51
|
Guidance cues from the embryonic dorsal spinal cord chemoattract dorsal root ganglion axons. Neuroreport 2007; 18:1645-9. [DOI: 10.1097/wnr.0b013e3282f0b6fa] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Holmes O, Pillozzi S, Deakin JA, Carafoli F, Kemp L, Butler PJG, Lyon M, Gherardi E. Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains. J Mol Biol 2007; 367:395-408. [PMID: 17258232 DOI: 10.1016/j.jmb.2006.12.061] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/14/2006] [Accepted: 12/19/2006] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF), the ligand for the receptor tyrosine kinase encoded by the c-Met proto-oncogene, is a multidomain protein structurally related to the pro-enzyme plasminogen and with major roles in development, tissue regeneration and cancer. We have expressed the N-terminal (N) domain, the four kringle domains (K1 to K4) and the serine proteinase homology domain (SP) of HGF/SF individually in yeast or mammalian cells and studied their ability to: (i) bind the Met receptor as well as heparan sulphate and dermatan sulphate co-receptors, (ii) activate Met in target cells and, (iii) map their binding sites onto the beta-propeller domain of Met. The N, K1 and SP domains bound Met directly with comparable affinities (K(d)=2.4, 3.3 and 1.4 microM). The same domains also bound heparin with decreasing affinities (N>K1>>SP) but only the N domain bound dermatan sulphate. Three kringle domains (K1, K2 and K4) displayed agonistic activity on target cells. In contrast, the N and SP domains, although capable of Met binding, displayed no or little activity. Further, cross-linking experiments demonstrated that both the N domain and kringles 1-2 bind the beta-chain moiety (amino acid residues 308-514) of the Met beta-propeller. In summary, the K1, K2 and K4 domains of HGF/SF are sufficient for Met activation, whereas the N and SP domains are not, although the latter domains contribute additional binding sites necessary for receptor activation by full length HGF/SF. The results provide new insights into the structure/function of HGF/SF and a basis for engineering the N and K1 domains as receptor antagonists for cancer therapy.
Collapse
Affiliation(s)
- O Holmes
- MRC Centre, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Hirsch MR, Glover JC, Dufour HD, Brunet JF, Goridis C. Forced expression of Phox2 homeodomain transcription factors induces a branchio-visceromotor axonal phenotype. Dev Biol 2006; 303:687-702. [PMID: 17208219 DOI: 10.1016/j.ydbio.2006.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 01/27/2023]
Abstract
What causes motor neurons to project into the periphery is not well understood. We here show that forced expression of the homeodomain protein Phox2b, shown previously to be necessary and sufficient for branchio-visceromotor neuron development, and of its paralogue Phox2a imposes a branchiomotor-like axonal phenotype in the spinal cord. Many Phox2-transfected neurons, whose axons would normally stay within the confines of the neural tube, now project into the periphery. Once outside the neural tube, a fraction of the ectopic axons join the spinal accessory nerve, a branchiomotor nerve which, as shown here, does not develop in the absence of Phox2b. Explant studies show that the axons of Phox2-transfected neurons need attractive cues to leave the neural tube and that their outgrowth is promoted by tissues, to which branchio-visceromotor fibers normally grow. Hence, Phox2 expression is a key step in determining the peripheral axonal phenotype and thus the decision to stay within the neural tube or to project out of it.
Collapse
Affiliation(s)
- Marie-Rose Hirsch
- CNRS UMR 8542 Ecole normale supérieure, 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
54
|
Hayashi Y, Kawazoe Y, Sakamoto T, Ojima M, Wang W, Takazawa T, Miyazawa D, Ohya W, Funakoshi H, Nakamura T, Watabe K. Adenoviral gene transfer of hepatocyte growth factor prevents death of injured adult motoneurons after peripheral nerve avulsion. Brain Res 2006; 1111:187-95. [PMID: 16884699 DOI: 10.1016/j.brainres.2006.06.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 06/26/2006] [Accepted: 06/27/2006] [Indexed: 12/20/2022]
Abstract
Hepatocyte growth factor (HGF) exhibits strong neurotrophic activities on motoneurons both in vitro and in vivo. We examined survival-promoting effects of an adenoviral vector encoding human HGF (AxCAhHGF) on injured adult rat motoneurons after peripheral nerve avulsion. The production of HGF in COS1 cells infected with AxCAhHGF and its bioactivity were confirmed by ELISA, Western blot and Madin-Darby canine kidney (MDCK) cell scatter assay. The facial nerve or the seventh cervical segment (C7) ventral and dorsal roots of 3-month-old Fischer 344 male rats were then avulsed and removed from the stylomastoid or vertebral foramen, respectively, and AxCAhHGF, AxCALacZ (adenovirus encoding beta-galactosidase gene) or phosphate-buffered saline (PBS) was inoculated in the lesioned foramen. Treatment with AxCAhHGF after avulsion significantly prevented the loss of injured facial and C7 ventral motoneurons as compared to AxCALacZ or PBS treatment and ameliorated choline acetyltransferase immunoreactivity in these neurons. These results indicate that HGF may prevent the degeneration of motoneurons in adult humans with motoneuron injury and motor neuron diseases.
Collapse
Affiliation(s)
- Yuichi Hayashi
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Conway G. STAT3-dependent pathfinding and control of axonal branching and target selection. Dev Biol 2006; 296:119-36. [PMID: 16729994 DOI: 10.1016/j.ydbio.2006.04.444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/13/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Signal transducers and transcription factors are used in common for developmental cell migration, vasculogenesis, branching morphogenesis, as well as neuronal pathfinding. STAT3, a transcription factor, has been shown to function in all of these processes except neuronal pathfinding. Here, it is shown that STAT3 also facilitates this process. Elimination of STAT3 signaling results in half of zebrafish CaP motoneurons stalling along their ventral pathfinding trajectory. Conversely, constitutive activation leads to precocious branching and redefines CaP axons as a responding population to dorsal guidance cues, resulting in bifurcated axons innervating normal ventral targets as well as additional dorsal muscle groups. These results are consistent with and highlight a fundamental role for STAT3 as a factor promoting cellular responses to guidance cues, not only in nonneural cells but also in pathfinding neurons.
Collapse
Affiliation(s)
- Greg Conway
- Life Sciences Division, MS239-11, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
56
|
Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 2006; 441:87-90. [PMID: 16625209 DOI: 10.1038/nature04696] [Citation(s) in RCA: 369] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 03/02/2006] [Indexed: 01/15/2023]
Abstract
Hundreds of highly conserved distal cis-regulatory elements have been characterized so far in vertebrate genomes. Many thousands more are predicted on the basis of comparative genomics. However, in stark contrast to the genes that they regulate, in invertebrates virtually none of these regions can be traced by using sequence similarity, leaving their evolutionary origins obscure. Here we show that a class of conserved, primarily non-coding regions in tetrapods originated from a previously unknown short interspersed repetitive element (SINE) retroposon family that was active in the Sarcopterygii (lobe-finned fishes and terrestrial vertebrates) in the Silurian period at least 410 million years ago (ref. 4), and seems to be recently active in the 'living fossil' Indonesian coelacanth, Latimeria menadoensis. Using a mouse enhancer assay we show that one copy, 0.5 million bases from the neuro-developmental gene ISL1, is an enhancer that recapitulates multiple aspects of Isl1 expression patterns. Several other copies represent new, possibly regulatory, alternatively spliced exons in the middle of pre-existing Sarcopterygian genes. One of these, a more than 200-base-pair ultraconserved region, 100% identical in mammals, and 80% identical to the coelacanth SINE, contains a 31-amino-acid-residue alternatively spliced exon of the messenger RNA processing gene PCBP2 (ref. 6). These add to a growing list of examples in which relics of transposable elements have acquired a function that serves their host, a process termed 'exaptation', and provide an origin for at least some of the many highly conserved vertebrate-specific genomic sequences.
Collapse
Affiliation(s)
- Gill Bejerano
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Sherwood CC. Comparative anatomy of the facial motor nucleus in mammals, with an analysis of neuron numbers in primates. ACTA ACUST UNITED AC 2006; 287:1067-79. [PMID: 16200649 DOI: 10.1002/ar.a.20259] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The facial motor nucleus (VII) contains motoneurons that innervate the facial muscles of expression. In this review, the comparative anatomy of this brainstem nucleus is examined. Several aspects of the anatomical organization of the VII appear to be common across mammals, such as the distribution of neuron types, general topography of muscle representation, and afferent connections from the midbrain and brainstem. Phylogenetic specializations are apparent in the proportion of neurons allocated to the representation of subsets of muscles and the degree of differentiation among subnuclei. These interspecific differences may be related to the elaboration of certain facial muscles in the context of socioecological adaptations such as whisking behavior, sound localization, vocalization, and facial expression. Furthermore, current evidence indicates that direct descending corticomotoneuron projections in the VII are present only in catarrhine primates, suggesting that this connectivity is an important substrate for the evolution of enhanced mobility and flexibility in facial expression. Data are also presented from a stereologic analysis of VII neuron numbers in 18 primate species and a scandentian. Using phylogenetic comparative statistics, it is shown that there is not a correlation between group size and VII neuron number (adjusted for medulla volume) among primates. Great apes and humans, however, display moderately more VII neurons that expected for their medulla size.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, USA.
| |
Collapse
|
58
|
Abstract
Unraveling the complex tissue interactions necessary to generate the structural and functional diversity present among craniofacial muscles is challenging. These muscles initiate their development within a mesenchymal population bounded by the brain, pharyngeal endoderm, surface ectoderm, and neural crest cells. This set of spatial relations, and in particular the segmental properties of these adjacent tissues, are unique to the head. Additionally, the lack of early epithelialization in head mesoderm necessitates strategies for generating discrete myogenic foci that may differ from those operating in the trunk. Molecular data indeed indicate dissimilar methods of regulation, yet transplantation studies suggest that some head and trunk myogenic populations are interchangeable. The first goal of this review is to present key features of these diversities, identifying and comparing tissue and molecular interactions regulating myogenesis in the head and trunk. Our second focus is on the diverse morphogenetic movements exhibited by craniofacial muscles. Precursors of tongue muscles partly mimic migrations of appendicular myoblasts, whereas myoblasts destined to form extraocular muscles condense within paraxial mesoderm, then as large cohorts they cross the mesoderm:neural crest interface en route to periocular regions. Branchial muscle precursors exhibit yet another strategy, establishing contacts with neural crest populations before branchial arch formation and maintaining these relations through subsequent stages of morphogenesis. With many of the prerequisite stepping-stones in our knowledge of craniofacial myogenesis now in place, discovering the cellular and molecular interactions necessary to initiate and sustain the differentiation and morphogenesis of these neglected craniofacial muscles is now an attainable goal.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
59
|
Cheung KK, Chan WY, Burnstock G. Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 2005; 133:937-45. [PMID: 15964486 DOI: 10.1016/j.neuroscience.2005.03.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/17/2005] [Accepted: 03/09/2005] [Indexed: 11/16/2022]
Abstract
Extracellular ATP is well known as a neurotransmitter and neuromodulator in the CNS of adults. However, little is known about the involvement of ATP during the development of mammalian brain. In the present study, we have examined the expression pattern of P2X receptor subtype mRNA and protein during perinatal rat brain development (from embryonic day (E) 10 to postnatal day (P) 16 brain). While P2X3 receptors appeared early at E11, they declined in the stages that follow. P2X2 and P2X7 receptors were expressed from E14 onwards, while P2X4, P2X5 and P2X6 receptors were expressed from P1 onwards. P2X1 receptor expression was not observed in any of the developmental ages examined. We investigated the effect of 100 microM ATP and alpha,beta-methylene ATP (alpha,beta-meATP; selective agonist for P2X1, P2X2/3 and P2X3 receptors) on motor axon outgrowth in collagen-embedded neural tube explant cultures. Both ATP- and alpha,beta-meATP-treated neural tubes showed a significant reduction in neurite outgrowth compared with the control explants. This inhibitory effect could not be reproduced by uridine triphosphate. In conclusion, all P2X receptor subtypes, except for P2X1, were strongly represented in the developing rat brain. ATP was shown to inhibit motor axon outgrowth during early embryonic neurogenesis, most likely via the P2X3 receptor. It is speculated that P2X7 receptors may be involved in programmed cell death during embryogenesis and that P2X4, P2X(5) and P2X6 receptors might be involved in postnatal neurogenesis.
Collapse
Affiliation(s)
- K K Cheung
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|
60
|
Lieberam I, Agalliu D, Nagasawa T, Ericson J, Jessell TM. A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines the Initial Trajectory of Mammalian Motor Axons. Neuron 2005; 47:667-79. [PMID: 16129397 DOI: 10.1016/j.neuron.2005.08.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/29/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Motor neurons, alone among neurons in the vertebrate CNS, extend axons out of the neural tube to innervate peripheral targets. Two classes of motor neurons, termed vMNs and dMNs, extend axons out of the neural tube via ventral and dorsal exit points, respectively, in accord with their homeodomain transcription factor repertoire. Downstream of these transcriptional codes, the cell surface receptors that shape initial motor axon trajectories have not been identified. We show here that the chemokine receptor Cxcr4 is expressed on the axons of vMNs as they follow their ventral trajectory, whereas its ligand, Cxcl12, is expressed by mesenchymal cells surrounding the ventral neural tube. Genetic studies reveal that Cxcl12-Cxcr4 signaling directs the ventral trajectory of spinal vMNs. In its absence, these neurons adopt a dMN-like trajectory, despite preservation of their vMN transcriptional identity. Thus, the status of Cxcr4 signaling helps to determine the initial axonal trajectory of mammalian motor neurons.
Collapse
Affiliation(s)
- Ivo Lieberam
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
61
|
Roccisana J, Reddy V, Vasavada RC, Gonzalez-Pertusa JA, Magnuson MA, Garcia-Ocaña A. Targeted inactivation of hepatocyte growth factor receptor c-met in beta-cells leads to defective insulin secretion and GLUT-2 downregulation without alteration of beta-cell mass. Diabetes 2005; 54:2090-102. [PMID: 15983210 DOI: 10.2337/diabetes.54.7.2090] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Overexpression of hepatocyte growth factor (HGF) in the beta-cell of transgenic mice enhances beta-cell proliferation, survival, and function. In the current studies, we have used conditional ablation of the c-met gene to uncover the physiological role of HGF in beta-cell growth and function. Mice in which c-met is inactivated in the beta-cell (MetCKO mice) display normal body weight, blood glucose, and plasma insulin compared with control littermates. In contrast, MetCKO mice displayed significantly diminished glucose tolerance and reduced plasma insulin after a glucose challenge in vivo. This impaired glucose tolerance in MetCKO mice was not caused by insulin resistance because sensitivity to exogenous insulin was similar in both groups. Importantly, in vitro glucose-stimulated insulin secretion in MetCKO islets was decreased by approximately 50% at high glucose concentrations compared with control islets. Furthermore, whereas insulin and glucokinase expression in MetCKO islets were normal, GLUT-2 expression was decreased by approximately 50%. These changes in beta-cell function in MetCKO mice were not accompanied by changes in total beta-cell mass, islet morphology, islet cell composition, and beta-cell proliferation. Interestingly, however, MetCKO mice display an increased number of small islets, mainly single and doublet beta-cells. We conclude that HGF/c-met signaling in the beta-cell is not essential for beta-cell growth, but it is essential for normal glucose-dependent insulin secretion.
Collapse
Affiliation(s)
- Jennifer Roccisana
- Division of Endocrinology, BST-E-1140, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
62
|
Prunotto C, Crepaldi T, Forni PE, Ieraci A, Kelly RG, Tajbakhsh S, Buckingham M, Ponzetto C. Analysis of Mlc-lacZ Met mutants highlights the essential function of Met for migratory precursors of hypaxial muscles and reveals a role for Met in the development of hyoid arch-derived facial muscles. Dev Dyn 2005; 231:582-91. [PMID: 15376315 DOI: 10.1002/dvdy.20177] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Pax3 and c-met genes are necessary for the development of tongue, diaphragm, and limb muscles. These hypaxial muscles derive from precursors that migrate out of the ventrolateral lip of the somites at occipital, cervical, and limb levels. In this work, we re-examined primary myogenesis in c-met signaling mutants using a skeletal muscle-specific lacZ transgene (Mlc3f-nlacZ-2E). This strategy allowed us to identify precisely the shoulder, limb, tongue, and dermal muscles that need Met for development and to confirm that the morphological structure of epaxial and body wall muscles was normal, even in the most severe c-met mutant. Surprisingly, however, X-gal staining showed that, in this mutant, hyoid arch-derived facial muscles were either reduced or absent, thus revealing that Met also contributes to the development of muscles in the head.
Collapse
Affiliation(s)
- Chiara Prunotto
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Torino, Corso Massimo d'Azeglio 52, 10126 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Prin F, Ng KE, Thaker U, Drescher U, Guthrie S. Ephrin-As play a rhombomere-specific role in trigeminal motor axon projections in the chick embryo. Dev Biol 2005; 279:402-19. [PMID: 15733668 DOI: 10.1016/j.ydbio.2004.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022]
Abstract
In this study, we investigate the possible role of ephrin-Eph signaling in trigeminal motor axon projections. We find that EphA receptors are expressed at higher levels by rhombomere 2 (r2) trigeminal motor neurons than by r3 trigeminal motor neurons in the chick embryo. Mapping of rhombomere-specific axon projections shows that r2 and r3 trigeminal motor neurons project to different muscle targets, including the mandibular adductor and the intermandibularis muscles respectively. Ephrin-A5 is expressed in these muscles, especially in some regions of the intermandibularis muscle, and can cause growth cone collapse of both r2 and r3 motor axons in vitro. We demonstrate that in vivo overexpression of ephrin-A5 in the intermandibularis muscle, or overexpression of dominant-negative EphA receptors in trigeminal motor neurons leads to a reduction in branching of r3-derived motor axons specifically. Overexpression of full-length EphA receptors impairs the formation of r3 projections to the intermandibularis muscle. These findings indicate that ephrins and their Eph receptors play a role in trigeminal motor axon topographic mapping and in rhombomere 3-derived projections in particular.
Collapse
Affiliation(s)
- Fabrice Prin
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
64
|
Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. ACTA ACUST UNITED AC 2005; 49:48-64. [PMID: 15960986 DOI: 10.1016/j.brainresrev.2004.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 09/29/2004] [Accepted: 11/29/2004] [Indexed: 02/04/2023]
Abstract
Owing to the profound impact of nervous system damage, extensive studies have been carried out aimed at facilitating axonal regeneration following injury. Tissue engineering, as an emerging and rapidly growing field, has received extensive attention for nervous system axonal guidance. Numerous engineered substrates containing oriented extracellular matrix molecules, cells or channels have displayed potential of supporting axonal regeneration and functional recovery. Most attempts are focused on seeking new biomaterials, new cell sources, as well as novel designs of tissue-engineered neuronal bridging devices, to generate safer and more efficacious neuronal tissue repairs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Bioengineering, Clemson University, BSB# 303, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
65
|
Thompson J, Dolcet X, Hilton M, Tolcos M, Davies AM. HGF promotes survival and growth of maturing sympathetic neurons by PI-3 kinase- and MAP kinase-dependent mechanisms. Mol Cell Neurosci 2004; 27:441-52. [PMID: 15555922 DOI: 10.1016/j.mcn.2004.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 11/16/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a pleiotrophic factor whose many functions include promoting neuronal survival and growth. Hitherto, these effects have been observed in the presence of other neurotrophic factors like NGF and CNTF, and this requirement for an accessory factor has made it difficult to elucidate the signaling pathways that mediate its survival and growth-enhancing effects. Here, we show that HGF promotes the survival of mature sympathetic neurons of the superior cervical ganglion (SCG) grown at low density in defined medium lacking other neurotrophic factors. This effect was first clearly observed in cultures established from postnatal day 20 (P20) mice and became maximal by P40. HGF also enhanced the growth of neurite arbors from neurons throughout postnatal development and in the adult. HGF treatment resulted in phosphorylation of Akt and ERK1/ERK2. Preventing Akt activation with the phosphatidylinositol-3 (PI-3) kinase inhibitor LY294002 blocked the HGF survival response, and inhibition of ERK activation with the MEK inhibitors PD98059 or U0126 reduced the HGF survival response and the neurite growth-promoting effects of HGF. These results indicate that HGF promotes the survival and growth of maturing sympathetic neurons by both PI-3 kinase- and MAP kinase-dependent mechanisms.
Collapse
Affiliation(s)
- Jane Thompson
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
66
|
Goodhill GJ, Gu M, Urbach JS. Predicting Axonal Response to Molecular Gradients with a Computational Model of Filopodial Dynamics. Neural Comput 2004; 16:2221-43. [PMID: 15476599 DOI: 10.1162/0899766041941934] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axons are often guided to their targets in the developing nervous system by attractive or repulsive molecular concentration gradients. We propose a computational model for gradient sensing and directed movement of the growth cone mediated by filopodia. We show that relatively simple mechanisms are sufficient to generate realistic trajectories for both the short-term response of axons to steep gradients and the long-term response of axons to shallow gradients. The model makes testable predictions for axonal response to attractive and repulsive gradients of different concentrations and steepness, the size of the intracellular amplification of the gradient signal, and the differences in intracellular signaling required for repulsive versus attractive turning.
Collapse
Affiliation(s)
- Geoffrey J Goodhill
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007, USA.
| | | | | |
Collapse
|
67
|
Rosoff WJ, Urbach JS, Esrick MA, McAllister RG, Richards LJ, Goodhill GJ. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 2004; 7:678-82. [PMID: 15162167 DOI: 10.1038/nn1259] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 04/23/2004] [Indexed: 11/09/2022]
Abstract
Axonal chemotaxis is believed to be important in wiring up the developing and regenerating nervous system, but little is known about how axons actually respond to molecular gradients. We report a new quantitative assay that allows the long-term response of axons to gradients of known and controllable shape to be examined in a three-dimensional gel. Using this assay, we show that axons may be nature's most-sensitive gradient detectors, but this sensitivity exists only within a narrow range of ligand concentrations. This assay should also be applicable to other biological processes that are controlled by molecular gradients, such as cell migration and morphogenesis.
Collapse
Affiliation(s)
- William J Rosoff
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
68
|
Tonge DA, Pountney DJ, Leclere PG, Zhu N, Pizzey JA. Neurotrophin-independent attraction of growing sensory and motor axons towards developing Xenopus limb buds in vitro. Dev Biol 2004; 265:169-80. [PMID: 14697361 DOI: 10.1016/j.ydbio.2003.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms for directing axons to their targets in developing limbs remain largely unknown though recent studies in mice have demonstrated the importance of neurotrophins in this process. We now report that in co-cultures of larval Xenopus laevis limb buds with spinal cords and dorsal root ganglia of Xenopus and axolotl (Ambystoma mexicanum) axons grow directly to the limb buds over distances of up to 800 microm and in particular to sheets of epidermal cells which migrate away from the limb buds and also tail segments in culture. This directed axonal growth persists in the presence of trk-IgG chimeras, which sequester neurotrophins, and k252a, which blocks their actions mediated via trk receptors. These findings indicate that developing limb buds in Xenopus release diffusible factors other than neurotrophins, able to attract growth of sensory and motor axons over long distances.
Collapse
Affiliation(s)
- David A Tonge
- GKT School of Biomedical Sciences, King's College London, Guy's Hospital Campus, London Bridge, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
69
|
Abstract
The cranial motor neurons innervate muscles that control eye, jaw, and facial movements of the vertebrate head and parasympathetic neurons that innervate certain glands and organs. These efferent neurons develop at characteristic locations in the brainstem, and their axons exit the neural tube in well-defined trajectories to innervate target tissues. This review is focused on a subset of cranial motor neurons called the branchiomotor neurons, which innervate muscles derived from the branchial (pharyngeal) arches. First, the organization of the branchiomotor pathways in zebrafish, chick, and mouse embryos will be compared, and the underlying axon guidance mechanisms will be addressed. Next, the molecular mechanisms that generate branchiomotor neurons and specify their identities will be discussed. Finally, the caudally directed or tangential migration of facial branchiomotor neurons will be examined. Given the advances in the characterization and analysis of vertebrate genomes, we can expect rapid progress in elucidating the cellular and molecular mechanisms underlying the development of these vital neuronal networks. Developmental Dynamics 229:143-161, 2004.
Collapse
Affiliation(s)
- Anand Chandrasekhar
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
70
|
Abstract
The pattern of innervation of the extraocular muscles is highly conserved across higher vertebrate species and mediates sophisticated visuomotor processes. Defects in oculomotor development often lead to strabismus, a misalignment of the eyes that can cause partial blindness. Although it has been intensively studied from a clinical perspective, relatively little is known about how the system develops embryonically. We have therefore mapped the development of the oculomotor nerve (OMN) in chick embryos by using confocal microscopy. We show that OMN development follows a series of stereotyped steps that are tightly regulated in space and time. The OMN initially grows past three of its targets to innervate its distal target, the ventral oblique muscle, only later forming branches to the more proximal muscles. We have also investigated spatiotemporal aspects of the unusual contralateral migration of a subpopulation of oculomotor neurons by using molecular markers and have found the semaphorin axon guidance molecules and their receptors, the neuropilins, to be expressed in discrete subnuclei during this migration. Finally, we have created an embryological model of Duane retraction syndrome (DRS), a form of strabismus in which the OMN is believed to innervate aberrantly the lateral rectus, the normal target of the abducens nerve. By ablating rhombomeres 5 and 6 and hence the abducens, we have mimicked a proposed oculomotor deficit occurring in DRS. We find that the absence of the abducens nerve is not sufficient to produce this inappropriate innervation, so other factors are required to explain DRS.
Collapse
Affiliation(s)
- John Kevin Chilton
- Medical Research Council Centre for Developmental Neurobiology, Kings College London, Guys Campus, London Bridge, London SE1 1UL, United Kingdom
| | | |
Collapse
|
71
|
Cacci E, Salani M, Anastasi S, Perroteau I, Poiana G, Biagioni S, Augusti-Tocco G. Hepatocyte growth factor stimulates cell motility in cultures of the striatal progenitor cells ST14A. J Neurosci Res 2003; 74:760-8. [PMID: 14635227 DOI: 10.1002/jnr.10799] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a growth factor with pleiotropic effects on different cell types. It acts as a mitogen and motility factor for many epithelial cells. HGF/SF and its receptor Met are present in the developing and adult mammalian brain and control neuritogenesis of sympathetic and sensory neurons. We report that the striatal progenitor ST14A cells express the Met receptor, which is activated after binding with HGF/SF. The interaction between Met and HGF/SF triggers a signaling cascade that leads to increased levels of c-Jun, c-Fos, and Egr-1 proteins, in agreement with data reported on the signaling events evoked by HGF in other cellular types. We also studied the effects of the exposure of ST14A cells to HGF/SF. By time-lapse photography, we observed that a 24-hr treatment with 50 ng/ml HGF/SF induced modification in cell morphology, with a decrease in cell-cell interactions and increase of cell motility. In contrast, no effect on cell proliferation was observed. To investigate which intracellular pathway is primarily involved we used PD98059 and LY294002, two specific inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAP-kinase/ERK-kinase) and phosphoinositide 3-OH kinase (PI3-K), respectively. Cell motility in HGF/SF treated cultures was inhibited by LY294002 but not by PD98059, suggesting that PI3-K plays a key role in mediating the HGF/SF-induced dissociation of ST14A cells. Previous evidence of HGF stimulation of motility in nervous system has been obtained on postmitotic neurons, which have already acquired their specificity. Data reported here of a motogenic response of ST14A cell line, which displays properties of neuronal progenitors, seem of interest because they suggest that HGF could play a role in very early steps of neurogenesis.
Collapse
Affiliation(s)
- E Cacci
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
72
|
Tamura S, Morikawa Y, Senba E. Localization of oncostatin M receptor beta in adult and developing CNS. Neuroscience 2003; 119:991-7. [PMID: 12831858 DOI: 10.1016/s0306-4522(03)00240-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oncostatin M (OSM) is a member of the interleukin-6 cytokine family, which is involved in definitive hematopoiesis, the development of liver, and local inflammation. However, little is known about the role of OSM in the murine CNS. Using Northern blot analysis, we examined the regional distribution of OSM receptor beta (OSMRbeta) mRNA in the adult CNS. OSMRbeta mRNA was observed predominantly in the olfactory bulb, and with low levels in the other regions. In situ hybridization shows that OSMRbeta gene expression was found in astrocytes of olfactory bulb, epithelial cells of choroid plexus, and meningeal cells in pia mater. In addition, we investigated the gene expression of OSMRbeta in the developing CNS at different time points. Its gene expression was first observed in large neurons of the hypoglossal nucleus at 14.5 days postcoitum, which was sustained until neonatal mice. OSMRbeta mRNA and protein were mainly localized in the ventral subnucleus of the developing hypoglossal nucleus. Our results suggest that OSM contributes to the development of specific subpopulations of both neurons and astrocytes in the murine CNS.
Collapse
Affiliation(s)
- S Tamura
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, 641-8509, Wakayama, Japan
| | | | | |
Collapse
|
73
|
Abstract
During development, inferior olivary axons cross the floor plate and project from the caudal to the rostral hindbrain, whence they grow into the cerebellar plate. We have investigated the axon guidance signals involved in the formation of this projection in vitro. When the cerebellar plate was grafted ectopically along the margin of the hindbrain in organotypic cultures, inferior olivary axons could pathfind to the ectopic cerebellum, establishing a topographically normal projection. Following rostrocaudal reversal of a region of tissue in the axon pathway between the inferior olive and the cerebellum, olivary axons still navigated towards the cerebellum. Moreover, olivary axons could cross a bridging tissue explant (spinal cord) to reach a cerebellar explant. In collagen gel cultures of inferior olive explants, olivary axon outgrowth increased significantly in the presence of cerebellar explants and axons deflected towards the cerebellar tissue. These results show that the cerebellum is a source of diffusible axon guidance signals for olivary axons. We also found that, in organotypic cultures, olivary axons which had crossed the floor plate showed an increased tendency to respond to cerebellar cues. Taken together, these results indicate that the cerebellum is the source of cues that are chemoattractant and growth-promoting for inferior olivary axons; prior exposure to the floor plate increases responsiveness to these cues.
Collapse
Affiliation(s)
- Yan Zhu
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
74
|
Cooper KL, Leisenring WM, Moens CB. Autonomous and nonautonomous functions for Hox/Pbx in branchiomotor neuron development. Dev Biol 2003; 253:200-13. [PMID: 12645925 DOI: 10.1016/s0012-1606(02)00018-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The vertebrate branchiomotor neurons are organized in a pattern that corresponds with the segments, or rhombomeres, of the developing hindbrain and have identities and behaviors associated with their position along the anterior/posterior axis. These neurons undergo characteristic migrations in the hindbrain and project from stereotyped exit points. We show that lazarus/pbx4, which encodes an essential Hox DNA-binding partner in zebrafish, is required for facial (VIIth cranial nerve) motor neuron migration and for axon pathfinding of trigeminal (Vth cranial nerve) motor axons. We show that lzr/pbx4 is required for Hox paralog group 1 and 2 function, suggesting that Pbx interacts with these proteins. Consistent with this, lzr/pbx4 interacts genetically with hoxb1a to control facial motor neuron migration. Using genetic mosaic analysis, we show that lzr/pbx4 and hoxb1a are primarily required cell-autonomously within the facial motor neurons; however, analysis of a subtle non-cell-autonomous effect indicates that facial motor neuron migration is promoted by interactions amongst the migrating neurons. At the same time, lzr/pbx4 is required non-cell-autonomously to control the pathfinding of trigeminal motor axons. Thus, Pbx/Hox can function both cell-autonomously and non-cell-autonomously to direct different aspects of hindbrain motor neuron behavior.
Collapse
Affiliation(s)
- Kimberly L Cooper
- Howard Hughes Medical Institute, Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
75
|
Abstract
The topographic assembly of neural circuits is dependent upon the generation of specific neuronal subtypes, each subtype displaying unique properties that direct the formation of selective connections with appropriate target cells. Studies of motor neuron development in the spinal cord have begun to elucidate the molecular mechanisms involved in controlling motor projections. In this review, we first describe the actions of transcription factors within motor neuron progenitors, which initiate a cascade of transcriptional interactions that lead to motor neuron specification. We next highlight the contribution of the LIM homeodomain (LIM-HD) transcription factors in establishing motor neuron subtype identity. Importantly, it has recently been shown that the combinatorial expression of LIM-HD transcription factors, the LIM code, confers motor neuron subtypes with the ability to select specific axon pathways to reach their distinct muscle targets. Finally, the downstream targets of the LIM code are discussed, especially in the context of subtype-specific motor axon pathfinding.
Collapse
Affiliation(s)
- Ryuichi Shirasaki
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
76
|
Yan H, Rivkees SA. Hepatocyte growth factor stimulates the proliferation and migration of oligodendrocyte precursor cells. J Neurosci Res 2002; 69:597-606. [PMID: 12210825 DOI: 10.1002/jnr.10323] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hepatocyte growth factor (HGF) was initially identified as a potent mitogen for mature hepatocytes and has since been found to affect a variety of cells. Evidence suggests that HGF may also influence the nervous system, in that HGF stimulates the proliferation of myelin-forming Schwann cells and olfactory ensheathing cells. However, it is not known whether HGF influences oligodendrocytes. To address this issue, oligodendrocyte precursors were obtained from neonatal rat cerebra and cultured. Immunostaining and Western blotting revealed expression of both HGF and the HGF receptor (c-Met) by cultured oligodendrocytes. When the ability of HGF to stimulate oligodendrocyte division and migration was examined, we observed that treatment with HGF (10-50 ng/ml) elicited twofold increases in oligodendrocyte precursor proliferation. HGF also enhanced oligodendrocyte precursor migration, with 2.5-fold increases in rates of migration seen after treatment for 8 hr. HGF also influenced inducing the oligodendrocyte cytoskeleton by altering patterns of F-actin and beta-tubulin distribution and enhanced the expression of actin and beta-tubulin. These observations show that a functional HGF/c-Met system is present in oligodendrocytes, which can influence the growth, development, and cytoskeletal organization of oligodendrocytes.
Collapse
Affiliation(s)
- Henglin Yan
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
77
|
Sun W, Funakoshi H, Nakamura T. Localization and functional role of hepatocyte growth factor (HGF) and its receptor c-met in the rat developing cerebral cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 103:36-48. [PMID: 12106690 DOI: 10.1016/s0169-328x(02)00168-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of the cerebral cortex is a series of precisely timed proliferative, migratory, and maturational processes. Hepatocyte growth factor (HGF) is a pleiotrophic cytokine, which plays important roles in the organogenesis and regeneration of various tissues, both during development and in the adult, due to its mitogenic, motogenic and morphogenic activities. In the present study, we examined expression and functional roles of HGF and c-Met during development of the rat cerebral cortex. Quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) revealed that expression levels of c-met and HGF mRNAs were increased in the cerebral cortex during late embryonic development and peaked at E18. Immunohistochemical analyses revealed that c-Met-immunoreactivity (IR) was localized to the preplate (PP), with weaker-IR in neuroepithelial layer (NE) at embryonic day 14 (E14). At E16, c-Met-IR was present in the cortical plate (CP) and the intermediate zone (IZ), with a weak presence in the ventricular zone (VZ). On the other hand, HGF-IR was present in NE and VZ at E14 and E16, respectively. HGF-IR appeared in cortical plate tissue from E16 onward. Double labeling immunofluorescent cytochemical studies revealed that c-Met-IR was localized both in TuJ-1-IR- and non-TuJ-1-IR-cells, purified from E18 cerebral cortex in vitro, suggesting the presence of c-Met-IR in postmitotic neurons as well as in neuroepithelial cells. c-Met-IR was strong in cell bodies and neurites shortly after in vitro culture, while at 7DIV c-Met-IR decreased in neurites and was evident in growth cones. HGF dose dependently supported neuronal survival in vitro under serum-deprived conditions. In a transwell culture chamber, HGF increased neuronal migration, and co-incubation with functional blocking antibody against HGF abrogated this motogenic effect of HGF. These lines of evidence suggest that HGF is involved in the development and maintenance of cortical neurons during differentiation, motogenesis, neuritogenesis and neuronal survival.
Collapse
Affiliation(s)
- Woong Sun
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, B-7, Osaka 565-0871, Japan
| | | | | |
Collapse
|
78
|
Naeem A, Abbas L, Guthrie S. Comparison of the effects of HGF, BDNF, CT-1, CNTF, and the branchial arches on the growth of embryonic cranial motor neurons. JOURNAL OF NEUROBIOLOGY 2002; 51:101-14. [PMID: 11932952 DOI: 10.1002/neu.10048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth-promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth-promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response.
Collapse
Affiliation(s)
- Arifa Naeem
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1 UL, UK
| | | | | |
Collapse
|
79
|
Watari N, Kameda Y, Takeichi M, Chisaka O. Hoxa3 regulates integration of glossopharyngeal nerve precursor cells. Dev Biol 2001; 240:15-31. [PMID: 11784044 DOI: 10.1006/dbio.2001.0447] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vertebrates, certain Hox genes are known to control cellular identities along the anterior-posterior (A-P) axis in the developing hindbrain. In mouse Hoxa3 mutants, truncation of the glossopharyngeal (IXth) nerve or the fusion of the IXth and vagus (Xth) nerves was reported, although its underlying mechanism is largely unknown. To elucidate the mechanism of the IXth nerve defects, we reexamined the phenotype of Hoxa3 mutant embryos. In Hoxa3 mutants, we observed an abnormal caudal stream of the migrating Hoxa3-expressing neural crest cells at the prospective IXth nerve-forming area. Dorsomedial migration of the placode-derived neuronal precursor cells of the IXth nerve was also affected. Motor neurons at rhombomere 6 (r6), where those of the IXth nerve were positioned, often projected axons to the Xth nerve. In summary, the Hoxa3 gene has crucial roles in ensuring the correct axon projection pattern of all three components of the IXth nerve, i.e., motor neurons and sensory neurons of the proximal and distal ganglia.
Collapse
Affiliation(s)
- N Watari
- Department of Cell and Developmental Biology, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
80
|
Abstract
Hepatocyte growth factor (HGF) is a potent mitogen for mature hepatocytes, and it has multi-functional effects in a variety of cells in various organs. HGF stimulates DNA synthesis and promotes cell migration and morphogenesis in several cell types including the olfactory system. To characterize the potential mitogenic activity of HGF that might contribute to olfactory ensheathing cell (OEC) proliferation, we tested the ability of HGF to stimulate OEC division in vitro. OECs were obtained from adult rat olfactory bulbs and cultured in serum-free medium, and were identified by double immunostaining for p75 and S-100 antibodies. DNA synthesis assayed by pulsing BrdU for 24 hr showed that HGF at the concentration of 5-100 ng/ml elicited a 5-10-fold increase of OEC proliferation. By immunocytochemical analysis, we demonstrated that c-Met-immunoreactivity was present in cultured OECs, and c-Met anti-serum significantly sequestered the activity of HGF on OECs proliferation, suggesting that HGF-induced proliferation of OECs is mediated by the c-Met receptor. The mitogenic activity of HGF was potentiated by addition of heregulin (HRG), but inhibited by addition of forskolin. These results demonstrate that HGF is a novel mitogen for rat OECs in vitro, and HGF/c-Met system is involved in regulating OECs growth and development.
Collapse
Affiliation(s)
| | | | - Jeffery D. Kocsis
- Correspondence to: Jeffery D. Kocsis, PhD, Department of Neurology, Yale University School of Medicine, Neuroscience Research Center (127A), VAMC, West Haven, CT 06516. E-mail:
| |
Collapse
|
81
|
Affiliation(s)
- S P Cordes
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Rm 865, 600 University Ave, Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
82
|
Barrett C, Guthrie S. Expression patterns of the netrin receptor UNC5H1 among developing motor neurons in the embryonic rat hindbrain. Mech Dev 2001; 106:163-6. [PMID: 11472849 DOI: 10.1016/s0925-4773(01)00415-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The axon guidance molecule netrin-1 has been implicated in the midline repulsion of developing cranial motor axons. We have examined expression patterns of the netrin receptors UNC5H1 and DCC in embryonic rat hindbrains, in combination with labelling of developing motor neurons. We found that UNC5H1 expression colocalised with a number of cranial motor neuron subpopulations from embryonic day 11 (E11) to E14, while DCC was expressed by motor neurons at E12.
Collapse
Affiliation(s)
- C Barrett
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, SE1 1UL, London, UK
| | | |
Collapse
|
83
|
Jacob J, Hacker A, Guthrie S. Mechanisms and molecules in motor neuron specification and axon pathfinding. Bioessays 2001; 23:582-95. [PMID: 11462212 DOI: 10.1002/bies.1084] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The vertebrate nervous system performs the most complex functions of any organ system. This feat is mediated by dedicated assemblies of neurons that must be precisely connected to one another and to peripheral tissues during embryonic development. Motor neurons, which innervate muscle and regulate autonomic functions, form an integral part of this neural circuitry. The first part of this review describes the remarkable progress in our understanding of motor neuron differentiation, which is arguably the best understood model of neuronal differentiation to date. During development, the coordinate actions of inductive signals from adjacent non-neural tissues initiate the differentiation of distinct motor neuron subclasses, with specific projection patterns, at stereotypical locations within the neural tube. Underlying this specialisation is the expression of specific homeodomain proteins, which act combinatorially to confer motor neurons with both their generic and subtype-specific properties. Ensuring that specific motor neuron subtypes innervate the correct target structure, however, requires precise motor axon guidance mechanisms. The second half of this review focuses on how distinct motor neuron subtypes pursue highly specific projection patterns by responding differentially to spatially discrete attractive and repulsive molecular cues. The tight link between motor neuron specification and axon pathfinding appears to be established by the dominant role of homeodomain proteins in dictating the ways that navigating motor axons interpret the plethora of guidance cues impinging on growth cones.
Collapse
Affiliation(s)
- J Jacob
- MRC Centre for Developmental Neurobiology, King's College, London
| | | | | |
Collapse
|
84
|
Maina F, Panté G, Helmbacher F, Andres R, Porthin A, Davies AM, Ponzetto C, Klein R. Coupling Met to specific pathways results in distinct developmental outcomes. Mol Cell 2001; 7:1293-306. [PMID: 11430831 DOI: 10.1016/s1097-2765(01)00261-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Receptor tyrosine kinases (RTKs) mediate distinct biological responses by stimulating similar intracellular signaling pathways. Whether the specificity of the response is determined by qualitative or quantitative differences in signaling output is not known. We addressed this question in vivo by replacing the multifunctional docking sites of Met, the receptor for hepatocyte growth factor, with specific binding motifs for phosphatidylinositol-3 kinase, Src tyrosine kinase, or Grb2 (Met(2P), Met(2S), and Met(2G), respectively). All three mutants retained normal signaling through the multiadaptor Gab1, but differentially recruited specific effectors. While Met(2G) mice developed normally, Met(2P) and Met(2S) mice were loss-of-function mutants displaying different phenotypes and rescue of distinct tissues. These data indicate that RTK-mediated activation of specific signaling pathways is required to fulfill cell-specific functions in vivo.
Collapse
Affiliation(s)
- F Maina
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Kania A, Johnson RL, Jessell TM. Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 2000; 102:161-73. [PMID: 10943837 DOI: 10.1016/s0092-8674(00)00022-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Motor neurons extend axons along specific trajectories, but the molecules that control their pathfinding remain poorly defined. We show that two LIM homeodomain transcription factors, Lim1 and Lmx1b, control the initial trajectory of motor axons in the developing mammalian limb. The expression of Lim1 by a lateral set of lateral motor column (LMC) neurons ensures that their axons select a dorsal trajectory in the limb. In a complementary manner, the expression of Lmx1b by dorsal limb mesenchymal cells controls the dorsal and ventral axonal trajectories of medial and lateral LMC neurons. In the absence of these two proteins, motor axons appear to select dorsal and ventral trajectories at random. Thus, LIM homeodomain proteins act within motor neurons and cells that guide motor axons to establish the fidelity of a binary choice in axonal trajectory.
Collapse
Affiliation(s)
- A Kania
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
86
|
Küry P, Gale N, Connor R, Pasquale E, Guthrie S. Eph receptors and ephrin expression in cranial motor neurons and the branchial arches of the chick embryo. Mol Cell Neurosci 2000; 15:123-40. [PMID: 10673322 DOI: 10.1006/mcne.1999.0812] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cranial motor axons navigate along a variety of pathways to their targets in the periphery of the head. Whereas somatic motor axons innervate tongue and eye muscles, visceral motor axons innervate parasympathetic ganglia, and branchiomotor axons innervate the branchial arches. The formation of these diverse pathways must depend upon molecules present in the environment traversed by growing axons. We have analyzed the potential roles of the ephrin ligands and their Eph tyrosine kinase receptors during cranial motor neuron development and axon pathfinding, by investigating expression patterns of these molecules at relevant stages in the chick. We detected expression of EphA3 and EphA4 among trigeminal and facial motor neurons, at times when these neurons are projecting to their muscle targets in the branchial arches. Corresponding ephrin-A ligands for these receptors were found to be expressed in specific regions of the arches during the same period, implicating ephrin-mediated interactions in cranial motor axon pathfinding.
Collapse
Affiliation(s)
- P Küry
- Centre for Developmental Neurobiology, Kings' College, London, SE1 9RT, United Kingdom
| | | | | | | | | |
Collapse
|