pro-growth role for GPNMB in Wnt-1 expressing basal breast cancers.
Collapse
|
98
|
Scheid AD, Beadnell TC, Welch DR. The second genome: Effects of the mitochondrial genome on cancer progression. Adv Cancer Res 2019; 142:63-105. [PMID: 30885364 DOI: 10.1016/bs.acr.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of genetics in cancer has been recognized for centuries, but most studies elucidating genetic contributions to cancer have understandably focused on the nuclear genome. Mitochondrial contributions to cancer pathogenesis have been documented for decades, but how mitochondrial DNA (mtDNA) influences cancer progression and metastasis remains poorly understood. This lack of understanding stems from difficulty isolating the nuclear and mitochondrial genomes as experimental variables, which is critical for investigating direct mtDNA contributions to disease given extensive crosstalk exists between both genomes. Several in vitro and in vivo models have isolated mtDNA as an independent variable from the nuclear genome. This review compares and contrasts different models, their advantages and disadvantages for studying mtDNA contributions to cancer, focusing on the mitochondrial-nuclear exchange (MNX) mouse model and findings regarding tumor progression, metastasis, and other complex cancer-related phenotypes.
Collapse
Affiliation(s)
- Adam D Scheid
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
99
|
Homer-Bouthiette C, Zhao Y, Shunkwiler LB, Van Peel B, Garrett-Mayer E, Baird RC, Rissman AI, Guest ST, Ethier SP, John MC, Powers PA, Haag JD, Gould MN, Smits BMG. Deletion of the murine ortholog of the 8q24 gene desert has anti-cancer effects in transgenic mammary cancer models. BMC Cancer 2018; 18:1233. [PMID: 30526553 PMCID: PMC6288875 DOI: 10.1186/s12885-018-5109-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/19/2018] [Indexed: 01/20/2023] Open
Abstract
Background The gene desert on human chromosomal band 8q24 harbors multiple genetic variants associated with common cancers, including breast cancer. The locus, including the gene desert and its flanking genes, MYC, PVT1 and FAM84B, is also frequently amplified in human breast cancer. We generated a megadeletion (MD) mouse model lacking 430-Kb of sequence orthologous to the breast cancer-associated region in the gene desert. The goals were to examine the effect of the deletion on mammary cancer development and on transcript level regulation of the candidate genes within the locus. Methods The MD allele was engineered using the MICER system in embryonic stem cells and bred onto 3 well-characterized transgenic models for breast cancer, namely MMTV-PyVT, MMTV-neu and C3(1)-TAg. Mammary tumor growth, latency, multiplicity and metastasis were compared between homozygous MD and wild type mice carrying the transgenes. A reciprocal mammary gland transplantation assay was conducted to distinguish mammary cell-autonomous from non-mammary cell-autonomous anti-cancer effects. Gene expression analysis was done using quantitative real-time PCR. Chromatin interactions were evaluated by 3C. Gene-specific patient outcome data were analysed using the METABRIC and TCGA data sets through the cBioPortal website. Results Mice homozygous for the MD allele are viable, fertile, lactate sufficiently to nourish their pups, but maintain a 10% lower body weight mainly due to decreased adiposity. The deletion interferes with mammary tumorigenesis in mouse models for luminal and basal breast cancer. In the MMTV-PyVT model the mammary cancer-reducing effects of the allele are mammary cell-autonomous. We found organ-specific effects on transcript level regulation, with Myc and Fam84b being downregulated in mammary gland, prostate and mammary tumor samples. Through analysis using the METABRIC and TCGA datasets, we provide evidence that MYC and FAM84B are frequently co-amplified in breast cancer, but in contrast with MYC, FAM84B is frequently overexpressed in the luminal subtype, whereas MYC activity affect basal breast cancer outcomes. Conclusion Deletion of a breast cancer-associated non-protein coding region affects mammary cancer development in 3 transgenic mouse models. We propose Myc as a candidate susceptibility gene, regulated by the gene desert locus, and a potential role for Fam84b in modifying breast cancer development. Electronic supplementary material The online version of this article (10.1186/s12885-018-5109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Collin Homer-Bouthiette
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Yang Zhao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Lauren B Shunkwiler
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Benjamine Van Peel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Charleston, SC, 29425, USA
| | - Rachael C Baird
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Anna I Rissman
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Manorama C John
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Patricia A Powers
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jill D Haag
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Michael N Gould
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bart M G Smits
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA.
| |
Collapse
|
100
|
Behbod F, Gomes AM, Machado HL. Modeling Human Ductal Carcinoma In Situ in the Mouse. J Mammary Gland Biol Neoplasia 2018; 23:269-278. [PMID: 30145750 PMCID: PMC6244883 DOI: 10.1007/s10911-018-9408-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer development is a multi-step process in which genetic and molecular heterogeneity occurs at multiple stages. Ductal carcinoma arises from pre-invasive lesions such as atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS), which progress to invasive and metastatic cancer. The feasibility of obtaining tissue samples from all stages of progression from the same patient is low, and thus molecular studies dissecting the mechanisms that mediate the transition from pre-invasive DCIS to invasive carcinoma have been hampered. In the past 25 years, numerous mouse models have been developed that partly recapitulate the histological and biological properties of early stage lesions. In this review, we discuss in vivo model systems of breast cancer progression from syngeneic mouse models to human xenografts, with particular focus on how accurately these models mimic human disease.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Angelica M Gomes
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, #8543, New Orleans, LA, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, #8543, New Orleans, LA, USA.
| |
Collapse
|