51
|
Vaziri A, Mofrad MRK. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech 2007; 40:2053-62. [PMID: 17112531 DOI: 10.1016/j.jbiomech.2006.09.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 09/27/2006] [Indexed: 11/16/2022]
Abstract
Robust biomechanical models are essential for the study of nuclear mechanics and deformation and can help shed light on the underlying mechanisms of stress transition in nuclear elements. Here, we develop a computational model for an isolated nucleus undergoing micropipette aspiration. Our model includes distinct components representing the nucleoplasm and nuclear envelope. The nuclear envelope itself comprises three layers: inner and outer nuclear membranes and one thicker layer representing the nuclear lamina. The nucleoplasm is modeled as a viscoelastic Maxwell material with a single time constant, while a modified Maxwell model, equivalent to a spring and a dashpot in series and both in parallel with a spring, is adopted for the inner and outer nuclear membranes. The nuclear envelope layer is taken as a linear elastic material. The proposed computational model, validated using experimental observations of Guilak et al. [2000. Viscoelastic properties of the cell nucleus. Biochemical and Biophysical Research Communications 269, 781-786] and Deguchi et al. [2005, Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. Journal of Biomechanics 38, 1751-1759], is employed to study nuclear mechanics and deformation in micropipette aspiration and to shed light on the contribution of individual nuclear components on the response. The results indicate that the overall response of an isolated nucleus in micropipette aspiration is highly sensitive to the apparent stiffness of the nuclear lamina. This observation suggests that micropipette aspiration is an effective technique for examining the influence of various kinds of alteration in the nuclear lamina, such as mutations in the gene encoding lamin A, and also structural remodeling due to mechanical perturbation.
Collapse
Affiliation(s)
- Ashkan Vaziri
- Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
52
|
Abstract
Dilated cardiomyopathy (DCM) is a myocardial disease characterized by dilatation and impaired systolic function of the left or both ventricles. The etiology of DCM is multifactorial, and many different clinical conditions can lead to the phenotype of DCM. During recent years it has become evident that genetic factors play an important role in the etiology and pathogenesis of idiopathic DCM. The genetics of DCM have been under intensive investigation lately, and thereby the knowledge on the genetic basis of DCM has increased rapidly. The genetic background of the disease seems to be relatively heterogeneous, and the disease-associated mutations concern mostly single families and only few affected patients. Disease-associated mutations have been detected e.g. in genes encoding sarcomere, cytoskeletal, and nuclear proteins, as well as proteins involved with regulation of Ca(2+) metabolism. The mechanisms, by which mutations eventually result in clinical heart failure, are complex and not yet totally resolved. DCM causes considerable morbidity and mortality. Better knowledge of the genetic background and disease-causing mechanisms would probably help us in focusing early treatment on right subjects and potentially also developing new treatment modalities and improving cardiac outcome in the affected patients. This review deals with DCM of genetic origin.
Collapse
Affiliation(s)
- Satu Kärkkäinen
- Kuopio University and Kuopio University Hospital, Kuopio, Finland.
| | | |
Collapse
|
53
|
Portig I, Wilke A, Freyland M, Wolf MJ, Richter A, Ruppert V, Pankuweit S, Maisch B. Familial inflammatory dilated cardiomyopathy. Eur J Heart Fail 2006; 8:816-25. [PMID: 16713338 DOI: 10.1016/j.ejheart.2006.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/22/2005] [Accepted: 02/08/2006] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Systematic family screening has recently identified dilated cardiomyopathy as an inherited disorder in up to 30% of cases. Mutations in genes encoding proteins responsible for myocardial architecture have been identified, but additional pathophysiological mechanisms including inflammatory reactions have been proposed. AIMS Identification and characterization of familial DCM, where at least one affected family member fulfils the criteria for inflammatory DCM may lead to a better understanding of the aetiology and pathogenesis of (inflammatory) DCM. METHODS AND RESULTS Ten families were examined. In six families, clinical characteristics and mode of inheritance were compatible with pure fDCM, fDCM with conduction defect and autosomal recessive fDCM. In four families, (auto-)immune features were diagnosed in affected and non-affected family members. CONCLUSIONS Familial DCM with an inflammatory component was identified as a specific subgroup of familial DCM. In most cases, the inflammatory process seems to modify, i.e. aggravate, the "classic, cytoskeletopathic" familial DCM, but in some, especially when taking clinical and genetic aspects into account, inflammatory (auto-)immune features can be addressed as the leading pathogenetic principle. Further elucidation of these families may provide a better insight into pathophysiologic processes and may aid in the development of specific therapeutic strategies.
Collapse
Affiliation(s)
- Irene Portig
- Philipps-University Hospital, Department of Internal Medicine and Cardiology, Baldingerstrasse, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Maeshima K, Yahata K, Sasaki Y, Nakatomi R, Tachibana T, Hashikawa T, Imamoto F, Imamoto N. Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. J Cell Sci 2006; 119:4442-51. [PMID: 17074834 DOI: 10.1242/jcs.03207] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear pores are sophisticated gateways on the nuclear envelope that control macromolecular transport between the cytoplasm and nucleoplasm. So far the structural and functional aspects of nuclear pores have been extensively studied, but their distribution and density, which might reflect nuclear organization and function, remain unknown. Here, we report the cell-cycle-dependent dynamics of nuclear pores. Large distinct subdomains lacking nuclear pores are present on the nuclear surface of HeLaS3 cells in early cell-cycle stages. Such `pore-free islands' gradually become dispersed in G1-S phase. Surprisingly, the islands are enriched with inner nuclear membrane proteins lamin A/C and emerin, but exclude lamin B. Lamin-A/C-enriched pore-free islands were also observed in human normal diploid fibroblasts and several cell lines, showing the generality of this phenomenon. Knockdown and ectopic expression analyses demonstrated that lamin A/C, but not emerin, plays an essential structural and regulatory role in the nuclear pore distribution and the formation of pore-free islands. These data thus provide strong evidence that the dynamics of nuclear pores are regulated by the reorganization of inner nuclear structures.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Cellular Dynamics Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Perrot A, Sigusch HH, Nägele H, Genschel J, Lehmkuhl H, Hetzer R, Geier C, Leon Perez V, Reinhard D, Dietz R, Josef Osterziel K, Schmidt HHJ. Genetic and phenotypic analysis of dilated cardiomyopathy with conduction system disease: Demand for strategies in the management of presymptomatic lamin A/C mutant carriers. Eur J Heart Fail 2006; 8:484-93. [PMID: 16386954 DOI: 10.1016/j.ejheart.2005.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 07/29/2005] [Accepted: 11/08/2005] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND One-third of cases of dilated cardiomyopathy (DCM) is of familial aetiology. Several genes have been reported to cause the autosomal dominant form of DCM. AIMS To analyze the lamin A/C gene (LMNA) in 31 unrelated patients with DCM and conduction system disease (CSD). METHODS Patients and family members underwent physical examination, ECG/Holter-ECG, echocardiography, and selective coronary angiography. Genetic analysis of all coding exons of LMNA was performed using PCR and sequencing. RESULTS Three different LMNA mutations (Arg377His, c.1397delA, c.424_425ins21nt) were identified in three families with autosomal dominant disease comprised of 39 individuals. 21 individuals were mutation carriers, of whom 12 were symptomatic. We observed a progressive and age-dependent form of DCM with CSD and arrhythmias. First, the patients developed a moderate left ventricular dilatation without symptoms. Later, systolic function declined progressively and the patients became symptomatic resulting in a high mortality due to sudden death and heart failure. CONCLUSIONS Genetic screening leads to the identification of symptomatic and asymptomatic mutant carriers. The latter at a young age should be regarded as "presymptomatic" because of the age-dependent disease manifestation. New guidelines are required for the management of these individuals.
Collapse
Affiliation(s)
- Andreas Perrot
- Charité- Universitätsmedizin Berlin/Kardiologie am Campus Buch and Virchow-Klinikum, und Max-Delbrück-Centrum für Molekulare Medizin, Wiltbergstr. 50, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Broers JLV, Ramaekers FCS, Bonne G, Yaou RB, Hutchison CJ. Nuclear Lamins: Laminopathies and Their Role in Premature Ageing. Physiol Rev 2006; 86:967-1008. [PMID: 16816143 DOI: 10.1152/physrev.00047.2005] [Citation(s) in RCA: 432] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of laminopathies is a fast-growing group of diseases caused by abnormalities in the structure or processing of the lamin A/C ( LMNA) gene. Mutations or incorrect processing cause more than a dozen different inherited diseases, ranging from striated muscular diseases, via fat- and peripheral nerve cell diseases, to progeria. This broad spectrum of diseases can only be explained if the responsible A-type lamin proteins perform multiple functions in normal cells. This review gives an overview of current knowledge on lamin structure and function and all known diseases associated with LMNA abnormalities. Based on the knowledge of the different functions of A-type lamins and associated proteins, explanations for the observed phenotypes are postulated. It is concluded that lamins seem to be key players in, among others, controlling the process of cellular ageing, since disturbance in lamin protein structure gives rise to several forms of premature ageing.
Collapse
Affiliation(s)
- J L V Broers
- Department of Molecular Cell Biology, University of Maastricht, Research Institutes CARIM, GROW, and EURON, The Netherlands
| | | | | | | | | |
Collapse
|
57
|
Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 2006; 103:10271-10276. [PMID: 16801550 PMCID: PMC1502447 DOI: 10.1073/pnas.0601058103] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including the segmental premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here we show that structural and mechanical properties of the lamina are altered in HGPS cells. We demonstrate by live-cell imaging and biochemical analysis that lamins A and C become trapped at the nuclear periphery in HGPS patient cells. Using micropipette aspiration, we show that the lamina in HGPS cells has a significantly reduced ability to rearrange under mechanical stress. Based on polarization microscopy results, we suggest that the lamins are disordered in the healthy nuclei, whereas the lamins in HGPS nuclei form orientationally ordered microdomains. The reduced deformability of the HGPS nuclear lamina possibly could be due to the inability of these orientationally ordered microdomains to dissipate mechanical stress. Surprisingly, intact HGPS cells exhibited a degree of resistance to acute mechanical stress similar to that of cells from healthy individuals. Thus, in contrast to the nuclear fragility seen in lmna null cells, the lamina network in HGPS cells has unique mechanical properties that might contribute to disease phenotypes by affecting responses to mechanical force and misregulation of mechanosensitive gene expression.
Collapse
Affiliation(s)
- Kris Noel Dahl
- *Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
| | - Paola Scaffidi
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Mohammad F Islam
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Katherine L Wilson
- *Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
58
|
Taylor MRG, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM, Cavanaugh J, Graw SL, Ruegg P, Feiger J, Zhu X, Ferguson DA, Bristow MR, Gotzmann J, Foisner R, Mestroni L. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2006; 26:566-74. [PMID: 16247757 DOI: 10.1002/humu.20250] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thymopoietin or TMPO (indicated by its alternative gene symbol, LAP2, in this work) has been proposed as a candidate disease gene for dilated cardiomyopathy (DCM), since a LAP2 product associates with nucleoplasmic lamins A/C, which are encoded by the DCM gene LMNA. We developed a study to screen for genetic mutations in LAP2 in a large collection of DCM patients and families. A total of 113 subjects from 88 families (56 with familial DCM (FDC) and 32 with sporadic DCM) were screened for LAP2 mutations using denaturing high-performance liquid chromatography and sequence analysis. We found a single putative mutation affecting the LAP2alpha isoform in one FDC pedigree. The mutation predicts an Arg690Cys substitution (c.2068C>T; p.R690C) located in the C-terminal domain of the LAP2alpha protein, a region that is known to interact with lamin A/C. RT-PCR, Western blot analyses, and immunolocalization revealed low-level LAP2alpha expression in adult cardiac muscle, and localization to a subset of nuclei. Mutated Arg690Cys LAP2alpha expressed in HeLa cells localized to the nucleoplasm like wild-type LAP2alpha, with no effect on peripheral and nucleoplasmic lamin A distribution. However, the in vitro interaction of mutated LAP2alpha with the pre-lamin A C-terminus was significantly compromised compared to the wild-type protein. LAP2 mutations may represent a rare cause of DCM. The Arg690Cys mutation altered the observed LAP2alpha interaction with A-type lamins. Our finding implicates a novel nuclear lamina-associated protein in the pathogenesis of genetic forms of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Matthew R G Taylor
- CU-Cardiovascular Institute, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wang H, Wang J, Zheng W, Wang X, Wang S, Song L, Zou Y, Yao Y, Hui R. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect. Biochem Biophys Res Commun 2006; 344:17-24. [PMID: 16630578 DOI: 10.1016/j.bbrc.2006.03.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy.
Collapse
Affiliation(s)
- Hu Wang
- Sino-German Laboratory for Molecular Medicine, Fuwai Cardiovascular Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, 167 Beilishi Road, 100037 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, Sartorelli V, Seo J, Pegoraro E, Angelini C, Shneiderman B, Escolar D, Chen YW, Winokur ST, Pachman LM, Fan C, Mandler R, Nevo Y, Gordon E, Zhu Y, Dong Y, Wang Y, Hoffman EP. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain 2006; 129:996-1013. [PMID: 16478798 DOI: 10.1093/brain/awl023] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear envelope and Rb and MyoD fail in EDMD at the point of myoblast exit from the cell cycle, leading to poorly coordinated phosphorylation and acetylation steps. Our data is consistent with mutations of nuclear lamina components leading to destabilization of the transcriptome in differentiated cells.
Collapse
Affiliation(s)
- Marina Bakay
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Maraldi NM, Lattanzi G, Capanni C, Columbaro M, Mattioli E, Sabatelli P, Squarzoni S, Manzoli FA. Laminopathies: A chromatin affair. ACTA ACUST UNITED AC 2006; 46:33-49. [PMID: 16857244 DOI: 10.1016/j.advenzreg.2006.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
62
|
Zhong N, Radu G, Ju W, Brown WT. Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C. Biochem Biophys Res Commun 2005; 338:855-61. [PMID: 16248985 DOI: 10.1016/j.bbrc.2005.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022]
Abstract
The Hutchinson-Gilford progeria syndrome (HGPS or progeria) is an apparent accelerated aging disorder of childhood. Recently, HGPS has been characterized as one of a growing group of disorders known as laminopathies, which result from genetic defects of the lamin A/C (LMNA) gene. The majority of HGPS mutant alleles involve a silent mutation, c.2063C>T resulting in G608G, that generates a cryptic splicing site in exon 11 of LMNA and consequently truncates 50 amino acids near the C-terminus of pre-lamin A/C. To explore possible mechanisms underlying the development of HGPS, we began a search for proteins that would uniquely interact with progerin (the truncated lamin A in HGPS) using a yeast two-hybrid system. Four new progerin interactive partner proteins were identified that had not been previously found to interact with lamin A/C: hnRNP E1, UBC9 (ubiquitin conjugating enzyme E2I), Mel-18, and EGF1. However, using control and progeria fibroblasts, co-immunoprecipitation studies of endogenous proteins did not show differential binding affinity compared to normal lamin A/C. Thus, we did not find evidence for uniquely interacting partner proteins using this approach, but did identify four new lamin A/C interactive partners.
Collapse
Affiliation(s)
- Nanbert Zhong
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | | | | | | |
Collapse
|
63
|
Motsch I, Kaluarachchi M, Emerson LJ, Brown CA, Brown SC, Dabauvalle MC, Ellis JA. Lamins A and C are differentially dysfunctional in autosomal dominant Emery-Dreifuss muscular dystrophy. Eur J Cell Biol 2005; 84:765-81. [PMID: 16218190 DOI: 10.1016/j.ejcb.2005.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in the LMNA gene, which encodes nuclear lamins A and C by alternative splicing, can give rise to Emery-Dreifuss muscular dystrophy. The mechanism by which lamins A and C separately contribute to this molecular phenotype is unknown. To address this question we examined ten LMNA mutations exogenously expressed as lamins A and C in COS-7 cells. Eight of the mutations when expressed in lamin A, exhibited a range of nuclear mislocalisation patterns. However, two mutations (T150P and delQ355) almost completely relocated exogenous lamin A from the nuclear envelope to the cytoplasm, disrupted nuclear envelope reassembly following cell division and altered the protein composition of the mid-body. In contrast, exogenously expressed DsRed2-tagged mutant lamin C constructs were only inserted into the nuclear lamina if co-expressed with any EGFP-tagged lamin A construct, except with one carrying the T150P mutation. The T150P, R527P and L530P mutations reduced the ability of lamin A, but not lamin C from binding to emerin. These data identify specific functional roles for the emerin-lamin C- and emerin-lamin A- containing protein complexes and is the first report to suggest that the A-type lamin mutations may be differentially dysfunctional for the same LMNA mutation.
Collapse
Affiliation(s)
- Isabell Motsch
- The Randall Division of Cell and Molecular Biophysics, Kings College, New Hunts House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
64
|
von der Hagen M, Laval SH, Cree LM, Haldane F, Pocock M, Wappler I, Peters H, Reitsamer HA, Hoger H, Wiedner M, Oberndorfer F, Anderson LVB, Straub V, Bittner RE, Bushby KMD. The differential gene expression profiles of proximal and distal muscle groups are altered in pre-pathological dysferlin-deficient mice. Neuromuscul Disord 2005; 15:863-77. [PMID: 16288871 DOI: 10.1016/j.nmd.2005.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/23/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The selective pattern of muscle involvement is a key feature of muscular dystrophies. Dysferlinopathy is a good model for studying this process since it shows variable muscle involvement that can be highly selective even in individual patients. The transcriptomes of proximal and distal muscles from wildtype C57BL/10 and dysferlin deficient C57BL/10.SJL-Dysf mice at a prepathological stage were assessed using the Affymetrix oligonucleotide-microarray system. We detected significant variation in gene expression between proximal and distal muscle in wildtype mice. Dysferlin defiency, even in the absence of pathological changes, altered this proximal distal difference but with little specific overlap with previous microarray analyses of dysferlinopathy. In conclusion, proximal and distal muscle groups show distinct patterns of gene expression and respond differently to dysferlin deficiency. This has implications for the selection of muscles for future microarray analyses, and also offers new routes for investigating the selectivity of muscle involvement in muscular dystrophies.
Collapse
|
65
|
Hetzer MW, Walther TC, Mattaj IW. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu Rev Cell Dev Biol 2005; 21:347-80. [PMID: 16212499 DOI: 10.1146/annurev.cellbio.21.090704.151152] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) and, in metazoa, the lamina. The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and the cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. The NE is not static, rather it is continuously remodeled during cell division. The most dramatic example of NE reorganization occurs during mitosis in metazoa when the NE undergoes a complete cycle of disassembly and reformation. Despite the importance of the NE for eukaryotic cell life, relatively little is known about its biogenesis or many of its functions. We thus are far from understanding the molecular etiology of a diverse group of NE-associated diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
66
|
Filesi I, Gullotta F, Lattanzi G, D'Apice MR, Capanni C, Nardone AM, Columbaro M, Scarano G, Mattioli E, Sabatelli P, Maraldi NM, Biocca S, Novelli G. Alterations of nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy. Physiol Genomics 2005; 23:150-8. [PMID: 16046620 DOI: 10.1152/physiolgenomics.00060.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive mandibuloacral dysplasia [mandibuloacral dysplasia type A (MADA); Online Mendelian Inheritance in Man (OMIM) no. 248370] is caused by a mutation in LMNA encoding lamin A/C. Here we show that this mutation causes accumulation of the lamin A precursor protein, a marked alteration of the nuclear architecture and, hence, chromatin disorganization. Heterochromatin domains are altered or completely lost in MADA nuclei, consistent with the finding that heterochromatin-associated protein HP1beta and histone H3 methylated at lysine 9 and their nuclear envelope partner protein lamin B receptor (LBR) are delocalized and solubilized. Both accumulation of lamin A precursor and chromatin defects become more severe in older patients. These results strongly suggest that altered chromatin remodeling is a key event in the cascade of epigenetic events causing MADA and could be related to the premature-aging phenotype.
Collapse
Affiliation(s)
- Ilaria Filesi
- Laboratory of Clinical Biochemistry and Department of Neuroscience, University of Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 2005; 114:212-29. [PMID: 16133352 DOI: 10.1007/s00412-005-0016-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 01/15/2023]
Abstract
Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
68
|
Young SG, Fong LG, Michaelis S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria--new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res 2005; 46:2531-58. [PMID: 16207929 DOI: 10.1194/jlr.r500011-jlr200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prelamin A undergoes multistep processing to yield lamin A, a structural protein of the nuclear lamina. Prelamin A terminates with a CAAX motif, which triggers farnesylation of a C-terminal cysteine (the C of the CAAX motif), endoproteolytic release of the last three amino acids (the AAX), and methylation of the newly exposed farnesylcysteine residue. In addition, prelamin A is cleaved a second time, releasing 15 more residues from the C terminus (including the farnesylcysteine methyl ester), generating mature lamin A. This second cleavage step is carried out by an endoplasmic reticulum membrane protease, ZMPSTE24. Interest in the posttranslational processing of prelamin A has increased with the recognition that certain progeroid syndromes can be caused by mutations that lead to an accumulation of farnesyl-prelamin A. Recently, we showed that a key cellular phenotype of these progeroid disorders, misshapen cell nuclei, can be ameliorated by inhibitors of protein farnesylation, suggesting a potential strategy for treating these diseases. In this article, we review the posttranslational processing of prelamin A, describe several mouse models for progeroid syndromes, explain the mutations underlying several human progeroid syndromes, and summarize recent data showing that misshapen nuclei can be ameliorated by treating cells with protein farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Stephen G Young
- Division of Cardiology, Department of Internal Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
69
|
Takata T, Shimo-Oka T, Miki K, Fujii N. Characterization of new d-β-aspartate-containing proteins in a lens-derived cell line. Biochem Biophys Res Commun 2005; 334:1022-31. [PMID: 16038880 DOI: 10.1016/j.bbrc.2005.06.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Although proteins are generally composed of l-alpha-amino acids, biologically uncommon D-beta-aspartic acid (Asp)-containing proteins have been reported in various tissues from elderly individuals. Our previous study indicated that the N/N1003A cell line, derived from rabbit lens, includes D-beta-Asp-containing proteins of approximately 50 kDa by Western blot analysis of a 2D-gel using a polyclonal antibody that is highly specific for D-beta-Asp-containing proteins. In this study, we identified the D-beta-Asp-containing proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the Mascot online database searching algorithm. The results indicate that one of these 50 kDa proteins is an enolase showing homology with tau-crystallin. Other D-beta-Asp-containing proteins, which we have recently discovered include lamin A/C, cytoplasmic NADP+-dependent isocitrate dehydrogenase, fructose-bisphosphate aldolase A, aldose reductase, L-lactate dehydrogenase A or calponin H2, phosphoglycerate mutase 1, phosphatidylethanolamine-binding protein, alpha-B-crystallin, and peptidyl-prolyl cis-trans isomerase A (PPlase).
Collapse
Affiliation(s)
- Takumi Takata
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan, Osaka 590-0494, Japan
| | | | | | | |
Collapse
|
70
|
Markiewicz E, Ledran M, Hutchison CJ. Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. J Cell Sci 2005; 118:409-20. [PMID: 15654018 DOI: 10.1242/jcs.01630] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in the expression and distribution of nuclear lamins were investigated during C2C12 myoblast differentiation. The expression of most lamins was unchanged during myogenesis. By contrast, lamin-B2 expression increased and LAP2alpha expression decreased twofold. These changes were correlated with reduced solubility and redistribution of A-type lamins. When C2C12 myoblasts were transfected with a lamin-A mutant that causes autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD), the mutant protein accumulated in the nucleoplasm and exerted dominant influences over endogenous lamins. Myoblasts transfected with wild-type lamins differentiated, albeit more slowly, whereas myoblasts transfected with mutant lamins failed to differentiate. Myoblast differentiation requires dephosphorylation of the retinoblastoma protein Rb. During myogenesis, Rb was rapidly and progressively dephosphorylated. Underphosphorylated Rb formed complexes with LAP2alpha in proliferating myoblasts and postmitotic myoblasts. In myoblasts transfected with the mutant lamins, this complex was disrupted. These data suggest that remodelling of the nucleoskeleton is necessary for skeletal-muscle differentiation and for correct regulation of Rb pathways.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham, DH1 4EB, UK
| | | | | |
Collapse
|
71
|
Jing R, Pizzolato G, Robson RM, Gabbiani G, Skalli O. Intermediate filament protein synemin is present in human reactive and malignant astrocytes and associates with ruffled membranes in astrocytoma cells. Glia 2005; 50:107-20. [PMID: 15657940 DOI: 10.1002/glia.20158] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synemin, a very unique type VI intermediate filament (IF) protein, exhibits alternative splice variants termed alpha and beta. Unlike other IF proteins, synemin binds to actin-associated proteins, including alpha-actinin, vinculin, and alpha-dystrobrevin. Our previous work has demonstrated the presence of synemin in differentiating astrocytes. In this study, we have examined the presence of synemin in human astrocytes under pathological conditions, using rabbit antibodies raised against the C-terminal domain of human synemin produced in bacteria. Western blotting shows that astrocytic tumors contain greater amounts of alpha-synemin than do normal brain tissues. These tumors also contain beta-synemin, which is not detectable in normal brain. Immunohistochemistry demonstrates that, while synemin is present in normal adult brain only in vascular smooth muscle cells, it is newly synthesized by reactive and neoplastic astrocytes. Alpha- and beta-Synemins have also been detected by Western blotting and polymerase chain reaction in several human glioblastoma cell lines. In these cell lines, surprisingly, synemin is associated with ruffled membranes in addition to being distributed along the IF network. In ruffled membranes, synemin was found to co-localize with alpha-actinin. This unusual cellular localization for an IF protein is maintained after nocodazole-induced perinuclear coiling of the vimentin IF network. In addition, immunoprecipitation experiments demonstrate that synemin forms a complex with alpha-actinin in glioblastoma cells. Taken together with synemin localization within ruffled membranes, this finding suggests that synemin plays a role in motility of glioblastoma cells.
Collapse
Affiliation(s)
- Runfeng Jing
- Department of Cellular Biology and Anatomy and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
72
|
Abstract
The nuclear envelope separates the chromosomes from cytoplasm in eukaryotic cells and consists of three main domains: inner and outer nuclear membranes and nuclear pore complexes. The inner nuclear membrane maintains close associations with the underlying chromatin and nuclear lamina. For many years, the nuclear envelope was thought to function mainly as an architectural stabilizer of the nucleus, participating in assembly and disassembly processes during mitosis. However, recent findings demonstrate that nuclear envelope proteins are involved in fundamental nuclear functions, such as gene transcription and DNA replication, and that inherited or de novo mutated proteins cause human diseases, termed "nuclear envelopathies." These findings emphasize the importance of understanding the functions of this cellular domain, in both physiologic and pathologic states. To date, mutations in the genes encoding the nuclear envelope proteins emerin, MAN1, lamin A/C, and lamin B receptor were found to cause nuclear envelopathies. The diseases that are caused by mutations in LMNA gene are collectively called "laminopathies." Nuclear envelopathies have diverse clinical phenotypes, ranging from cardiac and skeletal myopathies to partial lipodystrophy, peripheral neuropathy, and premature aging. This raises the question of how do such ubiquitously expressed proteins give rise to tissue-specific disease phenotypes. One possible explanation is the involvement of nuclear envelope proteins in the regulation of gene transcription, a novel mechanism that has been the focus of research in our lab in recent years. In this review, we describe recent discoveries in the field of nuclear envelopathies and discuss current proposed pathophysiological mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Raz Somech
- Sheba Cancer Research Center, Institute of Hematology, The Chaim Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | | | | | |
Collapse
|
73
|
Hong JS, Ki CS, Kim JW, Suh YL, Kim JS, Baek KK, Kim BJ, Ahn KJ, Kim DK. Cardiac dysrhythmias,cardiomyopathy and muscular dystrophy in patients with Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B. J Korean Med Sci 2005; 20:283-90. [PMID: 15832002 PMCID: PMC2808607 DOI: 10.3346/jkms.2005.20.2.283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) and limb-girdle muscular dystrophy type 1B (LGMD1B) are characterized by cardiac dysrhythmias, late-onset cardiomyopathy, slowly progressive skeletal myopathy and contractures of the neck, elbows and ankles. The causative mutation is either in the emerin gene (X-linked recessive EDMD) or lamin A/C gene (autosomal dominant EDMD2 or LGMD1B). We report three cases of EDMD, EDMD2 and LGMD1B. A 14-yr-old boy showed limitation of cervical flexion and contractures of both elbows and ankles. Sinus arrest with junctional escape beats was noted. He was diagnosed as X-linked recessive EDMD (MIM 310300). A 28-yr-old female showed severe wasting and weakness of humeroperoneal muscles. Marked limitation of cervical flexion and contractures of both elbows and ankles were noted. Varying degrees of AV block were noted. She was diagnosed as autosomal dominant EDMD2 (MIM 181350). A 41-yr-old female had contractures of both ankles and limb-girdle type muscular dystrophy. ECG revealed atrial tachycardia with high grade AV block. She was diagnosed as autosomal dominant LGMD1B (MIM 159001). Cardiac dysrhythmias in EDMD and LGMD1B include AV block, bradycardia, atrial tachycardia, atrial fibrillation, and atrial standstill, causing sudden death necessitating pacemaker implantation. Cardiologists should know about these unusual genetic diseases with conduction defects, especially in young adults.
Collapse
MESH Headings
- Adolescent
- Adult
- Arrhythmias, Cardiac/etiology
- Cardiomyopathies/etiology
- Female
- Humans
- Male
- Muscle, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/complications
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/pathology
- Muscular Dystrophies, Limb-Girdle/physiopathology
- Muscular Dystrophy, Emery-Dreifuss/complications
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Muscular Dystrophy, Emery-Dreifuss/pathology
- Muscular Dystrophy, Emery-Dreifuss/physiopathology
Collapse
Affiliation(s)
- Jong-Seo Hong
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Clinical Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Won Kim
- Department of Clinical Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon-Lim Suh
- Department of Diagnostic Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - June Soo Kim
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kee Baek
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung Ju Ahn
- Department of Internal Medicine, Han-il General Hospital, Seoul, Korea
| | - Duk-Kyung Kim
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
74
|
Maraldi NM, Squarzoni S, Sabatelli P, Capanni C, Mattioli E, Ognibene A, Lattanzi G. Laminopathies: Involvement of structural nuclear proteins in the pathogenesis of an increasing number of human diseases. J Cell Physiol 2005; 203:319-27. [PMID: 15389628 DOI: 10.1002/jcp.20217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Just at the beginning of the millennium the neologism laminopathies has been introduced in the scientific vocabulary. An exponential increase of interest on the subject started concomitantly, so that a formerly quite neglected group of rare human diseases is now widely investigated. This review will cover the history of the identification of the molecular basis for fourteen (since now) hereditary diseases arising from defects in genes that encode nuclear envelope and nuclear lamina-associated proteins and will also consider the hypotheses that can account for the role of structural nuclear proteins in the pathogenesis of diseases affecting a wide spectrum of tissues.
Collapse
Affiliation(s)
- Nadir M Maraldi
- ITOI-CNR, Unit of Bologna via di Barbiano 1/10 c/o IOR, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
75
|
Worman HJ, Courvalin JC. Nuclear envelope, nuclear lamina, and inherited disease. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:231-79. [PMID: 16164970 DOI: 10.1016/s0074-7696(05)46006-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. In recent years, mutations in nuclear-envelope proteins have been shown to cause a surprisingly wide array of inherited diseases. While the mutant proteins are generally expressed in most or all differentiated somatic cells, many mutations cause fairly tissue-specific disorders. Perhaps the most dramatic case is that of mutations in A-type lamins, intermediate filament proteins associated with the inner nuclear membrane. Different mutations in the same lamin proteins have been shown to cause striated muscle diseases, partial lipodystrophy syndromes, a peripheral neuropathy, and disorders with features of severe premature aging. In this review, we summarize fundamental aspects of nuclear envelope structure and function, the inherited diseases caused by mutations in lamins and other nuclear envelope proteins, and possible pathogenic mechanisms.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine and Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
76
|
Abstract
Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments that underlies the inner nuclear membrane. It associates with this membrane through interactions with specific integral nuclear membrane proteins, while within this flattened lamin lattice the nuclear pore complexes are embedded. Next to this peripheral network, the lamins can form intranuclear structures. The lamins are the evolutionary progenitors of the cytoplasmic intermediate filament proteins and have profound influences on nuclear structure and function. These influences require that lamins have dynamic properties and dual identities as structural building blocks on the one hand, and transcription regulators on the other. Which of these identities underlies the laminopathies, a myriad of genetic diseases caused by mutations in lamins or lamin-associated proteins, is a topic of intense debate.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, Research Institutes CARIM, GROW, and EURON, University of Maastricht, The Netherlands
| | | | | |
Collapse
|
77
|
Abstract
The gene LMNA encodes the proteins lamins A and C and is implicated in nine different laminopathies - inherited diseases that are linked to premature ageing. Recent evidence has demonstrated that lamins A and C have essential functions in protecting cells from physical damage, as well as in maintaining the function of transcription factors required for the differentiation of adult stem cells. Thus, the degenerative nature of laminopathies is explained because these lamins are essential for maintenance of somatic tissues in adulthood.
Collapse
Affiliation(s)
- Chris J Hutchison
- School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham, DH1 4EB, UK.
| | | |
Collapse
|
78
|
Muchir A, Medioni J, Laluc M, Massart C, Arimura T, van der Kooi AJ, Desguerre I, Mayer M, Ferrer X, Briault S, Hirano M, Worman HJ, Mallet A, Wehnert M, Schwartz K, Bonne G. Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 2004; 30:444-50. [PMID: 15372542 DOI: 10.1002/mus.20122] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in LMNA, the gene that encodes nuclear lamins A and C, cause up to eight different diseases collectively referred to as "laminopathies." These diseases affect striated muscle, adipose tissue, peripheral nerve, and bone, or cause features of premature aging. We investigated the consequences of LMNA mutations on nuclear architecture in skin fibroblasts from 13 patients with different laminopathies. Western-blotting showed that none of the mutations examined led to a decrease in cellular levels of lamin A or C. Regardless of the disease, we observed honeycomb nuclear structures and nuclear envelope blebs in cells examined by immunofluorescence microscopy. Concentrated foci of lamin A/C in the nucleoplasm were also observed. Only mutations in the head and tail domains of lamins A and C significantly altered the nuclear architecture of patient fibroblasts. These results confirm that mutations in lamins A and C may lead to a weakening of a structural support network in the nuclear envelope in fibroblasts and that nuclear architecture changes depend upon the location of the mutation in different domains of lamin A/C.
Collapse
Affiliation(s)
- A Muchir
- INSERM U582, Institut de Myologie, GH Pitié-Salpêtrière, Bâtiment Babinski, 47 boulevard de l'Hôpital, Paris 75013, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 2004; 73:749-89. [PMID: 15189158 DOI: 10.1146/annurev.biochem.73.011303.073823] [Citation(s) in RCA: 522] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superfamily of intermediate filament (IF) proteins contains at least 65 distinct proteins in man, which all assemble into approximately 10 nm wide filaments and are principal structural elements both in the nucleus and the cytoplasm with essential scaffolding functions in metazoan cells. At present, we have only circumstantial evidence of how the highly divergent primary sequences of IF proteins lead to the formation of seemingly similar polymers and how this correlates with their function in individual cells and tissues. Point mutations in IF proteins, particularly in lamins, have been demonstrated to lead to severe, inheritable multi-systemic diseases, thus underlining their importance at several functional levels. Recent structural work has now begun to shed some light onto the complex fine tuning of structure and function in these fibrous, coiled coil forming multidomain proteins and their contribution to cellular physiology and gene regulation.
Collapse
Affiliation(s)
- Harald Herrmann
- Department of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
80
|
Fridkin A, Mills E, Margalit A, Neufeld E, Lee KK, Feinstein N, Cohen M, Wilson KL, Gruenbaum Y. Matefin, a Caenorhabditis elegans germ line-specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc Natl Acad Sci U S A 2004; 101:6987-92. [PMID: 15100407 PMCID: PMC406453 DOI: 10.1073/pnas.0307880101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/22/2004] [Indexed: 01/12/2023] Open
Abstract
Caenorhabditis elegans mtf-1 encodes matefin, which has a predicted SUN domain, a coiled-coil region, an anti-erbB-2 IgG domain, and two hydrophobic regions. We show that matefin is a nuclear membrane protein that colocalizes in vivo with Ce-lamin, the single nuclear lamin protein in C. elegans, and binds Ce-lamin in vitro but does not require Ce-lamin for its localization. Matefin is detected in all embryonic cells until midembryogenesis and thereafter only in germ-line cells. Embryonic matefin is maternally deposited, and matefin is the first nuclear membrane protein known to have germ line-restricted expression. Animals homozygous for an mtf-1 deletion allele show that matefin is essential for germ line maturation and survival. However, matefin is also required for embryogenesis because mtf-1 (RNAi) embryos die around the approximately 300-cell stage with defects in nuclear structure, DNA content, and chromatin morphology. Down-regulating matefin in mes-3 animals only slightly enhances embryonic lethality, and elimination of UNC-84, the only other SUN-domain gene in C. elegans, has no affect on mtf-1 (RNAi) animals. Thus, mtf-1 mediates a previously uncharacterized pathway(s) required for embryogenesis as well as germ line proliferation or survival.
Collapse
Affiliation(s)
- Alexandra Fridkin
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Twelve years after the identification of the molecular bases of the long-QT syndrome, it is now possible to express some considerations on the impact that genetic findings have had in the understanding of inherited arrhythmogenic diseases. Along with the excitement for the emerging data on genotype/phenotype correlation and for the development of the first recommendations for gene-specific management of patients, it is also important to acknowledge the unexpected complexity that has emerged. The focus of this article is to analyze the elusive aspects of the relationship between genetic defects and clinical manifestations and to propose some research directions that may provide the needed answers to move forward in the understanding of the genetics of heart rhythm abnormalities.
Collapse
Affiliation(s)
- Silvia G Priori
- Molecular Cardiology, IRCCS Fondazione Salvatore Maugeri, University of Pavia, Pavia, Italy.
| |
Collapse
|
83
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
84
|
Fischer AH, Taysavang P, Jhiang SM. Nuclear envelope irregularity is induced by RET/PTC during interphase. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1091-100. [PMID: 12937150 PMCID: PMC1868259 DOI: 10.1016/s0002-9440(10)63468-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear envelope (NE) irregularity is an important diagnostic feature of cancer, and its molecular basis is not understood. One possible cause is abnormal postmitotic NE re-assembly, such that a rounded contour is never achieved before the next mitosis. Alternatively, dynamic forces could deform the NE during interphase following an otherwise normal postmitotic NE re-assembly. To distinguish these possibilities, normal human thyroid epithelial cells were microinjected with the papillary thyroid carcinoma oncogene (RET/PTC1 short isoform, known to induce NE irregularity), an attenuated version of RET/PTC1 lacking the leucine zipper dimerization domain (RET/PTC1 Deltazip), H (V-12) RAS, and labeled dextran. Cells were fixed at 6 or 18 to 24 hours, stained for lamins and the products of microinjected plasmids, and scored blindly using previously defined criteria for NE irregularity. 6.5% of non-injected thyrocytes showed NE irregularity. Neither dextran nor RAS microinjections increased NE irregularity. In contrast, RET/PTC1 microinjection induced NE irregularity in 27% of cells at 6 hours and 37% of cells at 18 to 24 hours. RET/PTC1 Deltazip induced significantly less irregularity. Since irregularity develops quickly, and since no mitoses and only rare possible postmitotic cells were scored, postmitotic NE re-assembly does not appear necessary for RET/PTC signaling to induce an irregular NE contour.
Collapse
Affiliation(s)
- Andrew H Fischer
- Department of Pathology, Emory University Hospital, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
85
|
Holt I, Ostlund C, Stewart CL, Man NT, Worman HJ, Morris GE. Effect of pathogenic mis-sense mutations in lamin A on its interaction with emerin in vivo. J Cell Sci 2003; 116:3027-35. [PMID: 12783988 DOI: 10.1242/jcs.00599] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in lamin A/C can cause Emery-Dreifuss muscular dystrophy (EDMD) or a related cardiomyopathy (CMD1A). Using transfection of lamin-A/C-deficient fibroblasts, we have studied the effects of nine pathogenic mutations on the ability of lamin A to assemble normally and to localize emerin normally at the nuclear rim. Five mutations in the rod domain (L85R, N195K, E358K, M371K and R386K) affected the assembly of the lamina. With the exception of mutant L85R, all rod domain mutants induced the formation of large nucleoplasmic foci in about 10% of all nuclei. The presence of emerin in these foci suggests that the interaction of lamin A with emerin is not directly affected by the rod domain mutations. Three mutations in the tail region, R453W, W520S and R527P, might directly affect emerin binding by disrupting the structure of the putative emerin-binding site, because mutant lamin A localized normally to the nuclear rim but its ability to trap emerin was impaired. Nucleoplasmic foci rarely formed in these three cases (<2%) but, when they did so, emerin was absent, consistent with a direct effect of the mutations on emerin binding. The lipodystrophy mutation R482Q, which causes a different phenotype and is believed to act through an emerin-independent mechanism, was indistinguishable from wild-type in its localization and its ability to trap emerin at the nuclear rim. The novel hypothesis suggested by the data is that EDMD/CMD1A mutations in the tail domain of lamin A/C work by direct impairment of emerin interaction, whereas mutations in the rod region cause defective lamina assembly that might or might not impair emerin capture at the nuclear rim. Subtle effects on the function of the lamina-emerin complex in EDMD/CMD1A patients might be responsible for the skeletal and/or cardiac muscle phenotype.
Collapse
Affiliation(s)
- Ian Holt
- Biochemistry Group, North East Wales Institute, Wrexham LL11 2AW, UK
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
With the sequence of the human genome now complete, studies must focus on how the genome is functionally organized within the confines of the cell nucleus and the dynamic interplay between the genome and its regulatory factors to effectively control gene expression and silencing. In this review I describe our current state of knowledge with regard to the organization of chromosomes within the nucleus and the positioning of active versus inactive genes. In addition, I discuss studies on the dynamics of chromosomes and specific genetic loci within living cells and its relationship to gene activity and the cell cycle. Furthermore, our current understanding of the distribution and dynamics of RNA polymerase II transcription factors is discussed in relation to chromosomal loci and other nuclear domains.
Collapse
Affiliation(s)
- David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
87
|
Herbst KL, Tannock LR, Deeb SS, Purnell JQ, Brunzell JD, Chait A. Köbberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care 2003; 26:1819-24. [PMID: 12766116 DOI: 10.2337/diacare.26.6.1819] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The phenotypic expression of partial lipodystrophy is present in two familial syndromes: familial partial lipodystrophy type 1 (FPLD1), with fat loss from the extremities, and central obesity and FPLD type 2, with fat loss from the extremities, abdomen, and thorax. The latter disorder is associated with mutations in the LMNA gene. FPLD1 is thought to be rare. Here, we report 13 subjects with FPLD1, suggesting that this syndrome is more common than previously thought. RESEARCH DESIGN AND METHODS Fasting glucose, plasma lipids, leptin, HbA(1c), and anthropomorphic measurements were evaluated in 13 subjects with clinical features of FPLD1 and are compared with two age-matched control groups, with and without diabetes. RESULTS Only women with clinical features of FPLD1 have been identified. Although they lack extremity and gluteal subcutaneous fat, they do have truncal obesity. Skinfold thickness on the arm and leg was significantly less than that in control subjects. The ratio of skinfold thickness from abdomen to thigh was significantly higher in subjects, suggesting an easy method for identifying affected patients. FPLD1 subjects also had components of the metabolic syndrome, including hypertension, insulin resistance, and severe hypertriglyceridemia resulting in pancreatitis. Premature coronary artery disease was present in 31% of subjects. None of the subjects had coding mutations in the LMNA gene or in the gene coding for peroxisome proliferator-activated receptor (PPAR)-gamma. CONCLUSIONS FPLD1 is more common than previously described, but the diagnosis is often missed. Early recognition and intensive treatment of hyperlipidemia and diabetes in FPLD1 is important for prevention of pancreatitis and early cardiovascular disease.
Collapse
Affiliation(s)
- Karen L Herbst
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Bechert K, Lagos-Quintana M, Harborth J, Weber K, Osborn M. Effects of expressing lamin A mutant protein causing Emery-Dreifuss muscular dystrophy and familial partial lipodystrophy in HeLa cells. Exp Cell Res 2003; 286:75-86. [PMID: 12729796 DOI: 10.1016/s0014-4827(03)00104-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with the autosomal dominant form of Emery-Dreifuss muscular dystrophy (EDMD) or familial partial lipodystrophy (FPLD) have specific mutations in the lamin A gene. Three such point mutations, G465D (FPLD), R482L, (FPLD), or R527P (EDMD), were introduced by site-specific mutagenesis in the C-terminal tail domain of a FLAG-tagged full-length lamin A construct. HeLa cells were transfected with mutant and wild-type constructs. Lamin A accumulated in nuclear aggregates and the number of cells with aggregates increased with time after transfection. At 72 h post transfection 60-80% of cells transfected with the mutant lamin A constructs had aggregates, while only 35% of the cells transfected with wild-type lamin A revealed aggregates. Mutant transfected cells expressed 10-24x, and wild-type transfected cells 20x, the normal levels of lamin A. Lamins C, B1 and B2, Nup153, LAP2, and emerin were recruited into aggregates, resulting in a decrease of these proteins at the nuclear rim. Aggregates were also characterized by electron microscopy and found to be preferentially associated with the inner nuclear membrane. Aggregates from mutant constructs were larger than those formed by the wild-type constructs, both in immunofluorescence and electron microscopy. The combined results suggest that aggregate formation is in part due to overexpression, but that there are also mutant-specific effects.
Collapse
Affiliation(s)
- Kim Bechert
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
89
|
Taylor MRG, Fain PR, Sinagra G, Robinson ML, Robertson AD, Carniel E, Di Lenarda A, Bohlmeyer TJ, Ferguson DA, Brodsky GL, Boucek MM, Lascor J, Moss AC, Li WLP, Stetler GL, Muntoni F, Bristow MR, Mestroni L. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 2003; 41:771-80. [PMID: 12628721 DOI: 10.1016/s0735-1097(02)02954-6] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES We examined the prevalence, genotype-phenotype correlation, and natural history of lamin A/C gene (LMNA) mutations in subjects with dilated cardiomyopathy (DCM). BACKGROUND Mutations in LMNA have been found in patients with DCM with familial conduction defects and muscular dystrophy, but the clinical spectrum, prognosis, and clinical relevance of laminopathies in DCM are unknown. BACKGROUND A cohort of 49 nuclear families, 40 with familial DCM and 9 with sporadic DCM (269 subjects, 105 affected), was screened for mutations in LMNA using denaturing high-performance liquid chromatography and sequence analysis. Bivariate analysis of clinical predictors of LMNA mutation carrier status and Kaplan-Meier survival analysis were performed. RESULTS Mutations in LMNA were detected in four families (8%), three with familial (R89L, 959delT, R377H) and one with sporadic DCM (S573L). There was significant phenotypic variability, but the presence of skeletal muscle involvement (p < 0.001), supraventricular arrhythmia (p = 0.003), conduction defects (p = 0.01), and "mildly" DCM (p = 0.006) were predictors of LMNA mutations. The LMNA mutation carriers had a significantly poorer cumulative survival compared with non-carrier DCM patients: event-free survival at the age of 45 years was 31% versus 75% in non-carriers. CONCLUSIONS Mutations in LMNA cause a severe and progressive DCM in a relevant proportion of patients. Mutation screening should be considered in patients with DCM, in particular when clinical predictors of LMNA mutation are present, regardless of family history.
Collapse
Affiliation(s)
- Matthew R G Taylor
- University of Colorado Cardiovascular Institute, Denver, Colorado 80010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Mechanisms for nuclear migration and nuclear anchorage function together to control nuclear positioning. Both tubulin and actin networks play important roles in nuclear positioning. The actin cytoskeleton has been shown to position nuclei in a variety of systems from yeast to plants and animals. It can either act as a stable skeleton to anchor nuclei or supply the active force to move nuclei. Two C. elegans genes and their homologues play important roles in these processes. Syne/ANC-1 anchors nuclei by directly tethering the nuclear envelope to the actin cytoskeleton, and UNC-84/SUN functions at the nuclear envelope to recruit Syne/ANC-1.
Collapse
Affiliation(s)
- Daniel A Starr
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
91
|
Karabinos A, Schünemann J, Meyer M, Aebi U, Weber K. The single nuclear lamin of Caenorhabditis elegans forms in vitro stable intermediate filaments and paracrystals with a reduced axial periodicity. J Mol Biol 2003; 325:241-7. [PMID: 12488092 DOI: 10.1016/s0022-2836(02)01240-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The lamins of the tunicate Ciona intestinalis and the nematode Caenorhabditis elegans show unusual sequence features when compared to the more than 35 metazoan lamin sequences currently known. We therefore analyzed the in vitro assembly of these two lamins by electron microscopy using chicken lamin B2 as a control. While lamin dimers usually appear as a rod carrying two globules at one end, these globules are absent from Ciona lamin, which lacks the central 105-residue region of the tail domain. The deletion of 14 residues or two heptads from the coiled coil rod domain of the single C.elegans lamin results in a 1.5-nm shortening of the dimer rod. Similarly, the paracrystals assembled from the C.elegans lamin exhibit a 3.1-nm reduction of the true axial repeat compared to that of chicken lamin B2 paracrystals. We speculate that the banding pattern in the C.elegans lamin paracrystals arises from a relative stagger between dimers and/or a positioning of the globular tail domain relative to the central rod that is distinct from that observed in chicken lamin B2 paracrystals. Here we show that a nuclear lamin can assemble in vitro into 10-nm intermediate filaments (IFs). C.elegans lamin in low ionic strength Tris-buffers at a pH of 7.2-7.4 provides a stable population of lamin IFs. Some implications of this filament formation are discussed.
Collapse
Affiliation(s)
- Anton Karabinos
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
92
|
Maraldi NM, Squarzoni S, Sabatelli P, Lattanzi G, Ognibene A, Manzoli FA. Emery-Dreifuss muscular dystrophy, nuclear cell signaling and chromatin remodeling. ADVANCES IN ENZYME REGULATION 2002; 42:1-18. [PMID: 12123703 DOI: 10.1016/s0065-2571(01)00022-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nadir M Maraldi
- Institute of Citomorfologia Normale e Patologica C.N.R. and Laboratory of Biologia Cellulare e Microscopia Elettronica, I. O. R., Bologna, Italy
| | | | | | | | | | | |
Collapse
|
93
|
Markiewicz E, Dechat T, Foisner R, Quinlan RA, Hutchison CJ. Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 2002; 13:4401-13. [PMID: 12475961 PMCID: PMC138642 DOI: 10.1091/mbc.e02-07-0450] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 07/31/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylation-dependent anchorage of retinoblastoma protein Rb in the nucleus is essential for its function. We show that its pocket C domain is both necessary and sufficient for nuclear anchorage by transiently expressing green fluorescent protein (GFP) chimeras of Rb fragments in tissue culture cells and by extracting the cells with hypotonic solutions. Solid phase binding assays using glutathione S-transferase-fusion of Rb pockets A, B, and C revealed a direct association of lamin C exclusively to pocket C. Lamina-associated polypeptide (LAP) 2alpha, a binding partner of lamins A/C, bound strongly to pocket C and weakly to pocket B. When LAP2alpha was immunoprecipitated from soluble nuclear fractions, lamins A/C and hypophosphorylated Rb were coprecipitated efficiently. Similarly, immunoprecipitation of expressed GFP-Rb fragments by using anti-GFP antibodies coprecipitated LAP2alpha, provided that pocket C was present in the GFP chimeras. On redistribution of endogenous lamin A/C and LAP2alpha into nuclear aggregates by overexpressing dominant negative lamin mutants in tissue culture cells, Rb was also sequestered into these aggregates. In primary skin fibroblasts, LAP2alpha is expressed in a growth-dependent manner. Anchorage of hypophosphorylated Rb in the nucleus was weakened significantly in the absence of LAP2alpha. Together, these data suggest that hypophosphorylated Rb is anchored in the nucleus by the interaction of pocket C with LAP2alpha-lamin A/C complexes.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Department of Biological Sciences, The University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
94
|
Broers JLV, Bronnenberg NMHJ, Kuijpers HJH, Schutte B, Hutchison CJ, Ramaekers FCS. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur J Cell Biol 2002; 81:677-91. [PMID: 12553668 DOI: 10.1078/0171-9335-00282] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, Research Institute Growth & Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
Inherited disorders of the nuclear lamina present some of the most intriguing puzzles in cell biology. Mutations in lamin A and lamin C - nuclear intermediate filament proteins that are expressed in nearly all somatic cells - cause tissue-specific diseases that affect striated muscle, adipose tissue and peripheral nerve or skeletal development. Recent studies provide clues about how different mutations in these proteins cause either muscle disease or partial lipodystrophy. Although the precise pathogenic mechanisms are currently unknown, the involvement of lamins in several different disorders shows that research on the nuclear lamina will shed light on common human pathologies.
Collapse
Affiliation(s)
- Howard J Worman
- Dept of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
96
|
Abstract
Intermediate filament (IF) proteins are the building blocks of cytoskeletal filaments, the main function of which is to maintain cell shape and integrity. The lamins are thought to be the evolutionary progenitors of IF proteins and they have profound influences on both nuclear structure and function. These influences require the lamins to have dynamic properties and dual identities--as building blocks and transcriptional regulators. Which one of these identities underlies a myriad of genetic diseases is a topic of intense debate.
Collapse
Affiliation(s)
- Christopher J Hutchison
- Department of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
97
|
Dieudé M, Senécal JL, Rauch J, Hanly JG, Fortin P, Brassard N, Raymond Y. Association of autoantibodies to nuclear lamin B1 with thromboprotection in systemic lupus erythematosus: lack of evidence for a direct role of lamin B1 in apoptotic blebs. ARTHRITIS AND RHEUMATISM 2002; 46:2695-707. [PMID: 12384929 DOI: 10.1002/art.10552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To demonstrate the association between autoantibodies to nuclear lamin B1 (aLB1) and protection against thrombosis ("thromboprotection") in patients with systemic lupus erythematosus (SLE), and to elucidate the mechanism by which aLB1 cause thromboprotection in vivo. Since a number of autoantigens in SLE have been localized specifically to the external surface of apoptotic blebs, it was hypothesized that circulating aLB1 may block the procoagulant effect of apoptotic blebs by binding to LB1 displayed at the external bleb surface. METHODS A cross-sectional study was performed using serum samples obtained at first evaluation of 259 English Canadian and French Canadian patients from SLE registries at 3 hospitals. A case-control study was performed to analyze the relationship between aLB1 and lupus anticoagulant (LAC) status and thrombotic manifestations between onset of disease and last followup. Reactivity of aLB1 with Jurkat or endothelial cells, which had been induced to undergo apoptosis, was determined by indirect immunofluorescence. Localization of LB1 in apoptotic cells and blebs was analyzed by confocal microscopy and surface labeling of cell membrane proteins. RESULTS High-titer aLB1 was restricted to a subset of SLE patients (46 patients), with an overall frequency of 17.8% (range 11.6-24.3% in the 3 centers). LB1 antibodies were significantly associated with LAC but not with antibodies to cardiolipin (aCL) or beta(2)-glycoprotein I (anti-beta(2)GPI). The frequency of thrombosis differed markedly depending on aLB1 and LAC status, as follows: presence of LAC and absence of aLB1 50%, presence of both LAC and aLB1 22.7%, absence of both LAC and aLB1 25.5%, absence of LAC and presence of aLB1, 20.8%. Further subclassification of patients based on aCL and anti-beta(2)GPI status revealed that, in the presence of LAC but in the absence of aCL, anti-beta(2)GPI, and aLB1, the frequency of thrombosis was 40%, whereas in the presence of aLB1, it decreased strikingly, to 9.1%. LB1 was found to be translocated into surface membrane blebs during apoptosis and to be entirely enclosed within the apoptotic bleb plasma membrane of Jurkat and endothelial cells. CONCLUSION The presence of aLB1 in SLE patients with LAC essentially nullifies the strong prothrombotic risk associated with LAC. Hence, aLB1 is associated with thromboprotection. Reactivity of aLB1 with apoptotic blebs does not seem to play a direct role in mediating this protection, since LB1 is buried within apoptotic blebs and inaccessible to circulating aLB1. The mechanism by which aLB1 confers thromboprotection in SLE remains to be elucidated.
Collapse
Affiliation(s)
- Mélanie Dieudé
- Autoimmunity Research Laboratory, Notre-Dame Hospital, Centre Hospitalier de l'Université de Montréal, 1560 Sherbrooke Street East, Montreal, Quebec H2L 4M1, Canada
| | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Panniculitis and lipodystrophy are rare disorders of subcutaneous tissue. Recently the incidence of lipodystrophy has been increasing secondary to its appearance in patients with HIV. In this population, the lipodystrophy appears to be a direct consequence of drug therapy. A review of the available literature regarding pathogenesis and treatment options is discussed. The diagnosis of panniculitis has been hampered by problems. The recent literature has concentrated on ways of improving pathologic diagnostic yields, and new aids in diagnosis are presented.
Collapse
Affiliation(s)
- B Anne Eberhard
- Schneider Children's Hospital, Long Island Jewish Medical Center, Albert Einstein College of Medicine, New Hyde Park, New York 11040, USA.
| | | |
Collapse
|
99
|
Abstract
Intermediate filament (IF) proteins form the largest family of cytoskeletal proteins in mammalian cells. The function of these proteins has long been thought to be only structural. However, this single function does not explain their diverse tissue- and differentiation-specific expression patterns. Evidence is now emerging that IF also act as an important framework for the modulation and control of essential cell processes, in particular, signal transduction events. Here, we review the most recent developments in this growing and exciting new field.
Collapse
Affiliation(s)
- Jesus M Paramio
- Project on Cell and Molecular Biology and Gene Therapy, CIEMAT, Ave. Complutense 22, E-28040 Madrid, Spain.
| | | |
Collapse
|
100
|
Abstract
A group of human diseases, known as 'laminopathies', are associated with defects in proteins of the nuclear envelope. Most laminopathy mutations have been mapped to the A-type lamin gene, which is expressed in most adult cell types. So, why should different mutations in a near-ubiquitously expressed gene be associated with various discrete tissue-restricted diseases? Attempts to resolve this paradox are uncovering new molecular interactions #151; both inside the nucleus and at its periphery -- which indicate that the nuclear envelope has functions that go beyond mere housekeeping.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32610-0235, USA.
| | | |
Collapse
|