51
|
Jiang L, Bi D, Ding H, Wu X, Zhu R, Zeng J, Yang X, Kan X. Systematic Identification and Evolution Analysis of Sox Genes in Coturnix japonica Based on Comparative Genomics. Genes (Basel) 2019; 10:genes10040314. [PMID: 31013663 PMCID: PMC6523956 DOI: 10.3390/genes10040314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/04/2023] Open
Abstract
Coturnix japonica (Japanese quail) has been extensively used as a model animal for biological studies. The Sox gene family, which was systematically characterized by a high-mobility group (HMG-box) in many animal species, encodes transcription factors that play central roles during multiple developmental processes. However, genome-wide investigations on the Sox gene family in birds are scarce. In the current study, we first performed a genome-wide study to explore the Sox gene family in galliform birds. Based on available genomic sequences retrieved from the NCBI database, we focused on the global identification of the Sox gene family in C. japonica and other species in Galliformes, and the evolutionary relationships of Sox genes. In our result, a total of 35 Sox genes in seven groups were identified in the C. japonica genome. Our results also revealed that dispersed gene duplications contributed the most to the expansion of the Sox gene family in Galliform birds. Evolutionary analyses indicated that Sox genes are an ancient gene family, and strong purifying selections played key roles in the evolution of CjSox genes of C. japonica. More interestingly, we observed that most Sox genes exhibited highly embryo-specific expression in both gonads. Our findings provided new insights into the molecular function and phylogeny of Sox gene family in birds.
Collapse
Affiliation(s)
- Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - De Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Hengwu Ding
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| | - Xuan Wu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Xiaojun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| |
Collapse
|
52
|
Yusof HH, Lee HC, Seth EA, Wu X, Hewitt CA, Scott HS, Cheah PS, Li YM, Chau DM, Ling KH. Expression Profiling of Notch Signalling Pathway and Gamma-Secretase Activity in the Brain of Ts1Cje Mouse Model of Down Syndrome. J Mol Neurosci 2019; 67:632-642. [PMID: 30758748 PMCID: PMC8824580 DOI: 10.1007/s12031-019-01275-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/05/2019] [Indexed: 01/23/2023]
Abstract
Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain. Ts1Cje is a DS mouse model that exhibit similar neuropathology to human DS individuals. To date, the spatiotemporal gene expression of the Notch and gamma-secretase genes have not been characterised in Ts1Cje mouse brain. Understanding the expression pattern of Notch and gamma-secretase genes may provide a better understanding of the underlying mechanism that leads to the shift. Gene expression analysis using RT-qPCR was performed on early embryonic and postnatal development of DS brain. In the developing mouse brain, mRNA expression analysis showed that gamma-secretase members (Psen1, Pen-2, Aph-1b, and Ncstn) were not differentially expressed. Notch2 was found to be downregulated in the developing Ts1Cje brain samples. Postnatal gene expression study showed complex expression patterns and Notch1 and Notch2 genes were found to be significantly downregulated in the hippocampus at postnatal day 30. Results from RT-qPCR analysis from E15.5 neurosphere culture showed an increase of expression of Psen1, and Aph-1b but downregulation of Pen-2 and Ncstn genes. Gamma-secretase activity in Ts1Cje E15.5 neurospheres was significantly increased by fivefold. In summary, the association and the role of Notch and gamma-secretase gene expression throughout development with neurogenic-to-gliogenic shift in Ts1Cje remain undefined and warrant further validation.
Collapse
Affiliation(s)
- Hadri Hadi Yusof
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Han-Chung Lee
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eryse Amira Seth
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Xiangzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chelsee A Hewitt
- Department of Pathology, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, SA Pathology, Adelaide, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Pike-See Cheah
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - De-Ming Chau
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
53
|
Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 2019; 159:1325-1345. [PMID: 29561359 DOI: 10.1097/j.pain.0000000000001217] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug-gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggests trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics and a blueprint for cross-species transcriptomic analyses.
Collapse
Affiliation(s)
- Pradipta Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andrew Torck
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Lilyana Quigley
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Matthew Neiman
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chandranshu Rao
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tiffany Lam
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ji-Young Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael Q Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
54
|
Ribeiro DE, Glaser T, Oliveira-Giacomelli Á, Ulrich H. Purinergic receptors in neurogenic processes. Brain Res Bull 2018; 151:3-11. [PMID: 30593881 DOI: 10.1016/j.brainresbull.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Neurogenesis is a process of generating functional neurons, which occurs during embryonic and adult stages in mammals. While neurogenesis during development phase is characterized by intensive proliferation activity in all regions of the brain to form the architecture and neural function of the nervous system, adult neurogenesis occurs with less intensity in two brain regions and is involved in the maintenance of neurogenic niches, local repair, memory and cognitive functions in the hippocampus. Taking such differences into account, the understanding of molecular mechanisms involved in cell differentiation in developmental stages and maintenance of the nervous system is an important research target. Although embryonic and adult neurogenesis presents several differences, signaling through purinergic receptors participates in this process throughout life. For instance, while embryonic neurogenesis involves P2X7 receptor down-regulation and calcium waves triggered by P2Y1 receptor stimulation, adult neurogenesis may be enhanced by increased activity of A2A and P2Y1 receptors and impaired by A1, P2Y13 and P2X7 receptor stimulation.
Collapse
Affiliation(s)
- D E Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - T Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Á Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil.
| |
Collapse
|
55
|
Terheyden-Keighley D, Zhang X, Brand-Saberi B, Theiss C. CXCR4/SDF1 signalling promotes sensory neuron clustering in vitro. Biol Open 2018; 7:bio.035568. [PMID: 30135081 PMCID: PMC6176946 DOI: 10.1242/bio.035568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During the development of the peripheral nervous system, a subgroup of neural crest cells migrate away from the neural tube and coalesce into clusters of sensory neurons (ganglia). Mechanisms involved in the formation of the dorsal root ganglia (DRG) from neural crest cells are currently unclear. Mice carrying mutations in Cxcr4, which is known to control neural crest migration, exhibit malformed DRG. In order to investigate this phenomenon, we modelled sensory neuron differentiation in vitro by directing the differentiation of human induced pluripotent stem cells into sensory neurons under SDF1 (agonist), AMD3100 (antagonist) or control conditions. There we could show a marked effect on the clustering activity of the neurons in vitro, suggesting that CXCR4 signalling is involved in facilitating DRG condensation. Summary: The signalling mechanisms directing sensory neuron gangliogenesis are not well understood. Here, we model this process through stem cell differentiation and show that CXCR4 signalling facilitates neural clustering.
Collapse
Affiliation(s)
- Daniel Terheyden-Keighley
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Xiaoqing Zhang
- Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, 200092 Shanghai, China
| | - Beate Brand-Saberi
- Institute of Anatomy, Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
56
|
Zaletel I, Schwirtlich M, Perović M, Jovanović M, Stevanović M, Kanazir S, Puškaš N. Early Impairments of Hippocampal Neurogenesis in 5xFAD Mouse Model of Alzheimer’s Disease Are Associated with Altered Expression of SOXB Transcription Factors. J Alzheimers Dis 2018; 65:963-976. [DOI: 10.3233/jad-180277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ivan Zaletel
- Institute of Histology and Embryology “Aleksandar Đ Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milka Perović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Selma Kanazir
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Đ Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
57
|
Mulas C, Chia G, Jones KA, Hodgson AC, Stirparo GG, Nichols J. Oct4 regulates the embryonic axis and coordinates exit from pluripotency and germ layer specification in the mouse embryo. Development 2018; 145:dev159103. [PMID: 29915126 PMCID: PMC6031404 DOI: 10.1242/dev.159103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
Lineage segregation in the mouse embryo is a finely controlled process dependent upon coordination of signalling pathways and transcriptional responses. Here we employ a conditional deletion system to investigate embryonic patterning and lineage specification in response to loss of Oct4. We first observe ectopic expression of Nanog in Oct4-negative postimplantation epiblast cells. The expression domains of lineage markers are subsequently disrupted. Definitive endoderm expands at the expense of mesoderm; the anterior-posterior axis is positioned more distally and an ectopic posterior-like domain appears anteriorly, suggesting a role for Oct4 in maintaining the embryonic axis. Although primitive streak forms in the presumptive proximal-posterior region, epithelial-to-mesenchymal transition is impeded by an increase of E-cadherin, leading to complete tissue disorganisation and failure to generate germ layers. In explant and in vitro differentiation assays, Oct4 mutants also show upregulation of E-cadherin and Foxa2, suggesting a cell-autonomous phenotype. We confirm requirement for Oct4 in self-renewal of postimplantation epiblast ex vivo Our results indicate a role for Oct4 in orchestrating multiple fates and enabling expansion, correct patterning and lineage choice in the postimplantation epiblast.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Gloryn Chia
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Kenneth Alan Jones
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Andrew Christopher Hodgson
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Giuliano Giuseppe Stirparo
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 4BG, UK
| |
Collapse
|
58
|
Hawkins SJ, Crompton LA, Sood A, Saunders M, Boyle NT, Buckley A, Minogue AM, McComish SF, Jiménez-Moreno N, Cordero-Llana O, Stathakos P, Gilmore CE, Kelly S, Lane JD, Case CP, Caldwell MA. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. NATURE NANOTECHNOLOGY 2018; 13:427-433. [PMID: 29610530 DOI: 10.1038/s41565-018-0085-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 01/31/2018] [Indexed: 05/05/2023]
Abstract
The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.
Collapse
Affiliation(s)
- Simon J Hawkins
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Aman Sood
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Margaret Saunders
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
- Department of Medical Physics & Bioengineering, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Noreen T Boyle
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Amy Buckley
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Aedín M Minogue
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Sarah F McComish
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | | | - Oscar Cordero-Llana
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Petros Stathakos
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Catherine E Gilmore
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Stephen Kelly
- Neuroscience Institute @JFK Medical Center, Edison, NJ, USA
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
59
|
Yin N, Liang S, Liang S, Hu B, Yang R, Zhou Q, Jiang G, Faiola F. DEP and DBP induce cytotoxicity in mouse embryonic stem cells and abnormally enhance neural ectoderm development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:21-32. [PMID: 29414342 DOI: 10.1016/j.envpol.2018.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
Diethyl phthalate (DEP) and dibutyl phthalate (DBP) are two typical small phthalate esters, extensively used in personal care and consumer products. Although previous studies have linked phthalate esters to several health issues, it is still unclear whether they can affects the early stages of embryonic development. In this study, we evaluated the early developmental neurotoxicity as well as the cytotoxicity of DEP and DBP, using mouse embryonic stem cells (mESCs). Our results showed that both DEP and DBP could decrease mESC viability in a dose-dependent manner. Moreover, while DBP could activate the caspase-3/7 enzymes and cause cell membrane damage as well as intracellular ROS accumulation, interestingly DEP treatment only showed stimulation of ROS production. In addition, DEP and DBP treatment at non-cytotoxic concentrations, abnormally altered the expression levels of several vitally important regulators of embryo development. For instance, neural ectoderm markers, such as Pax6, Nestin, Sox1 and Sox3, were significantly up-regulated upon DEP and DBP exposure. In conclusion, our work suggests a potential developmental toxicity of DEP and DBP on mammals, especially for neural ectoderm specification. Our findings help better understand the association between health problems and DEP/DBP exposure and most significantly remind us of the importance of additional health risk tests for these two largely used chemicals.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
60
|
|
61
|
Ogawa K, Suga H, Ozone C, Sakakibara M, Yamada T, Kano M, Mitsumoto K, Kasai T, Kodani Y, Nagasaki H, Yamamoto N, Hagiwara D, Goto M, Banno R, Sugimura Y, Arima H. Vasopressin-secreting neurons derived from human embryonic stem cells through specific induction of dorsal hypothalamic progenitors. Sci Rep 2018; 8:3615. [PMID: 29483626 PMCID: PMC5827757 DOI: 10.1038/s41598-018-22053-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/09/2018] [Indexed: 01/11/2023] Open
Abstract
Arginine-vasopressin (AVP) neurons exist in the hypothalamus, a major region of the diencephalon, and play an essential role in water balance. Here, we established the differentiation method for AVP-secreting neurons from human embryonic stem cells (hESCs) by recapitulating in vitro the in vivo embryonic developmental processes of AVP neurons. At first, the differentiation efficiency was improved. That was achieved through the optimization of the culture condition for obtaining dorsal hypothalamic progenitors. Secondly, the induced AVP neurons were identified by immunohistochemistry and these neurons secreted AVP after potassium chloride stimulation. Additionally, other hypothalamic neuropeptides were also detected, such as oxytocin, corticotropin-releasing hormone, thyrotropin-releasing hormone, pro-opiomelanocortin, agouti-related peptide, orexin, and melanin-concentrating hormone. This is the first report describing the generation of secretory AVP neurons derived from hESCs. This method will be applicable to research using disease models and, potentially, for regenerative medicine of the hypothalamus.
Collapse
Affiliation(s)
- Koichiro Ogawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Chikafumi Ozone
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomiko Yamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mayuko Kano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takatoshi Kasai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yu Kodani
- Department of Physiology, Fujita Health University, Toyoake, 470-1192, Japan
| | - Hiroshi Nagasaki
- Department of Physiology, Fujita Health University, Toyoake, 470-1192, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Institute of Joint Research, Toyoake, 470-1192, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
62
|
Miwa H, Era T. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression. Development 2018; 145:145/2/dev155879. [DOI: 10.1242/dev.155879] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α (Pdgfra) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions.
Collapse
Affiliation(s)
- Hiroyuki Miwa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
63
|
Winzi M, Casas Vila N, Paszkowski-Rogacz M, Ding L, Noack S, Theis M, Butter F, Buchholz F. The long noncoding RNA lncR492 inhibits neural differentiation of murine embryonic stem cells. PLoS One 2018; 13:e0191682. [PMID: 29364956 PMCID: PMC5783419 DOI: 10.1371/journal.pone.0191682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) screens have been shown to be valuable to study embryonic stem cell (ESC) self-renewal and they have been successfully applied to identify coding as well as noncoding genes required for maintaining pluripotency. Here, we used an RNAi library targeting >640 long noncoding RNAs (lncRNA) to probe for their role in early cell differentiation. Utilizing a Sox1-GFP ESC reporter cell line, we identified the lncRNA lncR492 as lineage-specific inhibitor of neuroectodermal differentiation. Molecular characterization showed that lncR492 interacts with the mRNA binding protein HuR and facilitates its inhibitory function by activation of Wnt signaling. Thus, lncRNAs modulate the fate decision of pluripotent stem cells.
Collapse
Affiliation(s)
- Maria Winzi
- Medical Systems Biology, Faculty of Medicine Carl Gustav Carus, University Cancer Center, TU Dresden, Dresden, Germany
| | - Nuria Casas Vila
- Quantitative Proteomics, Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine Carl Gustav Carus, University Cancer Center, TU Dresden, Dresden, Germany
| | - Li Ding
- Medical Systems Biology, Faculty of Medicine Carl Gustav Carus, University Cancer Center, TU Dresden, Dresden, Germany
| | - Svenja Noack
- Medical Systems Biology, Faculty of Medicine Carl Gustav Carus, University Cancer Center, TU Dresden, Dresden, Germany
| | - Mirko Theis
- Medical Systems Biology, Faculty of Medicine Carl Gustav Carus, University Cancer Center, TU Dresden, Dresden, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine Carl Gustav Carus, University Cancer Center, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
64
|
Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10:390-405. [PMID: 29337120 PMCID: PMC5832443 DOI: 10.1016/j.stemcr.2017.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/28/2022] Open
Abstract
Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC)- or induced pluripotent stem cell (hiPSC)-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs), which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. Robust protocol to generate spinal sensory neurons from human pluripotent cells RA ± BMP4 direct hPSCs toward the dI1, dI2, and dI3 classes of dorsal interneurons Only neural progenitors in the correct competence state respond to RA/BMP4 signals
Collapse
|
65
|
Srivastava RK, Bulte JWM, Walczak P, Janowski M. Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men. Glia 2017; 66:907-919. [PMID: 29266673 DOI: 10.1002/glia.23275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Neurological disorders are a major threat to public health. Stem cell-based regenerative medicine is now a promising experimental paradigm for its treatment, as shown in pre-clinical animal studies. Initial attempts have been on the replacement of neuronal cells only, but glial progenitors (GPs) are now becoming strong alternative cellular therapeutic candidates to replace oligodendrocytes and astrocytes as knowledge accumulates about their important emerging role in various disease processes. There are many examples of successful therapeutic outcomes for transplanted GPs in small animal models, but clinical translation has proved to be challenging due to the 1,000-fold larger volume of the human brain compared to mice. Human GPs transplanted into the mouse brain migrate extensively and can induce global cell replacement, but a similar extent of migration in the human brain would only allow for local rather than global cell replacement. We review here the mechanisms that govern cell migration, which could potentially be exploited to enhance the migratory properties of GPs through cell engineering pre-transplantation. We furthermore discuss the (dis)advantages of the various cell delivery routes that are available, with particular emphasis on intra-arterial injection as the most suitable route for achieving global cell distribution in the larger brain. Now that therapeutic success has proven to be feasible in small animal models, future efforts will need to be directed to enhance global cell delivery and migration to make bench-to-bedside translation a reality.
Collapse
Affiliation(s)
- Rohit K Srivastava
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff W M Bulte
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piotr Walczak
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of NeuroRepair, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
66
|
Juan AH, Wang S, Ko KD, Zare H, Tsai PF, Feng X, Vivanco KO, Ascoli AM, Gutierrez-Cruz G, Krebs J, Sidoli S, Knight AL, Pedersen RA, Garcia BA, Casellas R, Zou J, Sartorelli V. Roles of H3K27me2 and H3K27me3 Examined during Fate Specification of Embryonic Stem Cells. Cell Rep 2017; 17:1369-1382. [PMID: 27783950 DOI: 10.1016/j.celrep.2016.09.087] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
The polycomb repressive complex 2 (PRC2) methylates lysine 27 of histone H3 (H3K27) through its catalytic subunit Ezh2. PRC2-mediated di- and tri-methylation (H3K27me2/H3K27me3) have been interchangeably associated with gene repression. However, it remains unclear whether these two degrees of H3K27 methylation have different functions. In this study, we have generated isogenic mouse embryonic stem cells (ESCs) with a modified H3K27me2/H3K27me3 ratio. Our findings document dynamic developmental control in the genomic distribution of H3K27me2 and H3K27me3 at regulatory regions in ESCs. They also reveal that modifying the ratio of H3K27me2 and H3K27me3 is sufficient for the acquisition and repression of defined cell lineage transcriptional programs and phenotypes and influences induction of the ESC ground state.
Collapse
Affiliation(s)
- Aster H Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stan Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Pei-Fang Tsai
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Karinna O Vivanco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anthony M Ascoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan Krebs
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia 19104 PA, USA
| | - Adam L Knight
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger A Pedersen
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia 19104 PA, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core Facility, Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
67
|
Chandrasekaran A, Avci HX, Ochalek A, Rösingh LN, Molnár K, László L, Bellák T, Téglási A, Pesti K, Mike A, Phanthong P, Bíró O, Hall V, Kitiyanant N, Krause KH, Kobolák J, Dinnyés A. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Res 2017; 25:139-151. [PMID: 29128818 DOI: 10.1016/j.scr.2017.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6+/NESTIN+ cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background.
Collapse
Affiliation(s)
- Abinaya Chandrasekaran
- BioTalentum Ltd, Gödöllő, Hungary; Molecular Animal Biotechnology Lab, Szent István University, Gödöllő, Hungary
| | - Hasan X Avci
- BioTalentum Ltd, Gödöllő, Hungary; Department of Anatomy, Embryology and Histology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anna Ochalek
- BioTalentum Ltd, Gödöllő, Hungary; Molecular Animal Biotechnology Lab, Szent István University, Gödöllő, Hungary
| | - Lone N Rösingh
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Bellák
- BioTalentum Ltd, Gödöllő, Hungary; Department of Anatomy, Embryology and Histology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | - Krisztina Pesti
- Opto-Neuropharmacology Group, MTA-ELTE NAP B, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Arpad Mike
- Opto-Neuropharmacology Group, MTA-ELTE NAP B, Budapest, Hungary
| | - Phetcharat Phanthong
- BioTalentum Ltd, Gödöllő, Hungary; Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom Bangkok, Thailand
| | - Orsolya Bíró
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Vanessa Hall
- Department of Veterinary and Animal Science, University of Copenhagen, Denmark
| | - Narisorn Kitiyanant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom Bangkok, Thailand
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | | | - András Dinnyés
- BioTalentum Ltd, Gödöllő, Hungary; Molecular Animal Biotechnology Lab, Szent István University, Gödöllő, Hungary.
| |
Collapse
|
68
|
Aoki H, Hara A, Kunisada T. Induced haploinsufficiency of Kit receptor tyrosine kinase impairs brain development. JCI Insight 2017; 2:94385. [PMID: 28978807 DOI: 10.1172/jci.insight.94385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Kit receptor tyrosine kinase is highly expressed in the developing mammalian brain, yet little is known about its contribution to neural cell development and function. Here we introduced a brain-specific conditional Kit loss-of-function mutation in mice and observed severe hypoplasia of the central nervous system. This was accompanied by an increase in apoptotic cell death in the early embryonic brain and the gradual loss of the self-renewal capacity of neuronal stem/precursor cells. A single copy of the brain-specific conditional Kit loss-of-function allele resulted in the observed phenotype, including impaired in vitro differentiation of neural cells from Kit-haploinsufficient embryonic stem (ES) cells. Our findings demonstrate that Kit signaling is required for the early development of neural cells. This potentially novel Kit-haploinsufficient lethal phenotype may represent an embryonic lethal phenomenon previously unobserved because of its dominantly acting nature.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development and
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | |
Collapse
|
69
|
Topalovic V, Krstic A, Schwirtlich M, Dolfini D, Mantovani R, Stevanovic M, Mojsin M. Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells. PLoS One 2017; 12:e0184099. [PMID: 28886103 PMCID: PMC5590877 DOI: 10.1371/journal.pone.0184099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Sox3/SOX3 is one of the earliest neural markers in vertebrates. Together with the Sox1/SOX1 and Sox2/SOX2 genes it is implicated in the regulation of stem cell identity. In the present study, we performed the first analysis of epigenetic mechanisms (DNA methylation and histone marks) involved in the regulation of the human SOX3 gene expression during RA-induced neural differentiation of NT2/D1 cells. We show that the promoter of the human SOX3 gene is extremely hypomethylated both in undifferentiated NT2/D1 cells and during the early phases of RA-induced neural differentiation. By employing chromatin immunoprecipitation, we analyze several histone modifications across different regions of the SOX3 gene and their dynamics following initiation of differentiation. In the same timeframe we investigate profiles of selected histone marks on the promoters of human SOX1 and SOX2 genes. We demonstrate differences in histone signatures of SOX1, SOX2 and SOX3 genes. Considering the importance of SOXB1 genes in the process of neural differentiation, the present study contributes to a better understanding of epigenetic mechanisms implicated in the regulation of pluripotency maintenance and commitment towards the neural lineage.
Collapse
Affiliation(s)
- Vladanka Topalovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
70
|
Mulas C, Kalkan T, Smith A. NODAL Secures Pluripotency upon Embryonic Stem Cell Progression from the Ground State. Stem Cell Reports 2017; 9:77-91. [PMID: 28669603 PMCID: PMC5511111 DOI: 10.1016/j.stemcr.2017.05.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/02/2023] Open
Abstract
Naive mouse embryonic stem cells (ESCs) can develop multiple fates, but the cellular and molecular processes that enable lineage competence are poorly characterized. Here, we investigated progression from the ESC ground state in defined culture. We utilized downregulation of Rex1::GFPd2 to track the loss of ESC identity. We found that cells that have newly downregulated this reporter have acquired capacity for germline induction. They can also be efficiently specified for different somatic lineages, responding more rapidly than naive cells to inductive cues. Inhibition of autocrine NODAL signaling did not alter kinetics of exit from the ESC state but compromised both germline and somatic lineage specification. Transient inhibition prior to loss of ESC identity was sufficient for this effect. Genetic ablation of Nodal reduced viability during early differentiation, consistent with defective lineage specification. These results suggest that NODAL promotes acquisition of multi-lineage competence in cells departing naive pluripotency.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tüzer Kalkan
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| |
Collapse
|
71
|
Abstract
Glioblastoma remains the most common and deadliest type of brain tumor and contains a population of self-renewing, highly tumorigenic glioma stem cells (GSCs), which contributes to tumor initiation and treatment resistance. Developmental programs participating in tissue development and homeostasis re-emerge in GSCs, supporting the development and progression of glioblastoma. SOX1 plays an important role in neural development and neural progenitor pool maintenance. Its impact on glioblastoma remains largely unknown. In this study, we have found that high levels of SOX1 observed in a subset of patients correlate with lower overall survival. At the cellular level, SOX1 expression is elevated in patient-derived GSCs and it is also higher in oncosphere culture compared to differentiation conditions in conventional glioblastoma cell lines. Moreover, genetic inhibition of SOX1 in patient-derived GSCs and conventional cell lines decreases self-renewal and proliferative capacity in vitro and tumor initiation and growth in vivo. Contrarily, SOX1 over-expression moderately promotes self-renewal and proliferation in GSCs. These functions seem to be independent of its activity as Wnt/β-catenin signaling regulator. In summary, these results identify a functional role for SOX1 in regulating glioma cell heterogeneity and plasticity, and suggest SOX1 as a potential target in the GSC population in glioblastoma.
Collapse
|
72
|
Jang S, Choubey S, Furchtgott L, Zou LN, Doyle A, Menon V, Loew EB, Krostag AR, Martinez RA, Madisen L, Levi BP, Ramanathan S. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. eLife 2017; 6:20487. [PMID: 28296635 PMCID: PMC5352225 DOI: 10.7554/elife.20487] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI:http://dx.doi.org/10.7554/eLife.20487.001
Collapse
Affiliation(s)
- Sumin Jang
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Sandeep Choubey
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Leon Furchtgott
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Biophysics Program, Harvard University, Cambridge, United States
| | - Ling-Nan Zou
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
| | - Adele Doyle
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Vilas Menon
- Allen Institute for Brain Science, Seattle, United States
| | - Ethan B Loew
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | | | | | - Linda Madisen
- Allen Institute for Brain Science, Seattle, United States
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, United States
| | - Sharad Ramanathan
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Allen Institute for Brain Science, Seattle, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| |
Collapse
|
73
|
Huang C, Su T, Xue Y, Cheng C, Lay FD, McKee RA, Li M, Vashisht A, Wohlschlegel J, Novitch BG, Plath K, Kurdistani SK, Carey M. Cbx3 maintains lineage specificity during neural differentiation. Genes Dev 2017; 31:241-246. [PMID: 28270516 PMCID: PMC5358721 DOI: 10.1101/gad.292169.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/27/2017] [Indexed: 02/05/2023]
Abstract
Chromobox homolog 3 (Cbx3/heterochromatin protein 1γ [HP1γ]) stimulates cell differentiation, but its mechanism is unknown. We found that Cbx3 binds to gene promoters upon differentiation of murine embryonic stem cells (ESCs) to neural progenitor cells (NPCs) and recruits the Mediator subunit Med26. RNAi knockdown of either Cbx3 or Med26 inhibits neural differentiation while up-regulating genes involved in mesodermal lineage decisions. Thus, Cbx3 and Med26 together ensure the fidelity of lineage specification by enhancing the expression of neural genes and down-regulating genes specific to alternative fates.
Collapse
Affiliation(s)
- Chengyang Huang
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
- Department of Neurobiology, Shantou University Medical College, Shantou 515041, China
| | - Trent Su
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Yong Xue
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Fides D Lay
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Robin A McKee
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Meiyang Li
- Department of Neurobiology, Shantou University Medical College, Shantou 515041, China
| | - Ajay Vashisht
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Michael Carey
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| |
Collapse
|
74
|
Takata N, Sakakura E, Sakuma T, Yamamoto T. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi. Methods Mol Biol 2017; 1622:269-292. [PMID: 28674815 DOI: 10.1007/978-1-4939-7108-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.
Collapse
Affiliation(s)
- Nozomu Takata
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan. .,Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA.
| | - Eriko Sakakura
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
75
|
Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, Bardoni B. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Stem Cells 2016; 35:374-385. [PMID: 27664080 DOI: 10.1002/stem.2505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 01/14/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Nicolas Nottet
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Sandrine Cestèle
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| |
Collapse
|
76
|
Disruption of Rest Leads to the Early Onset of Cataracts with the Aberrant Terminal Differentiation of Lens Fiber Cells. PLoS One 2016; 11:e0163042. [PMID: 27631609 PMCID: PMC5025245 DOI: 10.1371/journal.pone.0163042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
REST (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells in vitro by preventing precocious expression of neuronal genes. REST expression was then decreased in developing neurons to down-regulate neuronal genes which allow their maturation. However, the function of REST during neurogenesis in vivo remains to be elucidated because of the early embryonic lethal phenotype of conventional Rest knockout mice. In order to investigate the role of REST in ocular tissues, we generated and examined the mice evoking genetic ablation to Rest specifically to neural tissues including ocular tissue. We used a Sox1-Cre allele to excise the floxed Rest gene in the early neural tissues including the lens and retinal primordia. The resulting Rest conditional knockout (CKO) and co cntrol mice were used in comparative morphological, histological, and gene expression analyses. Rest CKO mice had an abnormal lens morphology after birth. The proliferation of lens epithelial cells was likely to be slightly reduced, and vacuoles formed without a visible increase in apoptotic cells. Although the aberrant expression of late onset cataract marker proteins was not detected, the expression of Notch signaling-related genes including a previously identified REST-target gene was up-regulated around birth, and this was followed by the down-regulated expression of lens fiber regulators such as c-Maf and Prox1. Rest CKO induces a unique cataract phenotype just after birth. Augmented Notch signaling and the down-regulated expression of lens fiber regulator genes may be responsible for this phenotype. Our results highlight the significance of REST function in lens fiber formation, which is necessary for maintaining an intact lens structure.
Collapse
|
77
|
Tsan YC, Morell MH, O'Shea KS. miR-410 controls adult SVZ neurogenesis by targeting neurogenic genes. Stem Cell Res 2016; 17:238-247. [PMID: 27591480 DOI: 10.1016/j.scr.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/14/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
Abstract
Over-expression of the early neural inducer, Noggin, in nestin positive subventricular zone (SVZ), neural stem cells (NSC) promotes proliferation and neuronal differentiation of neural progenitors and inhibits the expression of a CNS-enriched microRNA-410 (miR-410) (Morell et al., 2015). When expressed in neurospheres derived from the adult SVZ, miR-410 inhibits neuronal and oligodendrocyte differentiation, and promotes astrocyte differentiation. miR-410 also reverses the increase in neuronal differentiation and decreased astroglial differentiation caused by Noggin over-expression. Conversely, inhibition of miR-410 activity promotes neuronal and decreases astroglial differentiation of NSC. Using computer prediction algorithms and luciferase reporter assays we identified multiple neurogenic genes including Elavl4 as downstream targets of miR-410 via the canonical miRNA-3'UTR interaction. Over-expression of Elavl4 transcripts without the endogenous 3'UTR rescued the decrease in neuronal differentiation caused by miR-410 overexpression. Interestingly, we also observed that miR-410 affected neurite morphology; over-expression of miR-410 resulted in the formation of short, unbranched neurites. We conclude that miR-410 expression provides a new link between BMP signaling and the crucial lineage choice of adult neural stem cells via its ability to bind and control the expression of neurogenic gene transcripts.
Collapse
Affiliation(s)
- Yao-Chang Tsan
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Maria H Morell
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - K Sue O'Shea
- Department of Cell and Developmental Biology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
78
|
Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells. Mol Neurobiol 2016; 54:4672-4682. [PMID: 27422132 DOI: 10.1007/s12035-016-0011-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
Dental tissue is emerging as a promising source of stem cells especially in nerve regeneration mainly due to their neural origin and ease of harvest. We isolated dental stem cells from three sources, namely, dental pulp (DPSCs), dental follicle (DFSCs), and apical papilla (SCAP), and explored the efficacy of each towards neural differentiation in comparison to bone marrow-derived stem cells. The neural differentiation potential was assessed by expression of various neural markers and neurosphere assay. We observed that DPSCs were inherently predisposed towards neural lineage. To further delineate the paracrine cues responsible for the differences in neural differentiation potential, we harvested the conditioned secretome from each of the stem cell population and observed their effect on colony formation, neurite extension, and neural gene expression of IMR-32, a pre-neuroblastic cell line. We found that neural differentiation was significantly enhanced when IMR-32 cells were treated with secretome derived from DMSCs as compared to the same from BMSCs. Th1/Th2/Th17 cytokine array revealed DPSC secretome had higher expression of the cytokines like GCSF, IFNγ, and TGFβ that promote neural differentiation. Thus, we concluded that DPSCs may be the preferred source of cells for obtaining neural lineage among the four sources of stem cells. Our results also indicate that the DPSC-secreted factors may be responsible for their propensity towards neural differentiation. This study suggests that DPSCs and their secretomes can be a potentially lucrative source for cell-based and "cell-free" (secretome) therapy for neural disorders and injury.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Nephrology, PGIMER, Chandigarh, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial surgery, Oral health science centre, PGIMER, Chandigarh, India
| | | | | |
Collapse
|
79
|
Lanctôt C. Single Cell Analysis Reveals Concomitant Transcription of Pluripotent and Lineage Markers During the Early Steps of Differentiation of Embryonic Stem Cells. Stem Cells 2016; 33:2949-60. [PMID: 26184691 DOI: 10.1002/stem.2108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/04/2015] [Accepted: 06/10/2015] [Indexed: 01/07/2023]
Abstract
The differentiation of embryonic stem cells is associated with extensive changes in gene expression. It is not yet clear whether these changes are the result of binary switch-like mechanisms or that of continuous and progressive variation. Here, I have used immunostaining and single molecule RNA fluorescence in situ hybridization (FISH) to assess changes in the expression of the well-known pluripotency-associated gene Pou5f1 (also known as Oct4) and early differentiation markers Sox1 and T-brachyury in single cells during the early steps of differentiation of mouse embryonic stem cells. I found extensive overlap between the expression of Pou5f1/Sox1 or Pou5f1/T-brachyury shortly after the initiation of differentiation towards either the neuronal or the mesendodermal lineage, but no evidence of correlation between their respective expression levels. Quantitative analysis of transcriptional output at the sites of nascent transcription revealed that Pou5f1 and Sox1 were transcribed in pulses and that embryonic stem cell differentiation was accompanied by changes in pulsing frequencies. The progressive induction of Sox1 was further associated with an increase in the average size of individual transcriptional bursts. Surprisingly, single cells that actively and simultaneously transcribe both the pluripotency- and the lineage-associated genes could easily be found in the differentiating population. The results presented here show for the first time that lineage priming can occur in cells that are actively transcribing a pluripotent marker. Furthermore, they suggest that this process is associated with changes in transcriptional dynamics.
Collapse
Affiliation(s)
- Christian Lanctôt
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
80
|
Semerci F, Maletic-Savatic M. Transgenic mouse models for studying adult neurogenesis. ACTA ACUST UNITED AC 2016; 11:151-167. [PMID: 28473846 DOI: 10.1007/s11515-016-1405-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.
Collapse
Affiliation(s)
- Fatih Semerci
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics-Neurology, Department of Neuroscience, and Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
81
|
Hayashi S, Lewis P, Pevny L, McMahon AP. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 2016; 119 Suppl 1:S97-S101. [PMID: 14516668 DOI: 10.1016/s0925-4773(03)00099-6] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have generated a transgenic line that expresses the Cre gene product under the regulation of a 12.5 kb upstream regulatory sequence from the Sox2 gene. Using a R26R reporter line, we show that this transgenic line induces recombination in all epiblast cells by embryonic day (E) 6.5 but little or no activity in other extraembryonic cell types at this time. When crossed to a conditional allele of the Sonic hedgehog gene (Shhc), all Sox2Cre;Shhn/Shhc embryos displayed a phenotype indistinguishable from that of the Shh null mutant. Sox2Cre functioned more efficiently in epiblast-mediated recombination than the Mox2Cre (MORE) transgenic line, which has also been shown to drive Cre-mediated recombination exclusively in the embryonic component of the early mouse embryo. Although most MORE; shhh/shhc embryos have a shh hull phenotype, 33% displayed a milder skeletal phenotype, most likely result of incomplete recombination at egg cylinder stages. In agreement with these findings, Sox2Cre was active earlier and Sox2Cre-mediated recombination was more advanced than MORE-mediated recombination at early gastrulation stages. The Sox2Cre line is likely to be more effective in generating complete, epiblast-specific removal of gene activity, and the mosaic activity of the MORE line will be helpful in generating partial loss-of-function phenotypes in the embryo-proper.
Collapse
Affiliation(s)
- Shigemi Hayashi
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
82
|
Li M, Zou Y, Lu Q, Tang N, Heng A, Islam I, Tong HJ, Dawe GS, Cao T. Efficient derivation of dopaminergic neurons from SOX1⁻ floor plate cells under defined culture conditions. J Biomed Sci 2016; 23:34. [PMID: 26956435 PMCID: PMC4782356 DOI: 10.1186/s12929-016-0251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background Parkinson’s disease (PD) is a severe neurodegenerative disease associated with loss of dopaminergic neurons. Derivation of dopaminergic neurons from human embryonic stem cells (hESCs) could provide new therapeutic options for PD therapy. Dopaminergic neurons are derived from SOX− floor plate (FP) cells during embryonic development in many species and in human cell culture in vitro. Early treatment with sonic hedgehog (Shh) has been reported to efficiently convert hESCs into FP lineages. Methods In this study, we attempted to utilize a Shh-free approach in deriving SOX1− FP cells from hESCs in vitro. Neuroectoderm conversion from hESCs was achieved with dual inhibition of the BMP4 (LDN193189) and TGF-β signaling pathways (SB431542) for 24 h under defined culture conditions. Results Following a further 5 days of treatment with LDN193189 or LDN193189 + SB431542, SOX1− FP cells constituted 70–80 % of the entire cell population. Upon treatment with Shh and FGF8, the SOX1− FP cells were efficiently converted to functional Nurr1+ and TH+ dopaminergic cells (patterning), which constituted more than 98 % of the entire cell population. However, when the same growth factors were applied to SOX1+ cells, only less than 4 % of the cells became Nurr1+, indicating that patterning was effective only if SOX1 expression was down-regulated. After transplanting the Nurr1+ and TH+ cells into a hemiparkinsonian rat model, significant improvements were observed in amphetamine induced ipslateral rotations, apomorphine induced contra-lateral rotations and Rota rod motor tests over a duration of 8 weeks. Conclusions Our findings thus provide a convenient approach to FP development and functional dopaminergic neuron derivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0251-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingming Li
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Yu Zou
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Qiqi Lu
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Ning Tang
- Department of Pharmacology, Yong Loo Lin School of Medicine, The National University of Singapore, Kent Ridge, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), The National University of Singapore, Kent Ridge, Singapore
| | - Alexis Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Intekhab Islam
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Huei Jinn Tong
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, The National University of Singapore, Kent Ridge, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), The National University of Singapore, Kent Ridge, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), Kent Ridge, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore. .,Tissue Engineering Program, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore. .,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), Kent Ridge, Singapore.
| |
Collapse
|
83
|
Souilhol C, Perea-Gomez A, Camus A, Beck-Cormier S, Vandormael-Pournin S, Escande M, Collignon J, Cohen-Tannoudji M. NOTCH activation interferes with cell fate specification in the gastrulating mouse embryo. Development 2016; 142:3649-60. [PMID: 26534985 DOI: 10.1242/dev.121145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NOTCH signalling is an evolutionarily conserved pathway involved in intercellular communication essential for cell fate choices during development. Although dispensable for early aspects of mouse development, canonical RBPJ-dependent NOTCH signalling has been shown to influence lineage commitment during embryonic stem cell (ESC) differentiation. NOTCH activation in ESCs promotes the acquisition of a neural fate, whereas its suppression favours their differentiation into cardiomyocytes. This suggests that NOTCH signalling is implicated in the acquisition of distinct embryonic fates at early stages of mammalian development. In order to investigate in vivo such a role for NOTCH signalling in shaping cell fate specification, we use genetic approaches to constitutively activate the NOTCH pathway in the mouse embryo. Early embryonic development, including the establishment of anterior-posterior polarity, is not perturbed by forced NOTCH activation. By contrast, widespread NOTCH activity in the epiblast triggers dramatic gastrulation defects. These are fully rescued in a RBPJ-deficient background. Epiblast-specific NOTCH activation induces acquisition of neurectoderm identity and disrupts the formation of specific mesodermal precursors including the derivatives of the anterior primitive streak, the mouse organiser. In addition, we show that forced NOTCH activation results in misregulation of NODAL signalling, a major determinant of early embryonic patterning. Our study reveals a previously unidentified role for canonical NOTCH signalling during mammalian gastrulation. It also exemplifies how in vivo studies can shed light on the mechanisms underlying cell fate specification during in vitro directed differentiation.
Collapse
Affiliation(s)
- Céline Souilhol
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Anne Camus
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Sarah Beck-Cormier
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Marie Escande
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Jérôme Collignon
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| |
Collapse
|
84
|
Yang P, Shen WB, Reece EA, Chen X, Yang P. High glucose suppresses embryonic stem cell differentiation into neural lineage cells. Biochem Biophys Res Commun 2016; 472:306-12. [PMID: 26940741 DOI: 10.1016/j.bbrc.2016.02.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 12/11/2022]
Abstract
Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei-bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
85
|
Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. TECHNOLOGY 2016; 4:1-8. [PMID: 27785459 PMCID: PMC5077250 DOI: 10.1142/s2339547816400070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.
Collapse
Affiliation(s)
- Ryan Thompson
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA
| | - Christina Chan
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA; Department of Chemical Engineering and Materials Science, East Lansing, Michigan 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
86
|
Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 2016; 6:21264. [PMID: 26887909 PMCID: PMC4757933 DOI: 10.1038/srep21264] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/15/2016] [Indexed: 12/23/2022] Open
Abstract
Efficient gene editing is essential to fully utilize human pluripotent stem cells (hPSCs) in regenerative medicine. Custom endonuclease-based gene targeting involves two mechanisms of DNA repair: homology directed repair (HDR) and non-homologous end joining (NHEJ). HDR is the preferred mechanism for common applications such knock-in, knock-out or precise mutagenesis, but remains inefficient in hPSCs. Here, we demonstrate that synchronizing synchronizing hPSCs in G2/M with ABT phase increases on-target gene editing, defined as correct targeting cassette integration, 3 to 6 fold. We observed improved efficiency using ZFNs, TALENs, two CRISPR/Cas9, and CRISPR/Cas9 nickase to target five genes in three hPSC lines: three human embryonic stem cell lines, neural progenitors and diabetic iPSCs. neural progenitors and diabetic iPSCs. Reversible synchronization has no effect on pluripotency or differentiation. The increase in on-target gene editing is locus-independent and specific to the cell cycle phase as G2/M phase enriched cells show a 6-fold increase in targeting efficiency compared to cells in G1 phase. Concurrently inhibiting NHEJ with SCR7 does not increase HDR or improve gene targeting efficiency further, indicating that HR is the major DNA repair mechanism after G2/M phase arrest. The approach outlined here makes gene editing in hPSCs a more viable tool for disease modeling, regenerative medicine and cell-based therapies.
Collapse
|
87
|
Czerwinska AM, Grabowska I, Archacka K, Bem J, Swierczek B, Helinska A, Streminska W, Fogtman A, Iwanicka-Nowicka R, Koblowska M, Ciemerych MA. Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene. Stem Cells Dev 2016; 25:285-300. [PMID: 26649785 PMCID: PMC4761802 DOI: 10.1089/scd.2015.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs.
Collapse
Affiliation(s)
- Areta M Czerwinska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Iwona Grabowska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Karolina Archacka
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Joanna Bem
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Barbara Swierczek
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Anita Helinska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Wladyslawa Streminska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Anna Fogtman
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland .,3 Department of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Marta Koblowska
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland .,3 Department of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Maria A Ciemerych
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
88
|
Madhu V, Dighe AS, Cui Q, Deal DN. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells. Stem Cells Int 2015; 2016:1035374. [PMID: 26798350 PMCID: PMC4699250 DOI: 10.1155/2016/1035374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022] Open
Abstract
Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs) as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Abhijit S. Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - D. Nicole Deal
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
89
|
Identification, molecular characterization and gene expression analysis of sox1a and sox1b genes in Japanese flounder, Paralichthys olivaceus. Gene 2015; 574:225-34. [DOI: 10.1016/j.gene.2015.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
|
90
|
Nakajima-Koyama M, Lee J, Ohta S, Yamamoto T, Nishida E. Induction of Pluripotency in Astrocytes through a Neural Stem Cell-like State. J Biol Chem 2015; 290:31173-88. [PMID: 26553868 DOI: 10.1074/jbc.m115.683466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/20/2023] Open
Abstract
It remains controversial whether the routes from somatic cells to induced pluripotent stem cells (iPSCs) are related to the reverse order of normal developmental processes. Specifically, it remains unaddressed whether or not the differentiated cells become iPSCs through their original tissue stem cell-like state. Previous studies analyzing the reprogramming process mostly used fibroblasts; however, the stem cell characteristics of fibroblasts made it difficult to address this. Here, we generated iPSCs from mouse astrocytes, a type of glial cells, by three (OCT3/4, KLF4, and SOX2), two (OCT3/4 and KLF4), or four (OCT3/4, KLF4, and SOX2 plus c-MYC) factors. Sox1, a neural stem cell (NSC)-specific transcription factor, is transiently up-regulated during reprogramming, and Sox1-positive cells become iPSCs. The up-regulation of Sox1 is essential for OCT3/4- and KLF4-induced reprogramming. Genome-wide analysis revealed that the gene expression profile of Sox1-expressing intermediate-state cells resembles that of NSCs. Furthermore, the intermediate-state cells are able to generate neurospheres, which can differentiate into both neurons and glial cells. Remarkably, during fibroblast reprogramming, neither Sox1 up-regulation nor an increase in neurogenic potential occurs. Our results thus demonstrate that astrocytes are reprogrammed through an NSC-like state.
Collapse
Affiliation(s)
- May Nakajima-Koyama
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Joonseong Lee
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - Sho Ohta
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, the Department of Reprogramming Science, Center for iPS Cell Research and Application, and
| | - Takuya Yamamoto
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan the Department of Reprogramming Science, Center for iPS Cell Research and Application, and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8507, and
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
91
|
Ogawa Y, Eto A, Miyake C, Tsuchida N, Miyake H, Takaku Y, Hagiwara H, Oishi K. Induced Pluripotent Stem Cells Generated from P0-Cre;Z/EG Transgenic Mice. PLoS One 2015; 10:e0138620. [PMID: 26382630 PMCID: PMC4575135 DOI: 10.1371/journal.pone.0138620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022] Open
Abstract
Neural crest (NC) cells are a migratory, multipotent cell population that arises at the neural plate border, and migrate from the dorsal neural tube to their target tissues, where they differentiate into various cell types. Abnormal development of NC cells can result in severe congenital birth defects. Because only a limited number of cells can be obtained from an embryo, mechanistic studies are difficult to perform with directly isolated NC cells. Protein zero (P0) is expressed by migrating NC cells during the early embryonic period. In the P0-Cre;Z/EG transgenic mouse, transient activation of the P0 promoter induces Cre-mediated recombination, indelibly tagging NC-derived cells with enhanced green fluorescent protein (EGFP). Induced pluripotent stem cell (iPSC) technology offers new opportunities for both mechanistic studies and development of stem cell-based therapies. Here, we report the generation of iPSCs from the P0-Cre;Z/EG mouse. P0-Cre;Z/EG mouse-derived iPSCs (P/G-iPSCs) exhibited pluripotent stem cell properties. In lineage-directed differentiation studies, P/G-iPSCs were efficiently differentiated along the neural lineage while expressing EGFP. These results suggest that P/G-iPSCs are useful to study NC development and NC-associated diseases.
Collapse
Affiliation(s)
- Yasuhiro Ogawa
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
| | - Akira Eto
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
| | - Chisato Miyake
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
| | - Nana Tsuchida
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
| | - Haruka Miyake
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
| | - Yasuhiro Takaku
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
| | - Hiroaki Hagiwara
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
| | - Kazuhiko Oishi
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204–8588, Japan
- * E-mail:
| |
Collapse
|
92
|
Singh RK, Mallela RK, Cornuet PK, Reifler AN, Chervenak AP, West MD, Wong KY, Nasonkin IO. Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures. Stem Cells Dev 2015; 24:2778-95. [PMID: 26283078 DOI: 10.1089/scd.2015.0144] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na(+) and K(+) currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for retinal replacement therapies.
Collapse
Affiliation(s)
- Ratnesh K Singh
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ramya K Mallela
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Pamela K Cornuet
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Aaron N Reifler
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Andrew P Chervenak
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | | | - Kwoon Y Wong
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Igor O Nasonkin
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
93
|
Hoelzl MA, Heby-Henricson K, Bilousova G, Rozell B, Kuiper RV, Kasper M, Toftgård R, Teglund S. Suppressor of Fused Plays an Important Role in Regulating Mesodermal Differentiation of Murine Embryonic Stem Cells In Vivo. Stem Cells Dev 2015; 24:2547-60. [PMID: 26176320 DOI: 10.1089/scd.2015.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The hedgehog (Hh) signaling pathway plays fundamental roles during embryonic development and tumorigenesis. Previously, we have shown that ablation of the tumor suppressor and negative regulator, Suppressor of fused (Sufu), within this pathway causes embryonic lethality around E9.5 in the mouse. In this study, we examine how lack of Sufu influences early cell fate determination processes. We established embryonic stem cell (ESC) lines from preimplantation Sufu(-/-) and wild-type mouse embryos and show that these ESCs express the typical pluripotency markers, alkaline phosphatase, SSEA-1, Oct4, Sox2, and Nanog. We demonstrate that these ESCs express all core Hh pathway components and that glioma-associated protein (Gli)1 mRNA levels are increased in Sufu(-/-) ESCs. Upon spontaneous differentiation of Sufu(-/-) ESCs into embryoid bodies (EBs) in vitro, the Hh pathway is strongly upregulated as indicated by an increase in both Gli1 and patched1 (Ptch1) gene expression. Interestingly, developing Sufu(-/-) EBs were smaller than their wild-type counterparts and showed decreased expression of the ectodermal markers, Fgf5 and Sox1. In vivo teratoma formation revealed that Sufu(-/-) ESCs have a limited capacity for differentiation as the resulting tumors lacked the mesodermal derivatives, cartilage and bone. However, Sufu(-/-) ESCs were able to develop into chondrocytes and osteocytes in vitro, which suggests a differential response of ESCs compared with in vivo conditions. Our findings suggest a regulatory function of the Hh signaling pathway in early mesodermal cell fate determination and emphasize the role of Sufu as a key molecule in this process.
Collapse
Affiliation(s)
- Maria A Hoelzl
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Karin Heby-Henricson
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Ganna Bilousova
- 2 Department of Dermatology, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado , Aurora, Colorado
| | - Björn Rozell
- 3 Department of Laboratory Medicine, Karolinska Institutet , Huddinge, Sweden .,4 Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Raoul V Kuiper
- 3 Department of Laboratory Medicine, Karolinska Institutet , Huddinge, Sweden
| | - Maria Kasper
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Rune Toftgård
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Stephan Teglund
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| |
Collapse
|
94
|
Gallegos-Cárdenas A, Webb R, Jordan E, West R, West FD, Yang JY, Wang K, Stice SL. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Developmentally Mimic Human Pluripotent Stem Cell Neural Differentiation. Stem Cells Dev 2015; 24:1901-11. [DOI: 10.1089/scd.2015.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Amalia Gallegos-Cárdenas
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Departamento de Producción Animal, Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Girona, Perú
| | - Robin Webb
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Erin Jordan
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Rachel West
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Jeong-Yeh Yang
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Kai Wang
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| |
Collapse
|
95
|
Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells. Histochem Cell Biol 2015; 144:429-41. [PMID: 26239426 DOI: 10.1007/s00418-015-1352-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2015] [Indexed: 02/06/2023]
Abstract
During early vertebrate embryogenesis, the expression of SOXB1 proteins is precisely regulated by a number of different mechanisms, including Wnt/β-catenin signaling. This is essential for controlling the balance between stemness and differentiation in embryonic stem cells. In the present study, we analyzed the molecular mechanism of LiCl action in NT2/D1 cells and examined the crosstalk between SOXB1 proteins and Wnt signaling in this model system. We have shown that LiCl increases β-catenin level, induces its translocation to the nucleus and consequently up-regulates β-catenin/Tcf-dependent transcription in NT2/D1 cells. Our results also suggest that LiCl treatment leads to increased expression of SOX2 and SOX3 proteins in NT2/D1 cells through activation of canonical Wnt signaling. Finally, we have detected a negative feedback loop between β-catenin and SOX2 expression in NT2/D1 cells. Since β-catenin and SOX2 have been linked to processes of self-renewal and pluripotency, our results have implications for future research on the maintenance of stemness and lineage commitment of embryonic stem cells.
Collapse
|
96
|
Kember RL, Georgi B, Bailey-Wilson JE, Stambolian D, Paul SM, Bućan M. Copy number variants encompassing Mendelian disease genes in a large multigenerational family segregating bipolar disorder. BMC Genet 2015; 16:27. [PMID: 25887117 PMCID: PMC4382929 DOI: 10.1186/s12863-015-0184-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/19/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bipolar affective disorder (BP) is a common, highly heritable psychiatric disorder characterized by periods of depression and mania. Using dense SNP genotype data, we characterized CNVs in 388 members of an Old Order Amish Pedigree with bipolar disorder. We identified CNV regions arising from common ancestral mutations by utilizing the pedigree information. By combining this analysis with whole genome sequence data in the same individuals, we also explored the role of compound heterozygosity. RESULTS Here we describe 541 inherited CNV regions, of which 268 are rare in a control population of European origin but present in a large number of Amish individuals. In addition, we highlight a set of CNVs found at higher frequencies in BP individuals, and within genes known to play a role in human development and disease. As in prior reports, we find no evidence for an increased burden of CNVs in BP individuals, but we report a trend towards a higher burden of CNVs in known Mendelian disease loci in bipolar individuals (BPI and BPII, p = 0.06). CONCLUSIONS We conclude that CNVs may be contributing factors in the phenotypic presentation of mood disorders and co-morbid medical conditions in this family. These results reinforce the hypothesis of a complex genetic architecture underlying BP disorder, and suggest that the role of CNVs should continue to be investigated in BP data sets.
Collapse
Affiliation(s)
- Rachel L Kember
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Benjamin Georgi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA.
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Steven M Paul
- Appel Alzheimer's Disease Research Institute, Mind and Brain Institute, Weill Cornell Medical College, New York, NY, USA.
| | - Maja Bućan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
97
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
98
|
Turner DA, Hayward PC, Baillie-Johnson P, Rué P, Broome R, Faunes F, Martinez Arias A. Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development 2015; 141:4243-53. [PMID: 25371361 PMCID: PMC4302903 DOI: 10.1242/dev.112979] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/β-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | | | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Rebecca Broome
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Fernando Faunes
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
99
|
Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 2014; 518:355-359. [PMID: 25533951 PMCID: PMC4336237 DOI: 10.1038/nature13990] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.
Collapse
|
100
|
Busskamp V, Lewis NE, Guye P, Ng AHM, Shipman SL, Byrne SM, Sanjana NE, Murn J, Li Y, Li S, Stadler M, Weiss R, Church GM. Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol 2014; 10:760. [PMID: 25403753 PMCID: PMC4299601 DOI: 10.15252/msb.20145508] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/23/2022] Open
Abstract
Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.
Collapse
Affiliation(s)
- Volker Busskamp
- Department of Genetics, Harvard Medical School, Boston, MA, USA Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Nathan E Lewis
- Department of Genetics, Harvard Medical School, Boston, MA, USA Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA Department of Biology, Brigham Young University, Provo, UT, USA Department of Pediatrics, University of California, San Diego, CA, USA
| | - Patrick Guye
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex H M Ng
- Department of Genetics, Harvard Medical School, Boston, MA, USA Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Seth L Shipman
- Department of Genetics, Harvard Medical School, Boston, MA, USA Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Susan M Byrne
- Department of Genetics, Harvard Medical School, Boston, MA, USA Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard Cambridge Center, Cambridge, MA, USA McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jernej Murn
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Yinqing Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Swiss Institute of Bioinformatics, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|